JP3579493B2 - Gold alloy wires for semiconductor devices - Google Patents

Gold alloy wires for semiconductor devices Download PDF

Info

Publication number
JP3579493B2
JP3579493B2 JP09570295A JP9570295A JP3579493B2 JP 3579493 B2 JP3579493 B2 JP 3579493B2 JP 09570295 A JP09570295 A JP 09570295A JP 9570295 A JP9570295 A JP 9570295A JP 3579493 B2 JP3579493 B2 JP 3579493B2
Authority
JP
Japan
Prior art keywords
wire
ppm
weight
addition
gold alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP09570295A
Other languages
Japanese (ja)
Other versions
JPH08291348A (en
Inventor
智裕 宇野
宏平 巽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP09570295A priority Critical patent/JP3579493B2/en
Publication of JPH08291348A publication Critical patent/JPH08291348A/en
Application granted granted Critical
Publication of JP3579493B2 publication Critical patent/JP3579493B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3013Au as the principal constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/02Alloys based on gold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01021Scandium [Sc]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01032Germanium [Ge]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01039Yttrium [Y]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01049Indium [In]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01057Lanthanum [La]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01058Cerium [Ce]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01327Intermediate phases, i.e. intermetallics compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Wire Bonding (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、半導体素子上の電極と外部リードを電気的接続するためのボンディングに使用される半導体素子用金合金細線に関する。
【0002】
【従来の技術】
現在半導体素子上の回路配線電極と外部リードとの間の電気的接続としては、ワイヤボンディング方式が主として使用されている。最近、半導体の高集積化、多機能化が進み、さらにICチップの小型化、薄型化の要求も高まる中で、半導体実装の高密度化に対するニーズが高まっている。端子数が増加する多ピン化を実現するためには、インナーリード部がシリコンチップに対して後退するため、ワイヤの接合間(スパン)が長くなる傾向にある。従来のスパンは4mm以下が主流であったが、近年スパンが5mm以上のロングスパンが所望され、直線性の確保や、ばらつきの低減などループ形状を厳密に制御することが難しくなっている。
【0003】
また、多ピン化に伴い、電極間隔が減少する狭ピッチ化が要求され、ワイヤ間の最小ピッチが100μm以下のものまで所望されており、ワイヤも細線化が望まれている。こうした多ピン化、狭ピッチ化を達成するために、ボンディング装置の改善、ルーピング性に優れたワイヤの開発などが進められている。
半導体実装の高密度化において、ワイヤの多ピン化、狭ピッチ化に対応するためには、樹脂封止時のワイヤ流れを抑えることが課題となる。粘性の高いエポキシ樹脂による封止時に、ワイヤが変形して流れることに起因して、隣接ワイヤ間の接触や、ワイヤとチップまたはインナーリード部との接触などに伴う不良が発生するものである。狭ピッチ化の実現のためにワイヤを細線化すると、強度が低下して、封止後のワイヤ流れの問題はより一層深刻となる。
【0004】
【発明が解決しようとする課題】
スパン長が大きく異なると、ループ形状が変化することはもちろんであるが、さらに樹脂封止時のワイヤの変形挙動に及ぼす影響も大きい。例えば、ループ全体がほぼ均等に変形したとしても、ワイヤ流れ値の絶対値はスパンとともに大きくなる傾向にあり、スパンが5mm以上のロングスパンになると、ワイヤの樹脂流れの抑制が最大の課題となる。一方、スパンが3mm程度までの通常の短スパンでは、ループの弛みが少ないことからも、ボール直上のネック部にかかる負担が大きく、このネック部の変形が樹脂流れに及ぼす影響が大きい。また、従来のロングスパン用ワイヤを使用して短スパンを接続した場合の傾向として、ループ高さが低くなることに起因したプル強度の低下も無視できなくなる。
【0005】
これらの傾向については、ルーピング条件や樹脂封止条件などの装置条件も複雑に関与するため、定量的には整理し難いが、スパン長に合わせた金合金細線の使い分けが要求され、特性を十分把握した上での使い分けが困難である。
本発明は、スパン長の影響を軽減し、ボンディング時のループ曲がりおよび樹脂封止時のワイヤ変形を低減して、高密度実装に適した金合金細線を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明者等は、以上の点に鑑み、ループ形状および樹脂流れ性とスパン長との関係について調査し、特性発現のための元素添加効果について研究した結果、Caの添加、YまたはScの添加、Ce族希土類の添加、Inの添加による複合効果が有効であること、さらに後述するように接合性をより向上する元素添加の効果、およびループ高さに関する元素添加の効果を見出した。
【0007】
すなわち、本発明の要旨とするところは下記のとおりである。
(1)Caを10〜60重量ppm、YまたはScの1種または2種を総計で5〜70重量ppm、LaまたはCeの1種または2種を総計で6〜80重量ppm、Inを6〜100重量ppm含有し、残部は金とその不可避不純物からなることを特徴とする半導体素子用金合金細線。
【0008】
(2)前項1記載の成分に加えて、Al、Cu、Pt、Pdの1種または2種以上を総計で5〜100重量ppm含有することを特徴とする半導体素子用金合金細線。
(3)前項1記載の成分に加えて、Si、Geの1種または2種を総計で5〜50重量ppm含有することを特徴とする半導体素子用金合金細線。
【0009】
(4)前項2記載の成分に加えて、Si、Geの1種または2種を総計で5〜50重量ppm含有することを特徴とする半導体素子用金合金細線。
【0010】
【作用】
以下に、本発明の金合金細線の構成についてさらに説明する。
さまざまなスパン長を考慮して樹脂流れ性(封止後のワイヤ流れ)を低減するワイヤとしては、Au中にCaを10〜60重量ppm、YまたはScの1種または2種を総計で5〜70重量ppm、LaまたはCeの1種または2種を総計で6〜80重量ppm、Inを6〜100重量ppmの範囲で添加することが有効である。
【0011】
高温特性の向上には希土類元素の添加が有効であることを見出し、その特性発現をさらに細かく分類した結果、YまたはScは高温域での破断強度の上昇をもたらし、LaまたはCeの添加は金型の加熱温度付近の温度域における弾性率の向上が認められた。耐流れ性の点では、LaまたはCeの添加は母線部の弾性変形を抑制し、YまたはScは主に降伏力が上昇して、弾性変形域を拡げて塑性域を抑制し、さらに塑性域での変形抵抗が増加することが判明した。ここで、YとScの両者とも含有しないと、弾性域を超えて荷重が負荷されたワイヤでは変形抵抗が十分でないため、樹脂の注入方向とワイヤの位置関係によっては樹脂流れのばらつきが大きくなる。他方で、LaとCeのどちらも含有しない場合は、弾性域でのワイヤ流れが増大するため、スパン長が長くなるほど問題となる。すなわち、耐流れ性を向上させるには、LaまたはCeの添加と、YまたはScの添加を併用することが必要である。
【0012】
La、Ceの総含有量を上記範囲と設定したのは、6重量ppm未満では上記効果が小さく、80重量ppm超では、ボールの真球性が低下するため、小ボールの形成などの不良が発生するためである。また、Y、Scの総含有量を上記範囲と設定したのは、5重量ppm未満では上記効果が小さく、70重量ppm超では、ボールの真球性の低下、さらに引け巣の発生が認められるためである。
【0013】
Ce、La、Caを添加した金合金細線が、例えば特公平2−12022号公報に開示されているが、ロングスパン用途においては、前述したように、La、Ceの添加に加えて、Y、Scの添加を併用することにより耐流れ性の効果を高めるものであり、またCaのみでなく、Y、Scを添加することにより、後述するような複合効果が得られる。
【0014】
Ca添加は、主としてネック部の再結晶挙動を抑制することから、ループ高さの制御に有効であり、さらに強度の確保も期待される。短スパンでの樹脂流れでは、ネック部分の強度が高い方が樹脂流れも少なく、また、プル強度を上昇させるためには、スパン長に関係なく破断箇所であるネック部の強度増加が望まれ、これにはCa添加と、YまたはScの添加の組み合わせが有効である。Caは再結晶の粒成長を抑制することによる強度増加であり、加えてYまたはScの添加は、粒成長抑制は観察されないものの、Ca単独添加よりも強度をさらに増加させる。これはYまたはScの添加が、Caにより微細化された結晶粒内での強度増加の作用があるものと考えられる。一方、YまたはScの添加だけでは、結晶粒が大きいことから、強度が弱い粒界近傍での変形が助長されてしまい、ネック部の強化効果は小さい。
【0015】
ここで、Caの添加量を上記範囲と定めたのは、10重量ppm未満では上記の再結晶抑制の効果が小さく、一方60重量ppm超では、ボール形成時の表面酸化に関連すると思われる、ボールの最頂部に引け巣が生成し、接合性の低下が懸念されるためである。
ロングスパンにおける樹脂流れを低減するためには、封止前のループ曲がりを抑え、直線性を高めることも重要である。Inの添加は、高温特性への寄与は小さいものの、常温程度での強度上昇には有効であり、特にCa、La、Ceとの共存により、常温での弾性率を増加させ、ループ曲がりのばらつきを低減する効果が高い。InはAu中の最大固溶度が10重量%程度あり、単独添加では効果が小さいが、Ca、La、Ceをさらに含有せしめることにより、Au中に固溶しているInと何らかの相互作用を及ぼし合うことにより、ループの直線性を高めているものと考えられる。Inの含有量が6重量ppm未満では上記効果が小さく、100重量ppm超では、ボールの真球性の低下、さらに収縮孔の発生が認められるためである。
【0016】
狭ピッチ化のためにはボール径も小さくする要求が高く、ボール部の接合性を確保することが課題であり、その方策として、Al、Cu、Pt、Pdの1種または2種以上を総計で5〜100重量ppmの範囲で含有すると、接合強度が上昇する。これは、接合時のAuボール部とAl電極部との界面において金属間化合物の成長が助長されているためと推察される。添加量が5重量ppm未満では効果は小さく、100重量ppm超ではボール表面に酸化膜が形成されて逆に接合性が低下するため、含有量は上記範囲と設定した。
【0017】
最近、ICパッケージの薄型化を実現するために、ワイヤの低ループ化が所望されており、上記の元素の中でも、Ca、La、Ce、Y、Scはループ高さを低くする傾向にある。一方で、ボンディングの高速化や操作性の向上を目的として、ループ垂れを低減するために、ネック近傍の直立部を十分確保するという要求には対応できない。その場合でも、SiまたはGeの1種以上を総計で5〜50重量ppmの範囲で含有することにより、ネック部の再結晶制御により、ループ高さを高くすることが出来ることを見出した。ここで添加量を上記範囲と定めたのは、総含有量が5重量ppm未満では上記効果が小さく、50重量ppm超では、ネック強度が弱くなるためである。
【0018】
【実施例】
以下、実施例について説明する。
金純度が約99.995重量%以上の電解金を用いて、表1〜3に示す化学成分の金合金を溶解炉で溶解鋳造し、その鋳塊を圧延および伸線により、最終線径が27μmの金合金細線とした後に、大気中で連続焼鈍して伸びを調整した。
【0019】
ワイヤボンディングに使用される高速自動ボンダーを使用して、アーク放電によりワイヤ先端に作製した金合金ボールを走査型電子顕微鏡で観察し、ボール形状が異常なもの、ボール先端部において収縮孔の発生が認められるもの等半導体素子上の電極に良好な接合ができないものを△印、良好なものを○印にて表記した。
【0020】
ネック部の強度は、ワイヤ両端の接合距離(スパン)が3mmとなるようボンディングしたリードフレームと測定する半導体素子を冶具で固定した後に、ループの中央部を引張り、その細線破断時の引張強度を60本測定したプル強度の平均値で評価した。また、ボール部の接合強度については、アルミ電極の2μm上方で冶具を平行移動させて剪断破断を読みとるシェアテスト法で測定し、50本の破断荷重の平均値を測定した。
【0021】
ループ高さは、半導体素子上の電極と外部リードとの間を接合した後に、形成される各ループの頂高と当該半導体素子の電極面とを光学顕微鏡で100本測定し、その両者の高さの差であるループ高さとそのばらつきで評価した。
ワイヤ曲がりは、スパンが5mmとなるようボンディングしたものを準備し、半導体素子とほぼ垂直上方向から観察し、ワイヤ中心部からワイヤの両端接合部を結ぶ直線と、ワイヤの曲がりが最大の部分との垂線の距離を、投影機を用いて40本測定した平均値で示した。
【0022】
樹脂封止後のワイヤ流れの測定に関しては、ワイヤのスパンとして4.5mmが得られるようボンディングした半導体素子をそれぞれ準備し、モールディング装置を用いてエポキシ樹脂で封止した後に、軟X線検査装置を用いて樹脂封止された素子内部をX線投影し、前述したワイヤ曲がりと同等の手順によりワイヤ流れが最大の部分の流れ量を30本測定し、その平均値をワイヤのスパン長さで除算した値(百分率)を封止後のワイヤ流れと定義した。
【0023】
表1において、実施例1〜12は本発明の請求項1記載の発明に係わるものであり、表2において実施例13〜16は請求項2記載の発明、実施例17〜20は請求項3記載の発明、実施例21、22は請求項4記載の発明に係わるものである。
樹脂封止後のワイヤ流れについては、本発明金合金線に関しては、いづれも4%以下に抑えられているが、特に、CeとLaの1種以上、且つYまたはScの1種以上の組み合わせにより、3%以下まで低減しているものが確認された。また、Inの添加量が多い実施例12などで、ワイヤ曲がりの低減が顕著である。
【0024】
表3に比較例を示す。プル強度が低くなるときは、比較例1、2におけるCaの添加量が本発明の範囲より少ないとき、あるいは比較例7においてYまたはScが少ないときにに限られている。
Al、Cu、Pt、Pdの1種以上の添加量が請求項2の範囲であれば、シェア強度も60gf以上の高い値が得られ、また、SiまたはGeの添加量が請求項3の範囲であれば、ループ高さも200μm以上まで高くすることが可能であることが確認された。
【0025】
【表1】

Figure 0003579493
【0026】
【表2】
Figure 0003579493
【0027】
【表3】
Figure 0003579493
【0028】
【発明の効果】
以上述べたように、本発明に係わる金合金細線は、樹脂封止時のワイヤ流れが低減され、しかもループの直線性が向上し、また接合性も向上しているので、半導体の高密度実装に対応できるものであるから、本発明の産業上の有用性はきわめて大きい。[0001]
[Industrial applications]
The present invention relates to a gold alloy thin wire for a semiconductor element used for bonding for electrically connecting an electrode on a semiconductor element to an external lead.
[0002]
[Prior art]
At present, as an electrical connection between a circuit wiring electrode on a semiconductor element and an external lead, a wire bonding method is mainly used. In recent years, as semiconductors have become more highly integrated and multifunctional, and the demand for smaller and thinner IC chips has been increasing, the need for higher density of semiconductor mounting has increased. In order to increase the number of terminals and increase the number of pins, the inner lead portion is retracted with respect to the silicon chip, so that the wire bonding interval (span) tends to be longer. Conventionally, the main span is 4 mm or less, but in recent years, a long span of 5 mm or more is desired, and it is difficult to strictly control the loop shape such as securing linearity and reducing variation.
[0003]
In addition, with the increase in the number of pins, a narrow pitch in which the electrode interval is reduced is required, and a minimum pitch between wires of 100 μm or less is desired, and a thin wire is also desired. In order to achieve the increase in the number of pins and the reduction in the pitch, improvement of a bonding apparatus, development of a wire having excellent looping properties, and the like have been advanced.
In order to cope with the increase in the number of pins and the narrowing of the wires in the high-density semiconductor mounting, it is necessary to suppress the flow of wires during resin sealing. When the wire is deformed and flows at the time of sealing with a highly viscous epoxy resin, defects due to contact between adjacent wires or contact between the wire and the chip or the inner lead portion occur. If the wire is made thinner to achieve a narrower pitch, the strength is reduced, and the problem of wire flow after sealing becomes even more serious.
[0004]
[Problems to be solved by the invention]
If the span length is largely different, the loop shape is changed, but the influence on the deformation behavior of the wire during resin sealing is also great. For example, even if the entire loop is deformed almost evenly, the absolute value of the wire flow value tends to increase with the span, and when the span becomes a long span of 5 mm or more, suppression of the resin flow of the wire becomes the biggest problem. . On the other hand, in a normal short span having a span of about 3 mm, since the slack of the loop is small, the load on the neck portion immediately above the ball is large, and the deformation of the neck portion has a large effect on the resin flow. Further, as a tendency when a short span is connected using a conventional long span wire, a decrease in pull strength due to a decrease in loop height cannot be ignored.
[0005]
Regarding these trends, equipment conditions such as looping conditions and resin encapsulation conditions are involved in a complicated manner, so it is difficult to organize them quantitatively.However, it is required to use gold alloy fine wires properly according to the span length, and sufficient characteristics are required. It is difficult to use properly after grasping.
An object of the present invention is to provide a gold alloy thin wire suitable for high-density mounting by reducing the influence of span length, reducing loop bending during bonding and wire deformation during resin sealing.
[0006]
[Means for Solving the Problems]
In view of the above points, the present inventors have investigated the relationship between the loop shape and the resin flowability and the span length, and studied the effect of adding elements for developing characteristics. As a result, the addition of Ca, the addition of Y or Sc It has been found that the addition of the rare earth elements of Ce and the combination of In and the addition of In are effective, and that the effect of the addition of an element for further improving the bonding property and the effect of the addition of the element relating to the loop height, as described later.
[0007]
That is, the gist of the present invention is as follows.
(1) 10 to 60 ppm by weight of Ca, 5 to 70 ppm by weight of one or two of Y or Sc, 6 to 80 ppm by weight of one or two of La or Ce, and 6 to 80 ppm by weight of In. 1 to 100 ppm by weight, with the balance being gold and its unavoidable impurities.
[0008]
(2) A gold alloy thin wire for a semiconductor element, comprising a total of 5 to 100 ppm by weight of one or more of Al, Cu, Pt, and Pd in addition to the components described in 1 above.
(3) A gold alloy thin wire for a semiconductor element, characterized by containing one or two of Si and Ge in total of 5 to 50 ppm by weight in addition to the components described in the above (1).
[0009]
(4) A gold alloy thin wire for a semiconductor element, characterized by containing one or two of Si and Ge in total of 5 to 50 ppm by weight in addition to the components described in (2) above.
[0010]
[Action]
Hereinafter, the configuration of the gold alloy thin wire of the present invention will be further described.
As a wire for reducing the resin flowability (wire flow after encapsulation) in consideration of various span lengths, 10 to 60 ppm by weight of Ca in Au and one or two types of Y or Sc in a total of 5 are used. It is effective to add up to 70 wt ppm, one or two kinds of La or Ce in a total range of 6 to 80 wt ppm, and In of 6 to 100 wt ppm.
[0011]
It has been found that the addition of rare earth elements is effective in improving the high-temperature properties, and as a result of further categorizing the development of the properties, Y or Sc results in an increase in the breaking strength in a high-temperature range, and the addition of La or Ce does not An improvement in the elastic modulus in the temperature range near the heating temperature of the mold was observed. In terms of flow resistance, the addition of La or Ce suppresses elastic deformation of the bus bar, and Y or Sc mainly increases the yield force, expands the elastic deformation region, suppresses the plastic region, and further suppresses the plastic region. It was found that the deformation resistance in the steel increased. Here, if neither Y nor Sc is contained, the deformation resistance of the wire subjected to a load exceeding the elastic range is not sufficient, so that the resin flow varies greatly depending on the resin injection direction and the positional relationship of the wire. . On the other hand, when neither La nor Ce is contained, the wire flow in the elastic region increases, so that the longer the span length, the more the problem becomes. That is, in order to improve the flow resistance, it is necessary to use the addition of La or Ce together with the addition of Y or Sc.
[0012]
When the total content of La and Ce is set in the above range, the effect is small when the content is less than 6 ppm by weight, and when the content is more than 80 ppm by weight, the sphericity of the ball is reduced. Because it happens. When the total content of Y and Sc is set to the above range, the above effect is small when the content is less than 5 ppm by weight, and when the content is more than 70 ppm by weight, a decrease in the sphericity of the ball and generation of a shrinkage cavity are observed. That's why.
[0013]
A gold alloy fine wire to which Ce, La, and Ca are added is disclosed in, for example, Japanese Patent Publication No. 2-1022, but in long-span applications, as described above, in addition to the addition of La and Ce, Y, The combined use of Sc enhances the flow resistance, and the addition of not only Ca but also Y and Sc provides a composite effect as described below.
[0014]
Since Ca addition mainly suppresses the recrystallization behavior of the neck portion, it is effective for controlling the loop height, and is also expected to ensure strength. In the resin flow in a short span, the higher the strength of the neck portion is less resin flow, and in order to increase the pull strength, it is desired to increase the strength of the neck portion which is a break point regardless of the span length, For this purpose, a combination of addition of Ca and addition of Y or Sc is effective. Ca is an increase in strength by suppressing the grain growth of recrystallization. In addition, the addition of Y or Sc further increases the strength as compared with the addition of Ca alone, although no grain growth suppression is observed. This is presumably because the addition of Y or Sc has the effect of increasing the strength within the crystal grains refined by Ca. On the other hand, if only Y or Sc is added, since the crystal grains are large, the deformation near the grain boundaries having low strength is promoted, and the effect of strengthening the neck portion is small.
[0015]
Here, the addition amount of Ca is defined as the above range, the effect of suppressing the recrystallization is less than 10 ppm by weight, while if more than 60 ppm by weight, it is considered to be related to surface oxidation during ball formation. This is because shrinkage cavities are formed at the top of the ball, and there is a concern that the bonding property may decrease.
In order to reduce the resin flow in a long span, it is also important to suppress loop bending before sealing and to improve linearity. Although the addition of In has a small contribution to the high-temperature characteristics, it is effective for increasing the strength at about room temperature. In particular, the coexistence of Ca, La, and Ce increases the elastic modulus at room temperature, and the variation of the loop bend. The effect of reducing is high. In has a maximum solid solubility of about 10% by weight in Au, and has little effect when added alone. However, by further adding Ca, La, and Ce, some interaction with In that is dissolved in Au is made. It is considered that the linearity of the loop is improved by exerting the influence. If the In content is less than 6 ppm by weight, the above effect is small. If the In content is more than 100 ppm by weight, a decrease in the sphericity of the ball and generation of shrinkage holes are observed.
[0016]
To narrow the pitch, there is a high demand to reduce the ball diameter, and it is an issue to secure the bonding property of the ball portion. As a measure, one or more of Al, Cu, Pt, and Pd are used in total. If the content is in the range of 5 to 100 ppm by weight, the joining strength increases. This is presumably because the growth of the intermetallic compound was promoted at the interface between the Au ball portion and the Al electrode portion during bonding. If the addition amount is less than 5 ppm by weight, the effect is small, and if it exceeds 100 ppm by weight, an oxide film is formed on the ball surface, and conversely, the bonding property is lowered. Therefore, the content is set in the above range.
[0017]
Recently, it has been desired to reduce the loop of the wire in order to realize a thin IC package. Among these elements, Ca, La, Ce, Y, and Sc tend to reduce the loop height. On the other hand, in order to reduce the loop droop for the purpose of speeding up the bonding and improving the operability, it is not possible to cope with a demand to secure a sufficient upright portion near the neck. Even in such a case, it has been found that the loop height can be increased by controlling the recrystallization of the neck by containing at least one of Si and Ge in a total range of 5 to 50 ppm by weight. Here, the addition amount is defined as the above range because the effect is small when the total content is less than 5 ppm by weight, and when the total content exceeds 50 ppm by weight, the neck strength is weakened.
[0018]
【Example】
Hereinafter, examples will be described.
Using electrolytic gold having a gold purity of about 99.995% by weight or more, a gold alloy having a chemical composition shown in Tables 1 to 3 is melt-cast in a melting furnace, and the ingot is rolled and drawn to have a final wire diameter. After forming a 27 μm thin gold alloy wire, continuous elongation was performed in the air to adjust elongation.
[0019]
Using a high-speed automatic bonder used for wire bonding, observe the gold alloy ball produced at the wire tip by arc discharge with a scanning electron microscope, and if the ball shape is abnormal, shrinkage holes are generated at the ball tip. Those that could not be bonded to the electrodes on the semiconductor element, such as those that were recognized, were marked with △, and those that were good were marked with ○.
[0020]
The strength of the neck is determined by fixing the semiconductor device to be measured with the lead frame bonded to the wire end so that the bonding distance (span) at both ends of the wire is 3 mm, and then pulling the center of the loop to determine the tensile strength when the thin wire breaks. Evaluation was made based on the average value of the pull strengths measured for 60 pieces. The joint strength of the ball portion was measured by a shear test method in which a jig was moved in parallel 2 μm above the aluminum electrode and a shear fracture was read, and an average value of 50 fracture loads was measured.
[0021]
After joining the electrode on the semiconductor element and the external lead, the loop height is measured by measuring the height of each loop formed and the electrode surface of the semiconductor element by 100 using an optical microscope. The evaluation was made based on the difference in loop height and its variation.
The wire bend was prepared by bonding so that the span was 5 mm. Observation was performed almost vertically above the semiconductor element, and a straight line connecting the center of the wire to the joint at both ends of the wire, and a portion where the wire bend was the largest. Are shown as an average value of 40 lines measured using a projector.
[0022]
Regarding the measurement of the wire flow after resin sealing, semiconductor devices bonded to each other so as to obtain a wire span of 4.5 mm are prepared, and sealed with an epoxy resin using a molding device. The inside of the element sealed with resin is projected by X-ray, and the flow amount of the portion where the wire flow is maximum is measured by the same procedure as the wire bending described above, and the average value is measured by the span length of the wire. The divided value (percentage) was defined as the wire flow after sealing.
[0023]
In Table 1, Examples 1 to 12 relate to the invention described in claim 1 of the present invention. In Table 2, Examples 13 to 16 correspond to the invention described in claim 2, and Examples 17 to 20 correspond to claim 3 in the present invention. The described inventions and Embodiments 21 and 22 relate to the invention described in claim 4.
Regarding the wire flow after resin encapsulation, any of the gold alloy wires of the present invention is suppressed to 4% or less. As a result, it was confirmed that the content was reduced to 3% or less. In Example 12 in which the amount of In added is large, the reduction of wire bending is remarkable.
[0024]
Table 3 shows a comparative example. When the pull strength is low, the amount of Ca in Comparative Examples 1 and 2 is limited to when the time less than the range of the present invention, or Comparative Example 7 in Oite Y or Sc is small.
If the amount of addition of at least one of Al, Cu, Pt, and Pd is in the range of claim 2, a high shear strength of 60 gf or more can be obtained, and the amount of addition of Si or Ge is in the range of claim 3. Then, it was confirmed that the loop height can be increased to 200 μm or more.
[0025]
[Table 1]
Figure 0003579493
[0026]
[Table 2]
Figure 0003579493
[0027]
[Table 3]
Figure 0003579493
[0028]
【The invention's effect】
As described above, the gold alloy thin wire according to the present invention reduces the wire flow during resin encapsulation, improves the linearity of the loop, and improves the bonding property. Therefore, the industrial utility of the present invention is extremely large.

Claims (4)

Caを10〜60重量ppm、YまたはScの1種または2種を総計で5〜70重量ppm、LaまたはCeの1種または2種を総計で6〜80重量ppm、Inを6〜100重量ppm含有し、残部は金とその不可避不純物からなることを特徴とする半導体素子用金合金細線。10 to 60 ppm by weight of Ca, 5 to 70 ppm by weight of one or two of Y or Sc, 6 to 80 ppm by weight of one or two of La or Ce, 6 to 100% by weight of In 1. A fine gold alloy wire for a semiconductor element, which contains ppm and the balance consists of gold and its unavoidable impurities. 請求項1記載の成分に加えて、Al、Cu、Pt、Pdの1種または2種以上を総計で5〜100重量ppm含有することを特徴とする半導体素子用金合金細線。2. A gold alloy thin wire for a semiconductor element, comprising a total of 5 to 100 ppm by weight of one or more of Al, Cu, Pt, and Pd in addition to the components described in claim 1. 請求項1記載の成分に加えて、Si、Geの1種または2種を総計で5〜50重量ppm含有することを特徴とする半導体素子用金合金細線。2. A gold alloy thin wire for a semiconductor device, comprising a total of 5 to 50 ppm by weight of one or two of Si and Ge in addition to the components described in claim 1. 請求項2記載の成分に加えて、Si、Geの1種または2種を総計で5〜50重量ppm含有することを特徴とする半導体素子用金合金細線。3. A gold alloy thin wire for a semiconductor element, comprising a total of 5 to 50 ppm by weight of one or two of Si and Ge in addition to the components described in claim 2.
JP09570295A 1995-04-20 1995-04-20 Gold alloy wires for semiconductor devices Expired - Lifetime JP3579493B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09570295A JP3579493B2 (en) 1995-04-20 1995-04-20 Gold alloy wires for semiconductor devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09570295A JP3579493B2 (en) 1995-04-20 1995-04-20 Gold alloy wires for semiconductor devices

Publications (2)

Publication Number Publication Date
JPH08291348A JPH08291348A (en) 1996-11-05
JP3579493B2 true JP3579493B2 (en) 2004-10-20

Family

ID=14144842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09570295A Expired - Lifetime JP3579493B2 (en) 1995-04-20 1995-04-20 Gold alloy wires for semiconductor devices

Country Status (1)

Country Link
JP (1) JP3579493B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3426473B2 (en) * 1997-07-01 2003-07-14 新日本製鐵株式会社 Gold alloy wires for semiconductor devices
EP0890987B1 (en) * 1997-07-07 2003-03-05 W.C. Heraeus GmbH & Co. KG Fine wire of a gold alloy, method of making the same and its use
JP4513440B2 (en) * 2004-07-15 2010-07-28 住友ベークライト株式会社 Semiconductor device
JP4130843B1 (en) * 2007-04-17 2008-08-06 田中電子工業株式会社 High reliability gold alloy bonding wire and semiconductor device
JP4150752B1 (en) * 2007-11-06 2008-09-17 田中電子工業株式会社 Bonding wire
KR20220153015A (en) * 2020-03-13 2022-11-17 닛데쓰마이크로메탈가부시키가이샤 Al bonding wire
CN111485131B (en) * 2020-04-17 2021-12-24 烟台招金励福贵金属股份有限公司 Gold bonding wire and preparation method thereof

Also Published As

Publication number Publication date
JPH08291348A (en) 1996-11-05

Similar Documents

Publication Publication Date Title
EP1160344A1 (en) Gold wire for semiconductor element connection and semiconductor element connection method
JP3579493B2 (en) Gold alloy wires for semiconductor devices
JP2922388B2 (en) Gold alloy fine wire for bonding
US6210637B1 (en) Gold alloy thin wire for semiconductor devices
JP3612179B2 (en) Gold-silver alloy fine wire for semiconductor devices
JP3143755B2 (en) Gold alloy fine wire for bonding
JP3426399B2 (en) Gold alloy fine wire for semiconductor devices
JP3426397B2 (en) Gold alloy fine wire for semiconductor devices
JP3810200B2 (en) Gold alloy wire for wire bonding
JP2003059964A (en) Bonding wire and manufacturing method therefor
JP2641000B2 (en) Gold alloy fine wire for bonding
JP3639662B2 (en) Gold alloy fine wire for semiconductor devices
JPH10303235A (en) Gold alloy wire for bonding on semiconductor device
JP3426473B2 (en) Gold alloy wires for semiconductor devices
JP3059314B2 (en) Gold alloy fine wire for bonding
JPH06145842A (en) Bonding gold alloy thin wire
JP3445616B2 (en) Gold alloy wires for semiconductor devices
JPH08293514A (en) Gold alloy fine wire for semiconductor element
KR0185194B1 (en) Thin gold alloy wire and gold alloy bump
JP3744131B2 (en) Bonding wire
JP3535657B2 (en) Gold alloy wire for semiconductor elements
JP3012466B2 (en) Gold alloy wires for semiconductor devices
JPH02250934A (en) Au alloy extra fine wire for bonding semiconductor device
JP3028458B2 (en) Gold alloy wires for semiconductor devices
JP2003023030A (en) Bonding wire and manufacturing method therefor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040716

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100723

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100723

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110723

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110723

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120723

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120723

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term