JP3650461B2 - Gold alloy fine wire for semiconductor devices - Google Patents

Gold alloy fine wire for semiconductor devices Download PDF

Info

Publication number
JP3650461B2
JP3650461B2 JP08289196A JP8289196A JP3650461B2 JP 3650461 B2 JP3650461 B2 JP 3650461B2 JP 08289196 A JP08289196 A JP 08289196A JP 8289196 A JP8289196 A JP 8289196A JP 3650461 B2 JP3650461 B2 JP 3650461B2
Authority
JP
Japan
Prior art keywords
gold
wire
bonding
gold alloy
addition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP08289196A
Other languages
Japanese (ja)
Other versions
JPH09272931A (en
Inventor
智裕 宇野
宏平 巽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP08289196A priority Critical patent/JP3650461B2/en
Publication of JPH09272931A publication Critical patent/JPH09272931A/en
Application granted granted Critical
Publication of JP3650461B2 publication Critical patent/JP3650461B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/06Alloys based on silver
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/02Alloys based on gold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • H01L2224/438Post-treatment of the connector
    • H01L2224/43848Thermal treatments, e.g. annealing, controlled cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45139Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • H01L2224/486Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48617Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950 °C
    • H01L2224/48624Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/85948Thermal treatments, e.g. annealing, controlled cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01007Nitrogen [N]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01021Scandium [Sc]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01025Manganese [Mn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01031Gallium [Ga]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01039Yttrium [Y]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01057Lanthanum [La]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01058Cerium [Ce]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01327Intermediate phases, i.e. intermetallics compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20752Diameter ranges larger or equal to 20 microns less than 30 microns

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Wire Bonding (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体素子上の電極と外部リードを接続するために利用される接合部信頼性に優れた金合金細線に関するものである。
【0002】
【従来の技術】
現在半導体素子上の電極と外部リードとの間を接合するボンディング線としては、金合金細線が主として使用されている。すなわち、金細線はその先端をアーク放電によりボールに形成し、このボールを半導体素子のアルミニウム電極上に圧着接合した後に、さらに細線を外部リード側に超音波を用いて接続する。トランジスタやICなどの半導体装置として使用するためには、前記の金合金細線によるボンディングの後に、Siチップ、ボンディングワイヤ、およびSiチップが取り付けられた部分のリードフレームを、これらを保護する目的で樹脂封止する。
【0003】
最近、半導体素子が使用される環境条件がますます厳しくなっており、例えば自動車のエンジンルーム内で使用される半導体素子では高温あるいは高湿の環境で使用される場合がある。また半導体素子の高密度実装により使用時に発生する熱が無視できなくなっている。耐熱性が要求される環境条件で使用される半導体素子においては、従来、ボンディングワイヤとしてはアルミニウム細線を使用し、セラミックスパッケージによる気密封止した半導体装置が利用されている。
【0004】
耐熱性が要求される環境条件で使用される半導体素子においては、従来、ボンディングワイヤとしてはアルミ合金細線を使用し、セラミックスパッケージした半導体素子が利用されていた。アルミ合金細線では、半導体素子上の電極との接合部において同種金属の接合により、高信頼性が得られる利点がある。しかし、コスト、生産性などの理由から、アルミ合金細線の使用は特定の半導体素子に限定されており、今後とも高速性、生産性、作業性などに優れている、金合金細線によるボンディング方式が主流であると考えられる。
【0005】
半導体業界の競争も年々激化しており、製品の差別化としては性能の向上は言うまでもないが、コスト低減も開発戦略として重要な課題である。半導体装置に使用される材料においても安価なものが要求されており、ボンディングワイヤでは金が使用されていることから、安価なCu,Agワイヤなどの代替材料としての可能性が検討された経緯はあるが、ボンディング性、接合性、信頼性などの総合的評価により、従来通り金細線が主流となっている。そこで、低コスト化を主目的とした細線化が検討されているが、強度不足、操作性などの課題が多く残されているのが現状であり、安価な半導体素子用の細線材料の開発が望まれている。
【0006】
金中に高濃度に含有する可能性を考えたとき、先ず貴金属系として銀、白金、パラジウムなどの元素が想定される。金細線への銀元素の添加に関連して、例えば特開昭55−158642号公報、特開昭56−19628号公報および特開昭56−19629号公報などが開示されている。
一方、金細線とアルミ電極との接合において、高温環境における高い接合信頼性を有する安価な金合金細線の開発も望まれている。
【0007】
【発明が解決しようとする課題】
高濃度の銀を含有する金合金細線の使用時の課題として、アルミニウム電極との接合部の信頼性の低下が認められた。これは、高温保管されると接合強度が低下するものであり、条件次第では接合部での剥離にまでいたることが判明した。通常の金合金細線でもアルミニウム電極との接合信頼性が懸念されてはいるが、加熱しただけでの接合強度がゼロになるまでなることはなく、銀含有の金合金細線の実用化においては、接合信頼性の課題を解決することが不可欠である。
本発明は、高濃度の銀を含有して、且つ、アルミニウム電極との接合において高い接合信頼性を有する、材料費の安価な金合金細線を提供することを目的としている。
【0008】
【課題を解決するための手段】
本発明者等が、金合金細線の材料費を低減することを主眼として高濃度添加の可能性を検討した結果、銀の含有が有効であることが判明した。これは、銀は数十%まで含有してもボール生成性にはほとんど悪影響を及ぼさず、大気中でも良好なボールが得られること、また、ボール部の硬度は増加するものの他の添加元素と比較しても、接合時のチップへのダメージを誘発するような硬度の上昇はないためである。
【0009】
さらに前述した観点から、銀の含有量が10〜60重量%の範囲で含有する金合金細線において、ボール形成性およびループ形状などの良好な特性を有することを確認した。しかし、前述した接合信頼性の低下が観察されたため、さらに高温下での接合信頼性を向上させるべく研究を行った結果、金中の銀濃度が増加すると、接合部に生成する金属間化合物相の種類が高純度金の場合とは異なることが判明した。そこで、この化合物の成長挙動を制御することを目的として、金合金細線への添加元素の影響を調査した結果、
(a)銀の含有と併用して、Mnを0.005〜0.8重量%の範囲で含有させることで、加熱後に接合強度を低下することを抑制する効果があることを見出した。
また、さらに接合性およびボンディング性などに関して研究を進めた結果、銀とMn元素の添加に加えて、さらに下記の第一群、第二群、第三群の元素を共存せしめることにより、以下の知見を見出した。
(b)Cu,Pd,Ptよりなる第一群の元素のうちの少なくとも1種を総計で0.005〜5重量%の範囲での添加は、Ag,Mn添加と併用することにより、金属間化合物の成長を抑制する効果が高まり、接合信頼性がより一層向上する。
(c)In,Sc,Ga,Si,Alよりなる第二群の元素のうちの少なくとも1種を総計で0.0005〜0.05重量%の範囲での添加は、Ag,Mn添加の併用することにより、金合金細線をアルミニウム電極上への接合性を高める効果が得られる。
(d)Ca,Be,La,Ce,Yよりなる第三群の元素のうち少なくとも1種を総計で0.0002〜0.03重量%の範囲での添加は、Ag,Mnの添加と併用することにより、ワイヤの機械的強度またはヤング率を高め、樹脂封止時のワイヤ変形を抑制する効果が高まることを認識した。
【0010】
すなわち、本発明は上記知見に基づくものであって高い接合信頼性を実現する、銀を含有する金合金細線として、以下の構成を要旨とする。
(1)重量でAgを10〜60%、Mnを0.005〜0.8%の範囲で含有し、残部を金の不可避的不純物からなる半導体素子用金合金細線。
(2)上記(1)の成分に、さらにCu,Pd,Ptの少なくとも1種を総計で0.005〜5%の範囲で含有した金合金細線。
(3)上記(1)の成分に、さらにIn,Sc,Ga,Si,Alの少なくとも1種を総計で0.0005〜0.05重量%の範囲で含有した金合金細線。
(4)上記(1)の成分に、さらにCa,Be,La,Ce,Yの少なくとも1種を総計で0.0002〜0.03重量%の範囲で含有した金合金細線。
(5)上記(2)の成分に、In,Sc,Ga,Si,Alの少なくとも1種を総計で0.0005〜0.05重量%の範囲で含有した金合金細線。
(6)上記(2)の成分に、Ca,Be,La,Ce,Yの少なくとも1種を総計で0.0002〜0.03重量%の範囲で含有した金合金細線。
(7) 上記(3)の成分に、Ca,Be,La,Ce,Yの少なくとも1種を総計で0.0002〜0.03%の範囲で含有した金合金細線。
【0011】
【発明の実施の態様】
以下に、金合金細線に関する本発明の構成についてさらに説明する。
本発明で使用する高純度金とは、純度が少なくとも99.995重量%以上の金を含有し、残部を不可避的不純物からなるものである。
金中の銀の添加は、伸線時の加工強度は上昇させるものの、特性調整のために要する調質焼鈍後の強度の増加を得るためには、10重量%以上の濃度が必要であり、10重量%以上の高濃度であれば材料費の低減に対しても効果が得られる。また、銀の含有量の上限を60重量%と定めたのは、60重量%を超えると、ボールの変形能が低下して、アルミニウム電極の直下のシリコン基板にクラックなどの損傷を与えるという理由に基づくものである。
【0012】
金中の銀濃度が増加すると、アルミニウム電極との接合部に生成する金属間化合物相として、AuAl2 相が優先的に成長することを見出した。このAuAl2 相はボイド生成を誘発する可能性が高いものの、高純度金の場合は成長速度の遅いため、従来の金細線では直接的には不良に関与しないものであった。従来使用されている金合金細線において接合部に観察される化合物は通常、Au5 Al2 相、Au4 Al相などであることを確認している。
【0013】
銀の含有に加えてMnを併用添加すると、銀の単独添加で主として成長するAuAl2 相の生成が抑制することができ、代わってAu2 Al相とAu5 Al2 相が優先的に成長することが確認された。この機構に関しては不明な点もあるが、Mn元素がAu/Al界面近傍に濃化していることが確認されており、この偏析したMnの濃化層が、金とアルミニウムの相互拡散に影響を及ぼして、化合物相の成長挙動が変化したものと推察される。ここでMnの含有量を0.005〜0.8重量%と定めたのは、Mnの含有量が0.005重量%未満では接合部における金属間化合物の腐食を抑制する効果が小さく、一方0.8重量%を超えるとワイヤ先端に形成したボール部に収縮孔が形成されるため、ボール接合性が低下する原因となるという理由に基づくものである。
【0014】
さらに、通常の高純度の金細線を使用して樹脂封止された半導体装置が高温環境で使用されるときの信頼性に関して、接合界面近傍に成長した金とアルミの金属間化合物が封止樹脂中の必須元素であるハロゲン成分と腐食反応することにより、電気抵抗が増加する不良が懸念される。この腐食現象は、銀を含有する金合金細線を用いた場合においても、接合部に成長したAu2 Al相と金ボール部の界面近傍においても観察された。そこで銀とMnを併用添加すると、樹脂封止した接合部において金属間化合物層の腐食を著しく低減できることを見出した。この腐食抑制において十分な効果を得るためには、銀との併用するMn元素の上記の濃度範囲において、0.01〜0.8重量%の範囲がより好ましい。
【0015】
Ag,Mnの添加に加えて、Cu,Pd,Pt(第一群)の少なくとも1種を総計で0.005〜5重量%の範囲で含有することにより、金/アルミニウムの化合物層全体の成長速度を抑制する効果が高まることが判明した。Cu,Pd,Ptのみの添加でも成長速度を遅くする効果はあるものの、銀の単独添加で主として成長するAuAl2 相の成長を積極的に抑えることは困難である。Ag,Mnの添加と併用することにより加熱後の接合強度の低下を抑制する効果があり、特に腐食反応の抑制には有効である。第一元素群の含有量を上記範囲に定めたのは、0.005重量%未満では接合部における信頼性向上の効果が小さく、一方5重量%を超えるとボール部の硬度および強度が高くなるため、接合時にアルミニウム電極の直下のシリコン基板にクラックなどの損傷を与えるという理由に基づくものである。
【0016】
また、Ag,Mnの添加に加えて、In,Sc,Ga,Si,Al(第二群)の少なくとも1種を総計で0.0005〜0.05重量%の範囲で添加することにより、金合金細線とアルミニウム電極との連続接合性を高めることが判明した。前述した接合時の損傷を懸念して、接合荷重または超音波振動を低く設定すると、接合直後に十分な強度を確保することが難しくなるが、第二元素群をAg,Mnの添加と併用することにより、連続接合時の不良発生はなく、接合強度を高めることができるものである。詳細な機構については判明していないが、初期の化合物成長の促進または、接合性の低下をもたらす可能性のあるワイヤ表面でのAg,Mnの酸化の抑制などが考えられる。第二元素群の含有量を上記範囲と定めたのは、0.0005重量%未満では接合性を高める効果が小さく、一方0.05重量%を超えると、かえって接合強度の低下をもたらすという理由に基づくものである。
【0017】
Ag,Mnの添加に加えて、Ca,Be,La,Ce,Y(第三群)の少なくとも1種を総計で0.0002〜0.03重量%の範囲で添加することは、樹脂封止時のワイヤ変形を抑制する効果が高まることが判明した。高密度実装において、樹脂封止時に隣接するワイヤ同士の接触が懸念される。金中へのAg,Mnの添加は機械的強度への影響が小さく、ワイヤ流れが懸念される場合がある。その際に、第三元素群を併用することにより、ワイヤの機械的強度またはヤング率を高めることができ、樹脂封止時のワイヤ変形を抑制することが確認された。第三元素群のみでも細線の強度は増加するが、Ag,Mnの添加と併用した方が単独添加よりも、引張試験で測定した破断強度およびヤング率は増加しており、ワイヤ流れの抑制には第三元素群とAg,Mnの添加との併用が効果あることが確認された。第三元素群の含有量を上記範囲と定めたのは、0.0002重量%未満では強度増加の効果が小さく、一方0.03重量%を超えると、ボール形成時の不具合として真球度が低下し、またボール部先端に引け巣が発生するという理由に基づくものである。
【0018】
Ag,Mnの添加および、第一、二元素群の共存により、接合後で且つ樹脂封止しない状態で半導体装置が高温保持されたときに、接合強度が顕著に上昇し、半導体装置の高温保管における信頼性の向上効果が高めることができる。これは、Ag,Mnの単独添加の場合の接合部では、化合物層が厚く成長したときに化合物層と金細線の界面近傍に小さなボイド(空隙)が観察されたが、さらに第一、二元素群の併用添加させることによりそれらの欠陥の発生も抑えられていることが原因であると思われる。
【0019】
またAg,Mn添加および、第一、三元素群の共存により、ワイヤ強度の向上効果が高まり、特に高温加熱後の強度が増加することが判明しており、樹脂封止時のワイヤ変形の抑制にも有効である。従って、ワイヤの細線化に有効であり、狭ピッチなどの高密度実装に好適である。
【0020】
さらにAg,Mn添加および、第二、三元素群の共存により、接合直後の接合強度の増加が促進され、実用面では接合時の加熱温度の低温化もはかることが可能となる。これは、第三元素群の添加による細線の強度の適度の上昇が、接合時にアルミニウム電極上の酸化膜の破壊を促進するように作用して、上述した第二元素群の接合性の向上効果をより一層高めていると推察される。
【0021】
【実施例】
以下に本発明の実施例について説明する。
金純度が約99.995重量%以上の電解金を用いて、前述の各添加元素群を含有する母合金を個別に高周波真空溶解炉で溶解鋳造して母合金を溶製した。 このようにして得られた各添加元素の母合金の所定量と金純度が約99.995重量%以上の電解金とにより、表1(実施例)および表2(比較例)に示す化学成分の金合金を高周波真空溶解炉で溶解鋳造し、その鋳塊を圧延した後に常温で伸線加工を行い、必要に応じて金合金細線の中間焼鈍工程を加え、さらに伸線工程を続け、最終線径が25μmの金合金細線とした後に、大気中で連続焼鈍して伸び値が約4%になるように調整した。
【0022】
得られた金合金細線について、ボール形状および接合時の損傷の程度、ワイヤの機械的特性、封止後のワイヤの流れ、接合強度、高温保管後の接合強度の変化、ボール接合部に成長した金属間化合物中の欠陥または腐食度などを調べた結果を表1および表2に併記した。
【0023】
ワイヤボンディングに使用される高速自動ボンダーを使用して、アーク放電によりワイヤ先端に作製した金合金ボールを走査型電子顕微鏡で観察し、ボール形状が異常なもの、ボール先端部において収縮孔の発生が認められるものなど半導体素子上の電極に良好な接合ができないものを△印で示した。さらにボール接合部の損傷に関しては、王水などを使用して金細線およびアルミニウム電極などを溶解し、接合部直下のシリコン基板の表面におけるクラックなどの損傷を走査型電子顕微鏡で観察した。50本以上の電極部を観察し、クラックなどの損傷が2カ所以上認められるものを×印にて示した。ボール形成が良好であり、且つ基板への損傷が認められないものを○印にて評価した。
【0024】
ボール接合部の接合強度については、アルミ電極の3μm上方で冶具を平行移動させて煎断破断を読みとるシェアテスト法で測定し、50本の破断荷重の平均値を測定した。
【0025】
樹脂封止後のワイヤ流れの測定に関しては、ワイヤのスパンとして4.5mmが得られるようボンディングした半導体素子が搭載されたリードフレームを、モールディング装置を用いてエポキシ樹脂で封止した後に、軟X線非破壊検査装置を用いて樹脂封止した半導体素子内部をX線投影し、前述したワイヤ曲がりと同等の手順によりワイヤ流れが最大の部分の流れ量を80本測定し、その平均値をワイヤのスパン長さで除算した値(百分率)を封止後のワイヤ流れと定義した。
【0026】
金ボールをアルミニウム電極に接合した半導体装置を樹脂封止しない状態で、窒素ガス中において200度で200時間加熱処理した後に、50本のシェアテストの平均値により接合強度の変化を評価した。さらに、同一の熱処理を施した半導体装置を用いて、ボール接合部の中心を通る断面まで垂直研磨し、接合界面に成長した金とアルミニウムの金属間化合物層中を観察した。ボイドなどの欠陥が接合界面全体に認められる場合は×印で、ボイドが局所的にのみ発生している場合を○印で、観察されない場合を◎印で表記した。
【0027】
接合部における腐食調査としては、金細線を接合した半導体装置をエポキシ樹脂で封止した後に、窒素ガス中において200度で300時間加熱処理をした後に、ボール接合部を垂直研磨し、接合界面に成長した金とアルミニウムの金属間化合物層の腐食を観察した。金属間化合物層は灰色を呈し、腐食が進行した化合物層は褐色になり容易に識別可能であることを利用して、ボール接合部における金属間化合物の腐食の進行を調べた。金属間化合物の腐食進行としては、ボール接合部の研磨表面において腐食領域長さ(b)が金属間化合物層成長の長さ(a)に占める割合で評価したものであり、腐食部が占める割合(a/b)を30個のボール接合部で平均した値が、5%以下では腐食が抑制が顕著であると判断して◎印、40%以上で腐食が顕著なものは△印、その中間である5%〜40%のものは○印で表記した。
【0028】
表1において、実施例1〜8は本発明の第1請求項記載に係わるものであり、実施例9〜13は第2項、実施例14〜18は第3項、実施例19〜23は第4請求項、実施例24〜28は第5、実施例29〜33は第6項、実施例34〜38は第7請求項記載に係わる金合金細線の結果である。
【0029】
Agの単独添加である比較例1〜3、およびMnの添加量が0.005重量%以下の比較例6,7では加熱後のシェア強度が低下しており、また封止状態での加熱により化合物層の腐食が顕著であるのに対し、本発明であるAgとMnの併用添加である実施例1〜8では、高い接合信頼性が得られていることが判明した。また、比較例15〜20では、Ag添加に加えて、本発明の第一元素群、第二元素群、第三元素群などを含有するもの、加熱後のシェア強度の低下および、化合物層の腐食が観察され、信頼性を確保するためにはMnの添加が必要であることが確認された。但し、Agの含有量が60%を超える比較例3,5では接合時にシリコン基板へ損傷を与えていた。
【0030】
Ag,Mnの含有に加えて、第一元素群のCu,Pd,Ptの併用している実施例9〜13では化合物層の腐食がほとんど認められず、信頼性がさらに向上していること、また、第一元素群と第二元素群が共存している実施例24〜28では、腐食の抑制に加えて、ボイドの発生も抑えられていることが判明した。
【0031】
Ag,Mnの含有に加えて、第二元素群のIn,Sc,Ga,Si,Alを適量含有する実施例14〜18では、接合直後のシェア強度が10gf程度増加していること、さらに、第二元素群と第三元素群が共存している実施例34〜38では、両者とも含有しない場合と比較して、シェア強度が20gf程度増加していることが確認された。
【0032】
Ag,Mnの含有に加えて、第三元素群のCa,Be,La,Ce,Yを併用した実施例19〜23では樹脂封止時のワイヤ流れ率が4%以下まで減少し、さらに第一元素群と第三元素群が共存している実施例29〜33では、流れ率が3%以下の低い値まで抑えられていることが確認された。
【0033】
【表1】

Figure 0003650461
【0034】
【表2】
Figure 0003650461
【0035】
【表3】
Figure 0003650461
【0036】
【表4】
Figure 0003650461
【0037】
【表5】
Figure 0003650461
【0038】
【表6】
Figure 0003650461
【0039】
【発明の効果】
以上説明したように、本発明においては、銀を高濃度で含有して材料費を低減させ、且つ接合部の長期信頼性を向上させた金合金細線を提供するものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gold alloy fine wire having excellent joint reliability used for connecting an electrode on a semiconductor element and an external lead.
[0002]
[Prior art]
Currently, gold alloy fine wires are mainly used as bonding wires for joining electrodes on semiconductor elements and external leads. That is, the tip of the gold fine wire is formed into a ball by arc discharge, the ball is pressure-bonded onto the aluminum electrode of the semiconductor element, and then the fine wire is further connected to the external lead side using ultrasonic waves. In order to use it as a semiconductor device such as a transistor or an IC, a resin is used for the purpose of protecting the Si chip, the bonding wire, and the lead frame to which the Si chip is attached after the bonding with the gold alloy thin wire. Seal.
[0003]
Recently, the environmental conditions in which semiconductor elements are used are becoming more and more severe. For example, semiconductor elements used in an engine room of an automobile may be used in a high temperature or high humidity environment. Moreover, heat generated during use cannot be ignored due to high-density mounting of semiconductor elements. 2. Description of the Related Art Conventionally, in semiconductor elements used under environmental conditions that require heat resistance, a semiconductor device that uses an aluminum thin wire as a bonding wire and is hermetically sealed with a ceramic package has been used.
[0004]
2. Description of the Related Art Conventionally, semiconductor elements that are used under environmental conditions that require heat resistance have been made of ceramic elements that use aluminum alloy fine wires as bonding wires. The aluminum alloy thin wire has an advantage that high reliability can be obtained by joining the same kind of metal at the joint with the electrode on the semiconductor element. However, for reasons such as cost and productivity, the use of aluminum alloy fine wires is limited to specific semiconductor elements, and the bonding method using gold alloy fine wires will continue to be excellent in high speed, productivity, workability, etc. It is considered mainstream.
[0005]
Competition in the semiconductor industry is intensifying year by year, and it goes without saying that improving product performance is an important issue as a development strategy. The material used for the semiconductor device is required to be inexpensive, and gold is used for the bonding wire. Therefore, the reason why the possibility as an alternative material such as inexpensive Cu and Ag wire was examined is as follows. However, due to comprehensive evaluation of bonding properties, bonding properties, reliability, etc., gold fine wires have become mainstream as before. Therefore, thinning for the main purpose of cost reduction is being studied, but there are still many issues such as insufficient strength and operability, and the development of inexpensive thin wire materials for semiconductor devices is currently underway. It is desired.
[0006]
When considering the possibility of containing it in gold at a high concentration, elements such as silver, platinum and palladium are assumed as noble metal systems. For example, JP-A-55-158642, JP-A-56-19628, and JP-A-56-19629 are disclosed in relation to the addition of silver element to a fine gold wire.
On the other hand, the development of an inexpensive gold alloy thin wire having high bonding reliability in a high temperature environment is desired for the bonding of the gold thin wire and the aluminum electrode.
[0007]
[Problems to be solved by the invention]
As a problem when using a gold alloy thin wire containing a high concentration of silver, a decrease in the reliability of the joint with the aluminum electrode was observed. This indicates that the bonding strength decreases when stored at a high temperature, and depending on the conditions, it was found that even the peeling at the bonded portion was reached. Although there is concern about the reliability of bonding with aluminum electrodes even with ordinary gold alloy thin wires, the bonding strength does not become zero just by heating, and in practical application of silver-containing gold alloy thin wires, It is essential to solve the problem of bonding reliability.
An object of the present invention is to provide a gold alloy fine wire with a low material cost, which contains a high concentration of silver and has high bonding reliability in bonding with an aluminum electrode.
[0008]
[Means for Solving the Problems]
As a result of examining the possibility of adding a high concentration mainly by the inventors of the present invention to reduce the material cost of the gold alloy fine wire, it has been found that the inclusion of silver is effective. This means that even if silver is contained up to several tens of percent, the ball formation is hardly adversely affected, and a good ball can be obtained even in the atmosphere. In addition, although the hardness of the ball part is increased, it is compared with other additive elements. This is because there is no increase in hardness that induces damage to the chip during bonding.
[0009]
Furthermore, from the viewpoint described above, it was confirmed that the gold alloy thin wire containing silver in the range of 10 to 60% by weight has good characteristics such as ball formability and loop shape. However, since the above-mentioned decrease in bonding reliability was observed, as a result of research to further improve bonding reliability at high temperatures, an increase in the silver concentration in gold resulted in an intermetallic compound phase formed at the joint. It was found that the type of gold was different from that of high-purity gold. Therefore, for the purpose of controlling the growth behavior of this compound, as a result of investigating the effect of additive elements on the gold alloy fine wire,
(A) In combination with the inclusion of silver, it has been found that by containing Mn in a range of 0.005 to 0.8% by weight, there is an effect of suppressing a decrease in bonding strength after heating.
In addition, as a result of further research on bondability and bondability, in addition to the addition of silver and Mn elements, the following first group, second group, and third group elements were also allowed to coexist. Finding findings.
(B) Addition of at least one element of the first group consisting of Cu, Pd, and Pt in the range of 0.005 to 5% by weight in combination with addition of Ag and Mn The effect of suppressing the growth of the compound is increased, and the bonding reliability is further improved.
(C) Addition of at least one element of the second group consisting of In, Sc, Ga, Si, and Al in the range of 0.0005 to 0.05 wt% in total is a combination of Ag and Mn addition By doing so, the effect of improving the bondability of the gold alloy fine wire to the aluminum electrode can be obtained.
(D) Addition of at least one element of the third group consisting of Ca, Be, La, Ce, and Y in the range of 0.0002 to 0.03% by weight in combination with addition of Ag and Mn By doing so, it was recognized that the mechanical strength or Young's modulus of the wire was increased, and the effect of suppressing wire deformation during resin sealing was enhanced.
[0010]
That is, the present invention is based on the above knowledge and has the following configuration as a gold alloy fine wire containing silver that realizes high bonding reliability.
(1) A gold alloy fine wire for a semiconductor element containing Ag in a range of 10 to 60% by weight and Mn in a range of 0.005 to 0.8%, with the balance being inevitable impurities of gold.
(2) A gold alloy fine wire containing, in addition to the component (1), at least one of Cu, Pd, and Pt in a total range of 0.005 to 5%.
(3) A gold alloy fine wire that further contains at least one of In, Sc, Ga, Si, and Al in a range of 0.0005 to 0.05% by weight in the component (1).
(4) A gold alloy fine wire that further contains at least one of Ca, Be, La, Ce, and Y in the range of 0.0002 to 0.03% by weight in addition to the component (1).
(5) A gold alloy fine wire that contains at least one of In, Sc, Ga, Si, and Al in the range of 0.0005 to 0.05 wt% in total in the component (2).
(6) A gold alloy fine wire containing, in the component (2), at least one of Ca, Be, La, Ce, and Y in a total range of 0.0002 to 0.03% by weight.
(7) A gold alloy fine wire that contains at least one of Ca, Be, La, Ce, and Y in the component (3) in a total range of 0.0002 to 0.03%.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Below, the structure of this invention regarding a gold alloy fine wire is further demonstrated.
The high-purity gold used in the present invention contains gold having a purity of at least 99.995% by weight or more, and the remainder consists of inevitable impurities.
Although the addition of silver in gold increases the processing strength at the time of wire drawing, in order to obtain an increase in strength after temper annealing required for property adjustment, a concentration of 10% by weight or more is necessary. If the concentration is 10% by weight or more, an effect can be obtained for reducing the material cost. Further, the upper limit of the silver content is set to 60% by weight because if the amount exceeds 60% by weight, the deformability of the ball is reduced and the silicon substrate directly under the aluminum electrode is damaged, such as cracks. It is based on.
[0012]
It has been found that as the silver concentration in gold increases, the AuAl 2 phase grows preferentially as an intermetallic compound phase generated at the junction with the aluminum electrode. Although this AuAl 2 phase has a high possibility of inducing void formation, in the case of high-purity gold, since the growth rate is slow, the conventional gold fine wire was not directly involved in the defect. It has been confirmed that the compounds observed at the joints in conventionally used gold alloy thin wires are usually Au 5 Al 2 phase, Au 4 Al phase, and the like.
[0013]
When Mn is added in addition to the inclusion of silver, the formation of AuAl 2 phase that mainly grows by the addition of silver alone can be suppressed, and instead, Au 2 Al phase and Au 5 Al 2 phase grow preferentially. It was confirmed. Although there are some unclear points regarding this mechanism, it has been confirmed that the Mn element is concentrated near the Au / Al interface, and this segregated Mn enriched layer affects the interdiffusion of gold and aluminum. It is assumed that the growth behavior of the compound phase has changed. Here, the Mn content is determined to be 0.005 to 0.8% by weight. If the Mn content is less than 0.005% by weight, the effect of suppressing the corrosion of the intermetallic compound in the joint is small. If it exceeds 0.8% by weight, shrinkage holes are formed in the ball portion formed at the tip of the wire, and this is based on the reason that the ball bondability is lowered.
[0014]
Furthermore, regarding the reliability when semiconductor devices encapsulated using ordinary high-purity gold fine wires are used in a high-temperature environment, an intermetallic compound of gold and aluminum grown in the vicinity of the bonding interface is used as the encapsulating resin. There is a concern that the electrical resistance increases due to a corrosion reaction with the halogen component which is an essential element. This corrosion phenomenon was observed in the vicinity of the interface between the Au 2 Al phase grown at the joint and the gold ball part even when a gold alloy thin wire containing silver was used. Thus, it has been found that when silver and Mn are added in combination, corrosion of the intermetallic compound layer can be remarkably reduced in the resin-sealed joint. In order to obtain a sufficient effect in suppressing the corrosion, a range of 0.01 to 0.8% by weight is more preferable in the above-described concentration range of the Mn element used in combination with silver.
[0015]
Growth of the entire gold / aluminum compound layer by adding at least one of Cu, Pd, and Pt (first group) in the range of 0.005 to 5% by weight in addition to addition of Ag and Mn It has been found that the effect of suppressing the speed is increased. Although the addition of only Cu, Pd, and Pt has the effect of slowing the growth rate, it is difficult to positively suppress the growth of the AuAl 2 phase that grows mainly by adding silver alone. Combined use with the addition of Ag and Mn has an effect of suppressing a decrease in bonding strength after heating, and is particularly effective for suppressing a corrosion reaction. The content of the first element group is set in the above range because if the amount is less than 0.005% by weight, the effect of improving the reliability in the joint is small, whereas if it exceeds 5% by weight, the hardness and strength of the ball part become high. Therefore, it is based on the reason that damage such as cracks is given to the silicon substrate immediately below the aluminum electrode during bonding.
[0016]
Further, in addition to the addition of Ag and Mn, at least one of In, Sc, Ga, Si, and Al (second group) is added in the range of 0.0005 to 0.05% by weight in total. It has been found that the continuous bondability between the alloy fine wire and the aluminum electrode is improved. If the bonding load or the ultrasonic vibration is set low because of fear of damage during the above-mentioned bonding, it becomes difficult to ensure sufficient strength immediately after bonding, but the second element group is used in combination with the addition of Ag and Mn. Thus, there is no occurrence of defects during continuous bonding, and the bonding strength can be increased. Although the detailed mechanism has not been clarified, it is conceivable to promote the initial compound growth or to suppress the oxidation of Ag and Mn on the wire surface, which may cause a decrease in the bonding property. The reason why the content of the second element group is determined to be in the above range is that if the amount is less than 0.0005% by weight, the effect of improving the bondability is small, whereas if it exceeds 0.05% by weight, the joint strength is reduced. It is based on.
[0017]
In addition to adding Ag and Mn, adding at least one of Ca, Be, La, Ce, and Y (third group) in a total range of 0.0002 to 0.03% by weight It has been found that the effect of suppressing wire deformation at the time increases. In high-density packaging, there is concern about contact between adjacent wires during resin sealing. Addition of Ag and Mn into gold has a small effect on mechanical strength, and wire flow may be a concern. At that time, it was confirmed that by using the third element group in combination, the mechanical strength or Young's modulus of the wire can be increased, and the deformation of the wire during resin sealing is suppressed. Although the strength of the fine wire is increased only by the third element group, the breaking strength and Young's modulus measured in the tensile test are increased more in combination with the addition of Ag and Mn than in the case of adding alone, and this suppresses wire flow. It was confirmed that the combined use of the third element group and the addition of Ag and Mn is effective. The content of the third element group is determined to be in the above range because if the amount is less than 0.0002% by weight, the effect of increasing the strength is small. This is based on the reason that the shrinkage occurs at the tip of the ball portion.
[0018]
Due to the addition of Ag and Mn and the coexistence of the first and second elements, the bonding strength is significantly increased when the semiconductor device is held at a high temperature after bonding and without resin sealing, and the semiconductor device is stored at high temperature. The improvement effect of the reliability in can be enhanced. This is because a small void (void) was observed in the vicinity of the interface between the compound layer and the gold wire when the compound layer grew thick at the joint in the case of adding Ag and Mn alone. The reason seems to be that the occurrence of these defects is also suppressed by adding the group together.
[0019]
It has also been found that the addition of Ag and Mn and the coexistence of the first and third element groups increase the effect of improving the wire strength, especially the strength after high-temperature heating, and suppresses wire deformation during resin sealing. Also effective. Therefore, it is effective for thinning the wire and is suitable for high-density mounting such as a narrow pitch.
[0020]
Furthermore, the addition of Ag, Mn and the coexistence of the second and third element groups promotes an increase in bonding strength immediately after bonding, and in practical terms it is possible to reduce the heating temperature during bonding. This is because the moderate increase in the strength of the thin wire due to the addition of the third element group acts so as to promote the destruction of the oxide film on the aluminum electrode during the bonding, and the effect of improving the bonding property of the second element group described above. It is inferred that this has been further enhanced.
[0021]
【Example】
Examples of the present invention will be described below.
By using electrolytic gold having a gold purity of about 99.995% by weight or more, the mother alloy containing each of the additive elements described above was individually melt-cast in a high-frequency vacuum melting furnace to melt the mother alloy. The chemical components shown in Table 1 (Examples) and Table 2 (Comparative Examples) were obtained by using a predetermined amount of the master alloy of each additive element thus obtained and electrolytic gold having a gold purity of about 99.995 wt% or more. The gold alloy was melt-cast in a high-frequency vacuum melting furnace, the ingot was rolled, and then drawn at room temperature. If necessary, an intermediate annealing process for the gold alloy fine wire was added, and the wire drawing process was continued. After forming a gold alloy fine wire having a wire diameter of 25 μm, the wire was continuously annealed in the air and adjusted to have an elongation value of about 4%.
[0022]
About the obtained gold alloy thin wire, the shape of the ball and the degree of damage at the time of bonding, the mechanical properties of the wire, the flow of the wire after sealing, the bonding strength, the change in the bonding strength after high temperature storage, and grown in the ball bonded part Tables 1 and 2 also show the results of examining defects or corrosion degree in the intermetallic compounds.
[0023]
Using a high-speed automatic bonder used for wire bonding, a gold alloy ball produced on the wire tip by arc discharge is observed with a scanning electron microscope, and the ball shape is abnormal. Those which cannot be satisfactorily bonded to the electrodes on the semiconductor element, such as those recognized, are indicated by Δ. Further, regarding damage to the ball joint, gold fine wires and aluminum electrodes were dissolved using aqua regia etc., and damage such as cracks on the surface of the silicon substrate immediately below the joint was observed with a scanning electron microscope. More than 50 electrode portions were observed, and those where damages such as cracks were observed at two or more locations were indicated by x marks. The case where the ball formation was good and no damage to the substrate was observed was evaluated with a circle.
[0024]
The joint strength of the ball joint was measured by a shear test method in which a jig was translated 3 μm above the aluminum electrode to read the breaking break, and the average value of 50 break loads was measured.
[0025]
Regarding the measurement of the wire flow after resin sealing, the lead frame on which the semiconductor element bonded to obtain a wire span of 4.5 mm is sealed with epoxy resin using a molding device, and then soft X The inside of the semiconductor element sealed with resin using a non-destructive inspection device is X-ray projected, and the flow amount of the portion where the wire flow is maximum is measured by the same procedure as the above-mentioned wire bending, and the average value is measured by the wire The value (percentage) divided by the span length was defined as the wire flow after sealing.
[0026]
The semiconductor device in which the gold ball was bonded to the aluminum electrode was heat-treated in nitrogen gas at 200 ° C. for 200 hours without resin sealing, and then the change in bonding strength was evaluated based on the average value of 50 shear tests. Further, using a semiconductor device subjected to the same heat treatment, vertical polishing was performed up to a cross section passing through the center of the ball joint, and the inside of the intermetallic compound layer of gold and aluminum grown on the joint interface was observed. In the case where defects such as voids are observed on the entire bonding interface, the mark is indicated by X, the case where voids are generated only locally is indicated by ○, and the case where no void is observed is indicated by ◎.
[0027]
As a corrosion investigation at the joint, after sealing the semiconductor device joined with the gold wire with an epoxy resin, after heat-treating at 200 degrees in nitrogen gas for 300 hours, the ball joint is vertically polished to form a joint interface. Corrosion of the grown gold and aluminum intermetallic compound layer was observed. The progress of the corrosion of the intermetallic compound in the ball joint was examined by utilizing the fact that the intermetallic compound layer was gray and the compound layer in which the corrosion progressed was brown and could be easily identified. As the progress of corrosion of the intermetallic compound, the corrosion area length (b) in the polished surface of the ball joint is evaluated by the ratio of the growth of the intermetallic compound layer (a), and the ratio of the corroded area. When the average value of (a / b) at 30 ball joints is 5% or less, it is judged that the inhibition of corrosion is remarkable. Intermediate ones of 5% to 40% are indicated by ◯ marks.
[0028]
In Table 1, Examples 1 to 8 relate to the description of the first claim of the present invention, Examples 9 to 13 are the second item, Examples 14 to 18 are the third item, and Examples 19 to 23 are The fourth claim, Examples 24-28 are the results of the fifth embodiment, Examples 29-33 are the results of the sixth item, and Examples 34-38 are the results of the gold alloy fine wires according to the seventh claim.
[0029]
In Comparative Examples 1 to 3 in which Ag is added alone, and in Comparative Examples 6 and 7 in which the amount of Mn added is 0.005 wt% or less, the shear strength after heating is reduced, and heating in a sealed state is caused by heating. In contrast to the remarkable corrosion of the compound layer, in Examples 1 to 8, which are the combined addition of Ag and Mn according to the present invention, it was found that high bonding reliability was obtained. Moreover, in Comparative Examples 15-20, in addition to Ag addition, what contains the 1st element group of this invention, a 2nd element group, a 3rd element group, etc., the fall of the shear strength after a heating, and a compound layer Corrosion was observed, and it was confirmed that addition of Mn was necessary to ensure reliability. However, in Comparative Examples 3 and 5 in which the Ag content exceeds 60%, the silicon substrate was damaged during bonding.
[0030]
In addition to the inclusion of Ag and Mn, in Examples 9 to 13 in which Cu, Pd, and Pt of the first element group are used in combination, the corrosion of the compound layer is hardly observed, and the reliability is further improved. Moreover, in Examples 24-28 where the 1st element group and the 2nd element group coexist, it turned out that generation | occurrence | production of a void is also suppressed in addition to suppression of corrosion.
[0031]
In Examples 14 to 18 containing an appropriate amount of In, Sc, Ga, Si, and Al of the second element group in addition to the inclusion of Ag and Mn, the shear strength immediately after bonding is increased by about 10 gf, In Examples 34 to 38 in which the second element group and the third element group coexist, it was confirmed that the shear strength increased by about 20 gf as compared with the case where neither was contained.
[0032]
In Examples 19 to 23 in which Ca, Be, La, Ce, and Y of the third element group are used in addition to the inclusion of Ag and Mn, the wire flow rate during resin sealing is reduced to 4% or less. In Examples 29 to 33 in which the one element group and the third element group coexist, it was confirmed that the flow rate was suppressed to a low value of 3% or less.
[0033]
[Table 1]
Figure 0003650461
[0034]
[Table 2]
Figure 0003650461
[0035]
[Table 3]
Figure 0003650461
[0036]
[Table 4]
Figure 0003650461
[0037]
[Table 5]
Figure 0003650461
[0038]
[Table 6]
Figure 0003650461
[0039]
【The invention's effect】
As described above, the present invention provides a gold alloy fine wire that contains silver at a high concentration to reduce the material cost and improve the long-term reliability of the joint.

Claims (7)

重量で
Agを10〜60%、
Mnを0.005〜0.8%
の範囲で含有し、残部が金および不可避的不純物からなることを特徴とする半導体素子用金合金細線。
10-60% Ag by weight,
Mn 0.005 to 0.8%
A gold alloy fine wire for a semiconductor element, characterized in that the remainder comprises gold and inevitable impurities.
重量で
Agを10〜60%、
Mnを0.005〜0.8%、
さらに
Cu,Pd,Ptの少なくとも1種を総計で0.005〜5%
の範囲で含有し、残部が金および不可避的不純物からなることを特徴とする半導体素子用金合金細線。
10-60% Ag by weight,
0.005 to 0.8% Mn,
Furthermore, a total of at least one of Cu, Pd, and Pt is 0.005 to 5%.
A gold alloy fine wire for a semiconductor element, characterized in that the remainder comprises gold and inevitable impurities.
重量で
Agを10〜60%、
Mnを0.005〜0.8%、
さらに
In,Sc,Ga,Si,Alの少なくとも1種を総計で0.0005〜0.05%
の範囲で含有し、残部が金および不可避的不純物からなることを特徴とする半導体素子用金合金細線。
10-60% Ag by weight,
0.005 to 0.8% Mn,
Furthermore, a total of at least one of In, Sc, Ga, Si, and Al is 0.0005 to 0.05%.
A gold alloy fine wire for a semiconductor element, characterized in that the remainder comprises gold and inevitable impurities.
重量で
Agを10〜60%、
Mnを0.005〜0.8%、
さらに
Ca,Be,La,Ce,Yの少なくとも1種を総計で0.0002〜0.03%
の範囲で含有し、残部が金および不可避的不純物からなることを特徴とする半導体素子用金合金細線。
10-60% Ag by weight,
0.005 to 0.8% Mn,
Furthermore, at least one of Ca, Be, La, Ce, and Y is 0.0002 to 0.03% in total
A gold alloy fine wire for a semiconductor element, characterized in that the remainder comprises gold and inevitable impurities.
重量で
Agを10〜60%、
Mnを0.005〜0.8%、
Cu,Pd,Ptの少なくとも1種を総計で0.005〜5%、
さらに
In,Sc,Ga,Si,Alの少なくとも1種を総計で0.0005〜0.05%
の範囲で含有し、残部が金および不可避的不純物からなることを特徴とする半導体素子用金合金細線。
10-60% Ag by weight,
0.005 to 0.8% Mn,
0.005 to 5% in total of at least one of Cu, Pd, and Pt,
Furthermore, a total of at least one of In, Sc, Ga, Si, and Al is 0.0005 to 0.05%.
A gold alloy fine wire for a semiconductor element, characterized in that the remainder comprises gold and inevitable impurities.
重量で
Agを10〜60%、
Mnを0.005〜0.8%、さらに
Cu,Pd,Ptの少なくとも1種を総計で0.005〜5%、
さらに
Ca,Be,La,Ce,Yの少なくとも1種を総計で0.0002〜0.03%
の範囲で含有し、残部が金および不可避的不純物からなることを特徴とする半導体素子用金合金細線。
10-60% Ag by weight,
Mn is 0.005 to 0.8%, and at least one of Cu, Pd and Pt is 0.005 to 5% in total,
Furthermore, at least one of Ca, Be, La, Ce, and Y is 0.0002 to 0.03% in total
A gold alloy fine wire for a semiconductor element, characterized in that the remainder comprises gold and inevitable impurities.
重量で
Agを10〜60%、
Mnを0.005〜0.8%、
In,Sc,Ga,Si,Alの少なくとも1種を総計で0.0005〜0.05%、
さらに
Ca,Be,La,Ce,Yの少なくとも1種を総計で0.0002〜0.03%
の範囲で含有し、残部が金および不可避的不純物からなることを特徴とする半導体素子用金合金細線。
10-60% Ag by weight,
0.005 to 0.8% Mn,
0.0005 to 0.05% in total of at least one of In, Sc, Ga, Si, and Al,
Furthermore, at least one of Ca, Be, La, Ce, and Y is 0.0002 to 0.03% in total
A gold alloy fine wire for a semiconductor element, characterized in that the remainder comprises gold and inevitable impurities.
JP08289196A 1996-04-04 1996-04-04 Gold alloy fine wire for semiconductor devices Expired - Lifetime JP3650461B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08289196A JP3650461B2 (en) 1996-04-04 1996-04-04 Gold alloy fine wire for semiconductor devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08289196A JP3650461B2 (en) 1996-04-04 1996-04-04 Gold alloy fine wire for semiconductor devices

Publications (2)

Publication Number Publication Date
JPH09272931A JPH09272931A (en) 1997-10-21
JP3650461B2 true JP3650461B2 (en) 2005-05-18

Family

ID=13786906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08289196A Expired - Lifetime JP3650461B2 (en) 1996-04-04 1996-04-04 Gold alloy fine wire for semiconductor devices

Country Status (1)

Country Link
JP (1) JP3650461B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3994113B2 (en) * 2004-09-30 2007-10-17 田中電子工業株式会社 Wire bump
JP2007142271A (en) * 2005-11-21 2007-06-07 Tanaka Electronics Ind Co Ltd Bump material and bonding structure
JP4874922B2 (en) * 2007-01-18 2012-02-15 新日鉄マテリアルズ株式会社 Bonding wire for semiconductor mounting
JP4771562B1 (en) 2011-02-10 2011-09-14 田中電子工業株式会社 Ag-Au-Pd ternary alloy bonding wire
JP5080682B1 (en) * 2011-12-02 2012-11-21 田中電子工業株式会社 Gold-platinum-palladium alloy bonding wire
JP2014135473A (en) * 2012-12-11 2014-07-24 Renesas Electronics Corp Optical coupling element
CN110117733A (en) * 2019-04-30 2019-08-13 汕头市骏码凯撒有限公司 A kind of electrum bonding wire and its manufacturing method
EP4120328A4 (en) * 2020-03-13 2023-12-20 Nippon Micrometal Corporation Al bonding wire

Also Published As

Publication number Publication date
JPH09272931A (en) 1997-10-21

Similar Documents

Publication Publication Date Title
JP4771562B1 (en) Ag-Au-Pd ternary alloy bonding wire
JP4866490B2 (en) Copper alloy bonding wire for semiconductors
JP5343069B2 (en) Bonding wire bonding structure
TWI401323B (en) Wire with gold alloy wire
JP3650461B2 (en) Gold alloy fine wire for semiconductor devices
JP3126926B2 (en) Gold alloy fine wire for semiconductor element and semiconductor device
JPH09275120A (en) Semiconductor device
JP3673368B2 (en) Gold-silver alloy fine wire for semiconductor devices
US5989364A (en) Gold-alloy bonding wire
JP3612179B2 (en) Gold-silver alloy fine wire for semiconductor devices
TWI407515B (en) Wire with gold alloy wire
JP3612180B2 (en) Gold-silver alloy fine wire for semiconductor devices
JP3542867B2 (en) Semiconductor device
JP3445616B2 (en) Gold alloy wires for semiconductor devices
CN111656501B (en) Bonding wire
JP3673366B2 (en) Semiconductor element
JP3764629B2 (en) Semiconductor device with wire wedge-bonded
JP3593206B2 (en) Gold alloy fine wires and bumps for bumps
KR100618054B1 (en) Au alloy bonding wire
JP3426399B2 (en) Gold alloy fine wire for semiconductor devices
JP3747023B2 (en) Gold bonding wire for semiconductor
JP2005294874A (en) Wire wedge bonded semiconductor device and gold alloy bonding wire
JP3571793B2 (en) Gold alloy wire and gold alloy bump
JP2556084B2 (en) Cu alloy extra fine wire for semiconductor devices
JPS6321841A (en) Semiconductor device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050218

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130225

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term