JP2641000B2 - Gold alloy fine wire for bonding - Google Patents
Gold alloy fine wire for bondingInfo
- Publication number
- JP2641000B2 JP2641000B2 JP3345603A JP34560391A JP2641000B2 JP 2641000 B2 JP2641000 B2 JP 2641000B2 JP 3345603 A JP3345603 A JP 3345603A JP 34560391 A JP34560391 A JP 34560391A JP 2641000 B2 JP2641000 B2 JP 2641000B2
- Authority
- JP
- Japan
- Prior art keywords
- bonding
- gold
- gold alloy
- weight
- ball
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C5/00—Alloys based on noble metals
- C22C5/02—Alloys based on gold
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/45099—Material
- H01L2224/451—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
- H01L2224/45138—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/45144—Gold (Au) as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/00014—Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01004—Beryllium [Be]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01013—Aluminum [Al]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/0102—Calcium [Ca]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01039—Yttrium [Y]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01057—Lanthanum [La]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01058—Cerium [Ce]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01066—Dysprosium [Dy]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01079—Gold [Au]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/012—Semiconductor purity grades
- H01L2924/01204—4N purity grades, i.e. 99.99%
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Wire Bonding (AREA)
- Conductive Materials (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、半導体素子上の電極と
外部リードとを接続するために利用する耐熱性に優れる
金合金細線に関し、より詳しくは接合後の半導体装置組
立作業中における振動疲労による断線を大幅に低減させ
るためにボールネック部強度を向上させたボンディング
用金合金細線に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gold alloy fine wire having excellent heat resistance and used for connecting an electrode on a semiconductor element to an external lead, and more particularly to vibration fatigue during a semiconductor device assembling operation after bonding. The present invention relates to a gold alloy thin wire for bonding, in which the strength of a ball neck portion is improved in order to greatly reduce the disconnection caused by the wire.
【0002】[0002]
【従来の技術】従来、半導体素子上の電極と外部リード
との間を接続するボンディング線としては、金合金細線
が主として使用されている。金合金細線をボンディング
する技術としては、熱圧着法が代表的な方法である。熱
圧着法は、金合金細線の先端部分を電気トーチで加熱溶
融し、表面張力によりボールを形成させ、150〜30
0℃の範囲内で加熱した半導体素子の電極にこのボール
部を圧着接合せしめた後に、さらにリード側との接続を
超音波圧着接合で行う方法である。2. Description of the Related Art Conventionally, a gold alloy thin wire has been mainly used as a bonding wire for connecting between an electrode on a semiconductor element and an external lead. As a technique for bonding a gold alloy thin wire, a thermocompression bonding method is a typical method. In the thermocompression bonding method, the tip of a gold alloy thin wire is heated and melted with an electric torch, and a ball is formed by surface tension.
In this method, after the ball portion is pressure-bonded to the electrode of the semiconductor element heated within the range of 0 ° C., the connection with the lead side is further performed by ultrasonic pressure bonding.
【0003】近年、ボンディング技術の向上に伴って金
合金細線の特性を向上させる要求が強くなった。例え
ば、ボンディング時にボール直上部が高温に哂される結
果として結晶粒の粗大化が起こり、金合金線の強度が劣
化するために、半導体装置組立時の振動により断線する
という欠陥が生ずる。この防止対策としてボンディング
後のプル強度を指標とし、従来の金合金細線よりプル強
度の大なる金合金細線が望まれている。[0003] In recent years, with the improvement of bonding technology, there has been a strong demand for improving the characteristics of gold alloy thin wires. For example, as a result of the portion immediately above the ball being exposed to a high temperature during bonding, crystal grains are coarsened, and the strength of the gold alloy wire is deteriorated. As a countermeasure for this, a gold alloy thin wire having a larger pull strength than a conventional gold alloy thin wire using the pull strength after bonding as an index is desired.
【0004】また、近年の薄型半導体装置の一般化に伴
い、ボンディング後のループ高さを低くする目的のため
に高純度金に大量の元素を添加せしめた金合金細線が開
発され、使用されている。例えば、カルシウムを5〜1
00重量ppmを含有してなる金ボンディングワイヤー
(特開昭53−105968号公報)ランタン、セリウ
ム、プラセオヂウム、ネオヂウムおよびサマリウムの1
種または2種以上を3〜100重量ppmとゲルマニウ
ム、ベリリウムおよびカルシウムの1種または2種以上
を1〜60重量ppm含有してなる金ボンディングワイ
ヤー(特開昭58−154242号公報)などがある。
しかしながら、ループ高さが低くなることによってプル
強度が低下すること、および合金元素の大量添加によっ
てボールの硬さが増大し、ボンディング後の接合強度を
著しく劣化させ、半導体装置の信頼性を低下させるとい
う問題があるために、従来の比較的ループ高さの高い金
合金細線と同等の接合強度を有した、ループ高さが低
く、高信頼性を有するボンディング用金合金細線が望ま
れている。Further, with the recent generalization of thin semiconductor devices, gold alloy fine wires made by adding a large amount of elements to high-purity gold have been developed and used for the purpose of reducing the loop height after bonding. I have. For example, calcium 5-1
Gold bonding wire containing 00 ppm by weight (JP-A-53-105968). One of lanthanum, cerium, praseodymium, neodymium and samarium.
Gold bonding wire (JP-A-58-154242) containing 3 to 100 ppm by weight of one or more species and 1 to 60 ppm by weight of one or more kinds of germanium, beryllium and calcium. .
However, the pull strength decreases due to the decrease in the loop height, and the hardness of the ball increases due to the addition of a large amount of alloying elements, which significantly deteriorates the bonding strength after bonding and lowers the reliability of the semiconductor device. Therefore, a gold alloy thin wire for bonding having a low loop height and high reliability, which has the same bonding strength as a conventional gold alloy thin wire having a relatively high loop height, is desired.
【0005】[0005]
【発明が解決しようとする課題】本発明者等は、これら
の従来提案された種々のボンディング用金合金細線につ
いて検討した結果、これらのボンディング用金合金細線
は、特定の添加元素を含まない高純度金線に較べて高い
引張強度は有しているものの、ボール直上部の結晶粒の
粗大化を生じる結果として半導体装置組立中に断線を起
こす場合があり、ボンディング後のプル強度のバラツキ
が大きく、信頼性に欠け、かつその値も低いという問題
があることを確かめた。The inventors of the present invention have studied the various gold wires for bonding that have been conventionally proposed, and as a result, these gold wires for bonding have a high content without a specific additive element. Although it has a higher tensile strength than a pure gold wire, it may cause breakage during assembly of the semiconductor device as a result of coarsening of the crystal grains directly above the ball, resulting in large variations in pull strength after bonding. It was confirmed that there was a problem that the reliability was low and the value was low.
【0006】また、ボンディング後のループ高さを低く
するために、金の再結晶温度を高くせしめる元素を大量
添加したボンディング用金合金細線は、ボンディング後
に結晶粒界の析出物によってプル強度が低下すること、
添加元素量の増大に伴いボール形成時に添加元素の酸化
によってボール表面に酸化物層が生成し、電極との熱圧
着に際して充分な接合ができなくなること、また添加元
素の大量添加でボール部の硬度が増加し、圧着時に変形
率が低下すると共にボールの先端に収縮孔が出来やすく
なり、これが半導体素子の電極との接合面積を低下させ
ることによって、シェア強度を低下させるために、ボン
ディング後のハンドリング等による振動に起因して断線
が発生したり、樹脂封止時に金合金細線が受ける封止樹
脂の流動抵抗や、その後の各種熱サイクルによる半導体
装置の構成物質の熱膨張率の差異に起因する剪断力等で
金合金細線が破断する場合があり、結果として半導体装
置の信頼性を低下させるという問題を有している。In addition, a gold alloy fine wire for bonding to which a large amount of an element for increasing the recrystallization temperature of gold is added in order to lower the loop height after bonding has a problem that the pull strength is reduced due to precipitates at the crystal grain boundaries after bonding. To do,
An oxide layer is formed on the ball surface by oxidation of the additional element during the formation of the ball as the amount of the additional element increases, so that sufficient bonding cannot be performed during thermocompression bonding with the electrode. In addition, the deformation rate decreases during crimping and shrinkage holes are easily formed at the tip of the ball, which reduces the joint area with the electrode of the semiconductor element, and reduces the shear strength. Breakage occurs due to vibrations caused by such factors as the flow resistance of the sealing resin applied to the gold alloy thin wire during resin sealing, and the difference in the coefficient of thermal expansion of the constituent materials of the semiconductor device due to various subsequent thermal cycles. The thin gold alloy wire may be broken by a shear force or the like, and as a result, there is a problem that the reliability of the semiconductor device is reduced.
【0007】[0007]
【課題を解決するための手段】本発明者等は、アルミニ
ウムとカルシウムを複合添加させることで、ボールネッ
ク部の強度が高く、かつそのバラツキが少なく、ボール
ネック部の結晶粒の細かいボンディング用金合金細線が
得られること、その添加量を制御することによって、ル
ープ高さの低いボンディング用金合金細線を工業的に容
易に製造でき、前述の諸問題点を解消することができる
ことを確かめた。Means for Solving the Problems The present inventors have proposed that by adding aluminum and calcium in combination, a bonding metal having a high strength at the ball neck portion, a small variation in the ball neck portion, and a fine crystal grain at the ball neck portion is provided. It has been confirmed that by obtaining an alloy thin wire and controlling the amount of addition, a gold alloy thin wire for bonding having a low loop height can be industrially easily manufactured, and the above-mentioned problems can be solved.
【0008】すなわち、本発明の要旨とするところは下
記のとおりである。 (1) アルミニウムを3〜50重量ppmとカルシウ
ムを3〜30重量ppm含有し、残部が金と不可避不純
物よりなるボンディング用金合金細線。 (2) 第1群の元素としてアルミニウムを3〜50重
量ppmとカルシウムを3〜30重量ppm含有し、第
2群の元素としてイットリウム、ランタン、セリウム、
ネオジウム、ジスプロヂウムおよびベリリウムの1種ま
たは2種以上を3〜30重量ppm含有し、かつ第1群
の元素と第2群の元素の総量が9〜100重量ppmで
あり、残部が金と不可避不純物よりなるボンディング用
金合金細線。That is, the gist of the present invention is as follows. (1) Contains 3 to 50 ppm by weight of aluminum and 3 to 30 ppm by weight of calcium, with the balance being gold and unavoidable impurities
Gold alloy thin wires for bonding made of materials . (2) Aluminum as a first group element is 3 to 50 weights
Ppm and 3 to 30 ppm by weight of calcium, and yttrium, lanthanum, cerium,
Neodymium, it contains Jisupurodjiumu and 3-30 wt ppm 1 or more kinds of beryllium, and the total amount of the first group of elements and elements of the second group Ri <br/> Ah at 9-100 wt ppm, the balance Is a gold alloy wire for bonding consisting of gold and unavoidable impurities .
【0009】以下、本発明の構成についてさらに説明す
る。本発明で使用する高純度金とは、純度が少なくとも
99.995重量%以上の金を含有し、残部が不可避不
純物からなるものである。純度が99.995重量%未
満の場合は、その含有する不純物の影響を受ける。特
に、合金元素の添加量の比較的少ない高ループ用の金合
金細線では、本発明に従った合金元素添加量での効果が
充分に発揮できない。Hereinafter, the configuration of the present invention will be further described. The high-purity gold used in the present invention contains gold having a purity of at least 99.995% by weight or more, with the balance being unavoidable impurities. When the purity is less than 99.995% by weight, it is affected by impurities contained therein. In particular, the effect of the alloy element addition amount according to the present invention cannot be sufficiently exerted with a high-loop gold alloy wire having a relatively small amount of alloy element addition.
【0010】アルミニウムは、金中への固溶限界が大で
あり、従来から再結晶温度を高くする効果が知られてい
るが、単独の添加では十分な効果がない。高純度金中に
アルミニウムと共にカルシウムを複合添加させることに
より、ボールネック部の強度が増大し、プル強度を向上
させ、樹脂封止工程以前の諸振動による断線を減少でき
る。この効果は、カルシウム添加のもとでアルミニウム
添加量が3重量ppm未満であると、ボールネック部の
結晶粒が安定して細粒化せず、効果が充分でない。ま
た、アルミニウム添加量が50重量ppmを超えると、
ボール形成時にボールが真球にならず、またアルミニウ
ムとカルシウムとの強固な酸化物がボール表面に生成
し、電極との接合時にボールと電極の圧着時に双方の新
生金属面が出にくくなることによって接合強度が低下す
ることからアルミニウムの添加量の範囲を3〜50重量
ppmとした。[0010] Aluminum has a large solid solution limit in gold and is conventionally known to have an effect of raising the recrystallization temperature. However, adding aluminum alone has no sufficient effect. By adding calcium together with aluminum in high-purity gold, the strength of the ball neck portion is increased, the pull strength is improved, and disconnection due to various vibrations before the resin sealing step can be reduced. This effect is not sufficient if the amount of aluminum added is less than 3 ppm by weight under addition of calcium, and the crystal grains at the ball neck are not stably refined. Further, when the aluminum addition amount exceeds 50 ppm by weight,
When the ball is formed, the ball does not become a true sphere, and a strong oxide of aluminum and calcium is formed on the ball surface, so that it is difficult for both new metal surfaces to come out when the ball and the electrode are pressed during bonding with the electrode. Since the joining strength is reduced, the range of the added amount of aluminum is set to 3 to 50 ppm by weight.
【0011】カルシウムは、耐熱性を向上させる元素で
あることが知られているが、3重量ppm未満ではボー
ルネック部の結晶の細粒化の効果が得られない。また、
30重量ppm超の添加では、ボールネック部の結晶を
細粒化し耐熱性を向上させるものの、ボール形成時にボ
ール先端部に収縮孔が生じること、ボール形成時の酸化
によってボール全表面に強固な酸化物が生成し、ボール
と電極との接合界面積を低下することによって、接合強
度(シェア強度)が低下する。また、ボールの硬さがカ
ルシウムの添加量の増大で大となり、電極との充分な接
合を確保するに必要な荷重をかけると、電極下部の半導
体素子に割れを生じる場合がある。従ってカルシウムの
添加量は、3〜30重量ppmの範囲とした。アルミニ
ウムとカルシウムの含有量が、それぞれの上限値でも前
述の諸問題を起こさない。複合添加によって、このよう
な効果が得られるのは、アルミニウムが金中のカルシウ
ムの固溶量を増大させ、かつ結晶粒界の強度を高くする
ことによるものと考えられる。[0011] Calcium is known to be an element for improving heat resistance, but if it is less than 3 ppm by weight, the effect of refining the crystal of the ball neck cannot be obtained. Also,
When added in an amount of more than 30 ppm by weight, the crystal at the ball neck portion is refined to improve the heat resistance, but shrinkage holes are formed at the ball tip portion at the time of forming the ball. An object is generated, and the joint interface area between the ball and the electrode is reduced, so that the joint strength (shear strength) is reduced. Further, when the hardness of the ball increases as the amount of calcium added increases and a load necessary to secure sufficient bonding with the electrode is applied, the semiconductor element below the electrode may be cracked. Therefore, the amount of calcium added was in the range of 3 to 30 ppm by weight. The above-mentioned problems do not occur even if the contents of aluminum and calcium are the respective upper limits. It is considered that such an effect is obtained by the composite addition because aluminum increases the amount of calcium dissolved in gold and increases the strength of the crystal grain boundaries.
【0012】第2群の元素の添加目的は、伸線の際に金
合金細線の加工硬化によって、さらに伸線し易くするた
めである。第2群の元素は、単独添加の場合には、大量
添加しないと伸線時の加工硬化による常温強度の向上に
効果がない。しかしながら、第1群の元素と共に添加す
ることによって、伸線時の加工硬化が大となり、伸線時
の金線の引張強度不足による断線を防止できる。さら
に、カルシウム添加による耐熱性を、複合添加によりさ
らに向上させる効果と共に高温強度を上げる効果があ
り、結果としてアルミニウムとカルシウムとを併用添加
した上述の本発明の効果をさらに向上させることができ
る。The purpose of the addition of the elements of the second group is to further facilitate the drawing by work hardening of the fine gold alloy wire during the drawing. The elements of the second group, when added alone, are not effective in improving the room temperature strength due to work hardening during wire drawing unless added in large amounts. However, when added together with the elements of the first group, work hardening at the time of drawing becomes large, and disconnection due to insufficient tensile strength of the gold wire at the time of drawing can be prevented. Further, there is an effect of increasing the high-temperature strength together with the effect of further improving the heat resistance by adding calcium, and as a result, the above-described effect of the present invention in which aluminum and calcium are added in combination can be further improved.
【0013】これらの第2群の元素は、添加量が3重量
ppm未満の場合には、加工硬化を促進させる効果が不
安定であり、耐熱性を向上させる複合効果も充分でな
い。他方、30重量ppm超の添加では、第1群の元素
のみの添加量では生成しなかったボール先端部の収縮孔
が容易に発生し、結果としてシェア強度を低下させる。
したがって、第2群の元素の添加量は、3〜30重量p
pmの範囲とした。When the addition amount of these second group elements is less than 3 ppm by weight, the effect of accelerating work hardening is unstable, and the combined effect of improving heat resistance is not sufficient. On the other hand, when the addition exceeds 30 ppm by weight, shrinkage holes at the tip of the ball, which are not generated by the addition amount of only the first group of elements, easily occur, and as a result, the shear strength is reduced.
Therefore, the addition amount of the element of the second group is 3 to 30 weight p
pm.
【0014】また、第1群と第2群の元素の総量が9重
量ppm未満では、ボールネック部の結晶粒が安定して
細粒化せず効果が充分でなく、他方、100重量ppm
を超えると電気トーチによるボール形成時にボールが真
球にならず、半導体素子上の電極との接合時に充分な接
合面積が得られず、接合強度を著しく低下させ、かつ他
の電極と接触する等の問題を生じることから、第1群と
第2群の元素の総量を9〜100重量ppmの範囲内と
した。If the total amount of the elements of the first and second groups is less than 9 ppm by weight, the crystal grains in the ball neck portion are not stably refined and the effect is not sufficient.
Exceeding the limit, the ball does not become a true sphere when the ball is formed by the electric torch, and a sufficient bonding area cannot be obtained when bonding with the electrode on the semiconductor element, the bonding strength is significantly reduced, and the electrode comes into contact with other electrodes. Therefore, the total amount of the elements of the first group and the second group is set in the range of 9 to 100 ppm by weight.
【0015】[0015]
【実施例】以下、実施例について説明する。金純度が9
9.995重量%以上の電解金を用いて、前述の各添加
元素を含有する母合金を個別に高周波真空溶解炉で溶解
し、鋳造した。なお、カルシウムとアルミニウムとを併
用添加した母合金を溶解、鋳造すると、カルシウムの添
加歩留りを向上させる効果がある。Embodiments will be described below. Gold purity 9
Using 9.995% by weight or more of electrolytic gold, the master alloys containing the above-mentioned respective additional elements were individually melted in a high-frequency vacuum melting furnace and cast. In addition, melting and casting a mother alloy to which calcium and aluminum are added in combination has an effect of improving the yield of calcium addition.
【0016】このようにして得られた各添加元素を含む
母合金の所定量と金純度が99.995重量%以上の電
解金とにより、表1に示す化学成分の金合金を高周波真
空溶解炉で溶解鋳造し、その鋳塊を圧延した後、常温で
伸線加工を行い、最終線径を25μmφの金合金細線と
し、大気雰囲気中で連続焼鈍して金合金細線の伸び値が
約4%になるように調整する。By using a predetermined amount of the thus obtained master alloy containing each additional element and electrolytic gold having a gold purity of not less than 99.995% by weight, a gold alloy having the chemical components shown in Table 1 was subjected to a high-frequency vacuum melting furnace. After the ingot is rolled and the ingot is rolled, the wire is drawn at room temperature to form a gold alloy fine wire having a final wire diameter of 25 μmφ, and is continuously annealed in an air atmosphere to have an elongation value of about 4%. Adjust so that
【0017】得られた金合金細線について、常温引張強
度、ループ高さ、振動破断率、ボール形状および接合強
度を調べた結果を表1に併記した。接合のループ高さ
は、高速自動ボンダーを使用して半導体素子上の電極と
外部リードとの間を接合した後に、形成されるループの
頂高と半導体素子の電極面とを光学顕微鏡で80本測定
し、その両者の距離の差をループ高さとした。With respect to the obtained gold alloy thin wire, the room temperature tensile strength, the loop height, the vibration rupture rate, the ball shape and the joint strength were examined, and the results are shown in Table 1. After joining the electrodes on the semiconductor device and the external leads using a high-speed automatic bonder, the height of the formed loop and the electrode surface of the semiconductor device are 80 lines using an optical microscope. The loop height was determined by measuring the difference between the two.
【0018】振動破断率は、半導体素子をマウントする
鉄−42%ニッケルリードフレーム(ボンディングスパ
ン;2mm、インナーリードピン64本が四方に配列さ
れているICパッケージを6個有するもの)を5枚カセ
ットに収納し、前述の25μmφの金合金細線を自動高
速ボンディングによりチップ上の電極とインナーリード
とを金合金細線で接合させ、再びカセットに収納し、該
カセットを振動試験機に固定し、周波数100ヘルツ、
重力加速度を1G、2G、3Gの各水準にて1時間の間
振動させた後に、接合部の断線状況を光学顕微鏡にて検
査を行い、断線本数の占める割合を百分率で評価した。The vibration rupture rate is determined by measuring the iron-42% nickel lead frame (bonding span: 2 mm, having six IC packages in which 64 inner lead pins are arranged in four directions) in a cassette in which five semiconductor chips are mounted. The electrode on the chip and the inner lead were joined by the gold alloy thin wire by automatic high-speed bonding of the above-mentioned 25 μmφ gold alloy thin wire, and then stored again in the cassette, and the cassette was fixed to the vibration tester, and the frequency was 100 Hz. ,
After the gravitational acceleration was vibrated for 1 hour at each of the levels of 1G, 2G, and 3G, the disconnection state of the joint was inspected with an optical microscope, and the ratio of the number of disconnections was evaluated in percentage.
【0019】ボール形状は、高速自動ボンダーを使用
し、電気トーチによるアーク放電によって得られる金合
金ボールを走査電子顕微鏡で観察し、ボール形状が異常
なもの、酸化物が生じるもの等、半導体素子上の電極に
良好な形状で接合できないものを×印、良好なものを○
印にて評価した。接合強度は、高速自動ボンディング後
にリードフレームと測定する半導体素子を治具で固定し
た後に、ボンディング後の金合金細線の中央部を引張
り、その細線破断時の引張強度を100本測定したプル
強度とそのバラツキで評価した。また、同じく固定した
半導体素子の電極から上に5ミクロン離した位置で半導
体素子と平行に治具を移動させて接合した金ボールを剪
断破断させ、剥離時の最大荷重を100本測定したシェ
ア強度とそのバラツキを求めた結果で判定した。The shape of the ball is determined by using a high-speed automatic bonder, observing a gold alloy ball obtained by arc discharge using an electric torch with a scanning electron microscope. X that cannot be joined to the electrode of good shape and x that is good
The evaluation was made with marks. After fixing the semiconductor element to be measured with the lead frame after high-speed automatic bonding with a jig, the central part of the gold alloy fine wire after bonding is pulled, and the tensile strength when the fine wire breaks 100 pieces is measured as the pull strength. The evaluation was based on the variation. A jig was moved in parallel with the semiconductor element at a position 5 μm above the electrode of the fixed semiconductor element to shear and break the bonded gold ball, and the maximum load at the time of peeling was measured by 100 shear strengths. And the result of obtaining the variation.
【0020】表1、表2(表1のつづき)は、本発明の
成分組成内で製造した金合金細線の評価結果を、表3、
表4(表3のつづき)は本発明の成分組成を外れる添加
量を含む金合金細線の評価結果を示した。従来の経験か
ら金合金細線の場合は、ループ高さが低くなるとプル強
度が低下する傾向がある。表1〜表4の結果でも同様の
傾向を示している。ほぼ同一のループ高さの金合金細線
のプル強度の比較では、表2のプル強度がいずれも表4
の値よりも小さく、かつそのバラツキも小さい結果とな
っている。また、過剰の合金元素量を添加した場合に
は、シェア強度が低下しそのバラツキも大きくなってい
る。Tables 1 and 2 (continued from Table 1) show the evaluation results of the gold alloy thin wires produced within the composition of the present invention.
Table 4 (continued from Table 3) shows the evaluation results of the gold alloy thin wires containing the added amount outside the composition of the present invention. From the experience of the prior art, in the case of a gold alloy thin wire, the pull strength tends to decrease as the loop height decreases. The same tendency is shown in the results of Tables 1 to 4. In comparison of the pull strengths of the gold alloy thin wires having almost the same loop height, the pull strengths in Table 2 are all as shown in Table 4.
Is smaller than the value and the variation is small. Also, when an excessive amount of alloying elements is added, the shear strength is reduced and the variation is increased.
【0021】振動断線の場合もループ高さが低くなるほ
ど断線発生率が増大する傾向が経験的に知られており、
1Gの振動強度で断線する場合は、製造した半導体装置
の信頼性が低く、2Gでの振動強度で断線する場合は、
断線発生率が20%以下であれば半導体装置の信頼性は
充分満たされる。表2と表4における、ほぼ同一ループ
高さの金合金細線での断線発生率は、いずれも本発明の
方が断線発生率が低い結果が得られ、半導体装置の信頼
性も充分である。It has been empirically known that even in the case of vibration disconnection, the tendency of the disconnection occurrence rate to increase as the loop height decreases becomes smaller.
When the disconnection is performed at the vibration intensity of 1G, the reliability of the manufactured semiconductor device is low, and when the disconnection is performed at the vibration intensity of 2G,
If the disconnection rate is 20% or less, the reliability of the semiconductor device is sufficiently satisfied. In Tables 2 and 4, with respect to the disconnection occurrence rates of the gold alloy thin wires having substantially the same loop height, the results of the present invention are lower than those of the present invention, and the reliability of the semiconductor device is sufficient.
【0022】シェア強度は、通常25μmの金合金細線
の場合、50g以上あれば問題がないとされている。表
2の場合は、いずれも50g以上の値を満足している
が、表4の場合には50g未満の場合があり、ボンディ
ング用金合金細線としては不十分である。ボール形状の
評価では、表1に示す本発明範囲内の成分では、いずれ
も正常なボール(表2参照)を形成しているが、表3の
成分ではボール先端部に収縮孔など異常なボール(表4
参照)になるものが存在する。It is considered that there is no problem if the shear strength is usually 50 g or more in the case of a gold alloy thin wire of 25 μm. In the case of Table 2, all satisfy the value of 50 g or more, but in the case of Table 4, the value may be less than 50 g, which is insufficient as a bonding gold alloy thin wire. In the evaluation of the ball shape, all the components within the range of the present invention shown in Table 1 form a normal ball (see Table 2), but the components in Table 3 show abnormal balls such as shrinkage holes at the ball tip. (Table 4
(See Reference).
【0023】上述のように、本発明の成分組成を外れる
場合は、プル強度とシェア強度の接合強度が不十分で、
振動断線の発生率が大であり、製造した半導体装置の信
頼性を低下させることは明らかである。As described above, when the component composition of the present invention is deviated, the bonding strength between the pull strength and the shear strength is insufficient.
Obviously, the occurrence rate of vibration disconnection is high, which lowers the reliability of the manufactured semiconductor device.
【0024】[0024]
【表1】 [Table 1]
【0025】[0025]
【表2】 [Table 2]
【0026】[0026]
【表3】 [Table 3]
【0027】[0027]
【表4】 [Table 4]
【0028】[0028]
【発明の効果】本発明の金合金細線は、ループ高さのバ
ラツキが小さく、接合強度が高く、かつそのバラツキが
小さく、振動断線の発生率も低く、ボール形状もいずれ
も正常で、安定したボンディングが可能であり、線径が
18〜30μmでも同様な効果が得られたことから、工
業上有用な特性を有するものである。The gold alloy thin wire of the present invention has a small loop height variation, a high bonding strength, a small variation, a low rate of vibration disconnection, a normal ball shape and a stable ball shape. Bonding is possible, and the same effect is obtained even when the wire diameter is 18 to 30 μm, so that it has industrially useful characteristics.
Claims (2)
ルシウムを3〜30重量ppm含有し、残部が金と不可
避不純物よりなるボンディング用金合金細線。1. An aluminum alloy containing 3 to 50 ppm by weight of aluminum and 3 to 30 ppm by weight of calcium, with the balance being gold.
Gold alloy wire for bonding made of impurities .
50重量ppmとカルシウムを3〜30重量ppm含有
し、第2群の元素としてイットリウム、ランタン、セリ
ウム、ネオジウム、ジスプロヂウムおよびベリリウムの
1種または2種以上を3〜30重量ppm含有し、かつ
第1群の元素と第2群の元素の総量が9〜100重量p
pmであり、残部が金と不可避不純物よりなるボンディ
ング用金合金細線。2. The method according to claim 1, wherein the first group of elements is aluminum.
50 ppm by weight and 3 to 30 ppm by weight calcium
And contains at least 3 to 30 ppm by weight of one or more of yttrium, lanthanum, cerium, neodymium, dysprosium and beryllium as the second group of elements, and the total amount of the first group of elements and the second group of elements is 9-100 weight p
pm der is, Bondi <br/> ring for gold alloy thin line the balance of gold and unavoidable impurities.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3345603A JP2641000B2 (en) | 1991-12-26 | 1991-12-26 | Gold alloy fine wire for bonding |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3345603A JP2641000B2 (en) | 1991-12-26 | 1991-12-26 | Gold alloy fine wire for bonding |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05179375A JPH05179375A (en) | 1993-07-20 |
JP2641000B2 true JP2641000B2 (en) | 1997-08-13 |
Family
ID=18377711
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3345603A Expired - Lifetime JP2641000B2 (en) | 1991-12-26 | 1991-12-26 | Gold alloy fine wire for bonding |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2641000B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1085738C (en) * | 1996-06-12 | 2002-05-29 | 小笠和男 | High purity hard gold alloy and method of manufacturing same |
US5945065A (en) * | 1996-07-31 | 1999-08-31 | Tanaka Denshi Kogyo | Method for wedge bonding using a gold alloy wire |
EP0890987B1 (en) * | 1997-07-07 | 2003-03-05 | W.C. Heraeus GmbH & Co. KG | Fine wire of a gold alloy, method of making the same and its use |
JP5080682B1 (en) * | 2011-12-02 | 2012-11-21 | 田中電子工業株式会社 | Gold-platinum-palladium alloy bonding wire |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58154242A (en) * | 1982-03-10 | 1983-09-13 | Mitsubishi Metal Corp | Fine wire of gold alloy for bonding semiconductor element |
JPS6179741A (en) * | 1984-09-27 | 1986-04-23 | Sumitomo Metal Mining Co Ltd | Bonding wire |
JPS62228440A (en) * | 1986-03-28 | 1987-10-07 | Matsuda Kikinzoku Kogyo Kk | Gold wire for semiconductor device bonding |
JPS644441A (en) * | 1987-06-24 | 1989-01-09 | Shoei Kagaku Kogyo Kk | Bonding wire |
JPH0719787B2 (en) * | 1989-02-20 | 1995-03-06 | タツタ電線株式会社 | Gold alloy fine wire for bonding |
-
1991
- 1991-12-26 JP JP3345603A patent/JP2641000B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH05179375A (en) | 1993-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2922388B2 (en) | Gold alloy fine wire for bonding | |
JP2641000B2 (en) | Gold alloy fine wire for bonding | |
JP3143755B2 (en) | Gold alloy fine wire for bonding | |
US6210637B1 (en) | Gold alloy thin wire for semiconductor devices | |
JP3579493B2 (en) | Gold alloy wires for semiconductor devices | |
JPH1167811A (en) | Gold and silver alloy thin wire for semiconductor device | |
JPH07335686A (en) | Gold alloy wire for bonding | |
JP3810200B2 (en) | Gold alloy wire for wire bonding | |
JPH10303235A (en) | Gold alloy wire for bonding on semiconductor device | |
JP3811600B2 (en) | Semiconductor element gold alloy wire | |
JPH06145842A (en) | Bonding gold alloy thin wire | |
JP3673366B2 (en) | Semiconductor element | |
JP3059314B2 (en) | Gold alloy fine wire for bonding | |
JP3445616B2 (en) | Gold alloy wires for semiconductor devices | |
JP3426397B2 (en) | Gold alloy fine wire for semiconductor devices | |
JP3426399B2 (en) | Gold alloy fine wire for semiconductor devices | |
JP3535657B2 (en) | Gold alloy wire for semiconductor elements | |
JPH10233410A (en) | Alloy au wire for bonding semiconductor element | |
KR0185194B1 (en) | Thin gold alloy wire and gold alloy bump | |
JP3593206B2 (en) | Gold alloy fine wires and bumps for bumps | |
JP2782082B2 (en) | Gold alloy fine wire for bonding | |
JPH0530892B2 (en) | ||
JPH10303236A (en) | Gold alloy wire for bonding on semiconductor device | |
JPH10233411A (en) | Alloy au wire for bonding semiconductor element | |
JPH06310557A (en) | Wire for wiring semiconductor element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19970218 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080502 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090502 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100502 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100502 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110502 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120502 Year of fee payment: 15 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120502 Year of fee payment: 15 |