JPH05179375A - Fine gold alloy wire for bonding - Google Patents

Fine gold alloy wire for bonding

Info

Publication number
JPH05179375A
JPH05179375A JP3345603A JP34560391A JPH05179375A JP H05179375 A JPH05179375 A JP H05179375A JP 3345603 A JP3345603 A JP 3345603A JP 34560391 A JP34560391 A JP 34560391A JP H05179375 A JPH05179375 A JP H05179375A
Authority
JP
Japan
Prior art keywords
bonding
ppm
gold alloy
gold
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3345603A
Other languages
Japanese (ja)
Other versions
JP2641000B2 (en
Inventor
Osamu Kitamura
修 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3345603A priority Critical patent/JP2641000B2/en
Publication of JPH05179375A publication Critical patent/JPH05179375A/en
Application granted granted Critical
Publication of JP2641000B2 publication Critical patent/JP2641000B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/02Alloys based on gold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01039Yttrium [Y]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01057Lanthanum [La]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01058Cerium [Ce]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01066Dysprosium [Dy]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/012Semiconductor purity grades
    • H01L2924/012044N purity grades, i.e. 99.99%

Abstract

PURPOSE:To provide a gold bonding wire excellent in heat resistance and having high reliability for connecting a semiconductor device to an external electrode because neck strength at the time of ball bonding is enhanced. CONSTITUTION:This fine gold alloy wire for bonding contains 3-50wt.ppm Al and 3-30wt.ppm Ca as elements of a first group in high purity gold of >=99.995% purity or further contains 3-30wt.ppm on or more among Y, La, Ce, Nd, Dy and Be as elements of a second group. The total amt. of the elements of the first and second groups is 9-100wt.ppm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体素子上の電極と
外部リードとを接続するために利用する耐熱性に優れる
金合金細線に関し、より詳しくは接合後の半導体装置組
立作業中における振動疲労による断線を大幅に低減させ
るためにボールネック部強度を向上させたボンディング
用金合金細線に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fine gold alloy wire having excellent heat resistance used for connecting electrodes on a semiconductor element and external leads, and more particularly, to vibration fatigue during semiconductor device assembly work after joining. The present invention relates to a gold alloy thin wire for bonding, in which the strength of the ball neck portion is improved in order to significantly reduce the disconnection due to.

【0002】[0002]

【従来の技術】従来、半導体素子上の電極と外部リード
との間を接続するボンディング線としては、金合金細線
が主として使用されている。金合金細線をボンディング
する技術としては、熱圧着法が代表的な方法である。熱
圧着法は、金合金細線の先端部分を電気トーチで加熱溶
融し、表面張力によりボールを形成させ、150〜30
0℃の範囲内で加熱した半導体素子の電極にこのボール
部を圧着接合せしめた後に、さらにリード側との接続を
超音波圧着接合で行う方法である。
2. Description of the Related Art Conventionally, a gold alloy fine wire has been mainly used as a bonding wire for connecting an electrode on a semiconductor element and an external lead. A thermocompression bonding method is a typical method for bonding gold alloy fine wires. In the thermocompression bonding method, the tip portion of the gold alloy fine wire is heated and melted with an electric torch, and a ball is formed by surface tension.
In this method, the ball portion is pressure-bonded to the electrode of the semiconductor element heated in the range of 0 ° C., and then the connection with the lead side is further performed by ultrasonic pressure-bonding.

【0003】近年、ボンディング技術の向上に伴って金
合金細線の特性を向上させる要求が強くなった。例え
ば、ボンディング時にボール直上部が高温に哂される結
果として結晶粒の粗大化が起こり、金合金線の強度が劣
化するために、半導体装置組立時の振動により断線する
という欠陥が生ずる。この防止対策としてボンディング
後のプル強度を指標とし、従来の金合金細線よりプル強
度の大なる金合金細線が望まれている。
In recent years, there has been a strong demand for improving the characteristics of gold alloy thin wires as the bonding technology has improved. For example, as a result of the temperature just above the ball being elevated at the time of bonding, the crystal grains become coarse and the strength of the gold alloy wire deteriorates, resulting in a defect that the wire breaks due to vibration during assembly of the semiconductor device. As a measure for preventing this, a gold alloy thin wire having a higher pull strength than that of a conventional gold alloy thin wire is desired, using the pull strength after bonding as an index.

【0004】また、近年の薄型半導体装置の一般化に伴
い、ボンディング後のループ高さを低くする目的のため
に高純度金に大量の元素を添加せしめた金合金細線が開
発され、使用されている。例えば、カルシウムを5〜1
00重量ppmを含有してなる金ボンディングワイヤー
(特開昭53−105968号公報)ランタン、セリウ
ム、プラセオヂウム、ネオヂウムおよびサマリウムの1
種または2種以上を3〜100重量ppmとゲルマニウ
ム、ベリリウムおよびカルシウムの1種または2種以上
を1〜60重量ppm含有してなる金ボンディングワイ
ヤー(特開昭58−154242号公報)などがある。
しかしながら、ループ高さが低くなることによってプル
強度が低下すること、および合金元素の大量添加によっ
てボールの硬さが増大し、ボンディング後の接合強度を
著しく劣化させ、半導体装置の信頼性を低下させるとい
う問題があるために、従来の比較的ループ高さの高い金
合金細線と同等の接合強度を有した、ループ高さが低
く、高信頼性を有するボンディング用金合金細線が望ま
れている。
Further, with the recent generalization of thin semiconductor devices, gold alloy fine wires in which a large amount of elements are added to high-purity gold have been developed and used for the purpose of reducing the loop height after bonding. There is. For example, 5 to 1 calcium
Gold Bonding Wire Containing 00 ppm by Weight (JP-A-53-105968) 1 of lanthanum, cerium, praseodymium, neodymium and samarium
There is a gold bonding wire (JP-A-58-154242) containing 3 to 100 ppm by weight of one or more kinds and 1 to 60 ppm by weight of one or more of germanium, beryllium and calcium. ..
However, the pull strength is lowered due to the decrease of the loop height, and the hardness of the ball is increased due to the addition of a large amount of alloying elements, the joint strength after bonding is significantly deteriorated, and the reliability of the semiconductor device is lowered. Therefore, there is a demand for a gold alloy fine wire for bonding, which has a bonding strength equivalent to that of a conventional gold alloy fine wire having a relatively high loop height, a low loop height, and high reliability.

【0005】[0005]

【発明が解決しようとする課題】本発明者等は、これら
の従来提案された種々のボンディング用金合金細線につ
いて検討した結果、これらのボンディング用金合金細線
は、特定の添加元素を含まない高純度金線に較べて高い
引張強度は有しているものの、ボール直上部の結晶粒の
粗大化を生じる結果として半導体装置組立中に断線を起
こす場合があり、ボンディング後のプル強度のバラツキ
が大きく、信頼性に欠け、かつその値も低いという問題
があることを確かめた。
DISCLOSURE OF THE INVENTION The inventors of the present invention have studied various conventionally proposed gold alloy thin wires for bonding, and as a result, these gold alloy thin wires for bonding have a high content of a specific additive element. Although it has higher tensile strength than pure gold wire, it may cause wire breakage during semiconductor device assembly as a result of coarsening of crystal grains directly above the ball, resulting in large variations in pull strength after bonding. It was confirmed that there was a problem that it was unreliable and its value was low.

【0006】また、ボンディング後のループ高さを低く
するために、金の再結晶温度を高くせしめる元素を大量
添加したボンディング用金合金細線は、ボンディング後
に結晶粒界の析出物によってプル強度が低下すること、
添加元素量の増大に伴いボール形成時に添加元素の酸化
によってボール表面に酸化物層が生成し、電極との熱圧
着に際して充分な接合ができなくなること、また添加元
素の大量添加でボール部の硬度が増加し、圧着時に変形
率が低下すると共にボールの先端に収縮孔が出来やすく
なり、これが半導体素子の電極との接合面積を低下させ
ることによって、シェア強度を低下させるために、ボン
ディング後のハンドリング等による振動に起因して断線
が発生したり、樹脂封止時に金合金細線が受ける封止樹
脂の流動抵抗や、その後の各種熱サイクルによる半導体
装置の構成物質の熱膨張率の差異に起因する剪断力等で
金合金細線が破断する場合があり、結果として半導体装
置の信頼性を低下させるという問題を有している。
In addition, the gold alloy fine wire for bonding, in which a large amount of an element for increasing the recrystallization temperature of gold is added in order to reduce the loop height after bonding, has a reduced pull strength due to the precipitation of crystal grain boundaries after bonding. What to do,
As the amount of additional elements increases, an oxide layer is formed on the ball surface due to oxidation of the additional elements during ball formation, and sufficient bonding cannot be achieved during thermocompression bonding with the electrodes. , The deformation rate decreases during pressure bonding, and a contraction hole is easily formed at the tip of the ball, which reduces the joint area with the electrode of the semiconductor element and reduces the shear strength. Wire breakage due to vibration due to vibration, etc., flow resistance of the sealing resin that the gold alloy thin wire receives during resin sealing, and difference in the coefficient of thermal expansion of the constituent materials of the semiconductor device due to various thermal cycles thereafter The gold alloy fine wire may be broken due to shearing force and the like, and as a result, there is a problem that the reliability of the semiconductor device is lowered.

【0007】[0007]

【課題を解決するための手段】本発明者等は、アルミニ
ウムとカルシウムを複合添加させることで、ボールネッ
ク部の強度が高く、かつそのバラツキが少なく、ボール
ネック部の結晶粒の細かいボンディング用金合金細線が
得られること、その添加量を制御することによって、ル
ープ高さの低いボンディング用金合金細線を工業的に容
易に製造でき、前述の諸問題点を解消することができる
ことを確かめた。
Means for Solving the Problems The inventors of the present invention have added a composite metal of aluminum and calcium, whereby the strength of the ball neck portion is high and the variation thereof is small, and the bonding gold with fine crystal grains in the ball neck portion is used. It was confirmed that a fine alloy wire can be obtained, and by controlling the amount of addition, a fine gold alloy wire for bonding with a low loop height can be easily manufactured industrially and the above-mentioned problems can be solved.

【0008】すなわち、本発明の要旨とするところは下
記のとおりである。 (1) 高純度金(純度99.995%以上)に、第1
群の元素として、アルミニウムを3〜50重量ppmと
カルシウムを3〜30重量ppm含有してなるボンディ
ング用金合金細線。 (2) 第1群の元素に加えて、第2群添加元素として
イットリウム、ランタン、セリウム、ネオジウム、ジス
プロヂウムおよびベリリウムの1種または2種以上を3
〜30重量ppm含有し、かつ第1群の元素と第2群の
添加元素の総量が9〜100重量ppmである前項1記
載のボンディング用金合金細線。
That is, the gist of the present invention is as follows. (1) High purity gold (purity 99.995% or more)
As a group element, a gold alloy thin wire for bonding, containing 3 to 50 ppm by weight of aluminum and 3 to 30 ppm by weight of calcium. (2) In addition to the elements of the first group, 3 or more of yttrium, lanthanum, cerium, neodymium, dysprosium and beryllium are added as the second group of additive elements.
The gold alloy fine wire for bonding according to the preceding item 1, which contains -30 to 30 ppm by weight and the total amount of the elements of the first group and the additive elements of the second group is 9 to 100 ppm by weight.

【0009】以下、本発明の構成についてさらに説明す
る。本発明で使用する高純度金とは、純度が少なくとも
99.995重量%以上の金を含有し、残部が不可避不
純物からなるものである。純度が99.995重量%未
満の場合は、その含有する不純物の影響を受ける。特
に、合金元素の添加量の比較的少ない高ループ用の金合
金細線では、本発明に従った合金元素添加量での効果が
充分に発揮できない。
The structure of the present invention will be further described below. The high-purity gold used in the present invention is gold having a purity of at least 99.995% by weight or more, and the balance being inevitable impurities. If the purity is less than 99.995% by weight, it will be affected by the impurities contained therein. In particular, with a gold alloy thin wire for high loops in which the amount of alloying elements added is relatively small, the effect of the amount of alloying elements added according to the present invention cannot be sufficiently exhibited.

【0010】アルミニウムは、金中への固溶限界が大で
あり、従来から再結晶温度を高くする効果が知られてい
るが、単独の添加では十分な効果がない。高純度金中に
アルミニウムと共にカルシウムを複合添加させることに
より、ボールネック部の強度が増大し、プル強度を向上
させ、樹脂封止工程以前の諸振動による断線を減少でき
る。この効果は、カルシウム添加のもとでアルミニウム
添加量が3重量ppm未満であると、ボールネック部の
結晶粒が安定して細粒化せず、効果が充分でない。ま
た、アルミニウム添加量が50重量ppmを超えると、
ボール形成時にボールが真球にならず、またアルミニウ
ムとカルシウムとの強固な酸化物がボール表面に生成
し、電極との接合時にボールと電極の圧着時に双方の新
生金属面が出にくくなることによって接合強度が低下す
ることからアルミニウムの添加量の範囲を3〜50重量
ppmとした。
Aluminum has a large solid solution limit in gold, and it has been conventionally known that aluminum has a high recrystallization temperature, but addition of aluminum alone does not have a sufficient effect. By adding calcium together with aluminum to high-purity gold, the strength of the ball neck portion is increased, the pull strength is improved, and the disconnection due to various vibrations before the resin sealing step can be reduced. This effect is not sufficient if the amount of aluminum added is less than 3 ppm by weight while calcium is added, because the crystal grains in the ball neck portion are not stably refined. When the amount of aluminum added exceeds 50 ppm by weight,
The ball does not become a true sphere at the time of ball formation, and a strong oxide of aluminum and calcium is generated on the ball surface, and it becomes difficult for both new metal surfaces to come out when the ball and the electrode are pressure bonded at the time of bonding with the electrode. Since the bonding strength decreases, the range of the amount of aluminum added is set to 3 to 50 ppm by weight.

【0011】カルシウムは、耐熱性を向上させる元素で
あることが知られているが、3重量ppm未満ではボー
ルネック部の結晶の細粒化の効果が得られない。また、
30重量ppm超の添加では、ボールネック部の結晶を
細粒化し耐熱性を向上させるものの、ボール形成時にボ
ール先端部に収縮孔が生じること、ボール形成時の酸化
によってボール全表面に強固な酸化物が生成し、ボール
と電極との接合界面積を低下することによって、接合強
度(シェア強度)が低下する。また、ボールの硬さがカ
ルシウムの添加量の増大で大となり、電極との充分な接
合を確保するに必要な荷重をかけると、電極下部の半導
体素子に割れを生じる場合がある。従ってカルシウムの
添加量は、3〜30重量ppmの範囲とした。アルミニ
ウムとカルシウムの含有量が、それぞれの上限値でも前
述の諸問題を起こさない。複合添加によって、このよう
な効果が得られるのは、アルミニウムが金中のカルシウ
ムの固溶量を増大させ、かつ結晶粒界の強度を高くする
ことによるものと考えられる。
Calcium is known to be an element that improves heat resistance, but if it is less than 3 ppm by weight, the effect of refining the crystal in the ball neck portion cannot be obtained. Also,
Addition of more than 30 ppm by weight makes the crystal in the ball neck finer and improves the heat resistance, but it causes shrinkage holes at the ball tip during ball formation, and oxidation during ball formation causes strong oxidation on the entire surface of the ball. When a product is generated and the bonding interface area between the ball and the electrode is decreased, the bonding strength (shear strength) is decreased. Further, the hardness of the ball becomes large due to an increase in the amount of calcium added, and if a load necessary to secure sufficient bonding with the electrode is applied, the semiconductor element below the electrode may crack. Therefore, the amount of calcium added was set to the range of 3 to 30 ppm by weight. The above-mentioned problems do not occur even if the contents of aluminum and calcium are the respective upper limits. It is considered that the reason why such an effect is obtained by the combined addition is that aluminum increases the solid solution amount of calcium in gold and increases the strength of the grain boundary.

【0012】第2群の元素の添加目的は、伸線の際に金
合金細線の加工硬化によって、さらに伸線し易くするた
めである。第2群の元素は、単独添加の場合には、大量
添加しないと伸線時の加工硬化による常温強度の向上に
効果がない。しかしながら、第1群の元素と共に添加す
ることによって、伸線時の加工硬化が大となり、伸線時
の金線の引張強度不足による断線を防止できる。さら
に、カルシウム添加による耐熱性を、複合添加によりさ
らに向上させる効果と共に高温強度を上げる効果があ
り、結果としてアルミニウムとカルシウムとを併用添加
した上述の本発明の効果をさらに向上させることができ
る。
The purpose of adding the elements of the second group is to further facilitate wire drawing by work hardening of the gold alloy thin wire during wire drawing. When the elements of the second group are added alone, unless added in a large amount, there is no effect in improving the room temperature strength due to work hardening during wire drawing. However, by adding together with the elements of the first group, work hardening during wire drawing becomes large, and wire breakage due to insufficient tensile strength of the gold wire during wire drawing can be prevented. Further, the addition of calcium has the effect of further improving the heat resistance by the combined addition and the effect of increasing the high temperature strength, and as a result, the effect of the present invention described above in which aluminum and calcium are added in combination can be further improved.

【0013】これらの第2群の元素は、添加量が3重量
ppm未満の場合には、加工硬化を促進させる効果が不
安定であり、耐熱性を向上させる複合効果も充分でな
い。他方、30重量ppm超の添加では、第1群の元素
のみの添加量では生成しなかったボール先端部の収縮孔
が容易に発生し、結果としてシェア強度を低下させる。
したがって、第2群の元素の添加量は、3〜30重量p
pmの範囲とした。
When the addition amount of these elements of the second group is less than 3 ppm by weight, the effect of promoting work hardening is unstable and the combined effect of improving heat resistance is not sufficient. On the other hand, if the amount of addition exceeds 30 ppm by weight, shrinkage holes at the tip of the ball, which were not generated by the addition amount of only the elements of the first group, are easily generated, resulting in reduction of shear strength.
Therefore, the addition amount of the elements of the second group is 3 to 30 weight p.
The range was pm.

【0014】また、第1群と第2群の元素の総量が9重
量ppm未満では、ボールネック部の結晶粒が安定して
細粒化せず効果が充分でなく、他方、100重量ppm
を超えると電気トーチによるボール形成時にボールが真
球にならず、半導体素子上の電極との接合時に充分な接
合面積が得られず、接合強度を著しく低下させ、かつ他
の電極と接触する等の問題を生じることから、第1群と
第2群の元素の総量を9〜100重量ppmの範囲内と
した。
When the total amount of the elements of the first group and the second group is less than 9 ppm by weight, the crystal grains in the ball neck portion are not stably refined and the effect is not sufficient. On the other hand, 100 ppm by weight.
Beyond the value, the ball does not become a true sphere during ball formation by an electric torch, a sufficient bonding area cannot be obtained when bonding with an electrode on a semiconductor element, the bonding strength is significantly reduced, and contact with other electrodes occurs. Therefore, the total amount of the elements of the first group and the second group is set within the range of 9 to 100 ppm by weight.

【0015】[0015]

【実施例】以下、実施例について説明する。金純度が9
9.995重量%以上の電解金を用いて、前述の各添加
元素を含有する母合金を個別に高周波真空溶解炉で溶解
し、鋳造した。なお、カルシウムとアルミニウムとを併
用添加した母合金を溶解、鋳造すると、カルシウムの添
加歩留りを向上させる効果がある。
EXAMPLES Examples will be described below. Gold purity is 9
Using 9.995% by weight or more of electrolytic gold, the mother alloys containing the above-mentioned additive elements were individually melted in a high-frequency vacuum melting furnace and cast. It should be noted that melting and casting a mother alloy to which calcium and aluminum are added together has the effect of improving the calcium addition yield.

【0016】このようにして得られた各添加元素を含む
母合金の所定量と金純度が99.995重量%以上の電
解金とにより、表1に示す化学成分の金合金を高周波真
空溶解炉で溶解鋳造し、その鋳塊を圧延した後、常温で
伸線加工を行い、最終線径を25μmφの金合金細線と
し、大気雰囲気中で連続焼鈍して金合金細線の伸び値が
約4%になるように調整する。
By using a predetermined amount of the mother alloy containing each additive element thus obtained and electrolytic gold having a gold purity of 99.995% by weight or more, a gold alloy having the chemical composition shown in Table 1 was prepared in a high frequency vacuum melting furnace. Melt casting, rolling the ingot, and then drawing at room temperature to obtain a gold alloy fine wire with a final wire diameter of 25 μmφ, and continuously annealing it in the air atmosphere to give an elongation value of about 4%. Adjust so that

【0017】得られた金合金細線について、常温引張強
度、ループ高さ、振動破断率、ボール形状および接合強
度を調べた結果を表1に併記した。接合のループ高さ
は、高速自動ボンダーを使用して半導体素子上の電極と
外部リードとの間を接合した後に、形成されるループの
頂高と半導体素子の電極面とを光学顕微鏡で80本測定
し、その両者の距離の差をループ高さとした。
Table 1 also shows the results of examining the tensile strength at room temperature, the loop height, the vibration rupture rate, the ball shape and the bonding strength of the obtained gold alloy thin wire. The loop height of the junction is 80 after the electrode on the semiconductor element and the external lead are joined using a high-speed automatic bonder, and then the height of the loop formed and the electrode surface of the semiconductor element are 80 with an optical microscope. The loop height was determined by measuring the difference between the two distances.

【0018】振動破断率は、半導体素子をマウントする
鉄−42%ニッケルリードフレーム(ボンディングスパ
ン;2mm、インナーリードピン64本が四方に配列さ
れているICパッケージを6個有するもの)を5枚カセ
ットに収納し、前述の25μmφの金合金細線を自動高
速ボンディングによりチップ上の電極とインナーリード
とを金合金細線で接合させ、再びカセットに収納し、該
カセットを振動試験機に固定し、周波数100ヘルツ、
重力加速度を1G、2G、3Gの各水準にて1時間の間
振動させた後に、接合部の断線状況を光学顕微鏡にて検
査を行い、断線本数の占める割合を百分率で評価した。
The vibration rupture rate is 5 pieces of iron-42% nickel lead frame (bonding span; 2 mm, having 6 IC packages in which 64 inner lead pins are arranged in four directions) for mounting a semiconductor element in a cassette. Then, the above-mentioned 25 μmφ gold alloy fine wire is bonded to the electrode on the chip and the inner lead by the gold alloy fine wire by automatic high-speed bonding, and then housed again in the cassette. ,
After vibrating the gravitational acceleration at each level of 1G, 2G, and 3G for 1 hour, the state of disconnection of the joint was inspected with an optical microscope, and the ratio of the number of disconnection was evaluated as a percentage.

【0019】ボール形状は、高速自動ボンダーを使用
し、電気トーチによるアーク放電によって得られる金合
金ボールを走査電子顕微鏡で観察し、ボール形状が異常
なもの、酸化物が生じるもの等、半導体素子上の電極に
良好な形状で接合できないものを×印、良好なものを○
印にて評価した。接合強度は、高速自動ボンディング後
にリードフレームと測定する半導体素子を治具で固定し
た後に、ボンディング後の金合金細線の中央部を引張
り、その細線破断時の引張強度を100本測定したプル
強度とそのバラツキで評価した。また、同じく固定した
半導体素子の電極から上に5ミクロン離した位置で半導
体素子と平行に治具を移動させて接合した金ボールを剪
断破断させ、剥離時の最大荷重を100本測定したシェ
ア強度とそのバラツキを求めた結果で判定した。
The ball shape is determined by observing a gold alloy ball obtained by arc discharge by an electric torch with a scanning electron microscope using a high-speed automatic bonder. Nothing that could not be joined to the electrode in a good shape was marked with X, and good one was ○
It was evaluated by the mark. The bonding strength is the pull strength obtained by fixing the lead frame and the semiconductor element to be measured after high-speed automatic bonding with a jig and then pulling the central part of the gold alloy thin wire after bonding, and measuring the tensile strength at the time of breaking the thin wire 100 pieces. The variation was evaluated. In addition, the jig was moved parallel to the semiconductor element at a position 5 microns above the fixed semiconductor element electrode to shear and rupture the bonded gold balls, and the maximum load during peeling was measured 100 shear strength. It was judged based on the result of obtaining the variation.

【0020】表1、表2(表1のつづき)は、本発明の
成分組成内で製造した金合金細線の評価結果を、表3、
表4(表3のつづき)は本発明の成分組成を外れる添加
量を含む金合金細線の評価結果を示した。従来の経験か
ら金合金細線の場合は、ループ高さが低くなるとプル強
度が低下する傾向がある。表1〜表4の結果でも同様の
傾向を示している。ほぼ同一のループ高さの金合金細線
のプル強度の比較では、表2のプル強度がいずれも表4
の値よりも小さく、かつそのバラツキも小さい結果とな
っている。また、過剰の合金元素量を添加した場合に
は、シェア強度が低下しそのバラツキも大きくなってい
る。
Tables 1 and 2 (continued from Table 1) show the evaluation results of the gold alloy thin wires produced within the composition of the present invention.
Table 4 (continued from Table 3) shows the evaluation results of the gold alloy fine wire including the addition amount deviating from the component composition of the present invention. From the conventional experience, in the case of a gold alloy fine wire, the pull strength tends to decrease as the loop height decreases. The results of Tables 1 to 4 also show the same tendency. In comparison of the pull strengths of the gold alloy thin wires having almost the same loop height, the pull strengths of Table 2 are all Table 4
The result is smaller than the value of and the variation is also small. Further, when an excessive amount of alloying element is added, the shear strength is lowered and its variation is increased.

【0021】振動断線の場合もループ高さが低くなるほ
ど断線発生率が増大する傾向が経験的に知られており、
1Gの振動強度で断線する場合は、製造した半導体装置
の信頼性が低く、2Gでの振動強度で断線する場合は、
断線発生率が20%以下であれば半導体装置の信頼性は
充分満たされる。表2と表4における、ほぼ同一ループ
高さの金合金細線での断線発生率は、いずれも本発明の
方が断線発生率が低い結果が得られ、半導体装置の信頼
性も充分である。
It is empirically known that, even in the case of vibrational disconnection, the disconnection occurrence rate tends to increase as the loop height decreases.
When breaking with 1G vibration strength, the reliability of the manufactured semiconductor device is low, and when breaking with 2G vibration strength,
If the occurrence rate of disconnection is 20% or less, the reliability of the semiconductor device is sufficiently satisfied. Regarding the occurrence rates of wire breakage in the gold alloy fine wires having almost the same loop height in Tables 2 and 4, the present invention results in a lower wire breakage occurrence rate, and the reliability of the semiconductor device is also sufficient.

【0022】シェア強度は、通常25μmの金合金細線
の場合、50g以上あれば問題がないとされている。表
2の場合は、いずれも50g以上の値を満足している
が、表4の場合には50g未満の場合があり、ボンディ
ング用金合金細線としては不十分である。ボール形状の
評価では、表1に示す本発明範囲内の成分では、いずれ
も正常なボール(表2参照)を形成しているが、表3の
成分ではボール先端部に収縮孔など異常なボール(表4
参照)になるものが存在する。
Regarding the shear strength, it is generally considered that there is no problem in the case of a gold alloy fine wire of 25 μm if the shear strength is 50 g or more. In the case of Table 2, all satisfy the value of 50 g or more, but in the case of Table 4, it may be less than 50 g, which is insufficient as a gold alloy thin wire for bonding. In the evaluation of the ball shape, all the components within the scope of the present invention shown in Table 1 formed normal balls (see Table 2), but the components shown in Table 3 showed abnormal balls such as contraction holes at the ball tip. (Table 4
There is something that becomes.

【0023】上述のように、本発明の成分組成を外れる
場合は、プル強度とシェア強度の接合強度が不十分で、
振動断線の発生率が大であり、製造した半導体装置の信
頼性を低下させることは明らかである。
As described above, when the composition of the present invention is deviated, the joining strength of pull strength and shear strength is insufficient,
It is clear that the rate of occurrence of vibration disconnection is high, which reduces the reliability of the manufactured semiconductor device.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【表3】 [Table 3]

【0027】[0027]

【表4】 [Table 4]

【0028】[0028]

【発明の効果】本発明の金合金細線は、ループ高さのバ
ラツキが小さく、接合強度が高く、かつそのバラツキが
小さく、振動断線の発生率も低く、ボール形状もいずれ
も正常で、安定したボンディングが可能であり、線径が
18〜30μmでも同様な効果が得られたことから、工
業上有用な特性を有するものである。
The gold alloy fine wire of the present invention has a small loop height variation, a high bonding strength, a small variation, a low occurrence rate of vibration disconnection, and a normal and stable ball shape. Bonding is possible, and the same effect is obtained even when the wire diameter is 18 to 30 μm, so that it has industrially useful characteristics.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 高純度金(純度99.995%以上)
に、第1群の元素として、アルミニウムを3〜50重量
ppmとカルシウムを3〜30重量ppm含有してなる
ボンディング用金合金細線。
1. High-purity gold (purity of 99.995% or more)
In addition, as a first group element, a gold alloy thin wire for bonding containing 3 to 50 ppm by weight of aluminum and 3 to 30 ppm by weight of calcium.
【請求項2】 第1群の元素に加えて、第2群添加元素
としてイットリウム、ランタン、セリウム、ネオジウ
ム、ジスプロヂウムおよびベリリウムの1種または2種
以上を3〜30重量ppm含有し、かつ第1群の元素と
第2群の添加元素の総量が9〜100重量ppmである
請求項1記載のボンディング用金合金細線。
2. In addition to the elements of the first group, 3 to 30 ppm by weight of one or more elements of yttrium, lanthanum, cerium, neodymium, dysprosium and beryllium are contained as a second group addition element, and the first element is added. The gold alloy fine wire for bonding according to claim 1, wherein the total amount of the group element and the second group additive element is 9 to 100 ppm by weight.
JP3345603A 1991-12-26 1991-12-26 Gold alloy fine wire for bonding Expired - Lifetime JP2641000B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3345603A JP2641000B2 (en) 1991-12-26 1991-12-26 Gold alloy fine wire for bonding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3345603A JP2641000B2 (en) 1991-12-26 1991-12-26 Gold alloy fine wire for bonding

Publications (2)

Publication Number Publication Date
JPH05179375A true JPH05179375A (en) 1993-07-20
JP2641000B2 JP2641000B2 (en) 1997-08-13

Family

ID=18377711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3345603A Expired - Lifetime JP2641000B2 (en) 1991-12-26 1991-12-26 Gold alloy fine wire for bonding

Country Status (1)

Country Link
JP (1) JP2641000B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5945065A (en) * 1996-07-31 1999-08-31 Tanaka Denshi Kogyo Method for wedge bonding using a gold alloy wire
US6063213A (en) * 1996-06-12 2000-05-16 Ogasa; Kazuo High-purity hard gold alloy and method of manufacturing same
US6103025A (en) * 1997-07-07 2000-08-15 W. C. Heraeus Gmbh & Co. Kg Fine wire of gold alloy, method for manufacture thereof and use thereof
WO2013080851A1 (en) * 2011-12-02 2013-06-06 田中電子工業株式会社 Gold-platinum-palladium alloy bonding wire

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58154242A (en) * 1982-03-10 1983-09-13 Mitsubishi Metal Corp Fine wire of gold alloy for bonding semiconductor element
JPS6179741A (en) * 1984-09-27 1986-04-23 Sumitomo Metal Mining Co Ltd Bonding wire
JPS62228440A (en) * 1986-03-28 1987-10-07 Matsuda Kikinzoku Kogyo Kk Gold wire for semiconductor device bonding
JPS644441A (en) * 1987-06-24 1989-01-09 Shoei Kagaku Kogyo Kk Bonding wire
JPH02219249A (en) * 1989-02-20 1990-08-31 Tatsuta Electric Wire & Cable Co Ltd Gold alloy thin wire for bonding

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58154242A (en) * 1982-03-10 1983-09-13 Mitsubishi Metal Corp Fine wire of gold alloy for bonding semiconductor element
JPS6179741A (en) * 1984-09-27 1986-04-23 Sumitomo Metal Mining Co Ltd Bonding wire
JPS62228440A (en) * 1986-03-28 1987-10-07 Matsuda Kikinzoku Kogyo Kk Gold wire for semiconductor device bonding
JPS644441A (en) * 1987-06-24 1989-01-09 Shoei Kagaku Kogyo Kk Bonding wire
JPH02219249A (en) * 1989-02-20 1990-08-31 Tatsuta Electric Wire & Cable Co Ltd Gold alloy thin wire for bonding

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6063213A (en) * 1996-06-12 2000-05-16 Ogasa; Kazuo High-purity hard gold alloy and method of manufacturing same
US5945065A (en) * 1996-07-31 1999-08-31 Tanaka Denshi Kogyo Method for wedge bonding using a gold alloy wire
US6103025A (en) * 1997-07-07 2000-08-15 W. C. Heraeus Gmbh & Co. Kg Fine wire of gold alloy, method for manufacture thereof and use thereof
WO2013080851A1 (en) * 2011-12-02 2013-06-06 田中電子工業株式会社 Gold-platinum-palladium alloy bonding wire
JP2013118259A (en) * 2011-12-02 2013-06-13 Tanaka Electronics Ind Co Ltd Gold-platinum-palladium alloy bonding wire

Also Published As

Publication number Publication date
JP2641000B2 (en) 1997-08-13

Similar Documents

Publication Publication Date Title
JP2922388B2 (en) Gold alloy fine wire for bonding
JP3143755B2 (en) Gold alloy fine wire for bonding
JPH05179375A (en) Fine gold alloy wire for bonding
US6210637B1 (en) Gold alloy thin wire for semiconductor devices
JP3579493B2 (en) Gold alloy wires for semiconductor devices
US5658664A (en) Thin gold-alloy wire for semiconductor device
JPH07335686A (en) Gold alloy wire for bonding
JPH06145842A (en) Bonding gold alloy thin wire
JP3059314B2 (en) Gold alloy fine wire for bonding
JPH1167811A (en) Gold and silver alloy thin wire for semiconductor device
JPH10303235A (en) Gold alloy wire for bonding on semiconductor device
JP3673366B2 (en) Semiconductor element
JP3445616B2 (en) Gold alloy wires for semiconductor devices
JP2773202B2 (en) Au alloy extra fine wire for semiconductor element bonding
JP2621288B2 (en) Au alloy extra fine wire for semiconductor element bonding
KR0185194B1 (en) Thin gold alloy wire and gold alloy bump
JP3426399B2 (en) Gold alloy fine wire for semiconductor devices
KR101047827B1 (en) Gold Alloy Wire for Ball Bonding
JP3593206B2 (en) Gold alloy fine wires and bumps for bumps
JP2003133362A (en) Semiconductor device and bonding wire for the same
JPH06310557A (en) Wire for wiring semiconductor element
JP2001308133A (en) Semiconductor device with wedge-bonded wire and gold alloy bonding wire
JPH0530892B2 (en)
JPH11163016A (en) Small gold ball for bump and semiconductor device
JPH0143824B2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080502

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090502

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100502

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100502

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 15