WO2015034287A1 - Silver alloy bonding wire and method for manufacturing same - Google Patents

Silver alloy bonding wire and method for manufacturing same Download PDF

Info

Publication number
WO2015034287A1
WO2015034287A1 PCT/KR2014/008323 KR2014008323W WO2015034287A1 WO 2015034287 A1 WO2015034287 A1 WO 2015034287A1 KR 2014008323 W KR2014008323 W KR 2014008323W WO 2015034287 A1 WO2015034287 A1 WO 2015034287A1
Authority
WO
WIPO (PCT)
Prior art keywords
bonding wire
silver alloy
palladium
weight
alloy bonding
Prior art date
Application number
PCT/KR2014/008323
Other languages
French (fr)
Korean (ko)
Inventor
김상엽
허영일
이종철
김승현
문정탁
Original Assignee
엠케이전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엠케이전자 주식회사 filed Critical 엠케이전자 주식회사
Priority to CN201480048613.0A priority Critical patent/CN105745339A/en
Publication of WO2015034287A1 publication Critical patent/WO2015034287A1/en
Priority to PH12016500401A priority patent/PH12016500401A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/06Alloys based on silver
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • H01L2224/438Post-treatment of the connector
    • H01L2224/43848Thermal treatments, e.g. annealing, controlled cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45139Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to a silver alloy bonding wire and a method of manufacturing the same. More specifically, a silver alloy bonding wire having improved ball shape uniformity and bonding ball shape and excellent reliability, loop straightness, and bond strength formed at the tip of the wire. And a method for producing the same.
  • bonding wires are still widely used to connect the substrate and the semiconductor device or to connect the semiconductor devices.
  • gold bonding wires have been used a lot, but they are expensive and there is a demand for bonding wires that can replace them since the price has risen recently.
  • the first technical problem to be achieved by the present invention is to provide a silver alloy bonding wire with improved ball shape uniformity and bonding ball shape at the tip of the wire and excellent in reliability, loop straightness, and bonding strength.
  • the second technical problem to be achieved by the present invention is to provide a method for producing a silver alloy bonding wire having improved ball shape uniformity and bonding ball shape and excellent reliability, loop straightness, and bonding strength of the ball formed at the wire tip.
  • the first aspect of the present invention provides a silver alloy bonding wire containing silver (Ag) as a main component and containing palladium (Pd) and gold (Au).
  • the silver alloy bonding wire may have a content of palladium (Pd) of about 0.1 to about 4.0 wt%, and a weight-based content ratio of gold (Au) to palladium (Pd) of about 0.25 to about 1.0.
  • the weight-based content ratio of gold (Au) to palladium (Pd) is more preferably about 0.4 to about 0.7.
  • the ratio of twin boundaries of the grains of the silver alloy bonding wire may be about 2% to about 10%.
  • the content of the palladium (Pd) is preferably about 1.5% by weight to about 3.5% by weight.
  • the silver alloy bonding wire is iridium (Ir), titanium (Ti), platinum (Pt), beryllium (Be), calcium (Ca), lanthanum (La), yttrium (Y), cerium (Ce), bismuth ( At least one component selected from the group consisting of Bi), cobalt (Co), and magnesium (Mg) may be further included as a performance control component.
  • the content of the performance control component may be about 3 ppm by weight to about 5000 ppm by weight.
  • the performance control component may include platinum (Pt), the content of the platinum (Pt) may be about 500 ppm by weight to about 5000 ppm by weight.
  • the performance control component may be iridium (Ir) or titanium (Ti).
  • Another aspect for achieving the first technical problem of the present invention is a silver alloy bonding wire containing silver (Ag) as a main component, and containing palladium (Pd) and gold (Au), the content of palladium (Pd) is 0.1 to 4.0 weight percent and a silver alloy bonding wire having a ratio of twin boundaries of grains from about 2% to about 10%.
  • the silver alloy bonding wire is iridium (Ir), titanium (Ti), platinum (Pt), beryllium (Be), calcium (Ca), lanthanum (La), yttrium (Y), cerium (Ce), bismuth (Bi) , Cobalt (Co), and magnesium (Mg) may further comprise one or more components selected from the group consisting of performance control components, the content of the performance control component is about 3 ppm by weight to about 5000 ppm by weight Can be.
  • the present invention includes silver (Ag) as a main component, and includes palladium (Pd) and gold (Au), and the content of palladium (Pd) is 0.1 to 4.0 wt%, and palladium ( Preparing an alloy piece having a weight-based content ratio of gold (Au) to 0.25 to 1.0; And it provides a method for producing a silver alloy bonding wire comprising the step of drawing and heat-treating the alloy piece.
  • the drawing and heat treatment of the alloy piece may include performing a first heat treatment when the diameter of the thin wire obtained by drawing the alloy piece is 0.5 mm to 5 mm.
  • the first heat treatment may be performed at 550 °C to 700 °C for 0.5 seconds to 5 seconds.
  • the drawing and heat treatment may be configured such that the ratio of the twin boundary of the grains of the silver alloy bonding wire is about 2% to about 10%.
  • the first heat treatment may be performed at about 600 °C to about 650 °C for about 2 seconds to about 4 seconds.
  • the drawing and heat treatment may further include performing a second heat treatment when the diameter of the thin wire obtained by drawing the alloy piece is 0.05 mm to 0.4 mm.
  • the secondary heat treatment may be performed at about 550 °C to about 700 °C for about 0.5 seconds to about 5 seconds.
  • the secondary heat treatment may be performed at about 600 ° C to about 650 ° C for about 2 seconds to about 4 seconds.
  • the ball shape uniformity and the bonding ball shape of the ball formed at the tip of the wire are improved, and the reliability, loop straightness, and bonding strength are excellent.
  • FIG. 1 is a block diagram showing a method of manufacturing a silver alloy bonding wire according to an embodiment of the present invention.
  • FIG. 1 shows the results of misorientation analysis and twin boundary image analysis of Example 1.
  • FIG. 3A and 3B show the results of misorientation analysis and twin boundary image analysis of Comparative Example 1.
  • FIG. 4 is a conceptual side view illustrating a first bonding side and a second bonding side test method, respectively, for testing bonding characteristics of manufactured silver alloy bonding wires.
  • first and second may be used to describe various components, but the components are not limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • first component may be referred to as the second component, and vice versa, the second component may be referred to as the first component.
  • the concept of the present invention discloses a silver alloy bonding wire containing silver (Ag) as a main component and containing palladium (Pd) and gold (Au).
  • the main component means that the concentration of the corresponding element with respect to the total component exceeds 50%. That is, having silver (Ag) as the main component means that the concentration of silver in the total amount of silver and other elements exceeds 50%.
  • the concentration refers to the concentration based on the number of moles of atoms.
  • the content of the palladium (Pd) may be about 0.1% by weight to about 4% by weight. If the content of palladium (Pd) is too small, the acid resistance may deteriorate so that it may be easily corroded or short-circuited by nitric acid or sulfuric acid. In particular, if palladium is not contained, oxidation resistance of the silver alloy bonding wire may be weak. On the contrary, when the content of palladium is excessively high, the hardness of the ball formed at the end of the wire during wire bonding may excessively increase, thereby damaging the bonding pad and / or the substrate below.
  • the content ratio of gold (Au) to the palladium (Pd), that is, the ratio of [gold (Au) content] / [palladium (Pd) content] may be about 0.25 to about 1.0 based on weight.
  • the content ratio of gold (Au) to the palladium (Pd) is more preferably about 0.4 to about 0.7.
  • the shape of the ball formed at the end of the bonding wire is out of the spherical ( ⁇ ⁇ ) may have a poor bonding properties.
  • the surface of the bonding wire is easily oxidized and discolored.
  • the content of palladium (Pd) may be about 0.1% to about 4.0% by weight.
  • the content of the palladium is more preferably about 1.5% to about 3.5% by weight.
  • the content of the gold (Au) may be determined based on the content ratio between the gold (Au) and palladium (Pd).
  • the twin boundary ( ⁇ ) is a kind of boundary formed by the grains and has a lattice structure forming a mirror image. More specifically, the boundary where the arrangement of atoms on one side and the arrangement of atoms on the other side are mirror images of each other around the boundary (boundary) is called a twin boundary.
  • the ratio corresponding to the twin boundary is high among the boundary formed by the whole grains, the shape of the ball may be out of the spherical sphere when the ball is formed, which is not preferable. More specifically, the ratio corresponding to the twin boundary among the boundaries formed by the whole grains may be about 10% or less. Preferably, the ratio corresponding to the twin boundary among the boundaries formed by the whole grains is preferably about 2% to about 10%.
  • the ratio of the twin boundary means the ratio of the boundary that meets the definition of the above twin boundary among the boundaries of the grains formed by the grains of the bonding wire cross-section, and the ratio of the twin boundary is, for example, electron backscatter diffraction. Can be measured relatively easily using equipment such as EBSD).
  • the inventors of the present invention found that the ball formation of the bonding wire is closely related to the ratio of the twin boundary, and when the ratio of the twin boundary exceeds about 10%, the true structure of the ball formed at the end of the bonding wire is deteriorated, and Problems have been found that the planar shape of the first bonding side may be out of the garden form or have a flower shape.
  • the ratio of the twin boundary in the cross-sectional crystal structure of the bonding wire to about 10% or less, the true structure of the ball formed at the end of the bonding wire is improved, and the planar shape of the primary bonding side also has the effect of having a garden shape. Found.
  • the manufacturing cost may increase when manufacturing the twin boundary to be less than or equal to 2%.
  • the silver alloy bonding wire is iridium (Ir), titanium (Ti), platinum (Pt), beryllium (Be), calcium (Ca), lanthanum (La), yttrium (Y), cerium (Ce), bismuth (Bi) It may further comprise one or more components selected from the group consisting of, cobalt (Co), and magnesium (Mg) as a performance control component. These performance control components can be added to improve performance such as high temperature reliability, high humidity reliability, bonding properties, elongation standard deviation, and the like.
  • the content of the performance control component may be about 3 ppm by weight to about 5000 ppm by weight. If the content of the performance control component is too low, the desired performance improvement may not be manifested. In addition, if the content of the performance control component is too high, the electrical resistance increases and is economically disadvantageous.
  • the performance control component may be platinum (Pt).
  • the content of platinum (Pt) may be about 500 ppm by weight to about 5000 ppm by weight.
  • the performance control component may be iridium (Ir) and / or titanium (Ti).
  • the content of iridium (Ir) and / or titanium (Ti) may be about 500 ppm by weight to about 5000 ppm by weight.
  • the performance control component essentially includes platinum (Pt) and may further include iridium (Ir) and / or titanium (Ti).
  • the sum of the content of platinum (Pt) and the content of the iridium (Ir) and / or titanium (Ti) may be about 500 ppm by weight to about 5000 ppm by weight.
  • FIG. 1 is a block diagram sequentially illustrating a manufacturing method according to an embodiment of the present invention.
  • an alloy liquid of a metal raw material may be manufactured by melting and casting a metal raw material including silver (Ag), gold (Au), and palladium (Pd) in a melting furnace to have a desired composition (S1). At this time, performance control components other than silver (Ag), gold (Au), and palladium (Pd) can be added.
  • the alloy liquid of the metal raw material is cooled and solidified, and an alloy piece can be obtained by forging, rolling, or the like (S2). Subsequently, the alloy piece may be first thinned to have a diameter of about 6 mm to about 9 mm (S3).
  • the primary thin wire thinned to have a diameter of about 6 mm to about 9 mm is drawn and heat-treated (S4).
  • the drawing and heat treatment may include a step of gradually thinning and heat treating the primary thin wire.
  • the cross section of the thin wire may be reduced while passing through a multi-stage die.
  • this embodiment may include performing a first heat treatment when the diameter of the fine wire is about 0.5 mm to about 5 mm.
  • the primary heat treatment may be performed, for example, at about 550 ° C. to about 700 ° C. for about 0.5 seconds to about 5 seconds. More preferably, the first heat treatment may be performed at about 600 °C to about 650 °C for about 2 seconds to about 4 seconds.
  • the present embodiment may further comprise performing a second heat treatment when the diameter of the fine wire is about 0.05 mm to about 0.4 mm .
  • the secondary heat treatment may be performed, for example, at about 550 ° C. to about 700 ° C. for about 0.5 seconds to about 5 seconds. More preferably, the secondary heat treatment may be performed at about 600 ° C. to about 650 ° C. for about 2 seconds to about 4 seconds.
  • the thin wire decreases in diameter as it sequentially passes through a number of dice.
  • the thin wire decreases in diameter as it sequentially passes through a plurality of dice arranged to gradually decrease the size of the hole.
  • the above heat treatments may be performed between any dice and dice when the diameter of the fine wire falls within the corresponding range.
  • the primary heat treatment may be performed between any two dice when the diameter of the fine wire is about 0.5 mm to about 5 mm.
  • the secondary heat treatment may be performed between any two dice when the diameter of the thin wire is about 0.1 mm to about 0.5 mm.
  • the cross section of the wire is reduced by drawing the fine wire until a bonding wire having a desired diameter is manufactured through drawing.
  • the cross-sectional reduction rate of the bonding wires before and after the die can be adjusted to about 7% to about 15%. That is, when the wire in the wire passes through one die, the process can be configured such that the cross-sectional area after passage decreases by about 7% to about 15% compared to the cross-sectional area before passage.
  • the reduction rate of the cross section of the bonding wire in the process of drawing a diameter in the range of 50 ⁇ m or less is preferably adjusted to about 7% to about 15%.
  • the cross sectional reduction rate of the bonding wire is too high, the dispersion of grains in the bonding wire may be excessively large.
  • the cross sectional reduction rate of the bonding wire is too low, the number of drawing operations required to obtain the bonding wire of the desired diameter is too large, which may be economically disadvantageous.
  • additional annealing may be performed after the drawing is completed to adjust elongation (S5).
  • Annealing conditions for adjusting the elongation may vary depending on the composition of the thin wire, the reduction rate, the heat treatment conditions, etc., but may be performed for about 1 second to about 20 minutes at a temperature of about 400 ° C to 600 ° C, Those skilled in the art will be able to select specific annealing conditions appropriately.
  • the annealing temperature is too low, the ductility and malleability necessary for bonding bonding may not be secured. On the contrary, if the annealing temperature is too high, the grain size may be excessively large. The same failure may occur and is undesirable.
  • the above annealing process can be performed, for example, by passing the bonding wire through the furnace at a suitable speed. Also, the rate at which the bonding wire passes through the furnace can be determined from the annealing time and the size of the furnace.
  • the image After capturing the image of the bonding wire having a diameter of 20 ⁇ m, using a 5% H 2 + N 2 gas as a shielding gas to make a bonding ball of 2WD (diameter twice the diameter of the wire), the image is captured. The degree of deviation was measured. The degree of deviating from the garden was quantified by expressing the difference between the ratio of the short axis to the long axis of the ball and the difference as a percentage.
  • the tip of the 20 ⁇ m diameter bonding wire is bonded to the pad using 5% H 2 + N 2 gas as a shielding gas to form a bonding ball of 2WD (diameter twice the diameter of the wire), and then the horizontal and vertical directions
  • 5% H 2 + N 2 gas as a shielding gas
  • the bonding wire is located at the center of the ball, and the edge is determined to be round without a petal shape
  • the length of the bonded ball in the horizontal and vertical directions When the ratio of is 0.96 or more and less than 0.99 and the bonding wire is located at the center of the ball, and the edge is determined to be round without petal shape, the ratio of the length of the bonded ball in the horizontal axis direction and the vertical axis direction is 0.9 or more, and the edge is shaped like a petal. There was no, and if it did not correspond to ⁇ or ⁇ above, ⁇ , otherwise, evaluated as ⁇ .
  • the package sealed with the epoxy molding resin was heated to the temperature of 175 degreeC, the time which the short circuit generate
  • (Circle) if a short circuit in a joining surface is 500 hours or more, (circle) and 384 hours or more and less than 500 hours, it evaluated as (circle), 192 or more and less than 384 hours, (triangle
  • the package sealed with epoxy molding resin was left under 121 degreeC and 85% humidity, the time which the short circuit generate
  • produces in a joining surface is 192 hours or more, (circle), 168 hours or more and less than 192 hours, (circle), 96 hours or more and less than 168 hours, it evaluated as (triangle
  • Thermal shock reliability was used commercially available thermal cycling test (TCT) equipment. After wire bonding, it is sealed with epoxy molding resin (EMC), and thermal shock is repeatedly applied under severe conditions (-45 ° C / 30 minutes to + 125 ° C / 30 minutes), and then the bonding wire is broken by shrinkage / expansion. The number of losing wires was measured. ⁇ if there are no wires broken out of 6000 wires, ⁇ if there are more than 1 or less than 5 wires broken, ⁇ if 5 or more and less than 20 wires are broken, ⁇ .
  • TCT thermal cycling test
  • Bumps were formed by ball bonding to one of two rows of bonding pads arranged at intervals of 120 ⁇ m, and ball bonding was performed on the opposite side, and stitch bonding was performed on the bumps while forming loops.
  • the gap was measured at the point where the gap between the loops was the narrowest, and this was determined as a value representing the gap between each loop.
  • the intervals between the loops thus determined were 111 ⁇ m to 125 ⁇ m, ⁇ , 105 ⁇ m or more and less than 111 ⁇ m, and ⁇ if they were less than 105 ⁇ m.
  • the primary bonding side bonding pad 10 and the secondary bonding side bonding pad 20 are bonded using the manufactured silver alloy bonding wire. That is, the ball is formed on the tip of the silver alloy bonding wire 100 to perform ball bonding on the primary bonding side bonding pad 10, and then stitch bonding is performed on the secondary bonding side bonding pad 20.
  • Table 1 Judgment BPT rod (g) SPT load (g) ⁇ 7.5g or more 6.5g or more ⁇ 7.0g or more and less than 7.5g 6.0g or more and less than 6.5g ⁇ 6.0 g or more and less than 7.0 g 5.0 g or more but less than 6.0 g ⁇ Less than 6.0g Less than 5.0g
  • the primary bonding side bonding pad 10 and the secondary bonding side bonding pad 20 are bonded using the manufactured silver alloy bonding wire.
  • a bonding wire having a diameter of 20 ⁇ m was prepared by performing a first heat treatment and a second heat treatment together with the fresh wire.
  • the first heat treatment temperature and the second heat treatment temperature are as shown in Table 3 below, respectively, and were performed for 3 seconds at the time points of 0.5 mm and 0.08 mm, respectively.
  • the first and second heat treatments were performed together with the fresh wire to prepare a bonding wire having a diameter of 20 ⁇ m.
  • the primary heat treatment temperature and the secondary heat treatment temperature were as shown in Table 3, respectively, and were performed for 3 seconds at the time points of 8 mm and 0.08 mm, respectively.
  • Twin boundary analysis was performed on the samples of Examples 1 to 4 and Comparative Example 1 prepared above.
  • the twin boundary analysis was performed using a JEOL JSM-6500 device equipped with an electron backscatter diffraction (EBSD) device and HKL CHANNEL 5 software.
  • the tilt angle was 70 degrees and the grain boundary reference was an area having a crystal orientation difference of 15 degrees or more.
  • the measurement step was 0.05 ⁇ m for the surface and 0.2 ⁇ m for the longitudinal section.
  • FIGS. 3A and 3B show the results of misorientation analysis and twin boundary image analysis of Comparative Example 1. It was.
  • the present invention can be usefully used in the semiconductor industry.

Abstract

The present invention relates to a silver alloy bonding wire containing silver (Ag) as a main component, palladium (Pd), and gold (Au), and, more specifically, to an alloy bonding wire in which the palladium (Pd) content is 0.1 to 0.4 wt% and the weight content ratio of gold (Au) to palladium (Pd) is 0.25 to 1.0. The use of the silver alloy bonding wire of the present invention can improve the ball shape uniformity and the bonding ball shape of a ball which is formed on the tip of a wire and provide excellent reliability, loop linearity, and binding strength.

Description

은 합금 본딩 와이어 및 그의 제조 방법Silver Alloy Bonding Wire And Method Of Manufacturing The Same
본 발명은 은 합금 본딩 와이어 및 그의 제조 방법에 관한 것으로서, 보다 구체적으로는 와이어 선단에 형성되는 볼의 볼모양 균일성과 본딩볼 형상이 개선되고 신뢰성, 루프 직진성, 및 접합 강도가 우수한 은 합금 본딩 와이어 및 그의 제조 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silver alloy bonding wire and a method of manufacturing the same. More specifically, a silver alloy bonding wire having improved ball shape uniformity and bonding ball shape and excellent reliability, loop straightness, and bond strength formed at the tip of the wire. And a method for producing the same.
반도체 장치를 실장하기 위한 패키지에는 다양한 구조들이 존재하며, 기판과 반도체 장치를 연결하거나 반도체 장치들 사이를 연결하기 위하여 본딩 와이어가 여전히 널리 사용되고 있다. 본딩 와이어로서는 금 본딩 와이어가 많이 사용되었으나 고가일 뿐만 아니라 최근 가격이 급상승하였기 때문에 이를 대체할 수 있는 본딩 와이어에 대한 요구가 있다.Various structures exist in a package for mounting a semiconductor device, and bonding wires are still widely used to connect the substrate and the semiconductor device or to connect the semiconductor devices. As a bonding wire, gold bonding wires have been used a lot, but they are expensive and there is a demand for bonding wires that can replace them since the price has risen recently.
금(Au)의 대체재료로서 각광받았던 구리 와이어의 경우 구리 본연의 높은 경도로 인해 볼 본딩시 칩이 깨어지는 패드 크랙(pad crack) 현상이 빈번하게 일어나고 있고, 고집적 패키지에 필요한 SOB (stitch-on-bump) 본딩이 구리의 높은 경도와 강한 산화성으로 인해 해결되지 않고 있다.In the case of copper wire, which has been spotlighted as an alternative to Au, the pad crack phenomenon occurs frequently during ball bonding due to the inherent high hardness of copper, and SOB (stitch-on) required for highly integrated packages Bump bonding is not solved due to the high hardness and strong oxidative properties of copper.
이에 대한 대안으로서 저렴한 가격의 은(Ag)을 주성분으로 하는 본딩 와이어에 대한 연구가 활발하게 진행되고 있다. 은과 다른 금속 원소들을 합금함으로써 우수한 성질의 본딩 와이어를 개발하려는 노력이 진행되고 있으나, 아직도 개선될 여지가 많이 있다.As an alternative, research on bonding wires based on low-cost silver (Ag) has been actively conducted. Efforts have been made to develop bonding wires of good properties by alloying silver with other metal elements, but there is still much room for improvement.
<선행기술문헌><Preceding technical literature>
한국특허공개공보 제2007-0031998호Korean Patent Publication No. 2007-0031998
본 발명이 이루고자 하는 첫 번째 기술적 과제는 와이어 선단에 형성되는 볼의 볼모양 균일성과 본딩볼 형상이 개선되고 신뢰성, 루프 직진성, 및 접합 강도가 우수한 은 합금 본딩 와이어를 제공하는 것이다.The first technical problem to be achieved by the present invention is to provide a silver alloy bonding wire with improved ball shape uniformity and bonding ball shape at the tip of the wire and excellent in reliability, loop straightness, and bonding strength.
본 발명이 이루고자 하는 두 번째 기술적 과제는 와이어 선단에 형성되는 볼의 볼모양 균일성과 본딩볼 형상이 개선되고 신뢰성, 루프 직진성, 및 접합 강도가 우수한 은 합금 본딩 와이어의 제조 방법을 제공하는 것이다.The second technical problem to be achieved by the present invention is to provide a method for producing a silver alloy bonding wire having improved ball shape uniformity and bonding ball shape and excellent reliability, loop straightness, and bonding strength of the ball formed at the wire tip.
본 발명의 첫 번째 태양은 상기 첫 번째 기술적 과제를 이루기 위하여, 은(Ag)을 주성분으로 하고, 팔라듐(Pd) 및 금(Au)을 포함하는 은 합금 본딩 와이어를 제공한다. 상기 은 합금 본딩 와이어는 팔라듐(Pd)의 함량이 약 0.1 내지 약 4.0 중량%이고, 팔라듐(Pd)에 대한 금(Au)의 중량기준 함량비가 약 0.25 내지 약 1.0일 수 있다. 특히, 상기 팔라듐(Pd)에 대한 금(Au)의 중량기준 함량비는 약 0.4 내지 약 0.7인 것이 더욱 바람직하다.In order to achieve the first technical problem, the first aspect of the present invention provides a silver alloy bonding wire containing silver (Ag) as a main component and containing palladium (Pd) and gold (Au). The silver alloy bonding wire may have a content of palladium (Pd) of about 0.1 to about 4.0 wt%, and a weight-based content ratio of gold (Au) to palladium (Pd) of about 0.25 to about 1.0. In particular, the weight-based content ratio of gold (Au) to palladium (Pd) is more preferably about 0.4 to about 0.7.
또한, 상기 은 합금 본딩 와이어의 결정립들의 트윈 바운더리(twin boundary)의 비율이 약 2% 내지 약 10%일 수 있다. 이 때, 상기 팔라듐(Pd)의 함량은 약 1.5 중량% 내지 약 3.5 중량%인 것이 바람직하다.In addition, the ratio of twin boundaries of the grains of the silver alloy bonding wire may be about 2% to about 10%. At this time, the content of the palladium (Pd) is preferably about 1.5% by weight to about 3.5% by weight.
또, 상기 은 합금 본딩 와이어는 이리듐(Ir), 티타늄(Ti), 백금(Pt), 베릴륨(Be), 칼슘(Ca), 란탄(La), 이트륨(Y), 세륨(Ce), 비스무트(Bi), 코발트(Co), 및 마그네슘(Mg)으로 구성되는 군으로부터 선택되는 1종 이상의 성분을 성능 제어 성분으로서 더 포함할 수 있다. 예를 들면, 상기 성능 제어 성분의 함량은 약 3 중량ppm 내지 약 5000 중량ppm일 수 있다. 특히, 상기 성능 제어 성분이 백금(Pt)을 포함하고, 상기 백금(Pt)의 함량이 약 500 중량ppm 내지 약 5000 중량ppm일 수 있다.In addition, the silver alloy bonding wire is iridium (Ir), titanium (Ti), platinum (Pt), beryllium (Be), calcium (Ca), lanthanum (La), yttrium (Y), cerium (Ce), bismuth ( At least one component selected from the group consisting of Bi), cobalt (Co), and magnesium (Mg) may be further included as a performance control component. For example, the content of the performance control component may be about 3 ppm by weight to about 5000 ppm by weight. In particular, the performance control component may include platinum (Pt), the content of the platinum (Pt) may be about 500 ppm by weight to about 5000 ppm by weight.
선택적으로, 상기 성능 제어 성분은 이리듐(Ir) 또는 티타늄(Ti)일 수도 있다.Optionally, the performance control component may be iridium (Ir) or titanium (Ti).
본 발명의 상기 첫 번째 기술적 과제를 이루기 위한 다른 태양은 은(Ag)을 주성분으로 하고, 팔라듐(Pd) 및 금(Au)을 포함하는 은 합금 본딩 와이어로서, 팔라듐(Pd)의 함량이 0.1 내지 4.0 중량%이고, 결정립들의 트윈 바운더리(twin boundary)의 비율이 약 2% 내지 약 10%인 은 합금 본딩 와이어를 제공한다.Another aspect for achieving the first technical problem of the present invention is a silver alloy bonding wire containing silver (Ag) as a main component, and containing palladium (Pd) and gold (Au), the content of palladium (Pd) is 0.1 to 4.0 weight percent and a silver alloy bonding wire having a ratio of twin boundaries of grains from about 2% to about 10%.
상기 은 합금 본딩 와이어는 이리듐(Ir), 티타늄(Ti), 백금(Pt), 베릴륨(Be), 칼슘(Ca), 란탄(La), 이트륨(Y), 세륨(Ce), 비스무트(Bi), 코발트(Co), 및 마그네슘(Mg)으로 구성되는 군으로부터 선택되는 1종 이상의 성분을 성능 제어 성분으로서 더 포함할 수 있고, 상기 성능 제어 성분의 함량은 약 3 중량ppm 내지 약 5000 중량ppm일 수 있다.The silver alloy bonding wire is iridium (Ir), titanium (Ti), platinum (Pt), beryllium (Be), calcium (Ca), lanthanum (La), yttrium (Y), cerium (Ce), bismuth (Bi) , Cobalt (Co), and magnesium (Mg) may further comprise one or more components selected from the group consisting of performance control components, the content of the performance control component is about 3 ppm by weight to about 5000 ppm by weight Can be.
본 발명은 상기 두 번째 기술적 과제를 이루기 위하여, 은(Ag)을 주성분으로 하고, 팔라듐(Pd) 및 금(Au)을 포함하고, 팔라듐(Pd)의 함량이 0.1 내지 4.0 중량%이고, 팔라듐(Pd)에 대한 금(Au)의 중량기준 함량비가 0.25 내지 1.0인 합금 피스를 제조하는 단계; 및 상기 합금 피스를 신선 및 열처리하는 단계를 포함하는 은 합금 본딩 와이어의 제조 방법을 제공한다. 특히, 상기 합금 피스를 신선 및 열처리하는 단계는 상기 합금 피스를 신선하여 얻은 세선의 직경이 0.5 mm 내지 5 mm일 때 1차 열처리를 수행하는 단계를 포함한다. 상기 1차 열처리는 550 ℃ 내지 700 ℃에서 0.5 초 내지 5 초 동안 수행될 수 있다.In order to achieve the second technical problem, the present invention includes silver (Ag) as a main component, and includes palladium (Pd) and gold (Au), and the content of palladium (Pd) is 0.1 to 4.0 wt%, and palladium ( Preparing an alloy piece having a weight-based content ratio of gold (Au) to 0.25 to 1.0; And it provides a method for producing a silver alloy bonding wire comprising the step of drawing and heat-treating the alloy piece. In particular, the drawing and heat treatment of the alloy piece may include performing a first heat treatment when the diameter of the thin wire obtained by drawing the alloy piece is 0.5 mm to 5 mm. The first heat treatment may be performed at 550 ℃ to 700 ℃ for 0.5 seconds to 5 seconds.
이 때, 상기 신선 및 열처리는 상기 은 합금 본딩 와이어의 결정립들의 트윈 바운더리의 비율이 약 2% 내지 약 10%가 되도록 구성될 수 있다.In this case, the drawing and heat treatment may be configured such that the ratio of the twin boundary of the grains of the silver alloy bonding wire is about 2% to about 10%.
특히, 상기 1차 열처리는 약 600 ℃ 내지 약 650 ℃에서 약 2 초 내지 약 4 초 동안 수행될 수 있다.In particular, the first heat treatment may be performed at about 600 ℃ to about 650 ℃ for about 2 seconds to about 4 seconds.
또한, 상기 신선 및 열처리는 상기 합금 피스를 신선하여 얻은 세선의 직경이 0.05 mm 내지 0.4 mm일 때 2차 열처리를 수행하는 단계를 더 포함할 수 있다. 이 때, 상기 2차 열처리는 약 550 ℃ 내지 약 700 ℃에서 약 0.5 초 내지 약 5 초 동안 수행될 수 있다.The drawing and heat treatment may further include performing a second heat treatment when the diameter of the thin wire obtained by drawing the alloy piece is 0.05 mm to 0.4 mm. At this time, the secondary heat treatment may be performed at about 550 ℃ to about 700 ℃ for about 0.5 seconds to about 5 seconds.
특히, 상기 2차 열처리는 약 600 ℃ 내지 약 650 ℃에서 약 2 초 내지 약 4 초 동안 수행될 수 있다.In particular, the secondary heat treatment may be performed at about 600 ° C to about 650 ° C for about 2 seconds to about 4 seconds.
본 발명의 은 합금 본딩 와이어를 이용하면 와이어 선단에 형성되는 볼의 볼모양 균일성과 본딩볼 형상이 개선되고 신뢰성, 루프 직진성, 및 접합 강도가 우수한 효과가 있다.By using the silver alloy bonding wire of the present invention, the ball shape uniformity and the bonding ball shape of the ball formed at the tip of the wire are improved, and the reliability, loop straightness, and bonding strength are excellent.
도 1은 본 발명의 일 실시예에 따른 은 합금 본딩 와이어의 제조 방법을 나타낸 블록도를 나타낸다.1 is a block diagram showing a method of manufacturing a silver alloy bonding wire according to an embodiment of the present invention.
도 2a 및 도 2b는 실시예 1의 미스오리엔테이션(misorientation) 분석 및 트윈 바운더리 이미지 분석 결과를 나타낸다.2A and 2B show the results of misorientation analysis and twin boundary image analysis of Example 1. FIG.
도 3a 및 도 3b는 비교예 1의 미스오리엔테이션 분석 및 트윈 바운더리 이미지 분석 결과를 나타낸다.3A and 3B show the results of misorientation analysis and twin boundary image analysis of Comparative Example 1. FIG.
도 4는 제조된 은 합금 본딩 와이어의 본딩 특성을 시험하기 위한 1차 본딩 및 2차 본딩쪽 시험 방법을 각각 나타낸 개념적인 측면도이다.FIG. 4 is a conceptual side view illustrating a first bonding side and a second bonding side test method, respectively, for testing bonding characteristics of manufactured silver alloy bonding wires.
이하, 첨부도면을 참조하여 본 발명 개념의 바람직한 실시예들을 상세히 설명하기로 한다. 그러나, 본 발명 개념의 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명 개념의 범위가 아래에서 상술하는 실시예들로 인해 한정되어지는 것으로 해석되어져서는 안 된다. 본 발명 개념의 실시예들은 당 업계에서 평균적인 지식을 가진 자에게 본 발명 개념을 보다 완전하게 설명하기 위해서 제공되어지는 것으로 해석되는 것이 바람직하다. 동일한 부호는 시종 동일한 요소를 의미한다. 나아가, 도면에서의 다양한 요소와 영역은 개략적으로 그려진 것이다. 따라서, 본 발명 개념은 첨부한 도면에 그려진 상대적인 크기나 간격에 의해 제한되어지지 않는다.Hereinafter, exemplary embodiments of the inventive concept will be described in detail with reference to the accompanying drawings. However, embodiments of the inventive concept may be modified in many different forms and should not be construed as limiting the scope of the inventive concept to the embodiments described below. Embodiments of the inventive concept are preferably interpreted as being provided to those skilled in the art to more fully describe the inventive concept. Like numbers refer to like elements all the time. Furthermore, various elements and regions in the drawings are schematically drawn. Accordingly, the inventive concept is not limited by the relative size or spacing drawn in the accompanying drawings.
제1, 제2 등의 용어는 다양한 구성 요소들을 설명하는 데 사용될 수 있지만, 상기 구성 요소들은 상기 용어들에 의해 한정되지 않는다. 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명 개념의 권리 범위를 벗어나지 않으면서 제 1 구성 요소는 제 2 구성 요소로 명명될 수 있고, 반대로 제 2 구성 요소는 제 1 구성 요소로 명명될 수 있다.Terms such as first and second may be used to describe various components, but the components are not limited by the terms. The terms are used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the inventive concept, the first component may be referred to as the second component, and vice versa, the second component may be referred to as the first component.
본 출원에서 사용한 용어는 단지 특정한 실시예들을 설명하기 위해 사용된 것으로서, 본 발명 개념을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함한다" 또는 "갖는다" 등의 표현은 명세서에 기재된 특징, 개수, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 개수, 동작, 구성 요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the inventive concepts. Singular expressions include plural expressions unless the context clearly indicates otherwise. In this application, the expression “comprises” or “having” is intended to indicate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, and that one or more other features It should be understood that it does not exclude in advance the possibility of the presence or addition of numbers, operations, components, parts or combinations thereof.
달리 정의되지 않는 한, 여기에 사용되는 모든 용어들은 기술 용어와 과학 용어를 포함하여 본 발명 개념이 속하는 기술 분야에서 통상의 지식을 가진 자가 공통적으로 이해하고 있는 바와 동일한 의미를 지닌다. 또한, 통상적으로 사용되는, 사전에 정의된 바와 같은 용어들은 관련되는 기술의 맥락에서 이들이 의미하는 바와 일관되는 의미를 갖는 것으로 해석되어야 하며, 여기에 명시적으로 정의하지 않는 한 과도하게 형식적인 의미로 해석되어서는 아니 될 것임은 이해될 것이다.Unless defined otherwise, all terms used herein have the same meaning as commonly understood by one of ordinary skill in the art, including technical terms and scientific terms. Also, as used in the prior art, terms as defined in advance should be construed to have a meaning consistent with what they mean in the context of the technology concerned, and in an overly formal sense unless explicitly defined herein. It will be understood that it should not be interpreted.
본 발명 개념은 은(Ag)을 주성분으로 하고, 팔라듐(Pd)과 금(Au)을 포함하는 은 합금 본딩 와이어를 개시한다. 여기서, 주성분(main component)이라 함은 전체 성분에 대한 해당 원소의 농도가 50%를 넘는 것을 말한다. 즉, 은(Ag)을 주성분으로 한다는 것은 은과 다른 원소의 총계에 대한 은의 농도가 50%를 넘는 것을 의미한다. 여기서 농도는 원자 몰수를 기준으로 한 농도를 말한다.The concept of the present invention discloses a silver alloy bonding wire containing silver (Ag) as a main component and containing palladium (Pd) and gold (Au). Here, the main component means that the concentration of the corresponding element with respect to the total component exceeds 50%. That is, having silver (Ag) as the main component means that the concentration of silver in the total amount of silver and other elements exceeds 50%. Here, the concentration refers to the concentration based on the number of moles of atoms.
상기 팔라듐(Pd)의 함량은 약 0.1 중량% 내지 약 4 중량%일 수 있다. 만일 팔라듐(Pd)의 함량이 지나치게 적으면 내산성이 나빠져서 질산이나 황산 등에 의하여 쉽게 부식되거나 단락될 수 있고, 특히 팔라듐이 함유되지 않으면 은 합금 본딩 와이어의 내산화성이 취약해질 수 있다. 반대로, 팔라듐의 함량이 과도하게 많으면 와이어 본딩 시의 와이어 말단에 형성되는 볼의 경도가 과도하게 상승하여 본딩 패드 및/또는 그 아래의 기판이 손상될 수 있다.The content of the palladium (Pd) may be about 0.1% by weight to about 4% by weight. If the content of palladium (Pd) is too small, the acid resistance may deteriorate so that it may be easily corroded or short-circuited by nitric acid or sulfuric acid. In particular, if palladium is not contained, oxidation resistance of the silver alloy bonding wire may be weak. On the contrary, when the content of palladium is excessively high, the hardness of the ball formed at the end of the wire during wire bonding may excessively increase, thereby damaging the bonding pad and / or the substrate below.
상기 팔라듐(Pd)에 대한 금(Au)의 함량비, 즉 [금(Au) 함량] / [팔라듐(Pd) 함량]의 비는 중량을 기준으로 하여 약 0.25 내지 약 1.0일 수 있다. 상기 팔라듐(Pd)에 대한 금(Au)의 함량비는 약 0.4 내지 약 0.7인 것이 더욱 바람직하다.The content ratio of gold (Au) to the palladium (Pd), that is, the ratio of [gold (Au) content] / [palladium (Pd) content] may be about 0.25 to about 1.0 based on weight. The content ratio of gold (Au) to the palladium (Pd) is more preferably about 0.4 to about 0.7.
상기 팔라듐(Pd)에 대한 금(Au)의 함량비가 너무 낮으면 본딩 와이어의 말단에 형성되는 볼의 형상이 진구(眞球)로부터 벗어나게 되어 본딩 특성이 나빠질 수 있다. 또한, 본딩 와이어의 표면이 쉽게 산화되고, 또한 변색되기 쉬운 문제점이 있다.If the content ratio of gold (Au) to the palladium (Pd) is too low, the shape of the ball formed at the end of the bonding wire is out of the spherical (眞 球) may have a poor bonding properties. In addition, there is a problem that the surface of the bonding wire is easily oxidized and discolored.
반대로, 상기 함량비가 너무 높으면 본딩와이어의 말단에 형성되는 볼의 진구성이 나빠진다. 또한, 본딩 와이어의 말단에 형성되는 볼의 경도가 과도하게 상승하여 본딩 패드 및/또는 그 아래의 기판이 손상될 우려가 있다. On the contrary, if the content ratio is too high, the true structure of the balls formed at the ends of the bonding wires becomes worse. In addition, there is a fear that the hardness of the ball formed at the end of the bonding wire rises excessively, thereby damaging the bonding pad and / or the substrate below.
또한, 팔라듐(Pd)과 금(Au)의 총합 함량이 과도하게 많아지면 전기 저항이 증가하여 전기 전도도가 열화되는 문제점이 있다. In addition, when the total content of palladium (Pd) and gold (Au) is excessively large, there is a problem that the electrical resistance is increased and the electrical conductivity is deteriorated.
이러한 점을 고려하여, 상기 팔라듐(Pd)의 함량은 약 0.1 중량%내지 약 4.0 중량%일 수 있다. 또한, 상기 팔라듐의 함량은 약 1.5 중량% 내지 약 3.5 중량%인 것이 더욱 바람직하다. 이 때, 상기 금(Au)의 함량은 상기 금(Au)과 팔라듐(Pd) 사이의 함량비에 의거하여 결정될 수 있다.In consideration of this point, the content of palladium (Pd) may be about 0.1% to about 4.0% by weight. In addition, the content of the palladium is more preferably about 1.5% to about 3.5% by weight. At this time, the content of the gold (Au) may be determined based on the content ratio between the gold (Au) and palladium (Pd).
트윈 바운더리(twin boundary, 雙晶境界)는 결정립들이 이루는 경계의 일종으로서 거울상을 이루는 격자 구조를 갖는다. 보다 구체적으로 설명하면, 바운더리(경계)를 중심으로 어느 한 쪽의 원자들의 배치와 다른 쪽의 원자들의 배치가 서로 거울상을 이루게 되는 바운더리를 트윈 바운더리라고 한다. The twin boundary (일종) is a kind of boundary formed by the grains and has a lattice structure forming a mirror image. More specifically, the boundary where the arrangement of atoms on one side and the arrangement of atoms on the other side are mirror images of each other around the boundary (boundary) is called a twin boundary.
전체 결정립들이 이루는 바운더리 중 트윈 바운더리에 해당하는 비율이 높으면 볼을 형성하였을 때 볼의 형상이 진구(眞球)로부터 벗어날 염려가 있어 바람직하지 않다. 보다 구체적으로 전체 결정립들이 이루는 바운더리 중 트윈 바운더리에 해당하는 비율은 약 10% 이하일 수 있다. 바람직하게는, 전체 결정립들이 이루는 바운더리 중 상기 트윈 바운더리에 해당하는 비율은 약 2% 내지 약 10%인 것이 바람직하다.If the ratio corresponding to the twin boundary is high among the boundary formed by the whole grains, the shape of the ball may be out of the spherical sphere when the ball is formed, which is not preferable. More specifically, the ratio corresponding to the twin boundary among the boundaries formed by the whole grains may be about 10% or less. Preferably, the ratio corresponding to the twin boundary among the boundaries formed by the whole grains is preferably about 2% to about 10%.
트윈 바운더리의 비율은 본딩 와이어 단면의 결정립들이 이루는 결정립들의 바운더리 중에서 위의 트윈 바운더리의 정의에 부합하는 바운더리의 비율을 의미하며, 트윈 바운더리의 비율은, 예를 들면, 전자후방산란회절(electron backscatter diffraction, EBSD)과 같은 장비를 이용하여 비교적 용이하게 측정할 수 있다.The ratio of the twin boundary means the ratio of the boundary that meets the definition of the above twin boundary among the boundaries of the grains formed by the grains of the bonding wire cross-section, and the ratio of the twin boundary is, for example, electron backscatter diffraction. Can be measured relatively easily using equipment such as EBSD).
본 발명의 발명자들은 본딩 와이어의 볼 형성이 트윈 바운더리의 비율과 밀접한 관련성이 있음을 발견하였으며, 트윈 바운더리의 비율이 약 10%를 초과하면 본딩 와이어 말단에 형성되는 볼의 진구성이 나빠지고, 및/또는 1차 본딩(first bonding) 쪽의 평면 형태가 정원(正圓) 형태를 벗어나거나 꽃 모양을 갖게 되는 문제점이 발견되었다. 다시 말해, 본딩 와이어의 단면 결정 구조에서 트윈 바운더리의 비율을 약 10% 이하로 관리함으로써 본딩 와이어 말단에 형성되는 볼의 진구성이 개선되고, 1차 본딩 쪽의 평면 형태도 정원 형태를 갖는 효과가 발견되었다.The inventors of the present invention found that the ball formation of the bonding wire is closely related to the ratio of the twin boundary, and when the ratio of the twin boundary exceeds about 10%, the true structure of the ball formed at the end of the bonding wire is deteriorated, and Problems have been found that the planar shape of the first bonding side may be out of the garden form or have a flower shape. In other words, by managing the ratio of the twin boundary in the cross-sectional crystal structure of the bonding wire to about 10% or less, the true structure of the ball formed at the end of the bonding wire is improved, and the planar shape of the primary bonding side also has the effect of having a garden shape. Found.
트윈 바운더리의 비율이 2% 이하가 되도록 제조하는 경우 제조 비용이 상승할 수 있다.The manufacturing cost may increase when manufacturing the twin boundary to be less than or equal to 2%.
상기 은 합금 본딩 와이어는 이리듐(Ir), 티타늄(Ti), 백금(Pt), 베릴륨(Be), 칼슘(Ca), 란탄(La), 이트륨(Y), 세륨(Ce), 비스무트(Bi), 코발트(Co), 및 마그네슘(Mg)으로 구성되는 군으로부터 선택되는 1종 이상의 성분을 성능 제어 성분으로서 더 포함할 수 있다. 이들 성능 제어 성분은 고온 신뢰성, 고습 신뢰성, 본딩 특성, 연신율(elongation) 표준편차 등과 같은 성능을 개선하기 위해 첨가될 수 있다.The silver alloy bonding wire is iridium (Ir), titanium (Ti), platinum (Pt), beryllium (Be), calcium (Ca), lanthanum (La), yttrium (Y), cerium (Ce), bismuth (Bi) It may further comprise one or more components selected from the group consisting of, cobalt (Co), and magnesium (Mg) as a performance control component. These performance control components can be added to improve performance such as high temperature reliability, high humidity reliability, bonding properties, elongation standard deviation, and the like.
상기 성능 제어 성분의 함량은 약 3 중량ppm 내지 약 5000 중량ppm일 수 있다. 상기 성능 제어 성분의 함량이 너무 낮으면 원하는 성능 개선이 발현되지 않을 수 있다. 또한, 상기 성능 제어 성분의 함량이 너무 높으면 전기 저항이 증가하고 경제적으로 불리하다.The content of the performance control component may be about 3 ppm by weight to about 5000 ppm by weight. If the content of the performance control component is too low, the desired performance improvement may not be manifested. In addition, if the content of the performance control component is too high, the electrical resistance increases and is economically disadvantageous.
특히, 본 발명의 일 실시예에 따르면 상기 성능 제어 성분은 백금(Pt)일 수 있다. 상기 백금(Pt)의 함량은 약 500 중량ppm 내지 약 5000 중량ppm일 수 있다. In particular, according to an embodiment of the present invention, the performance control component may be platinum (Pt). The content of platinum (Pt) may be about 500 ppm by weight to about 5000 ppm by weight.
선택적으로, 본 발명의 다른 실시예에 따르면 상기 성능 제어 성분은 이리듐(Ir) 및/또는 티타늄(Ti)일 수 있다. 상기 이리듐(Ir) 및/또는 티타늄(Ti)의 함량은 약 500 중량ppm 내지 약 5000 중량ppm일 수 있다. Optionally, according to another embodiment of the present invention, the performance control component may be iridium (Ir) and / or titanium (Ti). The content of iridium (Ir) and / or titanium (Ti) may be about 500 ppm by weight to about 5000 ppm by weight.
선택적으로, 본 발명의 또 다른 실시예에 따르면 상기 성능 제어 성분은 백금(Pt)을 필수적으로 포함하고, 이리듐(Ir) 및/또는 티타늄(Ti)을 더 포함할 수 있다. 이 대, 상기 백금(Pt)의 함량과 상기 이리듐(Ir) 및/또는 티타늄(Ti)의 함량의 합은 약 500 중량ppm 내지 약 5000 중량ppm일 수 있다. Optionally, according to another embodiment of the present invention, the performance control component essentially includes platinum (Pt) and may further include iridium (Ir) and / or titanium (Ti). In this case, the sum of the content of platinum (Pt) and the content of the iridium (Ir) and / or titanium (Ti) may be about 500 ppm by weight to about 5000 ppm by weight.
이하에서는 본 발명 개념의 일 실시예에 따른 은 합금 본딩 와이어의 제조 방법을 설명한다. 도 1은 본 발명의 일 실시예에 따른 제조 방법을 순서에 따라 나타낸 블록도이다.Hereinafter will be described a method of manufacturing a silver alloy bonding wire according to an embodiment of the present invention. 1 is a block diagram sequentially illustrating a manufacturing method according to an embodiment of the present invention.
도 1을 참조하면, 원하는 조성을 갖도록 은(Ag), 금(Au), 및 팔라듐(Pd)을 포함하는 금속 원료를 용해로에서 용해 주조하여 금속 원료의 합금액을 제조할 수 있다(S1). 이 때, 은(Ag), 금(Au), 및 팔라듐(Pd) 이외의 성능 제어 성분을 첨가할 수 있다. Referring to FIG. 1, an alloy liquid of a metal raw material may be manufactured by melting and casting a metal raw material including silver (Ag), gold (Au), and palladium (Pd) in a melting furnace to have a desired composition (S1). At this time, performance control components other than silver (Ag), gold (Au), and palladium (Pd) can be added.
그런 다음, 상기 금속 원료의 합금액을 냉각 및 응고시키고, 단조, 압연 등에 의해 합금 피스(piece)를 얻을 수 있다(S2). 이어서, 상기 합금 피스를 약 6 mm 내지 약 9 mm의 직경을 갖도록 1차 세선화할 수 있다(S3).Then, the alloy liquid of the metal raw material is cooled and solidified, and an alloy piece can be obtained by forging, rolling, or the like (S2). Subsequently, the alloy piece may be first thinned to have a diameter of about 6 mm to about 9 mm (S3).
약 6 mm 내지 약 9 mm의 직경을 갖도록 세선화된 1차 세선을 신선 및 열처리한다(S4). 상기 신선 및 열처리 단계에서는 1차 세선을 점진적으로 세선화하고 열처리하는 과정을 포함할 수 있다. 상기 1차 세선을 세선화하기 위하여 다단계의 다이스를 통과시키며 세선의 단면적을 감소시킬 수 있다.The primary thin wire thinned to have a diameter of about 6 mm to about 9 mm is drawn and heat-treated (S4). The drawing and heat treatment may include a step of gradually thinning and heat treating the primary thin wire. In order to thin the primary thin wire, the cross section of the thin wire may be reduced while passing through a multi-stage die.
특히, 트윈 바운더리의 비율을 약 10% 이하로 관리하기 위하여, 본 실시예는 상기 세선의 직경이 약 0.5 mm 내지 약 5 mm 일 때 1차 열처리를 수행하는 단계를 포함할 수 있다. 상기 1차 열처리는, 예를 들면 약 550 ℃ 내지 약 700 ℃에서 약 0.5 초 내지 약 5 초 동안 수행될 수 있다. 더욱 바람직하게, 상기 1차 열처리는 약 600 ℃ 내지 약 650 ℃에서 약 2 초 내지 약 4 초 동안 수행될 수 있다.In particular, in order to manage the ratio of the twin boundary to about 10% or less, this embodiment may include performing a first heat treatment when the diameter of the fine wire is about 0.5 mm to about 5 mm. The primary heat treatment may be performed, for example, at about 550 ° C. to about 700 ° C. for about 0.5 seconds to about 5 seconds. More preferably, the first heat treatment may be performed at about 600 ℃ to about 650 ℃ for about 2 seconds to about 4 seconds.
선택적으로(optionally), 트윈 바운더리의 비율을 약 10% 이내로 관리하기 위하여, 본 실시예는 상기 세선의 직경이 약 0.05 mm 내지 약 0.4 mm 일 때 2차 열처리를 수행하는 단계를 더 포함할 수 있다. 상기 2차 열처리는, 예를 들면 약 550 ℃ 내지 약 700 ℃에서 약 0.5 초 내지 약 5 초 동안 수행될 수 있다. 더욱 바람직하게, 상기 2차 열처리는 약 600 ℃ 내지 약 650 ℃에서 약 2 초 내지 약 4 초 동안 수행될 수 있다.Optionally, in order to manage the ratio of the twin boundary within about 10%, the present embodiment may further comprise performing a second heat treatment when the diameter of the fine wire is about 0.05 mm to about 0.4 mm . The secondary heat treatment may be performed, for example, at about 550 ° C. to about 700 ° C. for about 0.5 seconds to about 5 seconds. More preferably, the secondary heat treatment may be performed at about 600 ° C. to about 650 ° C. for about 2 seconds to about 4 seconds.
통상의 기술자는 상기 세선이 다수의 다이스(dice)를 순차 통과함으로써 직경이 감소하는 것을 이해할 것이다. 다시 말해, 상기 세선은 홀의 크기가 점진적으로 감소하도록 배열된 다수의 다이스들을 순차 통과하면서 직경이 감소한다.Those skilled in the art will appreciate that the thin wire decreases in diameter as it sequentially passes through a number of dice. In other words, the thin wire decreases in diameter as it sequentially passes through a plurality of dice arranged to gradually decrease the size of the hole.
위의 열처리들은 상기 세선의 직경이 해당 범위에 속할 때, 임의의 다이스와 다이스의 사이에서 수행될 수 있다. 다시 말해, 상기 1차 열처리는 상기 세선의 직경이 약 0.5 mm 내지 약 5 mm일 때 임의의 두 다이스 사이에서 수행될 수 있다. 상기 2차 열처리는 상기 세선의 직경이 약 0.1 mm 내지 약 0.5 mm일 때 임의의 두 다이스 사이에서 수행될 수 있다.The above heat treatments may be performed between any dice and dice when the diameter of the fine wire falls within the corresponding range. In other words, the primary heat treatment may be performed between any two dice when the diameter of the fine wire is about 0.5 mm to about 5 mm. The secondary heat treatment may be performed between any two dice when the diameter of the thin wire is about 0.1 mm to about 0.5 mm.
계속하여 신선 가공을 통하여 원하는 직경의 본딩 와이어가 제조될 때까지 상기 세선을 신선함으로써 와이어의 단면을 감소시켜 나간다. 이 때, 다이스의 전후에서의 본딩 와이어의 단면감소율을 약 7% 내지 약 15%로 조절할 수 있다. 즉, 신선 중의 와이어가 하나의 다이를 통과할 때, 통과 후의 단면적이 통과 전의 단면적과 비교하여 약 7% 내지 약 15%만큼 감소하도록 공정을 구성할 수 있다. 특히, 50 ㎛ 이하 범위의 직경으로 신선하는 공정에서의 본딩 와이어의 단면 감소율은 약 7% 내지 약 15%로 조절되는 것이 바람직하다.Subsequently, the cross section of the wire is reduced by drawing the fine wire until a bonding wire having a desired diameter is manufactured through drawing. At this time, the cross-sectional reduction rate of the bonding wires before and after the die can be adjusted to about 7% to about 15%. That is, when the wire in the wire passes through one die, the process can be configured such that the cross-sectional area after passage decreases by about 7% to about 15% compared to the cross-sectional area before passage. In particular, the reduction rate of the cross section of the bonding wire in the process of drawing a diameter in the range of 50 μm or less is preferably adjusted to about 7% to about 15%.
만일 본딩 와이어의 단면감소율이 너무 높으면 본딩 와이어 내의 결정립의 산포가 과도하게 커질 수 있다. 또한, 만일 본딩 와이어의 단면 감소율이 너무 낮으면 원하는 직경의 본딩 와이어를 얻는 데 필요한 신선 가공의 횟수가 너무 많아져서 경제적으로 불리할 수 있다.If the cross sectional reduction rate of the bonding wire is too high, the dispersion of grains in the bonding wire may be excessively large. In addition, if the cross sectional reduction rate of the bonding wire is too low, the number of drawing operations required to obtain the bonding wire of the desired diameter is too large, which may be economically disadvantageous.
선택적으로, 연신율(elongation)을 조절하기 위하여 신선이 완료된 이후에 추가 어닐링(annealing)이 수행될 수 있다(S5). 연신율을 조절하기 위한 어닐링 조건은 세선의 조성, 감면율, 열처리 조건 등에 의하여 달라질 수 있지만, 대략 400 ℃ 내지 600 ℃의 온도에서 약 1 초 내지 약 20 분 동안 수행될 수 있으며, 당 기술 분야의 통상의 지식을 가진 자는 구체적인 어닐링 조건을 적절히 선택할 수 있을 것이다.Optionally, additional annealing may be performed after the drawing is completed to adjust elongation (S5). Annealing conditions for adjusting the elongation may vary depending on the composition of the thin wire, the reduction rate, the heat treatment conditions, etc., but may be performed for about 1 second to about 20 minutes at a temperature of about 400 ° C to 600 ° C, Those skilled in the art will be able to select specific annealing conditions appropriately.
만일 상기 어닐링 온도가 너무 낮으면 본딩 접합시에 필요한 연성과 전성이 확보되지 않을 수 있고, 반대로 상기 어닐링 온도가 너무 높으면 결정립의 크기가 과도하게 커질 수 있고, 본딩 접합시 루프(loop)의 처짐과 같은 불량이 발생할 수 있어 바람직하지 않다.If the annealing temperature is too low, the ductility and malleability necessary for bonding bonding may not be secured. On the contrary, if the annealing temperature is too high, the grain size may be excessively large. The same failure may occur and is undesirable.
또한, 상기 어닐링 시간이 너무 짧으면 가공에 필요한 연성과 전성이 확보되지 않을 수 있고, 반대로 상기 어닐링 시간이 너무 길면 결정립의 크기가 과도하게 커질 수 있고 경제적으로 불리하여 바람직하지 않다.In addition, when the annealing time is too short, ductility and malleability necessary for processing may not be secured. On the contrary, when the annealing time is too long, the grain size may be excessively large and economically disadvantageous, which is not preferable.
위의 어닐링 공정은, 예를 들면, 본딩 와이어를 노(furnace)에 적절한 속도로 통과시킴으로써 수행될 수 있다. 또한, 본딩 와이어를 노에 통과시키는 속도는 어닐링 시간과 노의 크기로부터 결정될 수 있다.The above annealing process can be performed, for example, by passing the bonding wire through the furnace at a suitable speed. Also, the rate at which the bonding wire passes through the furnace can be determined from the annealing time and the size of the furnace.
이하, 구체적인 실시예 및 비교예를 가지고 본 발명의 구성 및 효과를 보다 상세히 설명하지만, 이들 실시예는 단지 본 발명을 보다 명확하게 이해시키기 위한 것일 뿐 본 발명의 범위를 한정하고자 하는 것은 아니다. 실시예 및 비교예에서 하기와 같은 방법으로 물성을 평가하였다.Hereinafter, the structure and effects of the present invention will be described in more detail with specific examples and comparative examples, but these examples are only intended to more clearly understand the present invention and are not intended to limit the scope of the present invention. In Examples and Comparative Examples, physical properties were evaluated in the following manner.
[볼 모양 균일성][Ball shape uniformity]
20 ㎛ 지름의 본딩 와이어의 선단을 5%H2+N2 가스를 쉴드 가스로 이용하여 2WD(지름이 와이어 직경의 2배)의 본딩 볼이 되도록 하여 이미지를 캡춰한 후 정원(正圓)에서 벗어나는 정도를 측정하였다. 정원에서 벗어나는 정도는 볼의 장축에 대한 단축의 비율과 1 사이의 차를 백분율로 나타냄으로써 정량화하였다.After capturing the image of the bonding wire having a diameter of 20 μm, using a 5% H 2 + N 2 gas as a shielding gas to make a bonding ball of 2WD (diameter twice the diameter of the wire), the image is captured. The degree of deviation was measured. The degree of deviating from the garden was quantified by expressing the difference between the ratio of the short axis to the long axis of the ball and the difference as a percentage.
정량화한 상기 값이 2% 미만인 경우 ◎, 2% 이상이고 5% 미만이면 ○, 5% 이상이고 8% 미만이면 △, 8% 이상이면 ×로 평가하였다.When the above quantified value is less than 2%,?, 2% or more, and less than 5%, ○, 5% or more and △, 8% or more, x was evaluated.
[본딩볼 형상][Bonding ball shape]
20 ㎛ 지름의 본딩 와이어의 선단을 5%H2+N2 가스를 쉴드 가스로 이용하여 2WD(지름이 와이어 직경의 2배)의 본딩 볼이 되도록 하여 패드 상에 접합한 후 가로축 방향과 세로축 방향의 길이의 비율을 측정하여 1에 가까운지 여부, 본딩 와이어가 볼의 중심에 위치하는지 여부, 가장자리가 진원(眞圓) 형태로 매끄러운지, 또는 꽃잎 모양의 굴곡이 있는지 여부를 관찰하였다.The tip of the 20 µm diameter bonding wire is bonded to the pad using 5% H 2 + N 2 gas as a shielding gas to form a bonding ball of 2WD (diameter twice the diameter of the wire), and then the horizontal and vertical directions By measuring the ratio of the length of the specimen, it was observed whether it was close to 1, whether the bonding wire was located at the center of the ball, whether the edge was smooth in a round shape, or whether there was a petal-shaped bend.
본딩된 볼의 가로축 방향과 세로축 방향의 길이의 비율이 0.99 이상이고, 본딩 와이어가 볼의 중심에 위치하며, 가장자리가 꽃잎 모양 없이 진원으로 판정되면 ◎, 본딩된 볼의 가로축 방향과 세로축 방향의 길이의 비율이 0.96 이상 0.99 미만이고 본딩 와이어가 볼의 중심에 위치하며, 가장자리가 꽃잎 모양 없이 진원으로 판정되면 ○, 본딩된 볼의 가로축 방향과 세로축 방향의 길이의 비율이 0.9 이상으로서 가장자리가 꽃잎 모양이 없으며 위의 ◎나 ○에 해당하지 않으면 △, 그 외의 경우는 ×로 평가하였다.When the ratio of the length of the bonded ball in the transverse direction and the longitudinal direction is not less than 0.99, the bonding wire is located at the center of the ball, and the edge is determined to be round without a petal shape, the length of the bonded ball in the horizontal and vertical directions When the ratio of is 0.96 or more and less than 0.99 and the bonding wire is located at the center of the ball, and the edge is determined to be round without petal shape, the ratio of the length of the bonded ball in the horizontal axis direction and the vertical axis direction is 0.9 or more, and the edge is shaped like a petal. There was no, and if it did not correspond to ◎ or ○ above, △, otherwise, evaluated as ×.
[고온 신뢰성][High temperature reliability]
와이어 본딩 후 에폭시 몰딩 수지로 밀봉한 패키지를 175℃의 온도로 가열하여 접합면에서의 단락이 발생하는 시간을 측정하여 고온 신뢰성을 평가하였다. 접합면에서의 단락이 500 시간 이상이면 ◎, 384 시간 이상 500 시간 미만이면 ○, 192 시간 이상 384 시간 미만이면 △, 192 시간 미만이면 ×로 평가하였다.After the wire bonding, the package sealed with the epoxy molding resin was heated to the temperature of 175 degreeC, the time which the short circuit generate | occur | produces in the joint surface was measured, and the high temperature reliability was evaluated. (Circle) if a short circuit in a joining surface is 500 hours or more, (circle) and 384 hours or more and less than 500 hours, it evaluated as (circle), 192 or more and less than 384 hours, (triangle | delta), and it evaluated as x for less than 192 hours.
[고습 신뢰성]High Humidity Reliability
와이어 본딩 후 에폭시 몰딩 수지로 밀봉한 패키지를 121℃, 85% 습도 하에 방치하여 접합면에서의 단락이 발생하는 시간을 측정하여 고습 신뢰성을 평가하였다. 접합면에서의 단락이 발생하는 시간이 192 시간 이상이면 ◎, 168 시간 이상 192 시간 미만이면 ○, 96 시간 이상 168 시간 미만이면 △, 96 시간 미만이면 ×로 평가하였다.After the wire bonding, the package sealed with epoxy molding resin was left under 121 degreeC and 85% humidity, the time which the short circuit generate | occur | produces in the joint surface was measured, and the high humidity reliability was evaluated. When the time which a short circuit generate | occur | produces in a joining surface is 192 hours or more, (circle), 168 hours or more and less than 192 hours, (circle), 96 hours or more and less than 168 hours, it evaluated as (triangle | delta) and less than 96 hours.
[열충격 신뢰성]Thermal Shock Reliability
열충격 신뢰성은 시판되는 TCT (thermal cycling test) 장비를 이용하였다. 와이어 본딩 후 에폭시 몰딩 수지(EMC, epoxy molding compound)로 봉지하고, 가혹 조건(-45℃/30분 내지 +125℃/30분)으로 열충격을 반복하여 가한 후 본딩 와이어가 수축/팽창에 의해 끊어지는 와이어 수를 측정하였다. 6000개의 와이어 중 끊어지는 와이어가 전혀 없으면 ◎, 끊어지는 와이어가 1개 이상 5개 미만이면 ○, 끊어지는 와이어가 5개 이상 20개 미만이면 △, 끊어지는 와이어가 20개 이상이면 ×로 평가하였다.Thermal shock reliability was used commercially available thermal cycling test (TCT) equipment. After wire bonding, it is sealed with epoxy molding resin (EMC), and thermal shock is repeatedly applied under severe conditions (-45 ° C / 30 minutes to + 125 ° C / 30 minutes), and then the bonding wire is broken by shrinkage / expansion. The number of losing wires was measured. ◎ if there are no wires broken out of 6000 wires, ○ if there are more than 1 or less than 5 wires broken, △ if 5 or more and less than 20 wires are broken, △ .
[루프 직진성][Loop straightness]
120 ㎛의 간격으로 배열된 2열의 본딩 패드들 중 한 쪽에 볼 본딩을 하여 범프를 형성하고, 다시 반대쪽 부분에 볼 본딩을 한 후 루프를 형성하면서 상기 범프 위에 스티치 본딩을 하였다.Bumps were formed by ball bonding to one of two rows of bonding pads arranged at intervals of 120 μm, and ball bonding was performed on the opposite side, and stitch bonding was performed on the bumps while forming loops.
그런 다음, 각 루프들 사이의 간격이 가장 좁은 지점에 대하여 해당 간격을 측정하였으며, 이를 각 루프들 사이의 간격을 대표하는 값으로 결정하였다. 이와 같이 결정된 각 루프들 사이의 간격이 111 ㎛ 내지 125 ㎛이면 ◎, 105 ㎛ 이상 111 ㎛ 미만이면 ○, 105 ㎛ 미만이면 △로 평가하였다.Then, the gap was measured at the point where the gap between the loops was the narrowest, and this was determined as a value representing the gap between each loop. The intervals between the loops thus determined were 111 μm to 125 μm, 이면, 105 μm or more and less than 111 μm, and Δ if they were less than 105 μm.
[BPT (bond pull test) 및 SPT (stitch pull test)][Bond pull test (BPT) and stitch pull test (SPT)]
제조된 은 합금 본딩 와이어를 이용하여 도 4에 나타낸 바와 같이 1차 본딩쪽 본딩 패드(10)와 2차 본딩 쪽 본딩 패드(20)가 본딩된다. 즉, 은 합금 본딩 와이어(100)의 선단에 볼을 형성하여 1차 본딩 쪽 본딩 패드(10)에 볼 본딩을 수행한 후 2차 본딩 쪽 본딩 패드(20) 상에 스티치 본딩을 수행한다.As shown in FIG. 4, the primary bonding side bonding pad 10 and the secondary bonding side bonding pad 20 are bonded using the manufactured silver alloy bonding wire. That is, the ball is formed on the tip of the silver alloy bonding wire 100 to perform ball bonding on the primary bonding side bonding pad 10, and then stitch bonding is performed on the secondary bonding side bonding pad 20.
그런 다음 1차 본딩 쪽에 가까운 부분을 화살표 A를 따라 수직 상방으로 당겨서 1차 본딩이 떨어질 때의 로드를 평가하고(BPT), 2차 본딩 쪽에 가까운 부분을 화살표 B를 따라 수직 상방으로 당겨서 2차 본딩이 떨어질 때의 로드를 평가(SPT)하였다.Then, the part near the primary bonding side is pulled vertically upward along arrow A to evaluate the load when the primary bond falls (BPT), and the part near the secondary bonding side is pulled vertically upward along arrow B to secondary bonding. The load when it fell was evaluated (SPT).
각 실시예 및 비교예 별로 2000개의 샘플을 준비하여 1000개에 대해서는 BPT를 수행하고, 나머지 1000개에 대해서는 SPT를 수행하였다. 측정된 로드의 평균값을 구하여 하기 표 1과 같이 판정하였다.2000 samples were prepared for each Example and Comparative Example to perform BPT for 1000 samples and SPT for the remaining 1000 samples. The average value of the measured rod was determined and determined as shown in Table 1 below.
표 1
판정 BPT 로드 (g) SPT 로드 (g)
7.5g 이상 6.5g 이상
7.0g 이상 7.5g 미만 6.0g 이상 6.5g 미만
6.0g 이상 7.0g 미만 5.0g 이상 6.0g 미만
× 6.0g 미만 5.0g 미만
Table 1
Judgment BPT rod (g) SPT load (g)
7.5g or more 6.5g or more
7.0g or more and less than 7.5g 6.0g or more and less than 6.5g
6.0 g or more and less than 7.0 g 5.0 g or more but less than 6.0 g
× Less than 6.0g Less than 5.0g
[BST (ball shear test)][Ball shear test (BST)]
제조된 은 합금 본딩 와이어를 이용하여 도 4에 나타낸 바와 같이 1차 본딩쪽 본딩 패드(10)와 2차 본딩 쪽 본딩 패드(20)가 본딩된다. As shown in FIG. 4, the primary bonding side bonding pad 10 and the secondary bonding side bonding pad 20 are bonded using the manufactured silver alloy bonding wire.
그런 다음 1차 본딩된 부분에 측방향으로 전단력을 가하여 1차 본딩이 떨어질 때의 로드를 평가하였다.Then, the shear force was applied laterally to the primary bonded portion to evaluate the load when the primary bonding fell.
각 실시예 및 비교예 별로 1000개의 샘플을 준비하여 BST를 수행하고, 측정된 로드의 평균값을 구하여 하기 표 2와 같이 판정하였다.1000 samples were prepared for each Example and Comparative Example to perform a BST, and the average value of the measured load was obtained to determine as shown in Table 2 below.
표 2
판정 BST 로드 (g)
26g 이상
21g 이상 26g 미만
15g 이상 21g 미만
× 15g 미만
TABLE 2
Judgment BST load (g)
More than 26g
21 g or more but less than 26 g
15 g or more but less than 21 g
× Less than 15g
<실시예 1-4><Example 1-4>
우선 하기 표 3과 같은 조성을 갖는 잉곳을 제조한 후 신선과 함께 1차 열처리 및 2차 열처리를 수행하여 20 ㎛ 직경을 갖는 본딩와이어를 제조하였다. 1차 열처리 온도 및 2차 열처리 온도는 각각 하기 표 3에 나타낸 바와 같고, 각각 0.5 mm, 0.08 mm의 직경인 시점에서 3초간 수행되었다.First, after preparing an ingot having a composition as shown in Table 3, a bonding wire having a diameter of 20 μm was prepared by performing a first heat treatment and a second heat treatment together with the fresh wire. The first heat treatment temperature and the second heat treatment temperature are as shown in Table 3 below, respectively, and were performed for 3 seconds at the time points of 0.5 mm and 0.08 mm, respectively.
<비교예 1>Comparative Example 1
하기 표 3과 같은 조성을 갖는 잉곳을 제조한 후 신선과 함께 1차 열처리 및 2차 열처리를 수행하여 20 ㎛ 직경을 갖는 본딩와이어를 제조하였다. 1차 열처리 온도 및 2차 열처리 온도는 각각 하기 표 3에 나타낸 바와 같고, 각각 8 mm, 0.08 mm의 직경인 시점에서 3초간 수행되었다.After preparing an ingot having a composition as shown in Table 3 below, the first and second heat treatments were performed together with the fresh wire to prepare a bonding wire having a diameter of 20 μm. The primary heat treatment temperature and the secondary heat treatment temperature were as shown in Table 3, respectively, and were performed for 3 seconds at the time points of 8 mm and 0.08 mm, respectively.
위에서 제조된 실시예 1 내지 실시예 4의 샘플 및 비교예 1의 샘플에 대하여 트윈 바운더리 분석을 수행하였다. 상기 트윈 바운더리 분석은 후방전자산란회절(electron backscatter diffraction, EBSD)장비 및 HKL CHANNEL 5 소프트웨어가 탑재된 JEOL JSM-6500 장비를 이용하여 수행되었다. 이 때, 틸트각은 70도, 결정립계 기준은 결정 방위차가 15도 이상인 영역으로 하였고, 측정 스텝은 표면에 대해서는 0.05 ㎛, 종단면에 대해서는 0.2 ㎛로 하였다.Twin boundary analysis was performed on the samples of Examples 1 to 4 and Comparative Example 1 prepared above. The twin boundary analysis was performed using a JEOL JSM-6500 device equipped with an electron backscatter diffraction (EBSD) device and HKL CHANNEL 5 software. At this time, the tilt angle was 70 degrees and the grain boundary reference was an area having a crystal orientation difference of 15 degrees or more. The measurement step was 0.05 µm for the surface and 0.2 µm for the longitudinal section.
도 2a 및 도 2b에 실시예 1의 미스오리엔테이션(misorientation) 분석 및 트윈 바운더리 이미지 분석 결과를 나타내었고, 도 3a 및 도 3b에 비교예 1의 미스오리엔테이션(misorientation) 분석 및 트윈 바운더리 이미지 분석 결과를 나타내었다.2A and 2B show the results of misorientation analysis and twin boundary image analysis of Example 1, and FIGS. 3A and 3B show the results of misorientation analysis and twin boundary image analysis of Comparative Example 1. It was.
표 3
Figure PCTKR2014008323-appb-T000001
TABLE 3
Figure PCTKR2014008323-appb-T000001
위의 표에서 보는 바와 같이 트윈 바운더리의 비율이 10%를 초과하면 볼모양 균일성과 본딩볼 형상이 다소 나빠지는 것을 알 수 있었다. 또한, 고온 신뢰성도 상대적으로 열화됨을 알 수 있었는데, 이는 본딩볼 형상의 열화에 따른 것으로 추측된다.As shown in the table above, when the ratio of the twin boundary exceeds 10%, the ball shape uniformity and the shape of the bonding ball were found to be somewhat worse. In addition, it can be seen that the high temperature reliability is also relatively deteriorated, which may be due to the deterioration of the shape of the bonding ball.
<실시예 5-10, 비교예 2-4><Example 5-10, Comparative Example 2-4>
표 4에 나타낸 바와 같이 팔라듐(Pd)과 금(Au)의 조성을 변화시켜가며 본딩 와이어를 제조하였다. 위의 실시예 1-4 및 비교예 1에서와 동일한 방법으로 트윈 바운더리의 비율 및 기타 물성을 측정하였으며, 표 5에 그 결과들을 정리하였다.As shown in Table 4, bonding wires were prepared while varying the composition of palladium (Pd) and gold (Au). In the same manner as in Example 1-4 and Comparative Example 1 above was measured the ratio and other physical properties of the twin boundary, Table 5 summarizes the results.
표 4
Figure PCTKR2014008323-appb-T000002
Table 4
Figure PCTKR2014008323-appb-T000002
표 5
Figure PCTKR2014008323-appb-T000003
Table 5
Figure PCTKR2014008323-appb-T000003
위의 표 4 및 표 5에서 보는 바와 같이, 트윈 바운더리 비율이 10% 이하이면 비교적 우수한 볼모양 균일성 및 본딩볼 형상을 보이는 것을 알 수 있었다. 또한, 팔라듐(Pd)의 함량이 4 중량%를 넘거나 금(Au)/팔라듐(Pd)의 함량비가 1을 초과하는 경우, 트윈 바운더리 비율이 10% 이하로 되는 것이 불가능하지 않지만(비교예 3, 비교예 4) 볼모양 균일성과 열충격 신뢰성 등 물성이 불량해지는 것을 알 수 있었다.As shown in Table 4 and Table 5 above, it was found that when the twin boundary ratio is 10% or less, relatively excellent ball shape uniformity and bonding ball shape were shown. In addition, when the content of palladium (Pd) is more than 4% by weight or the content ratio of gold (Au) / palladium (Pd) is more than 1, it is not impossible for the twin boundary ratio to be 10% or less (Comparative Example 3). , Comparative Example 4) It was found that physical properties such as ball uniformity and thermal shock reliability were poor.
<실시예 11-18, 비교예 5-10><Example 11-18, Comparative Example 5-10>
표 5에 나타낸 바와 같이 팔라듐(Pd)과 금(Au)의 조성을 변화시키고, 성능 제어 성분을 첨가하여 본딩 와이어를 제조하였다. 위의 실시예 1-4 및 비교예 1에서와 동일한 방법으로 트윈 바운더리의 비율 및 기타 물성을 측정하였으며, 표 7에 그 결과들을 정리하였다.As shown in Table 5, the composition of palladium (Pd) and gold (Au) was changed, and the performance control component was added, and the bonding wire was manufactured. In the same manner as in Example 1-4 and Comparative Example 1 above was measured the ratio and other physical properties of the twin boundary, Table 7 summarizes the results.
표 6
Figure PCTKR2014008323-appb-T000004
Table 6
Figure PCTKR2014008323-appb-T000004
표 7
Figure PCTKR2014008323-appb-T000005
TABLE 7
Figure PCTKR2014008323-appb-T000005
표 7에서 보는 바와 같이, 트윈 바운더리의 비율이 10%를 초과하면 볼모양 균일성과 본딩볼 형상이, 트윈 바운더리의 비율이 10% 이하인 경우와 대비하여 대체로 열등한 것을 알 수 있었다. 또한, 고온 신뢰성, 고습 신뢰성, 열충격 신뢰성도 대체로 열등한 것으로 나타났는데, 이는 볼모양 균일성 및/또는 본딩볼 형상이 열등한 데 따른 것으로 추측된다.As shown in Table 7, when the ratio of the twin boundary exceeds 10%, it was found that the ball shape uniformity and the bonding ball shape were generally inferior compared to the case where the ratio of the twin boundary was 10% or less. In addition, high temperature reliability, high humidity reliability, and thermal shock reliability were also generally inferior, which is presumed to be due to inferior ball shape uniformity and / or bonding ball shape.
또한, 루프 직진성도 BPT, SPT, BST와 같은 특성도 전반적으로 열악하며, 이는 성능 제어 성분을 첨가하여도 치유되지 않는 것으로 나타났다. 한편, 실시예 11, 12, 및 14-16에서는 약 500 중량ppm 내지 약 5000 중량ppm의 성능 제어 성분의 첨가에 의하여 열충격 신뢰성, 루프 직진성, 및/또는 BPT와 같은 성능이 개선되는 것으로 분석되었다.In addition, the loop straightness is also poor overall, such as BPT, SPT, BST, which was not found to heal even with the addition of performance control components. On the other hand, in Examples 11, 12, and 14-16, it was analyzed that the performance of thermal shock reliability, loop straightness, and / or BPT was improved by the addition of a performance control component of about 500 ppm by weight to about 5000 ppm by weight.
이상에서 살펴본 바와 같이 본 발명의 실시예들에 대해 상세히 기술되었지만, 본 발명이 속하는 기술분야에 있어서 통상의 지식을 가진 사람이라면, 첨부된 청구 범위에 정의된 본 발명의 정신 및 범위를 벗어나지 않으면서 본 발명을 여러 가지로 변형하여 실시할 수 있을 것이다. 따라서 본 발명의 앞으로의 실시예들의 변경은 본 발명의 기술을 벗어날 수 없을 것이다.Although described in detail with respect to embodiments of the present invention as described above, those of ordinary skill in the art, without departing from the spirit and scope of the invention as defined in the appended claims Various modifications may be made to the invention. Therefore, changes in the future embodiments of the present invention will not be able to escape the technology of the present invention.
본 발명은 반도체 산업에 유용하게 이용될 수 있다.The present invention can be usefully used in the semiconductor industry.

Claims (14)

  1. 은(Ag)을 주성분으로 하고, 팔라듐(Pd) 및 금(Au)을 포함하는 은 합금 본딩 와이어로서,A silver alloy bonding wire containing silver (Ag) as a main component and containing palladium (Pd) and gold (Au),
    팔라듐(Pd)의 함량이 0.1 내지 4.0 중량%이고,The content of palladium (Pd) is 0.1 to 4.0% by weight,
    팔라듐(Pd)에 대한 금(Au)의 중량기준 함량비가 0.25 내지 1.0인 것을 특징으로 하는 은 합금 본딩 와이어.Silver alloy bonding wire, characterized in that the weight-based content ratio of gold (Au) to palladium (Pd) is 0.25 to 1.0.
  2. 제 1 항에 있어서, The method of claim 1,
    결정립들의 트윈 바운더리(twin boundary)의 비율이 2% 내지 10%인 것을 특징으로 하는 은 합금 본딩 와이어.A silver alloy bonding wire, characterized in that the ratio of twin boundaries of grains is 2% to 10%.
  3. 제 1 항에 있어서, The method of claim 1,
    팔라듐(Pd)에 대한 금(Au)의 중량기준 함량비가 0.4 내지 0.7인 것을 특징으로 하는 은 합금 본딩 와이어.Silver alloy bonding wire, characterized in that the weight-based content ratio of gold (Au) to palladium (Pd) is 0.4 to 0.7.
  4. 제 3 항에 있어서, The method of claim 3, wherein
    상기 팔라듐(Pd)의 함량이 1.5 중량% 내지 3.5 중량%인 것을 특징으로 하는 은 합금 본딩 와이어.Silver alloy bonding wire, characterized in that the content of the palladium (Pd) is 1.5% by weight to 3.5% by weight.
  5. 제 1 항에 있어서, The method of claim 1,
    이리듐(Ir), 티타늄(Ti), 백금(Pt), 베릴륨(Be), 칼슘(Ca), 란탄(La), 이트륨(Y), 세륨(Ce), 비스무트(Bi), 코발트(Co), 및 마그네슘(Mg)으로 구성되는 군으로부터 선택되는 1종 이상의 성분을 성능 제어 성분으로서 더 포함하고,Iridium (Ir), titanium (Ti), platinum (Pt), beryllium (Be), calcium (Ca), lanthanum (La), yttrium (Y), cerium (Ce), bismuth (Bi), cobalt (Co), And at least one component selected from the group consisting of magnesium (Mg) as a performance control component,
    상기 성능 제어 성분의 함량이 3 중량ppm 내지 5000 중량ppm인 것을 특징으로 하는 은 합금 본딩 와이어.The content of the performance control component is a silver alloy bonding wire, characterized in that 3 to 5000 ppm by weight.
  6. 제 5 항에 있어서, The method of claim 5,
    상기 성능 제어 성분이 백금(Pt)을 포함하고,The performance control component comprises platinum (Pt),
    상기 백금(Pt)의 함량이 500 중량ppm 내지 5000 중량ppm인 것을 특징으로 하는 은 합금 본딩 와이어.Silver alloy bonding wire, characterized in that the content of platinum (Pt) is 500 ppm by weight to 5000 ppm by weight.
  7. 제 5 항에 있어서, The method of claim 5,
    상기 성능 제어 성분이 이리듐(Ir) 또는 티타늄(Ti)인 것을 특징으로 하는 은 합금 본딩 와이어.The silver alloy bonding wire, characterized in that the performance control component is iridium (Ir) or titanium (Ti).
  8. 은(Ag)을 주성분으로 하고, 팔라듐(Pd) 및 금(Au)을 포함하는 은 합금 본딩 와이어로서,A silver alloy bonding wire containing silver (Ag) as a main component and containing palladium (Pd) and gold (Au),
    팔라듐(Pd)의 함량이 0.1 내지 4.0 중량%이고,The content of palladium (Pd) is 0.1 to 4.0% by weight,
    결정립들의 트윈 바운더리(twin boundary)의 비율이 약 2% 내지 약 10%인 것을 특징으로 하는 은 합금 본딩 와이어.A silver alloy bonding wire, characterized in that the ratio of twin boundaries of grains is from about 2% to about 10%.
  9. 제 8 항에 있어서,The method of claim 8,
    이리듐(Ir), 티타늄(Ti), 백금(Pt), 베릴륨(Be), 칼슘(Ca), 란탄(La), 이트륨(Y), 세륨(Ce), 비스무트(Bi), 코발트(Co), 및 마그네슘(Mg)으로 구성되는 군으로부터 선택되는 1종 이상의 성분을 성능 제어 성분으로서 더 포함하고,Iridium (Ir), titanium (Ti), platinum (Pt), beryllium (Be), calcium (Ca), lanthanum (La), yttrium (Y), cerium (Ce), bismuth (Bi), cobalt (Co), And at least one component selected from the group consisting of magnesium (Mg) as a performance control component,
    상기 성능 제어 성분의 함량이 3 중량ppm 내지 5000 중량ppm인 것을 특징으로 하는 은 합금 본딩 와이어.The content of the performance control component is a silver alloy bonding wire, characterized in that 3 to 5000 ppm by weight.
  10. 은(Ag)을 주성분으로 하고, 팔라듐(Pd) 및 금(Au)을 포함하고, 팔라듐(Pd)의 함량이 0.1 내지 4.0 중량%이고, 팔라듐(Pd)에 대한 금(Au)의 중량기준 함량비가 0.25 내지 1.0인 합금 피스를 제조하는 단계; 및It is based on silver (Ag), contains palladium (Pd) and gold (Au), the content of palladium (Pd) is 0.1 to 4.0% by weight, the weight-based content of gold (Au) to palladium (Pd) Preparing an alloy piece having a ratio of 0.25 to 1.0; And
    상기 합금 피스를 신선 및 열처리하는 단계;Drawing and heat treating the alloy piece;
    를 포함하고,Including,
    상기 합금 피스를 신선 및 열처리하는 단계는,The drawing and heat treatment of the alloy piece,
    상기 합금 피스를 신선하여 얻은 세선의 직경이 0.5 mm 내지 5 mm일 때 1차 열처리를 수행하는 단계;Performing a first heat treatment when the diameter of the fine wire obtained by drawing the alloy piece is 0.5 mm to 5 mm;
    를 포함하고, 상기 1차 열처리는 550 ℃ 내지 700 ℃에서 0.5 초 내지 5 초 동안 수행되는 것을 특징으로 하는 은 합금 본딩 와이어의 제조 방법.The method of claim 1, wherein the first heat treatment is performed at 550 ° C to 700 ° C for 0.5 seconds to 5 seconds.
  11. 제 10 항에 있어서,The method of claim 10,
    상기 신선 및 열처리는 상기 은 합금 본딩 와이어의 결정립들의 트윈 바운더리의 비율이 약 2% 내지 약 10%가 되도록 구성되는 것을 특징으로 하는 은 합금 본딩 와이어의 제조 방법.Wherein said drawing and heat treatment are configured such that the ratio of twin boundaries of crystal grains of said silver alloy bonding wire is from about 2% to about 10%.
  12. 제 10 항에 있어서,The method of claim 10,
    상기 1차 열처리가 600 ℃ 내지 650 ℃에서 2 초 내지 4 초 동안 수행되는 것을 특징으로 하는 은 합금 본딩 와이어의 제조 방법.The first heat treatment is carried out at 600 ℃ to 650 ℃ for 2 seconds to 4 seconds, characterized in that the manufacturing method of the silver alloy bonding wire.
  13. 제 10 항에 있어서,The method of claim 10,
    상기 신선 및 열처리는 The freshness and heat treatment
    상기 합금 피스를 신선하여 얻은 세선의 직경이 0.05 mm 내지 0.4 mm일 때 2차 열처리를 수행하는 단계;Performing a second heat treatment when the diameter of the fine wire obtained by drawing the alloy piece is 0.05 mm to 0.4 mm;
    를 더 포함하고, 상기 2차 열처리는 550 ℃ 내지 700 ℃에서 0.5 초 내지 5 초 동안 수행되는 것을 특징으로 하는 은 합금 본딩 와이어의 제조 방법.Further comprising, wherein the secondary heat treatment is a method of producing a silver alloy bonding wire, characterized in that performed at 550 ℃ to 700 ℃ for 0.5 seconds to 5 seconds.
  14. 제 13 항에 있어서,The method of claim 13,
    상기 2차 열처리가 600 ℃ 내지 650 ℃에서 2 초 내지 4 초 동안 수행되는 것을 특징으로 하는 은 합금 본딩 와이어의 제조 방법.The secondary heat treatment is a method for producing a silver alloy bonding wire, characterized in that performed for 2 to 4 seconds at 600 ℃ to 650 ℃.
PCT/KR2014/008323 2013-09-04 2014-09-04 Silver alloy bonding wire and method for manufacturing same WO2015034287A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480048613.0A CN105745339A (en) 2013-09-04 2014-09-04 Silver alloy bonding wire and method for manufacturing same
PH12016500401A PH12016500401A1 (en) 2013-09-04 2016-02-29 Silver alloy bonding wire and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0106291 2013-09-04
KR1020130106291A KR101535412B1 (en) 2013-09-04 2013-09-04 Silver alloy bonding wire and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2015034287A1 true WO2015034287A1 (en) 2015-03-12

Family

ID=52628666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/008323 WO2015034287A1 (en) 2013-09-04 2014-09-04 Silver alloy bonding wire and method for manufacturing same

Country Status (4)

Country Link
KR (1) KR101535412B1 (en)
CN (1) CN105745339A (en)
PH (1) PH12016500401A1 (en)
WO (1) WO2015034287A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107708919A (en) * 2015-09-29 2018-02-16 贺利氏材料新加坡私人有限公司 Alloying silver wire
EP3029167B1 (en) * 2014-07-10 2023-10-25 NIPPON STEEL Chemical & Material Co., Ltd. Bonding wire for semiconductor device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101687598B1 (en) * 2015-05-07 2016-12-20 엠케이전자 주식회사 Silver alloy bonding wire and manufacturing method thereof
CN108062991B (en) * 2016-11-08 2021-01-26 光洋应用材料科技股份有限公司 Silver alloy wire
CN107299245A (en) * 2017-06-19 2017-10-27 河北德田半导体材料有限公司 Semiconductor-sealing-purpose silver alloy wire and preparation method thereof
CN112342426A (en) * 2020-11-10 2021-02-09 汕头市骏码凯撒有限公司 Novel silver alloy bonding wire and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010029930A (en) * 1999-07-12 2001-04-16 후루야메탈스 가부시끼가이샤 Metal material for electronic parts, electronic parts, electronic apparatuses, and method of processing metal materials
KR20080089035A (en) * 2007-03-30 2008-10-06 엠케이전자 주식회사 Ag-base alloy for semiconductor package
KR20130007952A (en) * 2011-07-11 2013-01-21 프로파운드 머터리얼 테크놀로지 컴퍼니 리미티드 A complex silver wire
KR20130079452A (en) * 2012-01-02 2013-07-10 와이어 테크놀로지 씨오. 엘티디. Alloy wire and methods for manufacturing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102154574A (en) * 2010-10-18 2011-08-17 东莞市正奇电子有限公司 Alloy wire for connecting semiconductor components

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010029930A (en) * 1999-07-12 2001-04-16 후루야메탈스 가부시끼가이샤 Metal material for electronic parts, electronic parts, electronic apparatuses, and method of processing metal materials
KR20080089035A (en) * 2007-03-30 2008-10-06 엠케이전자 주식회사 Ag-base alloy for semiconductor package
KR20130007952A (en) * 2011-07-11 2013-01-21 프로파운드 머터리얼 테크놀로지 컴퍼니 리미티드 A complex silver wire
KR20130079452A (en) * 2012-01-02 2013-07-10 와이어 테크놀로지 씨오. 엘티디. Alloy wire and methods for manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3029167B1 (en) * 2014-07-10 2023-10-25 NIPPON STEEL Chemical & Material Co., Ltd. Bonding wire for semiconductor device
CN107708919A (en) * 2015-09-29 2018-02-16 贺利氏材料新加坡私人有限公司 Alloying silver wire
CN107708919B (en) * 2015-09-29 2020-02-07 贺利氏材料新加坡私人有限公司 Alloyed silver wire

Also Published As

Publication number Publication date
CN105745339A (en) 2016-07-06
PH12016500401A1 (en) 2016-05-16
KR101535412B1 (en) 2015-07-24
KR20150027626A (en) 2015-03-12

Similar Documents

Publication Publication Date Title
WO2015034287A1 (en) Silver alloy bonding wire and method for manufacturing same
WO2014129745A1 (en) Silver alloy bonding wire
WO2015037876A1 (en) Silver alloy boding wire and semiconductor device using same
CN103155130B (en) Ag-Au-Pd ternary alloy three-partalloy closing line
TWI739686B (en) Copper alloy bonding wire for semiconductor device
US9812421B2 (en) Bonding wire for semiconductor devices
WO2018074857A1 (en) Bonding wire
WO2002023618A1 (en) Bonding wire for semiconductor and method of manufacturing the bonding wire
EP2736047A1 (en) Aluminium alloy wire for bonding applications
KR101536554B1 (en) Bonding wire
US20130022831A1 (en) Soft dilute copper alloy wire, soft dilute copper alloy plate and soft dilute copper alloy stranded wire
KR100427749B1 (en) Au-Ag alloy bonding wire for semiconductor device
KR101681616B1 (en) Wire for bonding and method of manufacturing the same
CN113557596A (en) Al bonding wire
WO2014107040A1 (en) Silver alloy bonding wire
US20090101695A1 (en) Gold alloy wire for bonding wire having high initial bondability, high bonding reliability, high roundness of compression ball, high straightness, and high resin flowability resistance
KR100695925B1 (en) Gold wire for semiconductor element bonding
KR100618054B1 (en) Au alloy bonding wire
TW201610190A (en) Silver alloy-bonding wire and manufacturing method thereof
WO2011142643A2 (en) Copper alloy, method for preparing same, and enhancing strength and electrical conductivity thereof
JP3729302B2 (en) Gold alloy wire for bonding
WO2022168789A1 (en) Al wiring material
JP3639662B2 (en) Gold alloy fine wire for semiconductor devices
KR100294076B1 (en) Bonding Gold Alloy Fine Wire
TW202136533A (en) Al bonding wire even when the semiconductor device is continuously used in a high-temperature environment, the progress of the recrystallization of the bonding wire can be suppressed

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14842837

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12016500401

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14842837

Country of ref document: EP

Kind code of ref document: A1