JP3612179B2 - Gold-silver alloy fine wire for semiconductor devices - Google Patents

Gold-silver alloy fine wire for semiconductor devices Download PDF

Info

Publication number
JP3612179B2
JP3612179B2 JP21453697A JP21453697A JP3612179B2 JP 3612179 B2 JP3612179 B2 JP 3612179B2 JP 21453697 A JP21453697 A JP 21453697A JP 21453697 A JP21453697 A JP 21453697A JP 3612179 B2 JP3612179 B2 JP 3612179B2
Authority
JP
Japan
Prior art keywords
gold
weight
wire
range
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21453697A
Other languages
Japanese (ja)
Other versions
JPH1167811A (en
Inventor
智裕 宇野
宏平 巽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP21453697A priority Critical patent/JP3612179B2/en
Publication of JPH1167811A publication Critical patent/JPH1167811A/en
Application granted granted Critical
Publication of JP3612179B2 publication Critical patent/JP3612179B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/02Alloys based on gold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • H01L2224/486Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48617Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950 °C
    • H01L2224/48624Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01007Nitrogen [N]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01024Chromium [Cr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01025Manganese [Mn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01027Cobalt [Co]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01028Nickel [Ni]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01044Ruthenium [Ru]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01045Rhodium [Rh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01076Osmium [Os]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01077Iridium [Ir]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/011Groups of the periodic table
    • H01L2924/01105Rare earth metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20752Diameter ranges larger or equal to 20 microns less than 30 microns

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Wire Bonding (AREA)
  • Conductive Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体基板上の電極と外部リードを接続するために使用されるボンディングワイヤに関するものである。
【0002】
【従来の技術】
IC,LSIなどの半導体基板上の内部配線と、インナーリード部との電気的導通を得る接続法として、線径20〜50μmの細線を用いたボンディングワイヤ法が主流である。この細線の材料としては、LSIの大半を占める樹脂封止する半導体では、金合金細線が広く用いられている。金合金細線の長所として、金は化学的に安定であることが挙げられる。金合金細線は半導体基板上のアルミ電極との接続に用いるボール接合において、大気中でのワイヤ溶融時の酸化の心配がなく、真球で清浄なボールが容易に得られ、超音波を併用した熱圧着により良好な接合性が得られており、高速接合、量産性に優れている。
【0003】
金合金細線は上記のように優れた特性を有するが、原料である金が高価であり、金合金細線の製造方法を改善するだけではコストを大幅に低減することができず、半導体素子の価格低減をはばむ要因の一つとなっている。ボンディングワイヤとしての特性を具備した上で、高価な金の使用量を削減することができれば、半導体素子の製造コスト削減に寄与するところは大きい。
【0004】
現状の半導体素子用金合金細線のほとんどすべては、特性発現のために添加する不純物の総量を0.01%以下におさえた、純度が99.99%(4 N:フォーナイン)の高純度細線が用いられているのが現状であり、高機能化した半導体の開発が進む中でも、主原料としての金の成分範囲には大きな変動はみられていない。最近では、不純物総量として1%程度含有する合金細線の検討もされているが、さらなる低コスト化のメリットを重視した、数%程度の合金化を達成した金合金細線が使用された実例はみられない。
【0005】
Agは金中に全率固溶する金属であり、金中に高濃度の添加をする試みがなされてきた。Agの高濃度添加では、特開昭55−158642号公報において、低コスト化と硫化による細線表面の変色などを考慮して、Agの添加範囲として20〜50重量%が開示されている。また特開昭56−19628号公報においては、Ag添加により高温での機械的強さ特に破断強さに優れ、且つ接合部の引張強さに優れていることを考慮して、Agの添加範囲として19〜59重量%と他元素群Pd,Pt,Rh,Ir,Os,Ru を0.0003〜0.1 重量%との併用について開示されており、また特開昭56−19629号公報においては、同様の効果を得るためのAgの添加範囲として19〜59重量%と、他元素群Be,Ca,Co,Fe,Niを0.0003〜0.1 重量%との併用について開示されている。ただし、実際の量産に用いられる半導体素子用細線としては、Agを高濃度含有した金銀合金細線は用いられていない。
【0006】
【発明が解決しようとする課題】
本発明者らの研究により、従来知られている上記のAgを高濃度に含有した金銀合金細線は、純金に比較してワイヤの引張強度は改善されているものの、リード端子との接合部の接合強度が十分に得られないという問題を有していることが明らかになった。多ピン狭ピッチ化に伴いリード端子が微細となるため、その微細なリード端子上の銀メッキおよびPdメッキ面と金銀合金細線との良好な接合が得られなかったのである。また、特に過酷な条件で用いられる半導体素子に対しては、金銀合金細線と半導体基板のアルミ電極との接合の信頼性が十分でないとの問題点も明らかになった。
【0007】
半導体素子用の細線にAgを高濃度に含有させて半導体素子の製造コストを低減させるためには、細線とリード端子との接合部の接合強度を十分に確保しなければならない。また、特に過酷な条件で用いられる半導体素子に対してAgを高濃度に含有させた金銀合金細線を用いるためには、過酷な条件における信頼性を確保しなければならない。
【0008】
【課題を解決するための手段】
本発明は、上記課題を解決するためになされたものであり、その要旨とするところは以下のとおりである。
(1) Agを1重量%以上かつ11重量%未満の範囲で含有し、Ca、Beの少なくとも1種を総計で0.005〜0.05重量%、且つ、Ca、In、Be、希土類元素の少なくとも1種を総計で0.025〜0.05重量%の範囲で含有し、残部が金および不可避不純物からなることを特徴とする半導体素子用金銀合金細線。
(2) Agを1重量%以上かつ11重量%未満の範囲で含有し、Crを必須成分とし、Mn、Crの少なくとも1種を総計で0.01〜0.2重量%の範囲で含有し、残部が金および不可避不純物からなることを特徴とする半導体素子用金銀合金細線。
(3) Agを1重量%以上かつ11重量%未満の範囲で含有し、Cuを必須成分とし、Cu、Pd、Ptの少なくとも1種を総計で0.01〜4重量%の範囲で含有し、さらにCa、In、Be、希土類元素の少なくとも1種を総計で0.018〜0.05重量%の範囲で含有し、残部が金および不可避不純物からなることを特徴とする半導体素子用金銀合金細線。
(4) Agを1重量%以上かつ11重量%未満の範囲で含有し、Cu、Pd、Ptの少なくとも1種を総計で0.01〜4重量%の範囲で含有し、Ca、In、Be、希土類元素の少なくとも1種を総計で0.0005〜0.05重量%の範囲で含有し、さらにCrを必須成分とし、Mn、Crの少なくとも1種を総計で0.01〜0.2重量%の範囲で含有し、残部が金および不可避不純物からなることを特徴とする半導体素子用金銀合金細線。
(5) Agの含有量の範囲が1重量%以上かつ6重量%以下であることを特徴とする上記(1)乃至(4)に記載の半導体素子用金銀合金細線。
(6) 半導体基板上の配線電極とリード上のAgメッキ面またはPdメッキ面との間を、上記(1)乃至(5)に記載の半導体素子用金銀合金細線によって接続したことを特徴とする半導体素子。
【0009】
【発明の実施の形態】
本発明(1)〜()においては、金中にAgを1重量%以上かつ11重量%未満含有することを特徴とする。
金中のAgの含有量が1%未満であると、金細線を半導体素子のボンディングワイヤとして使用する場合の強度が不足し、ボールボンディング後のネック部での破断が発生したり、あるいは形成したループがたわんで隣のループとの接触を起こし、ボンディングワイヤとして機能することができない。本発明においては、金細線中にAgを1%以上含有することで金細線の強度の向上を図り、その結果、ネック部の破断強度、ループのたわみともに向上し、Ag以外に添加成分を加えることなくボンディングワイヤとして必要な特性を獲得することを特徴とする。Ag含有により細線の強度が上昇してループ制御が容易になり、その結果としてループ高さのばらつきが低減する。一般には材料費低減の目的で不純物元素を大量に添加すると、強度の増加および伸線くせなどが原因となってむしろループ形状のばらつきが増加する傾向が見られる。その中で、Agを本発明範囲で添加すると、強度のバランスが良好に実現し、却ってループ形状のばらつきの低減が実現できるのである。
【0010】
一方、金中のAg濃度が11重量%以上では、細線とリード端子上のAgメッキおよびPdメッキ面とのステッチ接合における接合不良発生頻度が増大する。リード端子との接合時の荷重印加時の細線の硬化が大きいこと、表面部において金中のAgが酸化膜を形成すること、また接合部のリード端子のAgメッキおよびPdめっきとの拡散が抑えられることなどが関係していると考えられる。接合不良を防止するために接合荷重を高めると、細線がつぶれすぎてリード接合部近傍の細線の強度が低下したり断線不良の原因となる。その結果として、ループ形成後の強度評価法として多用されているプル試験において、通常はボール接合部直上のネック部で破断するが、高荷重で接合した場合、細線とリード端子部との接合部近傍で破断が生じ、この部位での強度低下が問題となる。
【0011】
本発明は、ボンディングワイヤの特性として、上記に示した特性以外の特性も良好である。即ち、電極とのボール接合のためにワイヤ先端に作製したボールの形状、細線先端のボールと電極との接合部のボールと電極の損傷の有無、ボール接合部の接合強度、ループ形成時のワイヤ曲がり状況、通常の半導体素子の電極接合部に要求される信頼性評価についても、ボンディングワイヤとして必要な特性を具備していることが確認できた。
【0012】
本発明の金銀の合金細線に、さらにCu、Pd、Ptの少なくとも1種を総計で0.01 〜4 重量%の範囲で含有させることにより、アルミ電極との接続直後の接合強度が高まる。その効果は、上記の元素を高純度の金のみに添加するよりも、Agと併用して含有させることにより、より高められる。Cu、Pd、Ptの含有量を上記範囲と定めたのは、0.01 重量%未満であれば上記効果は小さく、4重量%を超えるとボール部が硬化するため接合時に半導体素子に損傷を与えることが懸念され、それを回避するために接合時の変形を軽減すると接合強度がむしろ低下するという理由に基づくものである。
【0013】
本発明の金銀合金細線に、Ca、Beの少なくとも1種を総計で0.005〜0.05重量%、且つ、Ca、In、Be、希土類元素の少なくとも1種を総計で0.025〜0.05重量%の範囲で含有すると、伸線時の断線不良が低下し、ループ形成時の曲がり変形が低下するため、隣接する細線ピッチが狭い高密度接合に好適な金銀合金細線が得られる。その効果は、上記の元素を高純度の金のみに添加するよりも、Agと併用して含有させることにおいて、高い効果が得られる。Ca、In、Be、希土類元素の含有量を上記範囲と定めたのは、0.025重量%未満であれば上記効果は小さく、0.05重量%を超えると伸線後に熱処理を施しても伸線時の加工ぐせを低減することが困難になり、ワイヤのループ形成時の曲がり変形が増加するためである。
【0014】
また、本発明の金銀合金細線に、Cuを必須成分とし、Cu、Pd、Ptの少なくとも1種を総計で0.01〜4重量%の範囲で含有させ、さらにCa、In、Be、希土類元素の少なくとも1種を総計で0.018〜0.05重量%の範囲で含有させると、樹脂封止工程における金銀合金細線の変形量が低減することが判明した。これは、高温強度が増加することと関連するものである。上記の元素添加による樹脂封止時の変形量の低減する効果については、Agと併用して含有させることにおいて、より高い効果が得られる。ここで、各元素群の含有量を上記範囲と定めたのは、前述した理由に基づくものである。
【0015】
また、本発明の金銀の合金細線に、Crを必須成分とし、Mn、Crの少なくとも1種を総計で0.01〜0.2重量%の範囲で含有すると、ボール部の接合時における変形容易性が向上する。Ag濃度が増加するに従い、ボール部が硬くなるため、接合時に半導体基板へのダメージを与えないように注意を払う必要が生じるが、Agに加えてCrを必須成分とし、Mn、Crを適量添加すると、ボール変形性が高まり接合面積が増加する効果がある。従って、低い接合荷重および超音波出力でも十分な接合強度が得られることから、ダメージ軽減に効果が得られる。ここで、含有量を上記範囲と定めたのは、0.01重量%未満では上記効果は小さく、0.2重量%を超えると、大気中のボール形成では真球で清浄なボール部を得ることが困難となるためである。
【0016】
通常用いられる半導体素子用のボンディングワイヤにおいては、半導体基板のアルミ電極との接合信頼性に関しては通常の信頼性試験での評価が良好であれば問題無く使用することができる。即ち、第1に、ボンディングワイヤを半導体基板のアルミ電極にボール接合した接合部を、樹脂封止しない状態で窒素ガス中において120℃で200時間加熱処理した後に、シェアテストによって接合強度の変化を評価した。第2に、樹脂封止した最終製品について、信頼性試験を行った。金中にAgを1〜11%含有した本発明において、通常の信頼性に関してはなんら問題はない。
【0017】
本発明者らは、通常の使用条件を超える過酷な使用環境においてボンディングワイヤとアルミ電極との接合部の強度が保持されるかどうかを評価する新たな接合信頼性評価試験を導入し、評価を行った。即ち、ボンディングワイヤを半導体基板のアルミ電極にボール接合した接合部を、樹脂封止しない状態で窒素ガス中において200℃で200時間加熱処理した後に、シェアテストによって接合強度の変化を評価した。その結果、金銀合金細線中のAg濃度が1〜6%の範囲において、上記高温加熱テストを経た後であっても接合部の接合強度が低下しないことを明らかにした。
【0018】
本発明()は上記の知見に基づいてなされたものであり、本発明(1)〜()において、金銀合金細線における金中のAg含有量を1〜6%とすることにより、200℃×200時間と言う過酷な条件においても金銀合金細線とアルミ電極接合部の接合強度は全く低下することがなく、過酷な条件においても信頼性の高い半導体素子を実現する。Ag含有量の上限を6%としたのは、6%を超えると200℃×200時間の加熱後の接合部シェア強度が低下するからである。Ag含有量の下限を1%としたのは、本発明(1)と同じ理由である。
【0019】
本発明(1)〜()の金銀合金細線をボンディングワイヤとして用い、半導体基板上の電極とリード上のAgメッキまたはPdメッキ面とを接合することによって製造した半導体素子は、従来知られているボンディングワイヤを用いた場合と同等の性能を従来に比較して安価な製造コストで実現することができる。また、本発明()の金銀合金細線をボンディングワイヤとして用いれば、過酷な条件においても信頼性の高い半導体素子を実現することができる。
【0020】
【実施例】
母材の金としては金純度が約99.995重量%以上の電解金を、添加するAgとしては純度が99.95 %以上の高純度のものを用いた。前述の各添加元素群を含有する母合金を個別に高周波真空溶解炉で溶解鋳造して母合金を溶製した。
【0021】
このようにして得られた各添加元素の母合金の所定量と金純度が約99.995重量%以上の電解金とにより、表1〜4に示す化学成分の金合金を高周波真空溶解炉で溶解鋳造し、その鋳塊を圧延した後に常温で伸線加工を行い、必要に応じて金合金細線の中間焼鈍工程を加え、さらに伸線工程を続け、最終線径が25μmの金合金細線とした後に、連続焼鈍して伸び値が4%程度になるように調整した。得られた金合金細線について、半導体素子用途のボンディング性などの使用性能を調べた結果を表1〜4に併記した。
【0022】
ワイヤボンディングに使用される高速自動ボンダーを使用して、アーク放電によりワイヤ先端に作製した金銀合金ボールを10本採取し、走査型電子顕微鏡で観察した。結果を表1〜4の「ボール形状」に示す。ボール形状が異常なもの、ボール先端部において収縮孔の発生が認められるもの等半導体素子上の電極に良好な接合ができないものを△印で、形状が真球で表面も清浄である良好なボールについて○印で示した。
【0023】
接合時のチップ損傷を調べるため、ボンディングした素子を王水中に数分間漬けて、金ワイヤおよびアルミ電極などを溶解した後に、接合箇所を光学顕微鏡により観察したした。問題となる損傷が認められなかったものについては、更にSEMで500倍程度の倍率で観察して微小なクラックが認められるものについて○印、損傷のない特に良好な結果について◎印で示した。結果を「ボール接合損傷」に示す。
【0024】
ボンディング後にリードフレームと測定する半導体素子を固定した状態で、ボンディング後の金合金細線をフックで上方に引張り、そのときの破断強度を3 0本測定したプル強度の平均値で評価した。結果を表1〜4の「プル強度」に示す。その際、リード端子との接合性を評価するために、フックを掛けて上方引張する箇所を、中央部よりもリード端子に近いところで試験した。結果を表1〜4の「プルテスト破断モード」に示す。このプルテストにおける破断箇所として、リード端子との接合部近傍が1 本でもあれば、この部位の強度がループの中でも相対的に低下しているため△で示し、30本とも破断箇所が中央部およびボール直上のネック部の場合には、リード部接合は良好であると判断し○印で表示した。細線のループ形状制御容易性の評価は、ループ高さのばらつき測定で行った。ループ高さは、半導体素子上の電極と外部リードとの間を接合した後に形成される各ループの頂高と当該半導体素子の電極面とを光学顕微鏡で50本測定し、その両者の高さの差であるループ高さとそのばらつきを評価した。結果を表1〜4の「ループ高さ」「ループ高さ偏差」に示す。
【0025】
金銀合金細線のループ形成時のワイヤ曲がりは、ワイヤ両端の接合距離(スパン)が4.5mmとなるようボンディングしたワイヤを半導体素子とほぼ垂直上方向から観察し、ワイヤ中心部からワイヤの両端接合部を結ぶ直線と、ワイヤの曲がりが最大の部分との垂線の距離を、投影機を用いて50本測定した平均値で、結果を表1〜4の「接続後のワイヤ曲がり」に示した。
【0026】
樹脂封止後のワイヤ流れの測定に関しては、ワイヤのスパンとして4.5mmが得られるようにボンディングした半導体素子が搭載されたリードフレームを、モールディング装置を用いてエポキシ樹脂で封止した後に、軟X線非破壊検査装置を用いて樹脂封止した半導体素子内部をX線投影し、前述したワイヤ曲がりと同等の手順によりワイヤ流れが最大の部分の流れ量を40本測定し、その平均値をワイヤのスパン長さで除算した値(百分率)を封止後のワイヤ流れと定義し、結果を表1〜4の「樹脂封止ワイヤ流れ」に示した。
【0027】
ボール接合部の接合強度については、アルミ電極の2μm上方で冶具を平行移動させて剪断破断を読みとるシェアテスト法で測定し、40本の破断荷重の平均値を測定し、表1〜4の「接合直後のシェア強度」に示した。
【0028】
通常の使用条件における電極接合部信頼性評価として、金ボールをアルミニウム電極に接合した半導体装置を樹脂封止しない状態で、窒素ガス中において120℃で200時間加熱処理した後に、40本のシェアテストの平均値により接合強度の変化を評価した。結果を、表1〜4の「加熱後のシェア強度/120℃」に示した。
【0029】
過酷な使用条件における電極接合部信頼性評価として、金ボールをアルミニウム電極に接合した半導体装置を樹脂封止しない状態で、窒素ガス中において200℃で200時間加熱処理した後に、40本のシェアテストの平均値により接合強度の変化を評価した。結果を、表1〜4の「加熱後のシェア強度/200℃」に示した。
【0030】
【表1】

Figure 0003612179
【0033】
【表2】
Figure 0003612179
【0034】
において、実施例No.1〜4は本発明(1)に係るものであり、実施例No.5〜は本発明(2)、実施例No.8、9は本発明(3)、実施例No.10は本発明(4)に係る金銀合金細線の結果である。
【0035】
表2の比較例No.1〜4は、Agの含有量が本発明範囲外となる比較例として示した。
【0037】
ボール接合損傷については、実施例No.1〜10の本発明の範囲内においてはいずれも光学顕微鏡観察結果において実用上問題となる損傷は認められなかった。
【0039】
Agの適正量の含有に加えて、Ca、Beの少なくとも1種を総計で0.005〜0.05重量%、且つ、Ca、In、Be、希土類元素の含有量が0.025〜0.05重量%の範囲である実施例No.では、ループ形成時のワイヤ曲がり量が20μm以下であり、すなわち金細線の直径よりも小さく抑えられている。
【0040】
Agの適正量の含有に加えて、Crを必須成分とし、Mn、Crの含有量が0.01〜0.2重量%の範囲である実施例No.では、シェア強度が60gf以上の高い値が得られた。接合されたボール部の直径を測定したところ、実施例No.では約75μm であり、例えば実施例No.1〜における約65μmに比して、高い値を示し、この接合面積の増加が、シェア強度の増加に寄与している。更に、ボール接合損傷の評価結果においては、実施例No.及び11ではSEM観察においてもクラックなどは認められず、非常に良好であり、Mn、Crを添加した効果が見られた。
【0041】
Cuを必須成分とし、Cu、Pd、Ptの元素群と、Ca、In、希土類元素の元素群とを、本発明()の範囲で含有する実施例No.8、9では、樹脂封止時のワイヤ流れ率が3%以下であり、他の金合金細線における流れ率が4%以上の結果と比較しても、半分以下にまでに低く抑えられていることが確認された。
【0042】
Cu、Pd、Ptの元素群と、Ca、In、Be、希土類元素の元素群、さらにCrを必須成分とし、Mn、Crの元素群を、本発明()の範囲で含有する実施例No.10では、接合強度の上昇効果が大きく、70gf超の高い値が得られた。本発明()の成分の細線において、実施例No.1〜と同等の50gf以下のシェア強度を確保するには、接合時の荷重および超音波振動の設定値を1〜2割も低く抑えることができ、ダメージの低減には有効である。
【0043】
通常の使用条件における電極接合部信頼性評価である120℃で200時間加熱後のシェア強度は、本発明の範囲である実施例No.1〜10のすべてにわたって良好な結果を示した。
【0044】
過酷な使用条件における電極接合部信頼性評価である200℃で200時間加熱後のシェア強度は、本発明(5)の範囲内にある実施例No.1〜10については良好な結果を示した。
【0045】
【発明の効果】
本発明の範囲でAgを含有する金銀合金細線を半導体素子に用いることにより、性能を損なうことなく半導体素子の製造原価を低減することができる。更に、製造原価の低減を実現し、かつ過酷な条件での使用に耐える半導体素子を実現することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a bonding wire used for connecting an electrode on a semiconductor substrate and an external lead.
[0002]
[Prior art]
As a connection method for obtaining electrical continuity between an internal wiring on a semiconductor substrate such as IC or LSI and an inner lead portion, a bonding wire method using a thin wire having a wire diameter of 20 to 50 μm is mainly used. As a material for the fine wire, a gold alloy fine wire is widely used in a resin-sealed semiconductor that occupies most of the LSI. An advantage of the gold alloy fine wire is that gold is chemically stable. Gold alloy thin wire is used for connecting to an aluminum electrode on a semiconductor substrate, and there is no fear of oxidation during wire melting in the atmosphere. Good bondability is obtained by thermocompression bonding, and high speed bonding and mass productivity are excellent.
[0003]
Gold alloy fine wires have excellent characteristics as described above, but the raw material gold is expensive, and it is not possible to significantly reduce the cost simply by improving the manufacturing method of the gold alloy fine wires. This is one of the factors that prevent reduction. If the amount of expensive gold used can be reduced while having the characteristics as a bonding wire, it greatly contributes to the reduction of the manufacturing cost of the semiconductor element.
[0004]
Almost all of the current gold alloy thin wires for semiconductor devices are high-purity thin wires with a purity of 99.99% (4 N: Four Nine), with the total amount of impurities added for the expression of properties being kept below 0.01%. Is currently used, and while the development of highly functional semiconductors has progressed, there has been no significant change in the component range of gold as the main raw material. Recently, an alloy thin wire containing about 1% of the total amount of impurities has been studied, but there are examples of using a gold alloy thin wire that has achieved alloying of several percent, focusing on the merit of further cost reduction. I can't.
[0005]
Ag is a metal that dissolves completely in gold, and attempts have been made to add it to gold at a high concentration. In the case of high concentration addition of Ag, JP-A-55-158642 discloses 20 to 50% by weight as the addition range of Ag in consideration of cost reduction and discoloration of the surface of fine wires due to sulfurization. In addition, in JP-A-56-19628, considering the addition of Ag, the mechanical strength at high temperature, particularly the breaking strength, and the tensile strength of the joint are considered, and the addition range of Ag 19-59% by weight and other element groups Pd, Pt, Rh, Ir, Os, Ru are disclosed in combination with 0.0003-0.1% by weight, and in JP-A-56-19629 Is disclosed for the combined use of 19 to 59% by weight of Ag for obtaining the same effect and 0.0003 to 0.1% by weight of other element groups Be, Ca, Co, Fe, and Ni. Yes. However, as a thin wire for a semiconductor element used for actual mass production, a gold-silver alloy thin wire containing Ag at a high concentration is not used.
[0006]
[Problems to be solved by the invention]
According to the research of the present inventors, the conventionally known gold-silver alloy fine wire containing Ag in a high concentration has improved the tensile strength of the wire as compared with pure gold, but the joint portion with the lead terminal is improved. It became clear that there was a problem that the bonding strength could not be obtained sufficiently. Since the lead terminal becomes fine with the narrowing of the multi-pin pitch, good bonding between the silver-plated and Pd-plated surface on the fine lead terminal and the gold-silver alloy fine wire cannot be obtained. Further, for semiconductor elements used under particularly severe conditions, the problem that the reliability of bonding between the gold-silver alloy fine wire and the aluminum electrode of the semiconductor substrate is not sufficient has also been clarified.
[0007]
In order to reduce the manufacturing cost of a semiconductor element by containing Ag in a thin line for a semiconductor element at a high concentration, it is necessary to sufficiently secure the bonding strength of the bonding portion between the thin line and the lead terminal. In addition, in order to use a gold-silver alloy fine wire containing Ag in a high concentration for a semiconductor element used under particularly severe conditions, reliability under severe conditions must be ensured.
[0008]
[Means for Solving the Problems]
The present invention has been made to solve the above-described problems, and the gist thereof is as follows.
(1) Ag is contained in the range of 1% by weight or more and less than 11% by weight, and a total of at least one of Ca and Be is 0.005 to 0.05 % by weight, and Ca, In, Be, and rare earth elements A gold-silver alloy fine wire for a semiconductor device, wherein the total amount of at least one of the above is contained in the range of 0.025 to 0.05% by weight, and the balance is made of gold and inevitable impurities.
(2) Ag is contained in the range of 1 wt% or more and less than 11 wt%, Cr is an essential component, and at least one of Mn and Cr is contained in the range of 0.01 to 0.2 wt% in total. A gold-silver alloy fine wire for semiconductor elements, wherein the balance is made of gold and inevitable impurities.
(3) Ag is contained in the range of 1% by weight or more and less than 11% by weight, Cu is an essential component, and at least one of Cu, Pd and Pt is contained in a total range of 0.01 to 4% by weight. Further, at least one of Ca, In, Be, and a rare earth element is contained in a total amount of 0.018 to 0.05% by weight, and the balance is made of gold and inevitable impurities. Thin line.
(4) Ag is contained in the range of 1% by weight or more and less than 11% by weight, and at least one of Cu, Pd, and Pt is contained in the range of 0.01 to 4% by weight in total, Ca, In, Be , Containing at least one rare earth element in a total range of 0.0005 to 0.05% by weight, further including Cr as an essential component, and at least one of Mn and Cr in a total of 0.01 to 0.2% by weight %, And the balance consists of gold and inevitable impurities, a gold-silver alloy fine wire for semiconductor elements.
(5) The gold / silver alloy thin wire for a semiconductor element according to the above (1) to (4) , wherein the Ag content is in the range of 1 wt% to 6 wt%.
(6) The wiring electrode on the semiconductor substrate and the Ag-plated surface or Pd-plated surface on the lead are connected by the gold-silver alloy fine wire for semiconductor element described in (1) to (5) above. Semiconductor element.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention (1) to ( 4 ), Ag is contained in the gold in an amount of 1% by weight or more and less than 11% by weight.
When the content of Ag in the gold is less than 1%, the strength when the gold wire is used as a bonding wire of a semiconductor element is insufficient, and the neck portion after ball bonding is broken or formed. A loop bends to cause contact with an adjacent loop and cannot function as a bonding wire. In the present invention, by containing 1% or more of Ag in the gold fine wire, the strength of the gold fine wire is improved. As a result, the breaking strength of the neck portion and the deflection of the loop are improved, and an additive component is added in addition to Ag. The characteristics required for a bonding wire can be obtained without any problems. By containing Ag, the strength of the thin wire is increased and the loop control is facilitated. As a result, the variation in the loop height is reduced. In general, when a large amount of an impurity element is added for the purpose of reducing the material cost, there is a tendency that the variation in the loop shape tends to increase due to an increase in strength and wire drawing. Among them, when Ag is added within the range of the present invention, a good balance of strength is realized, and on the contrary, a variation in loop shape can be reduced.
[0010]
On the other hand, when the Ag concentration in the gold is 11% by weight or more, the frequency of occurrence of defective bonding in stitch bonding between the fine wire and the Ag plating and Pd plating surface on the lead terminal increases. Hardening of fine wires when applying a load at the time of joining to the lead terminal is large, Ag in the gold forms an oxide film on the surface portion, and diffusion of Ag lead and Pd plating on the lead terminal of the joint portion is suppressed. It is thought that it is related. If the bonding load is increased in order to prevent the bonding failure, the fine wire is crushed too much, and the strength of the fine wire near the lead bonding portion is reduced or a disconnection failure is caused. As a result, in the pull test, which is often used as a strength evaluation method after loop formation, it usually breaks at the neck portion directly above the ball joint, but when joined under high load, the joint between the thin wire and the lead terminal portion Breakage occurs in the vicinity, and a decrease in strength at this site becomes a problem.
[0011]
In the present invention, characteristics other than the characteristics described above are also good as the characteristics of the bonding wire. That is, the shape of the ball produced at the tip of the wire for ball bonding with the electrode, the presence or absence of damage to the ball and electrode at the junction between the ball and electrode at the tip of the thin wire, the bonding strength at the ball junction, the wire at the time of loop formation It was confirmed that the bending condition and the reliability evaluation required for the electrode joint portion of a normal semiconductor element also have the necessary characteristics as a bonding wire.
[0012]
By adding at least one of Cu, Pd, and Pt to the gold-silver alloy thin wire of the present invention in a total range of 0.01 to 4% by weight, the bonding strength immediately after connection with the aluminum electrode is increased. The effect is further enhanced by containing the above elements in combination with Ag rather than adding only the high purity gold. The content of Cu, Pd, and Pt is defined as the above range because the effect is small if the content is less than 0.01% by weight, and if the content exceeds 4% by weight, the ball portion is cured, so that the semiconductor element is damaged during bonding. This is based on the reason that if the deformation at the time of joining is reduced to avoid this, the joining strength is rather lowered.
[0013]
In the gold-silver alloy fine wire of the present invention, at least one of Ca and Be is 0.005 to 0.05 % by weight in total, and at least one of Ca, In, Be and rare earth elements is 0.025 to 0 in total When contained in the range of 0.05% by weight, the disconnection failure at the time of wire drawing is lowered and the bending deformation at the time of loop formation is lowered, so that a gold-silver alloy fine wire suitable for high-density joining with a narrow adjacent fine wire pitch can be obtained. The effect is higher when the above element is contained in combination with Ag than when only the high purity gold is added. The content of Ca, In, Be, and rare earth elements is set within the above range because the effect is small if it is less than 0.025 % by weight, and if it exceeds 0.05% by weight, heat treatment is performed after wire drawing. This is because it becomes difficult to reduce the processing distortion at the time of wire drawing, and the bending deformation at the time of wire loop formation increases.
[0014]
The gold-silver alloy fine wire of the present invention contains Cu as an essential component, and contains at least one of Cu, Pd, and Pt in a total range of 0.01 to 4% by weight, and further contains Ca, In, Be, and rare earth elements. It was found that the amount of deformation of the gold-silver alloy fine wire in the resin sealing step is reduced when at least one of the above is contained in the range of 0.018 to 0.05% by weight in total. This is related to an increase in high temperature strength. About the effect which reduces the deformation amount at the time of resin sealing by said element addition, a higher effect is acquired in containing together with Ag. Here, the reason why the content of each element group is defined as the above range is based on the reason described above.
[0015]
Further, when the gold-silver alloy thin wire of the present invention contains Cr as an essential component and contains at least one of Mn and Cr in a total range of 0.01 to 0.2% by weight, it is easy to deform at the time of joining the ball part. Improves. As the Ag concentration increases, the ball portion becomes harder, so care must be taken not to damage the semiconductor substrate during bonding. However, in addition to Ag, Cr is an essential component, and appropriate amounts of Mn and Cr are added. Then, there is an effect that the ball deformability is increased and the bonding area is increased. Accordingly, since sufficient bonding strength can be obtained even with a low bonding load and ultrasonic output, an effect can be obtained in reducing damage. Here, the content is determined to be in the above range because the effect is small when the content is less than 0.01 % by weight, and when the content exceeds 0.2% by weight, a true and clean ball portion is obtained in ball formation in the atmosphere. This is because it becomes difficult.
[0016]
A bonding wire for a semiconductor element that is normally used can be used without any problem as long as the reliability of bonding with the aluminum electrode of the semiconductor substrate is evaluated in a normal reliability test. That is, first, after the bonding portion in which the bonding wire is ball-bonded to the aluminum electrode of the semiconductor substrate is heat-treated in nitrogen gas at 120 ° C. for 200 hours without resin sealing, the shear strength is changed by a shear test. evaluated. Second, a reliability test was performed on the final product sealed with resin. In the present invention containing 1 to 11% of Ag in gold, there is no problem with respect to normal reliability.
[0017]
The present inventors introduced a new bonding reliability evaluation test for evaluating whether or not the strength of the bonding portion between the bonding wire and the aluminum electrode is maintained in a harsh usage environment exceeding normal usage conditions. went. That is, the bonding portion in which the bonding wire was ball-bonded to the aluminum electrode of the semiconductor substrate was heat-treated at 200 ° C. for 200 hours in nitrogen gas without resin sealing, and then the change in bonding strength was evaluated by a shear test. As a result, it has been clarified that the bonding strength of the bonded portion does not decrease even after the high-temperature heating test in the range where the Ag concentration in the gold-silver alloy fine wire is 1 to 6%.
[0018]
This invention ( 5 ) is made | formed based on said knowledge, In this invention (1)-( 4 ), by making Ag content in the gold | metal | money in a gold-silver alloy fine wire into 1-6%, it is 200. Even under the severe condition of ° C. × 200 hours, the bonding strength between the gold-silver alloy fine wire and the aluminum electrode joint does not decrease at all, and a highly reliable semiconductor device is realized even under the severe condition. The reason why the upper limit of the Ag content is 6% is that if it exceeds 6%, the joint shear strength after heating at 200 ° C. for 200 hours is lowered. The lower limit of the Ag content is set to 1% for the same reason as in the present invention (1).
[0019]
2. Description of the Related Art Conventionally, a semiconductor device manufactured by bonding an electrode on a semiconductor substrate and an Ag-plated or Pd-plated surface on a lead using the gold-silver alloy fine wire of the present invention (1) to ( 4 ) as a bonding wire has been known. The same performance as when using the existing bonding wire can be realized at a lower manufacturing cost than the conventional one. Moreover, if the gold-silver alloy fine wire of the present invention ( 5 ) is used as a bonding wire, a highly reliable semiconductor element can be realized even under severe conditions.
[0020]
【Example】
Electrolytic gold having a gold purity of about 99.995% by weight or more was used as the base material gold, and high-purity gold having a purity of 99.95% or more was used as Ag to be added. The master alloy containing each of the additive elements described above was individually melt-cast in a high-frequency vacuum melting furnace to melt the master alloy.
[0021]
A gold alloy having chemical components shown in Tables 1 to 4 was obtained in a high-frequency vacuum melting furnace using a predetermined amount of the master alloy of each additive element thus obtained and electrolytic gold having a gold purity of about 99.995 wt% or more. After melt casting and rolling the ingot, wire drawing is performed at room temperature, and if necessary, an intermediate annealing step of the gold alloy fine wire is added, and the wire drawing step is continued, and a gold alloy fine wire having a final wire diameter of 25 μm Then, it was continuously annealed to adjust the elongation value to about 4%. About the obtained gold alloy thin wire, the result of having investigated use performance, such as bonding property for a semiconductor element use, was written together in Tables 1-4.
[0022]
Using a high-speed automatic bonder used for wire bonding, ten gold-silver alloy balls produced on the wire tip by arc discharge were collected and observed with a scanning electron microscope. The results are shown in “Ball shape” in Tables 1 to 4. Good balls that are not shaped like balls, or that cannot be bonded to the electrodes on the semiconductor element, such as those with shrinkage holes observed at the tip of the ball, are marked with a △ mark and have a true sphere and a clean surface. Is marked with a circle.
[0023]
In order to examine chip damage during bonding, the bonded element was immersed in aqua regia for several minutes to dissolve gold wires and aluminum electrodes, and then the bonded portion was observed with an optical microscope. For those in which no problem damage was observed, they were further observed with an SEM at a magnification of about 500 times and marked with a circle, and particularly good results with no damage were marked with an circle. The results are shown in “Ball joint damage”.
[0024]
In a state where the lead frame and the semiconductor element to be measured were fixed after bonding, the gold alloy fine wire after bonding was pulled upward with a hook, and the breaking strength at that time was evaluated by the average value of the pull strength measured by 30 wires. The results are shown in “Pull Strength” in Tables 1 to 4. At that time, in order to evaluate the bondability with the lead terminal, a place where the hook was hooked and pulled upward was tested at a position closer to the lead terminal than the center part. The results are shown in “Pull test break mode” in Tables 1 to 4. If there is at least one joint near the lead terminal in this pull test, the strength of this part is relatively low even in the loop, so it is indicated by Δ. In the case of the neck portion directly above the ball, the lead portion bonding was judged to be good and indicated by a circle. The ease of control of the loop shape of the thin wire was evaluated by measuring the variation in the loop height. The loop height is determined by measuring 50 tops of each loop formed after joining the electrode on the semiconductor element and the external lead and the electrode surface of the semiconductor element with an optical microscope, and measuring the heights of the two. The height of the loop, which is the difference between the two, and its variation were evaluated. The results are shown in “Loop height” and “Loop height deviation” in Tables 1 to 4.
[0025]
Wire bending at the time of loop formation of gold-silver alloy thin wires is performed by observing the wire bonded so that the bonding distance (span) of both ends of the wire is 4.5 mm from the upper direction of the semiconductor element, and joining both ends of the wire from the center of the wire. The average value obtained by measuring 50 perpendicular lines between the straight line connecting the portions and the portion with the largest wire bend using a projector, and the results are shown in “Wire bend after connection” in Tables 1 to 4. .
[0026]
Regarding the measurement of the wire flow after resin sealing, the lead frame on which the semiconductor element bonded to obtain a wire span of 4.5 mm is sealed with epoxy resin using a molding device, and then softened. The inside of the semiconductor element sealed with resin using an X-ray non-destructive inspection apparatus is projected by X-ray, and the flow amount of the portion where the wire flow is maximum is measured by the same procedure as the wire bending described above, and the average value is calculated. The value (percentage) divided by the span length of the wire was defined as the wire flow after sealing, and the results are shown in “resin sealing wire flow” in Tables 1 to 4.
[0027]
The joint strength of the ball joint was measured by a shear test method in which the jig was translated 2 μm above the aluminum electrode and the shear fracture was read, and the average value of 40 fracture loads was measured. It was shown in "Shear strength immediately after joining".
[0028]
As an evaluation of the reliability of electrode joints under normal use conditions, 40 semiconductor shear tests were performed after heat treatment at 120 ° C. for 200 hours in nitrogen gas without resin sealing a semiconductor device in which gold balls were bonded to aluminum electrodes. The change in bonding strength was evaluated based on the average value. The results are shown in “Shear strength after heating / 120 ° C.” in Tables 1 to 4.
[0029]
As a reliability evaluation of electrode joints under severe use conditions, 40 share tests were conducted after heat treatment at 200 ° C. for 200 hours in nitrogen gas without resin sealing a semiconductor device in which gold balls were bonded to aluminum electrodes. The change in bonding strength was evaluated based on the average value. The results are shown in Tables 1 to 4 under “Share strength after heating / 200 ° C.”.
[0030]
[Table 1]
Figure 0003612179
[0033]
[Table 2]
Figure 0003612179
[0034]
In Table 1 , Example No. 1 to 4 relate to the present invention (1). 5 to 7 of the present invention (2), Example No. 8 and 9 show the present invention (3), Example No. 10 is the result of the gold-silver alloy fine wire according to the present invention (4 ) .
[0035]
Comparative Example No. 2 in Table 2 1-4 are shown as comparative examples in which the Ag content is outside the scope of the present invention.
[0037]
For ball joint damage, see Example No. In the range of 1 to 10 of the present invention, no practical damage was observed in the optical microscope observation results.
[0039]
In addition to containing an appropriate amount of Ag, a total of at least one of Ca and Be is 0.005 to 0.05 % by weight, and the content of Ca, In, Be, and a rare earth element is 0.025 to 0.001. Example No. in the range of 05% by weight. In 1-4, is not less 20μm or less wire bending amount during the loop formation, i.e. that it has been kept smaller than the diameter of the gold fine wire.
[0040]
In addition to containing an appropriate amount of Ag, Example No. 1 containing Cr as an essential component and containing Mn and Cr in the range of 0.01 to 0.2% by weight. In 5-7, the shear strength was obtained a high value of at least 60 gf. When the diameter of the bonded ball part was measured, Example No. 5 to 7 , it is about 75 μm. A high value is shown as compared to about 65 μm in 1 to 4 , and this increase in the joint area contributes to an increase in the shear strength. Furthermore, in the evaluation result of the ball joint damage, the example No. In Nos. 5 to 7 and 11 , no cracks were observed in SEM observation, which was very good, and the effect of adding Mn and Cr was observed .
[0041]
Example No. containing Cu as an essential component and containing the element group of Cu, Pd and Pt and the element group of Ca, In and rare earth elements within the scope of the present invention ( 3 ). In 8 and 9 , the flow rate of the wire at the time of resin sealing is 3% or less, and the flow rate in other gold alloy thin wires is suppressed to less than half compared with the result of 4% or more. It was confirmed.
[0042]
Example No. containing Cu, Pd, Pt element group, Ca, In, Be, rare earth element group, Cr as an essential component, and Mn, Cr element group within the scope of the present invention ( 4 ) . In No. 10 , the effect of increasing the bonding strength was large, and a high value exceeding 70 gf was obtained. In the thin line of the component of the present invention ( 4 ), Example No. 1-4 To ensure the shear strength of the following equivalent 50gf is a also can be lowered to 2% of the set value of the load and ultrasonic vibration at the time of bonding, it is effective in reducing the damage.
[0043]
The shear strength after heating at 120 ° C. for 200 hours, which is an evaluation of electrode joint reliability under normal use conditions, is Example No. which is the scope of the present invention. Good results were shown across all 1-10 .
[0044]
Shear strength after 200 hours of heating at 200 ° C. an electrode joint reliability evaluation under severe use conditions, examples are within the scope of this onset bright (5) No. It showed good results for 1-10.
[0045]
【The invention's effect】
By using a gold-silver alloy fine wire containing Ag in the scope of the present invention for a semiconductor element, the manufacturing cost of the semiconductor element can be reduced without impairing the performance. Furthermore, it is possible to realize a semiconductor element that can reduce the manufacturing cost and can withstand use under severe conditions.

Claims (6)

Agを1重量%以上かつ11重量%未満の範囲で含有し、Ca、Beの少なくとも1種を総計で0.005〜0.05重量%、且つ、Ca、In、Be、希土類元素の少なくとも1種を総計で0.025〜0.05重量%の範囲で含有し、残部が金および不可避不純物からなることを特徴とする半導体素子用金銀合金細線。Ag is contained in a range of 1% by weight or more and less than 11% by weight ; a total of at least one of Ca and Be is 0.005 to 0.05 % by weight; and at least one of Ca, In, Be, and a rare earth element A gold-silver alloy fine wire for a semiconductor element, comprising seeds in a total amount of 0.025 to 0.05% by weight, the balance being composed of gold and inevitable impurities. Agを1重量%以上かつ11重量%未満の範囲で含有し、Crを必須成分とし、Mn、Crの少なくとも1種を総計で0.01〜0.2重量%の範囲で含有し、残部が金および不可避不純物からなることを特徴とする半導体素子用金銀合金細線。Ag is contained in the range of 1% by weight or more and less than 11% by weight, Cr is an essential component, and at least one of Mn and Cr is contained in the range of 0.01 to 0.2% by weight in total, and the balance is A gold-silver alloy fine wire for a semiconductor element, characterized by comprising gold and inevitable impurities. Agを1重量%以上かつ11重量%未満の範囲で含有し、Cuを必須成分とし、Cu、Pd、Ptの少なくとも1種を総計で0.01〜4重量%の範囲で含有し、さらにCa、In、Be、希土類元素の少なくとも1種を総計で0.018〜0.05重量%の範囲で含有し、残部が金および不可避不純物からなることを特徴とする半導体素子用金銀合金細線。Ag is contained in the range of 1% by weight or more and less than 11% by weight, Cu is an essential component, and at least one of Cu, Pd, and Pt is contained in the range of 0.01 to 4% by weight in total, and further Ca A gold-silver alloy thin wire for a semiconductor element, containing a total amount of at least one of In, Be, and rare earth elements in a range of 0.018 to 0.05% by weight, with the balance being gold and inevitable impurities. Agを1重量%以上かつ11重量%未満の範囲で含有し、Cu、Pd、Ptの少なくとも1種を総計で0.01〜4重量%の範囲で含有し、Ca、In、Be、希土類元素の少なくとも1種を総計で0.0005〜0.05重量%の範囲で含有し、さらにCrを必須成分とし、Mn、Crの少なくとも1種を総計で0.01〜0.2重量%の範囲で含有し、残部が金および不可避不純物からなることを特徴とする半導体素子用金銀合金細線。Ag is contained in the range of 1% by weight or more and less than 11% by weight, and at least one of Cu, Pd, and Pt is contained in the range of 0.01 to 4% by weight in total, Ca, In, Be, rare earth elements In a range of 0.0005 to 0.05% by weight in total, Cr as an essential component, and a total of at least one of Mn and Cr in a range of 0.01 to 0.2% by weight A gold-silver alloy fine wire for a semiconductor element, wherein the balance consists of gold and inevitable impurities. Agの含有量の範囲が1重量%以上かつ6重量%以下であることを特徴とする請求項1乃至記載の半導体素子用金銀合金細線。Gold-silver alloy thin wire for a semiconductor device of claims 1 to 4, wherein the range of the content of Ag is less than 1 wt% or more and 6 wt%. 半導体基板上の配線電極とリード上のAgメッキ面またはPdメッキ面との間を、請求項1乃至記載の半導体素子用金銀合金細線によって接続したことを特徴とする半導体素子。Semiconductor element characterized in that between the Ag plating surface or Pd plating surface on the wiring electrodes and the leads on the semiconductor substrate and connected by gold-silver alloy thin wire for a semiconductor device of claims 1 to 5, wherein.
JP21453697A 1997-08-08 1997-08-08 Gold-silver alloy fine wire for semiconductor devices Expired - Lifetime JP3612179B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21453697A JP3612179B2 (en) 1997-08-08 1997-08-08 Gold-silver alloy fine wire for semiconductor devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21453697A JP3612179B2 (en) 1997-08-08 1997-08-08 Gold-silver alloy fine wire for semiconductor devices

Publications (2)

Publication Number Publication Date
JPH1167811A JPH1167811A (en) 1999-03-09
JP3612179B2 true JP3612179B2 (en) 2005-01-19

Family

ID=16657367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21453697A Expired - Lifetime JP3612179B2 (en) 1997-08-08 1997-08-08 Gold-silver alloy fine wire for semiconductor devices

Country Status (1)

Country Link
JP (1) JP3612179B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8403149B2 (en) 2005-11-18 2013-03-26 Ricoh Company, Ltd. Cyclone classifier, flash drying system using the cyclone classifier, and toner prepared by the flash drying system

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100427749B1 (en) * 2002-05-07 2004-04-28 엠케이전자 주식회사 Au-Ag alloy bonding wire for semiconductor device
KR100801444B1 (en) 2006-05-30 2008-02-11 엠케이전자 주식회사 Au-Ag based alloy wire for a semiconductor package
KR101001700B1 (en) * 2007-03-30 2010-12-15 엠케이전자 주식회사 Ag-base alloy for semiconductor package
KR101441551B1 (en) * 2012-10-18 2014-09-17 희성금속 주식회사 Ag alloy wire for semiconductor package
CN109554574A (en) * 2018-12-18 2019-04-02 山东赢耐鑫电子科技有限公司 Auri silver palladium alloy composite material
CN113862504B (en) * 2021-12-01 2022-03-08 北京达博有色金属焊料有限责任公司 Gold alloy and alloy product and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8403149B2 (en) 2005-11-18 2013-03-26 Ricoh Company, Ltd. Cyclone classifier, flash drying system using the cyclone classifier, and toner prepared by the flash drying system

Also Published As

Publication number Publication date
JPH1167811A (en) 1999-03-09

Similar Documents

Publication Publication Date Title
JP4771562B1 (en) Ag-Au-Pd ternary alloy bonding wire
KR101087527B1 (en) Gold alloy wire for use as bonding wire exhibiting high bonding reliability, high circularity of press bonded ball, high straight advancing property and high resin flow resistance
JP3612179B2 (en) Gold-silver alloy fine wire for semiconductor devices
JP3673368B2 (en) Gold-silver alloy fine wire for semiconductor devices
KR100514312B1 (en) Bonding wire for semiconductor device
JP4726206B2 (en) Gold alloy wire for bonding wire with high initial bondability, high bond reliability, high roundness of crimped ball, high straightness, high resin flow resistance and low specific resistance
JP3612180B2 (en) Gold-silver alloy fine wire for semiconductor devices
JP3650461B2 (en) Gold alloy fine wire for semiconductor devices
US5989364A (en) Gold-alloy bonding wire
TWI407515B (en) Wire with gold alloy wire
JP6103806B2 (en) Ball bonding wire
JP3579493B2 (en) Gold alloy wires for semiconductor devices
JP2007019349A (en) Bonding wire
JPH07335686A (en) Gold alloy wire for bonding
JP3445616B2 (en) Gold alloy wires for semiconductor devices
JP3426473B2 (en) Gold alloy wires for semiconductor devices
JP3426397B2 (en) Gold alloy fine wire for semiconductor devices
JP3586909B2 (en) Bonding wire
JP3639662B2 (en) Gold alloy fine wire for semiconductor devices
JP3426399B2 (en) Gold alloy fine wire for semiconductor devices
JP4134261B1 (en) Gold alloy wire for ball bonding
JPH09275119A (en) Semiconductor device
JP3593206B2 (en) Gold alloy fine wires and bumps for bumps
JPH07305126A (en) Gold alloy wire for bonding
KR20030096985A (en) Gold alloy wire for bonding of semiconductor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041022

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071029

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111029

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121029

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term