WO2014104862A1 - 광학 소자 - Google Patents

광학 소자 Download PDF

Info

Publication number
WO2014104862A1
WO2014104862A1 PCT/KR2013/012419 KR2013012419W WO2014104862A1 WO 2014104862 A1 WO2014104862 A1 WO 2014104862A1 KR 2013012419 W KR2013012419 W KR 2013012419W WO 2014104862 A1 WO2014104862 A1 WO 2014104862A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
layer
degrees
axis
change
Prior art date
Application number
PCT/KR2013/012419
Other languages
English (en)
French (fr)
Inventor
김신영
박문수
신부건
윤혁
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2015546404A priority Critical patent/JP6354106B2/ja
Priority to EP13868206.7A priority patent/EP2940496B1/en
Priority to CN201380068371.7A priority patent/CN104884982B/zh
Priority to US14/649,850 priority patent/US9599833B2/en
Publication of WO2014104862A1 publication Critical patent/WO2014104862A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/281Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for attenuating light intensity, e.g. comprising rotatable polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/02Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of crystals, e.g. rock-salt, semi-conductors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/12Optical coatings produced by application to, or surface treatment of, optical elements by surface treatment, e.g. by irradiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133531Polarisers characterised by the arrangement of polariser or analyser axes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133631Birefringent elements, e.g. for optical compensation with a spatial distribution of the retardation value

Definitions

  • the present application relates to an optical element and an optical panel.
  • An optical element such as a retardation film or a polarizing plate may be used in various applications including, for example, for adjusting the characteristics of light in a display device or for a window or shade such as a building or an automobile.
  • a polymer film such as a PVA (poly (vinyl alcohol)) film or the like
  • a film produced using a liquid crystal compound and a dichroic dye or optically imparted by stretching The film etc. which provided optical anisotropy using the film or the liquid crystal compound which were used are known.
  • Patent Document 1 Korean Patent Publication No. 2008-0077975
  • Patent Document 2 Korean Registered Patent No. 0264504
  • Patent Document 3 US Patent No. 5,707,566
  • the present application provides an optical element and an optical panel.
  • Exemplary optical elements may include an optical layer.
  • optical layer in the present application may include all kinds of layers formed to be capable of optically required functions, for example, to delay a phase of incident light or to change states such as polarization states.
  • the optical layer may include a region where the direction of the optical axis or the light absorption axis changes in one direction (hereinafter, may be referred to as a change region).
  • the term optical axis in the present application may mean a slow axis or a fast axis in the anisotropic region.
  • the change in the direction of the optical axis or the light absorption axis in the change region of the optical layer may occur continuously. Continuous change in the direction of the optical axis or light absorption axis may mean that the angle formed by the optical axis or light absorption axis increases or decreases along one direction.
  • FIG. 1 is a diagram schematically showing an upper shape of an exemplary optical layer, in which both arrows indicate the optical axis or light absorption axis of the optical layer.
  • the angle formed by the optical axis or the light absorption axis increases along one direction (the upper to lower direction in FIG. 1) when measured in a counterclockwise direction.
  • the average rate of change of the optical axis or the light absorption axis in the change region may be determined according to Equation 1 below.
  • V 360 / P
  • Equation 1 V is the average rate of change, P is the pitch of the change area.
  • the pitch of the change region is a region in which the angle formed by the optical axis or the light absorption axis is continuously increased or decreased along one direction, so that the optical axis or the light absorption axis is required to complete the rotation of 360 degrees. It is a length measured along the said one direction. Unless otherwise specified in the present application, the unit of length may be millimeters (mm). Therefore, in Equation 1, the unit of average change rate V may be degrees / mm.
  • FIG. 2 shows an area where the angle of the optical axis or the light absorption axis continuously decreases along one direction (upward to downward direction in FIG. 2) when measured in a clockwise direction, and the pitch, that is, the optical axis Or the distance measured along the one direction in which the light absorption axis is required to complete a 360 degree rotation.
  • the pitch is either clockwise or counterclockwise with respect to the optical axis or light absorption axis at the point where the change area starts.
  • the angle A at which the optical axis or the light absorption axis is rotated and the length L of the change area can be obtained by substituting Equation 2 below.
  • Equation 2 P is the pitch of the change region, L is the length of the change region, and A is the change region measured in either the clockwise or counterclockwise direction with respect to the optical axis or the light absorption axis of the starting point of the change region. The angle at which the optical axis or the light absorption axis is rotated.
  • the average rate of change determined by Equation 1 in the change region is greater than 0 and may be 5 or less. In another example, the average change rate may be 4.5 or less, 4 or less, 3.5 or less, 3 or less, 2.5 or less, 2.0 or less, 1.5 or less, 1.0 or less, or 0.7 or less.
  • the average rate of change can also be at least 0.1, at least 0.2 or at least 0.2.
  • the optical layer may be a single layer.
  • the term monolayer is used in the concept of excluding a layer formed by assembling or stacking two or more layers.
  • a layer formed by assembling two or more layers having different optical axes or light absorption axes to achieve a changing optical axis or light absorption axis, or by laminating a polarizing layer and a retardation layer may be a category of the single layer.
  • a boundary may not be observed between regions in which the optical axis or the light absorption axis is different in the change region of the optical layer. That is, in the optical layer, the change in the optical axis or the light absorption axis is substantially completely continuous, and the domain may not be observed.
  • the boundary is not observed between regions in which the optical axis or the optical absorption is different in the change region of the optical layer may mean a case where the change in the optical axis or the light absorption axis of the change region satisfies Equation 3 below.
  • Equation 3 X is a distance measured according to one direction from which the change of the optical axis or light absorption axis occurs from the start point of the change region, and Y is an optical axis at the X point measured based on the optical axis or light absorption axis of the start point of the change region. Or an angle at which the light absorption axis is rotated, and a is a number within a range exceeding 0 and being 5 or less.
  • the rotation angle Y of the optical axis or the light absorption axis is 0 degrees of the optical axis or the light absorption axis of the point where the change region starts, and is either clockwise or counterclockwise based on the 0 degree.
  • a may be 4.5 or less, 4 or less, 3.5 or less, 3 or less, 2.5 or less, 2.0 or less, 1.5 or less, 1.0 or less, or 0.7 or less in another example.
  • a may be 0.1 or more, 0.2 or more, or 0.2 or more.
  • a change in the optical axis or the light absorption axis satisfies Equation 3 above, and continuously occurs so that an optical element suitable for the intended use can be provided.
  • the rotation angle of the change region may be determined according to Equation 4 below.
  • Equation 4 ⁇ is a rotation angle, V is an average rate of change, and L is the length of the change region.
  • Equation 4 the average rate of change (V) may be measured according to Equation 1.
  • the range of the rotation angle of the change region may be determined in consideration of the application to which the optical element is applied, and is not particularly limited, but may be, for example, about 10 degrees or more, 20 degrees or more, 30 degrees or more, 40 degrees or more, or 50 degrees.
  • the upper limit of the rotation angle is also not particularly limited as determined according to the intended use, but may be, for example, about 1,000 degrees or less, about 900 degrees or less, or about 800 degrees or less.
  • the optical layer of the optical element comprises only one of the above-mentioned change regions, if necessary, includes two or more change regions, or other regions other than the change region, for example, an optical axis or a light absorption axis in one direction. It may include a region that is formed uniformly only, or a region where a change in the optical axis or light absorption axis occurs discontinuously.
  • the optical layer may be a phase retardation layer or a polarization layer.
  • the optical layer may have an optical axis having the above-described shape
  • the optical layer may have a light absorption axis having the above-described shape.
  • the retardation or the polarization efficiency in the case where the optical layer is a polarizing layer is not particularly limited and can be freely adjusted by selecting an appropriate raw material in consideration of the intended use.
  • the optical layer may be a liquid crystal polymer layer.
  • the term liquid crystal polymer layer may refer to a layer formed by polymerizing a polymerizable liquid crystal compound (a liquid crystal compound called RM (reactive mesogen)).
  • RM reactive mesogen
  • the liquid crystal polymer layer can be formed by polymerizing in a state where the polymerizable liquid crystal compound is oriented on the alignment film as described later.
  • the liquid crystal polymer layer may further include known additional components, for example, a non-polymerizable liquid crystal compound, a polymerizable non-liquid crystalline compound, a non-polymerizable non-liquid crystalline compound, a surfactant or a leveling agent.
  • a polymerizable liquid crystal compound which forms a liquid crystal polymer layer an appropriate kind can be selected according to the objective.
  • the liquid crystal compound a compound exhibiting a smectic phase, a nematic phase, or a cholesteric phase can be used.
  • liquid crystal compound having such characteristics, it is possible to more efficiently form the optical layer of the desired form.
  • polymeric liquid crystal compound As said polymeric liquid crystal compound, the polymeric liquid crystal compound of following General formula (1) can be used, for example.
  • A is a single bond, -COO- or -OCO-
  • R 1 to R 10 are each independently hydrogen, halogen, alkyl group, alkoxy group, alkoxycarbonyl group, cyano group, nitro group, -OQP or A substituent of Formula 2 or a pair of two adjacent substituents of R 1 to R 5 or a pair of two adjacent substituents of R 6 to R 10 are connected to each other to form a benzene substituted with -OQP, wherein R 1 to At least one of R 10 is -OQP or a substituent of Formula 2 below, or at least one pair of two adjacent substituents of R 1 to R 5 or two adjacent substituents of R 6 to R 10 are connected to each other to form -OQP To form a benzene substituted, wherein Q is an alkylene group or an alkylidene group, and P is an alkenyl group, epoxy group, cyano group, carboxyl group, acryloyl
  • B is a single bond, -COO- or -OCO-
  • R 11 to R 15 are each independently hydrogen, halogen, alkyl group, alkoxy group, alkoxycarbonyl group, cyano group, nitro group or -OQP, or A pair of adjacent two substituents of R 11 to R 15 are connected to each other to form a benzene substituted with -OQP, wherein at least one of R 11 to R 15 is -OQP or two adjacent ones of R 11 to R 15 The pair of substituents are connected to each other to form benzene substituted with -OQP, wherein Q is an alkylene group or an alkylidene group, and P is an alkenyl group, epoxy group, cyano group, carboxyl group, acryloyl group, methacrylo It is a polymerizable functional group, such as a diary, acryloyloxy group, or methacryloyloxy group.
  • two adjacent substituents may be linked to each other to form a benzene substituted with -OQP, which may mean that two adjacent substituents are connected to each other to form a naphthalene skeleton substituted with -OQP as a whole. .
  • single bond means a case where no separate atom is present in a portion represented by A or B.
  • A is a single bond in Formula 1
  • benzene on both sides of A may be directly connected to form a biphenyl structure.
  • halogen in the formula (1) and (2) for example, chlorine, bromine or iodine and the like can be exemplified.
  • alkyl group unless otherwise specified, for example, a straight or branched chain alkyl group having 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms or 1 to 4 carbon atoms. It may mean, or may mean, for example, a cycloalkyl group having 3 to 20 carbon atoms, 3 to 16 carbon atoms, or 4 to 12 carbon atoms.
  • the alkyl group may be optionally substituted by one or more substituents.
  • alkoxy group may mean, for example, an alkoxy group having 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms, or 1 to 4 carbon atoms. Can be.
  • the alkoxy group may be linear, branched or cyclic.
  • the alkoxy group may be optionally substituted by one or more substituents.
  • alkylene group or "alkylidene group” means, for example, an alkylene group or an alkylidene group having 1 to 12 carbon atoms, 4 to 10 carbon atoms or 6 to 9 carbon atoms, unless otherwise specified. Can be.
  • the alkylene group or alkylidene group may be, for example, linear, branched or cyclic.
  • the alkylene group or alkylidene group may be optionally substituted by one or more substituents.
  • alkenyl group means, for example, an alkenyl group having 2 to 20 carbon atoms, 2 to 16 carbon atoms, 2 to 12 carbon atoms, 2 to 8 carbon atoms, or 2 to 4 carbon atoms, unless otherwise specified. can do.
  • the alkenyl group may be, for example, linear, branched or cyclic.
  • the alkenyl group may be optionally substituted by one or more substituents.
  • P is, for example, acryloyl group, methacryloyl group, acryloyloxy group or methacryloyloxy group; Acryloyloxy group or methacryloyloxy group; Or acryloyloxy group.
  • an alkyl group, an alkoxy group, an alkenyl group, an epoxy group, an oxo group, an oxetanyl group, a thiol group, a cyano group, a carboxyl group, acryloyl group, a methacryloyl group, Acryloyloxy group, methacryloyloxy group or an aryl group may be exemplified, but is not limited thereto.
  • At least one of -OQP or a residue of formula (2), which may be present in Formulas (1) and (2), may, for example, be present at a position of R 3 , R 8, or R 13 .
  • the substituents connected to each other to constitute benzene substituted with -OQP may be, for example, R 3 and R 4 or R 12 and R 13 .
  • substituents other than -OQP or residues of the formula (2) in the compound of the formula (1) or the residue of the formula (2) or substituents other than the substituents connected to each other to form benzene are, for example, hydrogen, halogen, straight chain of 1 to 4 It may be a branched alkyl group, an alkoxycarbonyl group containing a straight or branched chain alkoxy group having 1 to 4 carbon atoms, a cycloalkyl group having 4 to 12 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a cyano group or a nitro group, in another example, chlorine Or an alkoxycarbonyl group or cyano group comprising a straight or branched chain alkyl group having 1 to 4 carbon atoms, a cycloalkyl group having 4 to 12 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a straight or branched chain alkoxy group having 1 to 4 carbon atoms have.
  • the polymerizable liquid crystal compound which may also be represented by Formula 1 may include, for example, one, two or more, one to ten, one to eight, one to one polymerizable functional group (P in Formula 1 or 2). To 6, 1 to 5, 1 to 4, 1 to 3 or 1 to 2 may include.
  • the optical layer may be a liquid crystal polymer layer including a dichroic dye or a Lyotropic Liquid Crystal (LLC) layer.
  • an optical layer is formed by polymerizing the polymerizable liquid crystal compound in a state in which a layer containing a polymerizable liquid crystal compound and a dichroic dye is aligned on an alignment film described later, or shearing force in a desired direction on a breast liquid crystal.
  • the above-mentioned optical layer can be formed by applying a force) to form a layer.
  • the type of the polymerizable liquid crystal compound forming the polymer layer may be appropriately selected in consideration of the performance of the desired polarizing layer. kind can be used.
  • the liquid crystal polymer layer which is an optical layer, may include a dichroic dye.
  • the term dye may refer to a material capable of intensively absorbing and / or modifying light in at least part or the entire range within the visible light region, for example, in the 400 nm to 800 nm wavelength range, the term dichroic The dye may refer to a material capable of anisotropic absorption of light in at least part or the entire range of the visible light region.
  • dichroic dyes in principle all kinds of dyes having a maximum absorbance in the visible region, for example, 400 nm to 800 nm can be used. Such dyes are known, for example, as azo dyes or anthraquinone dyes.
  • azo dyes F355 registered trademark
  • F357 registered trademark
  • F593 registered trademark
  • dyes of a kind known to exhibit the same effect as the above, etc. may be used. It is possible, but not limited to.
  • dichroic dye for example, all kinds of dyes known to have properties as described above and having properties that can be oriented according to the orientation of the liquid crystal compound can be used.
  • the optical element may further include a base layer.
  • the optical element may further include a base layer, and the optical layer may be formed on at least one surface of the base layer.
  • the optical layer may be formed on both surfaces of a base material layer as needed.
  • 3 is a schematic view of one example of the optical element, showing a form in which the base layer 10 and the optical layer 20 are sequentially formed.
  • a base material layer a well-known raw material can be used without a restriction
  • inorganic films such as a glass plate, a crystalline or amorphous silicon film, a quartz, or an Indium Tin Oxide (ITO) film, a plastic film, etc. can be used.
  • the optically isotropic base material layer and the optically anisotropic base material layer can be used.
  • plastic substrate layer examples include triacetyl cellulose (TAC); COP (cyclo olefin copolymer) such as norbornene derivatives; Poly (methyl methacrylate); PC (polycarbonate); PE (polyethylene); PP (polypropylene); PVA (polyvinyl alcohol); DAC (diacetyl cellulose); Pac (Polyacrylate); PES (poly ether sulfone); PEEK (polyetheretherketon PPS (polyphenylsulfone), PEI (polyetherimide); PEN (polyethylenemaphthatlate); PET (polyethyleneterephtalate); PI (polyimide); PSF (polysulfone); PAR (polyarylate) or amorphous fluorine resin
  • the substrate layer may include a coating layer of a silicon compound such as gold, silver, silicon dioxide or silicon monoxide, or a coating layer such as an antireflection layer, if necessary.
  • the optical element may further include an alignment layer.
  • the alignment layer may be formed in contact with the above-described optical layer.
  • the alignment layer may be present between the base layer and the optical layer.
  • any kind can be used as long as the alignment of adjacent optical layers, for example, the above-described liquid crystal compound or dichroic dye, can be appropriately adjusted, and for example, a photoalignment film can be used.
  • the alignment film may include an alignment compound, for example, a photoalignment compound.
  • a photoalignment compound may refer to a compound which is aligned in a predetermined direction through irradiation of light and orientates adjacent liquid crystal compounds and the like in the alignment direction in a predetermined direction.
  • the alignment compound may be a monomolecular compound, a monomeric compound, an oligomeric compound, or a high molecular compound.
  • the photoalignable compound may be a compound including a photosensitive moiety.
  • Various photo-alignment compounds that can be used for the alignment of the liquid crystal compound are known.
  • Photo-alignment compounds include, for example, compounds aligned by trans-cis photoisomerization; Compounds aligned by photo-destruction, such as chain scission or photo-oxidation; Compounds ordered by photocrosslinking or photopolymerization such as [2 + 2] addition cyclization ([2 + 2] cycloaddition), [4 + 4] addition cyclization or photodimerization; Compounds aligned by photo-Fries rearrangement or compounds aligned by ring opening / closure reaction may be used.
  • azo compounds or stilbenes such as sulfated diazo dyes or azo polymers
  • cyclobutane tetracarboxylic dianhydride cyclobutane-1,2,3,4-tetracarboxylic dianhydride
  • aromatic polysilane or polyester polystyrene or polyimide and the like
  • polystyrene or polyimide and the like can be exemplified.
  • a compound aligned by photocrosslinking or photopolymerization a cinnamate compound, a coumarin compound, a cinnanam compound, a tetrahydrophthalimide compound, a maleimide compound , Benzophenone compounds, diphenylacetylene compounds, compounds having chalconyl residues (hereinafter referred to as chalconyl compounds) or compounds having anthracenyl residues (hereinafter referred to as anthracenyl compounds) as photosensitive residues;
  • chalconyl compounds compounds having chalconyl residues
  • anthracenyl compounds compounds having anthracenyl residues
  • examples of the compounds aligned by the optical freeze rearrangement include aromatic compounds such as benzoate compounds, benzoamide compounds, and methacrylamidoaryl methacrylate compounds.
  • the compound aligned by the ring-opening / ring-closure reaction such as a spiropyran A [4 + 2] ⁇ electron system ([4 + 2] ⁇ electronic system), but may be exemplified by compounds such as sorting by a ring opening / ring-closure reaction of, without being limited thereto.
  • the photo-alignment compound may be a monomolecular compound, a monomeric compound, an oligomeric compound, or a high molecular compound, or may be in the form of a blend of the photo-alignment compound and the polymer.
  • the oligomeric or polymeric compound as described above may have a residue derived from the above-described photoalignable compound or a photosensitive residue described above in the main chain or in the side chain.
  • Polymers having residues or photosensitive residues derived from photo-alignment compounds or that can be mixed with the photo-alignment compounds include polynorbornene, polyolefins, polyarylates, polyacrylates, poly (meth) acrylates, poly Examples include mead, poly (amic acid), polymaleimide, polyacrylamide, polymethacrylamide, polyvinyl ether, polyvinyl ester, polystyrene, polysiloxane, polyacrylonitrile or polymethacrylonitrile It may be, but is not limited thereto.
  • Polymers that may be included in the oriented compound include, for example, polynorbornene cinnamate, polynorbornene alkoxy cinnamate, polynorbornene allylyloxy cinnamate, polynorbornene fluorinated cinnamate, polynorbornene chlorinated cinnamate or Polynorbornene discinnamate and the like can be exemplified, but is not limited thereto.
  • the orientation compound has a reversibility, for example, an alignment direction determined by an alignment treatment such as irradiation of linearly polarized light is further another alignment treatment, for example, irradiation of linearly polarized light polarized in another direction. It may mean that it has a characteristic that can be changed under the influence.
  • the optical element may be formed using an alignment layer formed by including a step of irradiating a plurality of linearly polarized light polarized in different directions to the same site.
  • Compounds having the above reversibility can be used.
  • the present application relates to an optical panel.
  • the optical panel may include, for example, at least two optical elements described above.
  • the two optical elements may be disposed to face each other, and the relative positions of the optical elements disposed to face each other may be changed.
  • the transmittance or polarization state of the light can be adjusted.
  • the transmittance of the optical panel can be adjusted to the minimum, and the optical absorption axes are parallel to each other.
  • permeability of an optical panel can be maximized.
  • the optical elements are arranged such that the angles formed by the respective light absorption axes are within a range of more than 0 degrees and less than 90 degrees, a range of transmittances may be realized between the maximum and minimum transmittances.
  • the polarization state or transmittance of the transmitted light may be adjusted by adjusting the relationship between the respective optical axes as described above.
  • FIG. 4 is an example in which optical elements are arranged such that each optical axis or light absorption axis of the optical element 30 is perpendicular to each other.
  • FIG. 5 is an example in which the axes are arranged parallel to each other. In this case, the optical elements are arranged such that the angles formed by the axes are within a range of more than 0 degrees and less than 90 degrees.
  • the distance between the opposingly disposed optical elements and the manner of arranging the elements so that the relative positions between the optical elements can be changed are not particularly limited.
  • the present application relates to a polarizing mask.
  • the polarization mask of the present application may be used, for example, in the manufacturing process of the optical device, specifically, in the exposure process of the alignment layer for manufacturing the optical device.
  • the polarization mask may include a polarization line including a plurality of polarization regions disposed adjacently along a predetermined direction (hereinafter, referred to as a first direction).
  • the polarization lines may be adjacent to each other along a direction perpendicular to the first direction (hereinafter, referred to as a second direction).
  • the term vertical is substantially vertical, and an angle in the range of about 70 degrees to 120 degrees, about 80 degrees to 100 degrees, or about 85 degrees to 95 degrees may also be included in the category of substantially vertical.
  • FIG. 7 is a diagram schematically illustrating a case where the polarizing mask is observed from above, in which the vertical direction is the first direction, and the horizontal direction is the second direction.
  • the first polarization regions 1011, 1012, 1013, 1014, and 1015 disposed adjacent to each other in the first direction form the first polarization line 101 and are formed in the same manner.
  • Polarization lines 102, 103, 104 and 105 are arranged adjacent along the second direction.
  • At least one polarization line among the plurality of polarization lines included in the polarization mask may include polarization regions having different transmission axis directions.
  • FIG. 8 the angle of the transmission axis formed in each of the polarization regions 1011 to 1015, 2011 to 2015, 3011 to 3015, 4011 to 4015 and 5011 to 5015 of the polarization mask of FIG. 7 is described (FIG. A number in each polarization region of 8).
  • the angle sets the angle of the polarization region of any one of the polarization regions of the polarization mask to 0 degrees, and clockwise or half with respect to the 0 degrees.
  • the angle measured in one of clockwise directions may be referred to.
  • the second to fourth polarization lines 102 to 104 include at least two polarization regions having different transmission axis directions from each other.
  • At least one polarization line in the polarization mask has a first polarization region having a transmission axis formed in a predetermined direction (hereinafter referred to as a first direction) and a second polarization region having a transmission axis formed in a second direction different from the first direction.
  • the first and second polarization regions may be disposed adjacent to each other.
  • the second polarization line 102 and the second polarization region 1022 and the third polarization region 1023 have transmission axes formed in different directions and are disposed adjacent to each other. .
  • the angle formed by the direction of the transmission axis of the first polarization region (first direction) and the direction of the transmission axis of the second polarization region (second direction) is, for example, about 15 degrees to 30 degrees and about 16 degrees.
  • At least two polarization lines among the polarization lines in the polarization mask may have different average transmission axes.
  • the term average transmission axis may mean an average value of angles of transmission axes of all polarization regions included in the polarization line. For example, referring to FIG. 8, the average transmission axis of the first polarization line is 0 degrees, the average transmission axis of the second polarization line is 4.5 degrees, the average transmission axis of the third polarization line is 9, and The average transmission axis is 13.5, and the average transmission axis of the fifth polarization line is 22.5.
  • the polarization mask may include a first polarization line having an average transmission axis formed in a predetermined direction (hereinafter, a first direction) and a second polarization line having an average transmission axis formed in a second direction different from the first direction. have.
  • the first and second polarization lines may be adjacent to each other.
  • first to fifth polarization lines 101 to 105 having an average transmission axis of 0 degrees, 4.5 degrees, 9 degrees, 13.5 degrees, and 22.5 degrees, respectively, are disposed adjacent to each other along the horizontal direction. This is an example of the case.
  • an angle formed between the direction of the average transmission axis of the first polarization line (first direction) and the direction of the average transmission axis of the second polarization line (second direction) may be, for example, about 1 to 20 degrees. .
  • the angle may be at least about 2 degrees, at least about 3 degrees, or at least about 3.5 degrees in another example.
  • the angle may be about 19 degrees or less, about 18 degrees or less, about 17 degrees or less, about 16 degrees or less, or about 15 degrees or less in another example.
  • the polarization mask may include an increasing area or a decreasing area in which the average transmission axis of the polarization lines increases along the second direction.
  • the mask is formed with polarization lines A to D in which the average transmission axis increases 72 degrees, 76.5 degrees, 81 degrees and 90 degrees from left to right in the drawing. And a decrease region formed by the polarization lines D to H, where the increase region is reduced and the average transmission axis is reduced by 90 degrees, 85.5 degrees, 81 degrees, 76.5 degrees and 67.5 degrees.
  • the increase or decrease rate in such an increase or decrease region may be determined according to Equation 7 below.
  • R is the increase or decrease rate
  • Q is the increase or decrease of the average transmission axis and the average transmission axis of the polarization line in which the average transmission axis starts to increase or decrease in the increase area or the decrease area disposed along the second direction. Is an angle formed by the average transmission axis of the polarization line to be terminated, and N is the number of polarization lines included in the increase or decrease region.
  • the increase or decrease of the average transmission axis in the increase area or the decrease area may be determined based on either the clockwise direction or the counterclockwise direction.
  • region which consist of polarization lines D-H are 4.5.
  • the increase rate R or the decrease rate R may be, for example, within a range of about 1-10. In another example, the increase rate R or decrease rate R may be about 2 or more, 3 or more, 4 or more, or 4.5 or more. In another example, the increase rate R or decrease rate R may be about 9 or less, 8 or less, 7 or less, 6 or less, or about 5.5 or less.
  • Equation 7 Q may be in a range of about 70 degrees to 120 degrees, about 80 degrees to 100 degrees, or about 85 degrees to 95 degrees.
  • N in Equation 7 may be in the range of about 5 to 30.
  • N may be in the range of 7 to 28, 9 to 26, 11 to 24, or 13 to 22 degrees.
  • the width (dimension measured along the second direction) and the length (dimension measured along the first direction) of the polarization line in the polarization mask are not particularly limited and may be determined according to the intended use.
  • the width may be in the range of about 1 mm to 20 mm.
  • the length may also be in the range of about 30 mm to 70 mm, for example.
  • each polarization line of the polarization mask is not particularly limited, and may be appropriately selected within the range of about 2 to 10, in consideration of the desired orientation efficiency and the like.
  • the method of manufacturing such a polarizing mask is not particularly limited, and for example, a PVA (poly (vinyl alcohol)) polarizing plate, a WGP (Wire Grid Polarizer), or the like may be manufactured in combination.
  • a PVA poly (vinyl alcohol)
  • WGP Wireless Grid Polarizer
  • the mask may be maintained to form a curved surface.
  • the surface of the irradiated object of the exposure process using the mask is kept curved, it may be necessary to keep the polarization mask curved.
  • the term roll-to-roll process may include all processes including a process of irradiating light while continuously transporting an object using a roll such as a guide roll, a transfer roll, or a winding roll.
  • the process of irradiating light onto the irradiated object may be performed, for example, while the irradiated object is wound on a roll.
  • FIG. 10 exemplarily illustrates a process of irradiating light onto the irradiated object 50 through the polarization mask 40 in a roll-to-roll process.
  • the irradiated object 50 is wound on the roll 60 so that the surface is kept curved, and light may be irradiated in this state.
  • the shape of the mask held in the curved shape for example, the radius of curvature of the mask is not particularly limited and may be selected so that appropriate irradiation of light can be performed on the irradiated object.
  • the radius of curvature of the mask can be adjusted to be equivalent to the radius of curvature of the irradiated object held in a curved shape.
  • the translucent support structure of the mask when the mask is kept curved may have a radius of curvature of about 10 mm to about 500 mm.
  • the present application also relates to a light irradiation apparatus or an apparatus for manufacturing an optical element comprising the polarizing mask.
  • the optical element manufactured by the said manufacturing apparatus may be the above-mentioned optical element.
  • the manufacturing apparatus may include, for example, a mounting means provided to allow the polarization mask and the irradiated object to be mounted.
  • the polarization mask and the mounting means may be configured such that the relative position of the irradiated object with respect to the polarization mask can be moved along the first direction, that is, along the longitudinal direction of the polarization line.
  • the type of mounting means in the apparatus is not particularly limited, and may include all kinds of equipment designed to stably maintain the subject during light irradiation.
  • the mounting means may be equipment that can be mounted while maintaining the surface of the object to be curved.
  • equipment may include, but are not limited to, rolls in the roll-to-roll process described above.
  • the equipment on which the subject is mounted is a device that can be mounted while maintaining the surface of the subject in a curved state
  • the mask may also be included in the apparatus in a state of being kept in a curved state.
  • the curved surface of the mask may be included in the device so as to correspond to the curved surface of the equipment on which the object is mounted.
  • the apparatus may further include a light source capable of irradiating light with the polarization mask.
  • a light source capable of irradiating light with the polarization mask.
  • a light source as long as it can irradiate light in the direction of a polarization mask, it can use without a restriction
  • a light source as a light source, as a light source which can irradiate an ultraviolet-ray, a high pressure mercury ultraviolet lamp, a metal halide lamp, or a gallium ultraviolet lamp And the like can be used.
  • the apparatus may further comprise one or more light collecting plates for the adjustment of the amount of light emitted from the light source.
  • the light collecting plate may be included in the apparatus, for example, after the light irradiated from the light source is incident on the light collecting plate and collected, the collected light can be irradiated with a polarization mask.
  • the light collecting plate if it is formed so as to collect light irradiated from the light source, a constitution commonly used in this field can be used.
  • As the light collecting plate a lenticular lens layer and the like can be exemplified.
  • the device may include, for example, a light source, a light collecting plate, a polarizing mask, and a mounting means that are sequentially arranged. Accordingly, the light irradiated from the light source may be first incident on the light collecting plate, collected, and then incident on the polarizing mask, then transmitted therethrough, and may be irradiated onto the surface of the irradiated object.
  • the present application relates to a light irradiation method or a manufacturing method of an optical element.
  • An exemplary method can be performed using the apparatus described above.
  • the method may include, for example, disposing an alignment layer, for example, a photoalignment layer under the polarization mask, and irradiating light to the alignment layer through the polarization mask.
  • the process may be performed by changing a relative position of the alignment layer with respect to the polarization mask along a first direction (the length direction of the polarization line).
  • an alignment layer capable of implementing the above-described optical device may be provided. For example, this will be described with reference to FIG. 9.
  • region of the alignment film which passes the lower part of polarization line A, respectively may be 67.5 degrees, It is sequentially exposed to linearly polarized light polarized at 67.5 degrees, 90 degrees, 67.5 degrees and 67.5 degrees.
  • the regions of the alignment layer passing through the lower portions of the polarization lines B to H are sequentially exposed to linearly polarized light polarized at an angle corresponding to the transmission axis direction of each polarization region.
  • the average transmission axes of the polarization lines are different from each other, the average transmission axes are arranged with a predetermined rule, so that the region of the alignment film passing through the lower portion of each polarization line is arranged in the arrangement and average transmission axes of the polarization regions of each polarization line. Therefore, the alignment direction is changed, and thus the optical axis or the light absorption axis of the optical layer formed thereon may be implemented in the above-mentioned structure.
  • the change speed of the relative position along the first direction between the alignment layer and the polarization mask is not particularly limited as long as proper alignment can be made.
  • the speed may be determined in a range of about 5 m / min or less.
  • the speed may, in another example, be about 4 m / min or less or about 3 m / min or less.
  • the speed may be, for example, about 0.5 m / min or more and about 1 m / min or more.
  • the exposure process may be performed while maintaining the surface of the alignment layer as the irradiated body as a curved surface.
  • An optical device may be manufactured by forming an optical layer on the alignment film formed as described above.
  • the method for forming the optical layer is not particularly limited, and for example, a layer containing the above-mentioned polymerizable liquid crystal compound and / or a dichroic dye or the like is formed on the alignment film, and aligned, followed by irradiation of light or application of heat. It can be formed by applying energy in the manner of.
  • the method of forming a layer containing a liquid crystal compound and / or a dichroic dye and the like above and aligning the alignment treatment, that is, the alignment pattern of the lower alignment layer, or polymerizing the aligned liquid crystal compound is not particularly limited.
  • the alignment can be carried out in such a manner as to maintain at an appropriate temperature that can be aligned depending on the type of liquid crystal compound and / or dichroic dye.
  • polymerization may be performed by irradiating light or applying heat at a level at which appropriate crosslinking or polymerization may be induced depending on the type of liquid crystal compound.
  • an optical element including an optical layer in which a change in an optical axis or light absorption axis occurs continuously is provided.
  • the optical element of the present application is used in an area requiring adjustment of heat, light or glare, for example, a window or shade of a building or an automobile, or other continuous change of the optical axis or light absorption axis is required. It can be effectively used in various devices.
  • 1-3 are conceptual diagrams illustrating exemplary optical devices.
  • 4 to 6 are conceptual diagrams showing an arrangement of an exemplary optical panel.
  • FIG. 10 shows the form of an exemplary device.
  • 11 and 12 are diagrams for explaining the polarization mask used in the embodiment.
  • FIG. 13 and 14 are views showing optical axis changes of the optical layer manufactured in Example.
  • optical device and the like will be described in detail with reference to Examples, but the scope of the optical device and the like is not limited by the following examples.
  • a conventional WGP (Wire Grid Polarizer) was cut to have a length of 10 mm in width and length, respectively, to prepare a WGP to form a polarization area. Thereafter, five WGPs (polarization regions) were attached so as to form one polarization line, thereby producing a polarization mask.
  • positioning of the polarization area of a polarization mask was set like FIG. 11 and FIG. 11 and 12 represent the angles of the transmission axis of each region. That is, referring to FIG. 11, there are five WGPs arranged to have a transmission axis of 0 degrees at the lowermost side, and all 16 polarized lines exist in the upper direction.
  • the polarizing mask was finally manufactured by attaching the upper end of the mask of FIG. 11 and the lower end of the mask of FIG. 12 to each other.
  • oriented compound a mixture of polynorbornene having a cinnamate group as disclosed in Korean Patent No. 1064585 with an appropriate amount of photoinitiator (Igacure 907) is added to the toluene solvent so that the solid content concentration of the oriented compound is 2% by weight. It melt
  • photoinitiator Igacure 907
  • the alignment layer was formed by irradiating ultraviolet (1,200 mJ / cm 2 ) from the upper part of the polarizing mask while moving the dried layer to pass through the lower part of the manufactured polarizing mask. Referring to FIGS. 11 and 12, the alignment film was moved from the right side to the left side of the drawing, and the moving speed was maintained at about 2.5 m / min.
  • FIG. 13 is a view showing an optical axis distribution of an optical layer formed in the above manner
  • FIG. 14 is a horizontal direction of the optical layer as the X axis (TD axis), and an angle of the optical axis (ground axis) as the Y axis ( It is a graph shown in retardation orientation.
  • the unit of the Y axis is degrees
  • the unit of the X axis is mm. It can be seen from the figure that the boundary between the regions is not observed and an optical layer in which the optical axis changes uniformly is formed.
  • An optical device was manufactured by forming an optical layer in the same manner as in Example 1 except that the moving speed of the alignment film was changed to about 1 m / min when irradiated with UV light for forming the alignment film.
  • a graph showing the horizontal direction of such an optical layer as the X axis and the angle of the optical axis (ground axis) as the Y axis is shown with the result of Example 1.
  • FIG. 14 the graph is almost overlapped with the result of Example 1, and from this, it can be seen that an optical layer is formed in which the optical axis is uniformly changed without the boundary between the regions being observed.
  • Example 1 Except for using the coating liquid containing the azo dichroic dye which oriented according to the orientation of a polymeric liquid crystal compound to the coating liquid containing a polymeric liquid crystal compound, and mix
  • An optical device was manufactured in the same manner as in Example 1. In such an optical element, an optical layer having a light absorption axis continuously changing in a manner corresponding to the optical axis distribution in Example 1 was formed by the dichroic dye.
  • Example 2 Except for using the coating liquid containing the azo dichroic dye which oriented according to the orientation of a polymeric liquid crystal compound to the coating liquid containing a polymeric liquid crystal compound, and mix
  • An optical device was manufactured in the same manner as in Example 2. In such an optical element, an optical layer having a light absorption axis continuously changing in a manner similar to the optical axis distribution in Example 2 was formed by the dichroic dye.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

본 출원은 광학 소자 및 광학 패널에 관한 것이다. 본 출원에서는, 광축 또는 광흡수축이 연속적으로 변하하는 광학층을 가지는 광학 소자가 제공된다. 본 출원의 광학 소자는, 예를 들면, 디스플레이 장치 등의 전자 장치에서 광의 특성을 조절하는 용도나 빌딩이나 자동차 등의 창문 또는 셰이드(shade) 등의 용도를 포함하여, 광축 또는 광흡수축의 연속적인 변화가 요구되는 다양한 용도에 사용될 수 있다.

Description

광학 소자
본 출원은 광학 소자 및 광학 패널에 관한 것이다.
위상차 필름 또는 편광판 등의 광학 소자는, 예를 들면, 디스플레이 장치에서 광의 특성을 조절하는 용도 또는 빌딩이나 자동차 등의 창문이나 셰이드(shade) 등을 포함한 다양한 용도에 사용될 수 있다.
이러한 광학 소자로는, PVA(poly(vinyl alcohol)) 필름 등과 같은 고분자 필름에 이색성 염료를 흡착 및 배향시킨 필름, 액정 화합물과 이색성 염료를 사용하여 제작된 필름, 연신에 의해 광학 이방성이 부여된 필름 또는 액정 화합물을 사용하여 광학 이방성을 부여한 필름 등이 알려져 있다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 한국공개특허 제2008-0077975호
(특허문헌 2) 한국등록특허 제0364504호
(특허문헌 3) 미국특허 제5,707,566호
본 출원은 광학 소자 및 광학 패널을 제공한다.
예시적인 광학 소자는, 광학층을 포함할 수 있다. 본 출원에서 용어 광학층은, 광학적으로 요구되는 기능, 예를 들면, 입사광의 위상을 지연시키거나, 편광 상태 등과 같은 상태를 변화시킬 수 있도록 형성된 모든 종류의 층을 포함할 수 있다.
광학층은 광축 또는 광흡수축의 방향이 일 방향을 따라서 변화하는 영역(이하, 변화 영역으로 호칭할 수 있다.)을 포함할 수 있다. 본 출원에서 용어 광축은, 이방성 영역에서의 지상축(slow axis) 또는 진상축(fast axis)을 의미할 수 있다. 광학층의 변화 영역에서 광축 또는 광흡수축의 방향이 변화는 연속적으로 일어날 수 있다. 광축 또는 광흡수축의 방향의 변화가 연속적으로 일어나는 것은, 상기 광축 또는 광흡수축이 이루는 각도가 일 방향을 따라서 증가하거나 혹은 감소하는 것을 의미할 수 있다.
도 1은, 예시적인 광학층의 상부 형태를 모식적으로 나타낸 도면이고, 도면에서 양 방향 화살표는 광학층의 광축 또는 광흡수축을 나타낸다. 도 1에서는 반시계 방향으로 측정한 때에 일 방향(도 1의 경우 상부에서 하부 방향)을 따라서 광축 또는 광흡수축이 이루는 각도가 증가하는 형태를 보여준다.
변화 영역에서 광축 또는 광흡수축의 평균 변화율은 하기 수식 1에 따라 정해질 수 있다.
[수식 1]
V = 360/P
수식 1에서 V는 평균 변화율이고, P는 변화 영역의 피치이다.
본 출원에서 용어 변화 영역의 피치는, 광축 또는 광흡수축이 이루는 각도가 일 방향을 따라서 연속적으로 증가 또는 감소하는 영역인 변화 영역에서 상기 광축 또는 광흡수축이 360도의 회전을 완성하기 위해 요구되는 상기 일 방향을 따라서 측정되는 길이이다. 본 출원에서 특별히 달리 규정하지 않는 한 길이의 단위로는 밀리미터(mm)가 적용될 수 있다. 따라서, 수식 1에서 평균 변화율(V)의 단위는, 도/mm일 수 있다.
예를 들어, 도 2는, 시계 방향으로 측정한 때에 광축 또는 광흡수축의 각도가 일 방향(도 2의 상부에서 하부 방향)을 따라서 연속적으로 감소하는 영역이 표시되어 있고, 그 피치, 즉 상기 광축 또는 광흡수축이 360도의 회전을 완성하기 위해 요구되는 상기 일 방향을 따라서 측정되는 거리가 P로 표시되어 있다.
하나의 변화 영역 내에서 광축 또는 광흡수축이 360도의 회전을 완성하지 않는 경우에는 상기 피치는, 변화 영역이 시작하는 지점의 광축 또는 광흡수축을 기준으로 시계 방향 또는 반시계 방향 중 어느 한 방향으로 측정한 변화 영역이 끝나는 지점의 광축 또는 광흡수축이 회전한 각도(A)와 상기 변화 영역의 길이(L)를 하기 수식 2에 대입하여 구할 수 있다.
[수식 2]
P = 360 × (L/A)
수식 2에서 P는 변화 영역의 피치이고, L은 변화 영역의 길이이며, A는 변화 영역이 시작하는 지점의 광축 또는 광흡수축을 기준으로 시계 방향 또는 반시계 방향 중 어느 한 방향으로 측정한 변화 영역이 끝나는 지점의 광축 또는 광흡수축이 회전한 각도이다.
변화 영역에서 수식 1에 의해 정해지는 평균 변화율은 0을 초과하고, 5 이하일 수 있다. 다른 예시에서 상기 평균 변화율은, 4.5 이하, 4 이하, 3.5 이하, 3 이하, 2.5 이하, 2.0 이하, 1.5 이하, 1.0 이하 또는 0.7 이하일 수 있다. 평균 변화율은 또한 0.1 이상, 0.2 이상 또는 0.2 이상일 수 있다. 이와 같은 평균 변화율을 가지도록 광학층을 설계하여 목적하는 용도에 적합한 소자를 얻을 수 있다.
본 출원에서 광학층은 단일층일 수 있다. 본 출원에서 용어 단일층은, 2개 이상의 층이 조립 혹은 적층되어 형성되는 층을 제외하는 개념으로 사용된다. 예를 들어, 변화하는 광축 또는 광흡수축을 이루기 위하여 광축 또는 광흡수축이 다른 2개 이상의 층을 조립하여 형성되거나, 혹은 편광층과 위상차층을 적층하는 방식으로 형성되는 층은 상기 단일층의 범주에서 제외된다.
하나의 예시에서 광학층의 변화 영역에서 광축 또는 광흡수축이 다른 영역간에 경계가 관찰되지 않을 수 있다. 즉, 광학층에서는 광축 또는 광흡수축의 변화가 실질적으로 완전히 연속적으로 이루어지고, 도메인이 관찰되지 않을 수 있다.
예를 들어, 광학층의 변화 영역에서 광축 또는 광흡축이 다른 영역간에 경계가 관찰되지 않는다는 것은, 변화 영역의 광축 또는 광흡수축의 변화가 하기 수식 3을 만족하는 경우를 의미할 수 있다.
[수식 3]
Y = a × X
수식 3에서 X는 변화 영역의 시작 지점에서부터 광축 또는 광흡수축의 변화가 일어나는 일 방향에 따라 측정되는 거리이고, Y는 변화 영역의 시작 지점의 광축 또는 광흡수축을 기준으로 측정한 상기 X 지점에서 광축 또는 광흡수축이 회전한 각도이며, a는 0을 초과하고, 5 이하인 범위 내의 수이다.
수식 3에서 광축 또는 광흡수축의 회전 각도(Y)는, 변화 영역이 시작하는 지점의 광축 또는 광흡수축의 각도를 0도로 하고, 상기 0도를 기준으로 시계 방향 또는 반시계 방향 중 어느 한 방향으로 측정되는 각도이다. 수식 3에 서 a는 다른 예시에서 4.5 이하, 4 이하, 3.5 이하, 3 이하, 2.5 이하, 2.0 이하, 1.5 이하, 1.0 이하 또는 0.7 이하일 수 있다. 또한, 상기 a는 0.1 이상, 0.2 이상 또는 0.2 이상일 수 있다.
광축 또는 광흡수축의 변화가 상기 수식 3을 만족하고, 연속적으로 일어나도록 하여 목적하는 용도에 적합한 광학 소자가 제공될 수 있다.
변화 영역의 회전각은, 하기 수식 4에 따라 정해질 수 있다.
[수식 4]
φ = V × L
수식 4에서 φ는 회전각이고, V는, 평균 변화율이며, L는 변화 영역의 길이이다.
수식 4에서 평균 변화율(V)은 수식 1에 따라 측정될 수 있다.
변화 영역의 회전각의 범위는 광학 소자가 적용되는 용도를 고려하여 결정될 수 있고, 특별히 제한되는 것은 아니나, 예를 들면, 약 10도 이상, 20도 이상, 30도 이상, 40도 이상, 50도 이상, 60도 이상, 70도 이상, 80도 이상, 90도 이상, 100도 이상, 110도 이상, 120도 이상, 130도 이상, 140도 이상, 150도 이상, 160도 이상, 170도 이상, 180도 이상, 190도 이상, 200도 이상, 210도 이상, 220도 이상, 230도 이상, 240도 이상, 250도 이상, 260도 이상, 270도 이상, 280도 이상, 290도 이상, 300도 이상, 310도 이상, 320도 이상, 330도 이상, 340도 이상 또는 350도 이상일 수 있다. 상기 회전각의 상한도 목적하는 용도에 따라 결정되는 것으로 특별히 제한되지 않지만, 예를 들면, 1,000도 이하, 900도 이하 또는 800도 이하 정도일 수 있다.
광학 소자의 광학층은 상기 언급한 변화 영역 1종만을 포함하여 이루어지거나, 필요하다면, 2종 이상의 변화 영역을 포함하거나, 변화 영역 외에 다른 영역, 예를 들면, 광축 또는 광흡수축이 하나의 방향으로만 균일하게 형성되어 있는 영역 또는 광축 또는 광흡수축의 변화가 비연속적으로 일어나는 영역 등을 포함할 수 있다.
광학층은, 위상 지연층이거나 혹은 편광층일 수 있다. 위상 지연층인 경우에 광학층은 전술한 형태를 가지는 광축을 가질 수 있고, 편광층인 경우에는 광학층은 전술한 형태를 가지는 광흡수축을 가질 수 있다.
광학층이 위상 지연층인 경우에 그 위상차 또는 광학층이 편광층인 경우에 그 편광 효율 등은 특별히 제한되지 않고, 목적하는 용도를 고려하여 적절한 원료를 선택함으로써 자유롭게 조절할 수 있다.
광학층은, 액정 고분자층일 수 있다. 본 출원에서 용어 액정 고분자층은 중합성 액정 화합물(소위 RM(reactive mesogen)으로 호칭되는 액정 화합물)을 중합시켜서 형성되는 층을 의미할 수 있다. 예를 들어, 후술하는 바와 같이 배향막상에 중합성 액정 화합물을 배향시킨 상태에서 중합시켜서 상기 액정 고분자층을 형성할 수 있다. 필요하다면, 액정 고분자층은, 공지의 추가 성분, 예를 들면, 비중합성 액정 화합물, 중합성 비액정성 화합물, 비중합성 비액정성 화합물, 계면 활성제 또는 레벨링제 등을 추가로 포함할 수 있다.
액정 고분자층을 형성하는 중합성 액정 화합물로는, 목적에 따라 적절한 종류가 선택될 수 있다. 예를 들면, 액정 화합물로는, 스멕틱상(smectic phase), 네마틱상(nematic phase) 또는 콜레스테릭상(cholesteric phase)을 나타내는 화합물을 사용할 수 있다.
이러한 특성의 액정 화합물을 통해 목적하는 형태의 광학층을 보다 효율적으로 형성할 수 있다.
상기 중합성 액정 화합물로는, 예를 들면, 하기 화학식 1의 중합성 액정 화합물을 사용할 수 있다.
[화학식 1]
Figure PCTKR2013012419-appb-I000001
화학식 1에서 A는 단일 결합, -COO- 또는 -OCO-이고, R1 내지 R10은, 각각 독립적으로 수소, 할로겐, 알킬기, 알콕시기, 알콕시카보닐기, 시아노기, 니트로기, -O-Q-P 또는 하기 화학식 2의 치환기이거나, R1 내지 R5 중 인접하는 2개의 치환기의 쌍 또는 R6 내지 R10 중 인접하는 2개의 치환기의 쌍은 서로 연결되어 -O-Q-P로 치환된 벤젠을 형성하되, R1 내지 R10 중 적어도 하나는 -O-Q-P 또는 하기 화학식 2의 치환기이거나, R1 내지 R5 중 인접하는 2개의 치환기 또는 R6 내지 R10 중 인접하는 2개의 치환기 중 적어도 하나의 쌍은 서로 연결되어 -O-Q-P로 치환된 벤젠을 형성하고, 상기에서 Q는 알킬렌기 또는 알킬리덴기이며, P는, 알케닐기, 에폭시기, 시아노기, 카복실기, 아크릴로일기, 메타크릴로일기, 아크릴로일옥시기 또는 메타크릴로일옥시기 등의 중합성 관능기이다.
[화학식 2]
Figure PCTKR2013012419-appb-I000002
화학식 2에서 B는 단일 결합, -COO- 또는 -OCO-이고, R11 내지 R15는, 각각 독립적으로 수소, 할로겐, 알킬기, 알콕시기, 알콕시카보닐기, 시아노기, 니트로기 또는 -O-Q-P이거나, R11 내지 R15 중 인접하는 2개의 치환기의 쌍은 서로 연결되어 -O-Q-P로 치환된 벤젠을 형성하되, R11 내지 R15 중 적어도 하나가 -O-Q-P이거나, R11 내지 R15 중 인접하는 2개의 치환기의 쌍은 서로 연결되어 -O-Q-P로 치환된 벤젠을 형성하고, 상기에서 Q는 알킬렌기 또는 알킬리덴기이며, P는, 알케닐기, 에폭시기, 시아노기, 카복실기, 아크릴로일기, 메타크릴로일기, 아크릴로일옥시기 또는 메타크릴로일옥시기 등의 중합성 관능기이다.
화학식 1 및 2에서 인접하는 2개의 치환기가 서로 연결되어 -O-Q-P로 치환된 벤젠을 형성한다는 것은, 인접하는 2개의 치환기가 서로 연결되어 전체적으로 -O-Q-P로 치환된 나프탈렌 골격을 형성하는 것을 의미할 수 있다.
화학식 2에서 B의 좌측의 「-」는, B가 화학식 1의 벤젠에 직접 연결되어 있음을 의미할 수 있다.
화학식 1 및 2에서 용어 「단일 결합」은, A 또는 B로 표시되는 부분에 별도의 원자가 존재하지 않는 경우를 의미한다. 예를 들어, 화학식 1에서 A가 단일 결합인 경우, A의 양측의 벤젠이 직접 연결되어 비페닐(biphenyl) 구조를 형성할 수 있다.
화학식 1 및 2에서 할로겐으로는, 예를 들면, 염소, 브롬 또는 요오드 등이 예시될 수 있다.
본 출원에서 용어 「알킬기」는, 특별히 달리 규정하지 않는 한, 예를 들면, 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 직쇄 또는 분지쇄 알킬기를 의미하거나, 또는, 예를 들면, 탄소수 3 내지 20, 탄소수 3 내지 16 또는 탄소수 4 내지 12의 시클로알킬기를 의미할 수 있다. 상기 알킬기는 임의적으로 하나 이상의 치환기에 의해 치환될 수 있다.
본 출원에서 용어 「알콕시기」는, 특별히 달리 규정하지 않는 한, 예를 들면, 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알콕시기를 의미할 수 있다. 상기 알콕시기는, 직쇄, 분지쇄 또는 고리형일 수 있다. 또한, 상기 알콕시기는 임의적으로 하나 이상의 치환기에 의해 치환될 수 있다.
본 출원에서 용어 「알킬렌기」 또는 「알킬리덴기」는, 특별히 달리 규정하지 않는 한, 예를 들면, 탄소수 1 내지 12, 탄소수 4 내지 10 또는 탄소수 6 내지 9의 알킬렌기 또는 알킬리덴기를 의미할 수 있다. 상기 알킬렌기 또는 알킬리덴기는, 예를 들면, 직쇄, 분지쇄 또는 고리형일 수 있다. 또한, 상기 알킬렌기 또는 알킬리덴기는 임의적으로 하나 이상의 치환기에 의해 치환될 수 있다.
본 출원에서 용어 「알케닐기」는, 특별히 달리 규정하지 않는 한, 예를 들면, 탄소수 2 내지 20, 탄소수 2 내지 16, 탄소수 2 내지 12, 탄소수 2 내지 8 또는 탄소수 2 내지 4의 알케닐기를 의미할 수 있다. 상기 알케닐기는, 예를 들면, 직쇄, 분지쇄 또는 고리형일 수 있다. 또한, 상기 알케닐기는 임의적으로 하나 이상의 치환기에 의해 치환될 수 있다.
화학식 1 및 2에서 P는, 예를 들면, 아크릴로일기, 메타크릴로일기, 아크릴로일옥시기 또는 메타크릴로일옥시기; 아크릴로일옥시기 또는 메타크릴로일옥시기; 또는 아크릴로일옥시기일 수 있다.
본 명세서에서 특정 관능기에 치환되어 있을 수 있는 치환기로는, 알킬기, 알콕시기, 알케닐기, 에폭시기, 옥소기, 옥세타닐기, 티올기, 시아노기, 카복실기, 아크릴로일기, 메타크릴로일기, 아크릴로일옥시기, 메타크릴로일옥시기 또는 아릴기 등이 예시될 수 있으나, 이에 제한되는 것은 아니다.
화학식 1 및 2에서 적어도 하나 이상 존재할 수 있는 -O-Q-P 또는 화학식 2의 잔기는, 예를 들면, R3, R8 또는 R13의 위치에 존재할 수 있다. 또한, 서로 연결되어 -O-Q-P로 치환된 벤젠을 구성하는 치환기는, 예를 들면, R3 및 R4이거나, 또는 R12 및 R13일 수 있다. 또한, 화학식 1의 화합물 또는 화학식 2의 잔기에서 -O-Q-P 또는 화학식 2의 잔기 이외의 치환기 또는 서로 연결되어 벤젠을 형성하고 있는 치환기 외의 치환기는 예를 들면, 수소, 할로겐, 탄소수 1 내지 4의 직쇄 또는 분지쇄의 알킬기, 탄소수 1 내지 4의 직쇄 또는 분지쇄 알콕시기를 포함하는 알콕시카보닐기, 탄소수 4 내지 12의 시클로알킬기, 탄소수 1 내지 4의 알콕시기, 시아노기 또는 니트로기일 수 있으며, 다른 예시에서는 염소, 탄소수 1 내지 4의 직쇄 또는 분지쇄의 알킬기, 탄소수 4 내지 12의 시클로알킬기, 탄소수 1 내지 4의 알콕시기, 탄소수 1 내지 4의 직쇄 또는 분지쇄 알콕시기를 포함하는 알콕시카보닐기 또는 시아노기일 수 있다.
화학식 1로도 표시될 수 있는 중합성 액정 화합물은, 예를 들면, 중합서 관능기(화학식 1 또는 2에서 P)를 1개, 2개 이상, 1개 내지 10개, 1개 내지 8개, 1개 내지 6개, 1개 내지 5개, 1개 내지 4개, 1개 내지 3개 또는 1개 내지 2개 포함할 수 있다.
편광층인 경우에 광학층은, 이색성 염료를 포함하는 액정 고분자층이거나 혹은 유방성 액정층(LLC(Lyotropic Liquid Crystal) layer)일 수 있다. 예를 들어, 후술하는 배향막상에 중합성 액정 화합물과 이색성 염료를 포함하는 층을 배향시킨 상태로 상기 중합성 액정 화합물을 중합시켜서 광학층을 형성하거나, 유방성 액정에 원하는 방향으로 전단력(shear force)을 부여하여 층을 형성함으로써 상기 언급한 광학층을 형성할 수 있다.
광학층이 이색성 염료를 포함하는 액정 고분자층인 경우에 그 고분자층을 형성하는 중합성 액정 화합물의 종류는 목적하는 편광층의 성능을 고려하여 적절히 선택될 수 있으며, 예를 들면, 상기 기술한 종류를 사용할 수 있다.
광학층인 액정 고분자층은 이색성 염료를 포함할 수 있다. 본 출원에서 용어 염료는, 가시광 영역, 예를 들면, 400 nm 내지 800 nm 파장 범위 내에서 적어도 일부 또는 전체 범위 내의 광을 집중적으로 흡수 및/또는 변형시킬 수 있는 물질을 의미할 수 있고, 용어 이색성 염료는 상기 가시광 영역의 적어도 일부 또는 전체 범위에서 광의 이방성 흡수가 가능한 물질을 의미할 수 있다. 이색성 염료는, 원칙적으로 가시광 영역, 예를 들면, 400 nm 내지 800 nm 내에서 최대 흡광도를 가지는 모든 종류의 염료가 사용될 수 있다. 이러한 염료는, 예를 들면, 아조 염료 또는 안트라퀴논 염료 등으로 공지되어 있다. 예를 들면, 아조 염료 F355(등록 상표), F357(등록 상표) 또는 F593(등록 상표)(Nippon Kankoh Shikiso kenkyusho Ltd) 등이나, 상기와 대등한 효과를 나타내는 것으로 공지되어 있는 종류의 염료 등이 사용될 수 있지만 이에 제한되는 것은 아니다.
이색성 염료로는, 예를 들면, 상기와 같은 특성을 가지면서 액정 화합물의 배향에 따라 배향될 수 있는 특성을 가지는 것으로 공지된 모든 종류의 염료가 사용될 수 있다.
광학 소자는 기재층을 추가로 포함할 수 있다. 예를 들면, 광학 소자는 기재층을 추가로 포함하고, 상기 광학층이 상기 기재층의 적어도 일면에 형성되어 있는 형태일 수 있다. 광학층은, 필요하다면 기재층의 양면에 형성되어 있을 수도 있다. 도 3은, 광학 소자의 하나의 예시의 모식도로서 기재층(10)과 광학층(20)이 순차 형성되어 있는 형태를 보여주고 있다.
기재층으로는, 특별한 제한 없이 공지의 소재를 사용할 수 있다. 예를 들면, 유리판, 결정성 또는 비결정성 실리콘 필름, 석영 또는 ITO(Indium Tin Oxide) 필름 등의 무기 필름이나 플라스틱 필름 등을 사용할 수 있다. 기재층으로는, 광학적으로 등방성인 기재층이나, 광학적으로 이방성인 기재층을 사용할 수 있다.
플라스틱 기재층으로는, TAC(triacetyl cellulose); 노르보르넨 유도체 등의 COP(cyclo olefin copolymer); PMMA(poly(methyl methacrylate); PC(polycarbonate); PE(polyethylene); PP(polypropylene); PVA(polyvinyl alcohol); DAC(diacetyl cellulose); Pac(Polyacrylate); PES(poly ether sulfone); PEEK(polyetheretherketon); PPS(polyphenylsulfone), PEI(polyetherimide); PEN(polyethylenemaphthatlate); PET(polyethyleneterephtalate); PI(polyimide); PSF(polysulfone); PAR(polyarylate) 또는 비정질 불소 수지 등을 포함하는 기재층을 사용할 수 있지만 이에 제한되는 것은 아니다. 기재층에는, 필요에 따라서 금, 은, 이산화 규소 또는 일산화 규소 등의 규소 화합물의 코팅층이나, 반사 방지층 등의 코팅층이 존재할 수도 있다.
광학 소자는 배향막을 추가로 포함할 수 있다. 배향막은 전술한 광학층과 접하여 형성되어 있을 수 있다. 예를 들어, 광학 소자가 기재층을 추가로 포함하고, 그 일면에 광학층이 형성되는 경우에 배향막은 상기 기재층과 광학층의 사이에 존재할 수 있다.
배향막으로는, 인접하는 광학층의 배향, 예를 들면 상기 기술한 액정 화합물이나 이색성 염료의 배향을 적절하게 조절할 수 있는 것이라면 어떠한 종류도 사용될 수 있고, 예를 들면, 광배향막을 사용할 수 있다.
배향막은, 배향성 화합물, 예를 들면 광배향성 화합물을 포함할 수 있다. 본 출원에서 용어 광배향성 화합물은, 광의 조사를 통하여 소정 방향으로 정렬(orientationally ordered)되고, 상기 정렬 상태에서 인접하는 액정 화합물 등을 역시 소정 방향으로 배향시킬 수 있는 화합물을 의미할 수 있다. 배향성 화합물은, 단분자 화합물, 단량체성 화합물, 올리고머성 화합물 또는 고분자성 화합물일 수 있다.
광배향성 화합물은, 광감응성 잔기(photosensitive moiety)를 포함하는 화합물일 수 있다. 액정 화합물의 배향에 사용될 수 있는 광배향성 화합물은 다양하게 공지되어 있다. 광배향성 화합물로는, 예를 들면, 트랜스-시스 광이성화(trans-cis photoisomerization)에 의해 정렬되는 화합물; 사슬 절단(chain scission) 또는 광산화(photo-oxidation) 등과 같은 광분해(photo-destruction)에 의해 정렬되는 화합물; [2+2] 첨가 환화([2+2] cycloaddition), [4+4] 첨가 환화 또는 광이량화(photodimerization) 등과 같은 광가교 또는 광중합에 의해 정렬되는 화합물; 광 프리즈 재배열(photo-Fries rearrangement)에 의해 정렬되는 화합물 또는 개환/폐환(ring opening/closure) 반응에 의해 정렬되는 화합물 등을 사용할 수 있다. 트랜스-시스 광이성화에 의해 정렬되는 화합물로는, 예를 들면, 술포화 디아조 염료(sulfonated diazo dye) 또는 아조고분자(azo polymer) 등의 아조 화합물이나 스틸벤 화합물(stilbenes) 등이 예시될 수 있고, 광분해에 의해 정렬되는 화합물로는, 시클로부탄 테트라카복실산 이무수물(cyclobutane-1,2,3,4-tetracarboxylic dianhydride), 방향족 폴리실란 또는 폴리에스테르, 폴리스티렌 또는 폴리이미드 등이 예시될 수 있다. 또한, 광가교 또는 광중합에 의해 정렬되는 화합물로는, 신나메이트(cinnamate) 화합물, 쿠마린(coumarin) 화합물, 신남아미드(cinnamamide) 화합물, 테트라히드로프탈이미드(tetrahydrophthalimide) 화합물, 말레이미드(maleimide) 화합물, 벤조페논 화합물 또는 디페닐아세틸렌(diphenylacetylene) 화합물이나 광감응성 잔기로서 찰코닐(chalconyl) 잔기를 가지는 화합물(이하, 찰콘 화합물) 또는 안트라세닐(anthracenyl) 잔기를 가지는 화합물(이하, 안트라세닐 화합물) 등이 예시될 수 있고, 광 프리즈 재배열에 의해 정렬되는 화합물로는 벤조에이트(benzoate) 화합물, 벤조아미드(benzoamide) 화합물, 메타아크릴아미도아릴 (메타)아크릴레이트(methacrylamidoaryl methacrylate) 화합물 등의 방향족 화합물이 예시될 수 있으며, 개환/폐환 반응에 의해 정렬하는 화합물로는 스피로피란 화합물 등과 같이 [4+2] π 전자 시스템([4+2] π electronic system)의 개환/폐환 반응에 의해 정렬하는 화합물 등이 예시될 수 있으나, 이에 제한되는 것은 아니다.
광배향성 화합물은, 단분자 화합물, 단량체성 화합물, 올리고머성 화합물 또는 고분자성 화합물이거나, 상기 광배향성 화합물과 고분자의 블랜드(blend) 형태일 수 있다. 상기에서 올리고머성 또는 고분자성 화합물은, 상기 기술한 광배향성 화합물로부터 유도된 잔기 또는 상기 기술한 광감응성 잔기를 주쇄 내 또는 측쇄에 가질 수 있다.
광배향성 화합물로부터 유도된 잔기 또는 광감응성 잔기를 가지거나, 상기 광배향성 화합물과 혼합될 수 있는 고분자로는, 폴리노르보넨, 폴리올레핀, 폴리아릴레이트, 폴라아크릴레이트, 폴리(메타)아크릴레이트, 폴리이미드, 폴리암산(poly(amic acid)), 폴리말레인이미드, 폴리아크릴아미드, 폴리메타크릴아미드, 폴리비닐에테르, 폴리비닐에스테르, 폴리스티렌, 폴리실록산, 폴리아크릴니트릴 또는 폴리메타크릴니트릴 등이 예시될 수 있으나, 이에 제한되는 것은 아니다.
배향성 화합물에 포함될 수 있는 고분자로는, 대표적으로는 폴리노르보넨 신나메이트, 폴리노르보넨 알콕시 신나메이트, 폴리노르보넨 알릴로일옥시 신나메이트, 폴리노르보넨 불소화 신나메이트, 폴리노르보넨 염소화 신나메이트 또는 폴리노르보넨 디신나메이트 등이 예시될 수 있지만, 이에 제한되는 것은 아니다.
배향성 화합물로는 전술한 종류 중에서 적절한 것을 선택하여 사용할 수 있으나, 전술한 광축 또는 광흡수축의 연속적인 변화를 보다 적절하게 유도하기 위하여 가역성을 가지는 배향성 화합물을 사용하는 것이 적절할 수 있다. 본 출원에서 배향성 화합물이 가역성을 가진다는 것은, 예를 들면, 직선 편광의 조사 등의 배향 처리에 의해 결정된 정렬 방향이, 추가적인 다른 배향 처리, 예를 들면, 다른 방향으로 편광된 직선 편광의 조사 등에 영향을 받아 변화될 수 있는 특성을 가지는 것을 의미할 수 있다. 즉, 후술하는 바와 같이 상기 광학 소자는, 동일 부위에 다른 방향으로 편광된 직선 편광을 복수회 조사하는 공정을 포함하여 형성된 배향막을 사용하여 형성될 수 있는데, 이러한 공정을 통해 적합한 광학 소자가 형성되기 위해 상기 가역성을 가지는 화합물이 사용될 수 있다.
본 출원은 광학 패널에 대한 것이다. 광학 패널은, 예를 들면, 상기 기술한 광학 소자를 적어도 2개 포함할 수 있다. 광학 패널에서 상기 2개의 광학 소자는 서로 대향 배치되어 있을 수 있고, 대향 배치된 광학 소자 서로간의 상대적 위치가 변화될 수 있도록 배치될 수 있다.
이러한 배치에서 광학 소자간의 상대적 위치를 변화시킴으로써 광의 투과율 또는 편광 상태를 조절할 수 있다.
예를 들어, 광학 소자의 광학층이 편광층인 경우에 광학층의 각 광흡수축들이 서로 수직하도록 광학 소자를 배치하게 되면 광학 패널의 투과율을 최소로 조절할 수 있고, 상기 광흡수축이 서로 평행하도록 배치하면 광학 패널의 투과율을 최대로 할 수 있다. 또한, 각 광흡수축들이 이루는 각도가 0도를 초과하고, 90도 미만인 범위 내에 존재하도록 광학 소자를 배치한다면 상기 최대 및 최소 투과율의 사이에서 일정 범위의 투과율이 구현되도록 할 수 있다. 또한, 광학 소자의 광학층이 위상 지연층이라면 각 광축들의 관계를 상기와 같이 조절함으로써 투과광의 편광 상태 내지는 투과율을 조절할 수 있다. 도 4는, 광학 소자(30)의 각 광축 또는 광흡수축이 서로 수직하도록 광학 소자가 배치된 경우의 예시이고, 도 5는, 상기 축들이 서로 평행하도록 배치된 경우의 예시이며, 도 6은, 상기 축들이 이루는 각도가 0도를 초과하고, 90도 미만인 범위 내에 존재하도록 광학 소자가 배치된 경우의 예시이다.
광학 패널의 구성 시에 상기 대향 배치되는 광학 소자간의 간격이나, 광학 소자간의 상대적 위치가 변화될 수 있도록 소자를 배치하는 방식은 특별히 제한되지 않는다.
본 출원은 편광 마스크에 관한 것이다. 본 출원의 편광 마스크는, 예를 들면, 상기 광학 소자의 제조 과정, 구체적으로는 상기 광학 소자를 제조하기 위한 배향막의 노광 과정에 사용될 수 있다.
편광 마스크는, 소정 방향(이하, 제 1 방향이라고 호칭한다.)을 따라서 인접하여 배치되어 있는 복수의 편광 영역들을 포함하는 편광 라인을 포함할 수 있다. 상기 편광 라인들은, 상기 제 1 방향과 수직하는 방향(이하, 제 2 방향이라고 호칭한다.)을 따라서 인접 배치되어 있을 수 있다. 상기에서 용어 수직은, 실질적인 수직으로서, 예를 들어, 약 70도 내지 120도, 약 80도 내지 100도 또는 약 85도 내지 95도의 범위 내의 각도도 실질적 수직의 범주에 포함될 수 있다.
도 7은, 상기 편광 마스크를 상부에서 관찰한 경우를 모식적으로 보여주는 도면이고, 도면에서 세로 방향이 제 1 방향이며, 가로 방향이 제 2 방향이다. 도면에서는 제 1 방향을 따라서 인접하여 배치되어 있는 제 1 편광 영역들(1011, 1012, 1013, 1014 및 1015)이 제 1 편광 라인(101)을 형성하고 있고, 동일한 방식으로 형성된 제 2 내지 제 5 편광 라인(102, 103, 104, 105)이 제 2 방향을 따라서 인접 배치되어 있다.
편광 마스크에 포함되어 있는 복수의 편광 라인들 중에서 적어도 하나의 편광 라인은, 투과축의 방향이 상이한 편광 영역들을 포함할 수 있다. 예를 들어, 도 8에는, 도 7의 편광 마스크의 각 편광 영역들(1011 내지 1015, 2011 내지 2015, 3011 내지 3015, 4011 내지 4015 및 5011 내지 5015)에 형성된 투과축의 각도가 기재되어 있다(도 8의 각 편광 영역들 내의 숫자). 본 출원에서 편광 마스크의 각 편광 영역의 투과축의 각도를 언급하는 경우에 상기 각도는 편광 마스크의 편광 영역들 중 어느 하나의 편광 영역의 각도를 0도로 놓고, 상기 0도를 기준으로 시계 방향 또는 반시계 방향 중 어느 한 방향으로 측정한 각도를 의미할 수 있다.
도 8을 보면, 제 1 내지 제 5 편광 라인(101 내지 105)에서 제 2 내지 제 4 편광 라인들(102 내지 104)이 각각 투과축의 방향이 서로 상이한 적어도 2개의 편광 영역들을 포함하고 있다.
편광 마스크에서 적어도 하나의 편광 라인은 소정 방향(이하, 제 1 방향이라 호칭한다)으로 형성된 투과축을 가지는 제 1 편광 영역과 상기 제 1 방향과는 상이한 제 2 방향으로 형성된 투과축을 가지는 제 2 편광 영역을 가질 수 있다. 상기 제 1 및 제 2 편광 영역은 서로 인접하여 배치되어 있을 수 있다. 예를 들어 도 7 및 8을 참조하면, 제 2 편광 라인(102)은 제 2 편광 영역(1022)과 제 3 편광 영역(1023)은 서로 상이한 방향으로 형성된 투과축을 가지고, 서로 인접하여 배치되어 있다.
상기와 같은 경우에 제 1 편광 영역의 투과축의 방향(제 1 방향)과 제 2 편광 영역의 투과축의 방향(제 2 방향)이 이루는 각도는 예를 들면, 약 15도 내지 30도, 약 16도 내지 29도, 약 17도 내지 28도, 약 18도 내지 27도, 약 19도 내지 26도, 약 20도 내지 25도 또는 약 21도 내지 24도 정도일 수 있다.
편광 마스크에서 편광 라인들 중에서 적어도 2개의 편광 라인은 서로 상이한 평균 투과축을 가질 수 있다. 본 출원에서 용어 평균 투과축은 그 편광 라인에 포함되는 모든 편광 영역들의 투과축의 각도의 평균값을 의미할 수 있다. 예를 들어, 도 8을 참조하면, 제 1 편광 라인의 평균 투과축은 0도이며, 제 2 편광 라인의 평균 투과축은 4.5도이고, 제 3 편광 라인의 평균 투과축은 9이며, 제 4 편광 라인의 평균 투과축은 13.5이고, 제 5 편광 라인의 평균 투과축은 22.5이다.
편광 마스크는, 소정 방향(이하, 제 1 방향)으로 형성되는 평균 투과축을 가지는 제 1 편광 라인과 상기 제 1 방향과는 상이한 제 2 방향으로 형성되는 평균 투과축을 가지는 제 2 편광 라인을 포함할 수 있다. 상기 제 1 및 제 2 편광 라인은 인접하여 배치되어 있을 수 있다.
예를 들면, 도 8은 평균 투과축이 각각 0도, 4.5도, 9도, 13.5도 및 22.5도로서 상이한 제 1 내지 제 5 편광 라인들(101 내지 105)이 가로 방향을 따라서 인접하여 배치되어 있는 경우의 예시이다.
상기 예시에서 제 1 편광 라인의 평균 투과축의 방향(제 1 방향)과 제 2 편광 라인의 평균 투과축의 방향(제 2 방향)이 이루는 각도는, 예를 들면, 약 1도 내지 20도 정도일 수 있다. 상기 각도는 다른 예시에서 약 2도 이상, 약 3도 이상 또는 약 3.5도 이상일 수 있다. 또한, 상기 각도는 다른 예시에서 약 19도 이하, 약 18도 이하, 약 17도 이하, 약 16도 이하 또는 약 15도 이하일 수 있다.
편광 마스크는, 제 2 방향을 따라서 편광 라인들의 평균 투과축이 증가하는 증가 영역 또는 감소하는 감소 영역을 포함할 수 있다.
예를 들어, 도 9의 예시적인 편광 마스크를 참조하면, 상기 마스크는, 도면의 좌측에서 우측 방향으로 평균 투과축이 72도, 76.5도, 81도 및 90도로 증가하는 편광 라인 A 내지 D로 형성되는 증가 영역과 평균 투과축이 90도, 85.5도, 81도, 76.5도 및 67.5도로 감소하는 편광 라인 D 내지 H로 형성되는 감소 영역을 포함하고 있다.
이러한 증가 또는 감소 영역에서의 증가 또는 감소율은 하기 수식 7에 따라 정해질 수 있다.
[수식 7]
R = Q/N
수식 7에서 R은 증가율 또는 감소율이고, Q는, 제 2 방향을 따라서 배치되어 있는 증가 영역 또는 감소 영역에서 평균 투과축이 증가 또는 감소하기 시작하는 편광 라인의 평균 투과축과 평균 투과축의 증가 또는 감소가 종료되는 편광 라인의 평균 투과축이 이루는 각도이며, N은 상기 증가 또는 감소 영역에 포함되어 있는 편광 라인의 개수이다.
수식 7에 따라 증가율 또는 감소율을 규정할 때에 증가 영역 또는 감소 영역에서의 평균 투과축의 증가 또는 감소는 시계 방향 및 반시계 방향 중에서 어느 한 방향을 기준으로 정하여질 수 있다.
예를 들어, 도 9에서 편광 라인 A 내지 D로 이루어지는 증가 영역의 증가율(R) 및 편광 라인 D 내지 H로 이루어지는 감소 영역에서의 감소율(R)은, 4.5이다.
편광 마스크에서 상기 증가율(R) 또는 감소율(R)은, 예를 들면, 약 1 내지 10의 범위 내에 있을 수 있다. 다른 예시에서 상기 증가율(R) 또는 감소율(R)은, 약 2 이상, 3 이상, 4 이상 또는 4.5 이상일 수 있다. 또한, 다른 예시에서 상기 증가율(R) 또는 감소율(R)은, 약 9 이하, 8 이하, 7 이하, 6 이하 또는 약 5.5 이하일 수 있다.
수식 7에서 Q는, 약 70도 내지 120도, 약 80도 내지 100도 또는 약 85도 내지 95도의 범위 내에 있을 수 있다. 또한, 수식 7에서 N은 약 5 내지 30의 범위 내에 있을 수 있다. 다른 예시에서 N은 7 내지 28, 9 내지 26, 11 내지 24 또는 13 내지 22 정도의 범위 내에 있을 수 있다.
상기와 같은 형태로 구현된 편광 마스크를 사용하면, 전술한 형태의 광학층을 형성할 수 있는 배향막을 구현할 수 있다.
편광 마스크에서 편광 라인의 폭(제 2 방향을 따라서 측정되는 치수) 및 길이(제 1 방향을 따라서 측정되는 치수)은 특별히 제한되지 않고, 목적하는 용도에 따라서 결정될 수 있다. 예를 들면, 상기 폭은 약 1 mm 내지 20 mm의 범위 내에 있을 수 있다. 또한, 상기 길이는 예를 들면, 약 30 mm 내지 70 mm의 범위 내에 있을 수 있다.
또한, 편광 마스크의 각 편광 라인에 포함되는 편광 영역의 개수도 특별히 제한되지 않으며, 목적하는 배향 효율 등을 고려하여, 예를 들면, 약 2개 내지 10개의 범위 내에서 적절하게 선택될 수 있다.
이와 같은 편광 마스크를 제조하는 방식은 특별히 제한되지 않고, 예를 들면, PVA(poly(vinyl alcohol)) 편광판이나 WGP(Wire Grid Polarizer) 등을 복수 조합하여 제조할 수 있다.
하나의 예시에서 상기 마스크는 곡면을 형성하고 있는 상태로 유지될 수 있다. 예를 들어, 상기 마스크를 사용한 노광 공정의 피조사체의 표면이 곡면으로 유지된 경우에, 편광 마스크가 곡면으로 유지되는 것이 필요할 수 있다.
표면이 곡면으로 유지된 피조사체로는, 예를 들면, 소위 롤투롤 과정에서 광이 조사되는 피조사체가 예시될 수 있다. 본 출원에서 용어 롤투롤 공정에는, 가이드롤, 이송롤 또는 권취롤 등의 롤을 사용하여 피조사체를 연속적으로 이송하면서 광을 조사하는 과정을 포함하는 공정이 모두 포함될 수 있다. 롤투롤 공정에서 피조사체에 광을 조사하는 과정은, 예를 들면, 피조사체가 롤에 감기어진 상태에서 수행될 수 있다. 이러한 방식으로 광을 조사하게 되면, 피조사체가 효과적으로 고정된 상태에서 광이 조사될 수 있다.
도 10은, 롤투롤 공정에서 피조사체(50)에 편광 마스크(40)를 매개로 광을 조사하는 과정을 예시적으로 도시한 것이다. 도 10과 같이, 피조사체(50)가 롤(60)에 감기어져 표면이 곡면으로 유지되고, 이 상태에서 광이 조사될 수 있다.
곡면 형상으로 유지된 마스크의 형태, 예를 들면, 마스크의 곡률 반경 등은 특별히 제한되지 않고, 피조사체로 적절한 광의 조사가 가능하도록 선택되면 된다. 예를 들면, 마스크의 곡률 반경은, 곡면 형상으로 유지된 피조사체의 곡률 반경과 대등하게 되도록 조절될 수 있다. 예를 들면, 마스크가 곡면으로 유지된 경우에 마스크의 투광성 지지 구조체는, 10 mm 내지 500 mm 정도의 곡률 반경을 가질 수 있다.
본 출원은 또한 상기 편광 마스크를 포함하는 광조사 장치 또는 광학 소자의 제조 장치에 대한 것이다. 상기 제조 장치에 의해 제조되는 광학 소자는, 전술한 광학 소자일 수 있다.
상기 제조 장치는, 예를 들면, 상기 편광 마스크 및 피조사체가 거치할 수 있도록 설치되어 있는 거치 수단을 포함할 수 있다. 상기 장치에서 편광 마스크 및 거치 수단은, 상기 피조사체의 상기 편광 마스크에 대한 상대적 위치가 상기 제 1 방향, 즉 편광 라인의 길이 방향을 따라서 이동될 수 있도록 구성될 수 있다.
상기 장치에서 거치 수단의 종류는 특별히 제한되지 않으며, 광이 조사되는 동안 피조사체가 안정적으로 유지될 수 있도록 설계되어 있는 모든 종류의 장비가 포함될 수 있다.
거치 수단은 피조사체의 표면을 곡면으로 유지한 상태로 거치할 수 있는 장비일 수 있다. 이러한 장비의 예로는, 상기한 롤투롤 공정에서의 롤이 예시될 수 있으나, 이에 제한되는 것은 아니다. 피조사체가 거치되는 장비가 상기 피조사체의 표면을 곡면으로 유지한 상태로 거치할 수 있는 장비인 경우에, 마스크 역시 곡면으로 유지된 상태로 장치에 포함되어 있을 수 있다. 이러한 경우 마스크의 곡면 형상이 피조사체가 거치되는 장비의 곡면에 대응되도록 장치에 포함될 수 있다.
장치는, 편광 마스크로 광을 조사할 수 있는 광원을 추가로 포함할 수 있다. 광원으로는, 편광 마스크의 방향으로 광을 조사할 수 있는 것이라면, 특별한 제한 없이 사용할 수 있다. 예를 들면, 편광 마스크를 통해 광배향막의 배향이나, 포토레지스트의 노광 등을 수행하고자 하는 경우에는, 광원으로는, 자외선의 조사가 가능한 광원으로서, 고압 수은 자외선 램프, 메탈 할라이드 램프 또는 갈륨 자외선 램프 등이 사용될 수 있다.
장치는, 또한 광원으로부터 조사되는 광의 광량의 조절을 위하여, 하나 이상의 집광판을 추가로 포함할 수 있다. 집광판은 예를 들면, 광원으로부터 조사된 광이 집광판으로 입사되어 집광된 후에, 집광된 광이 편광 마스크로 조사될 수 있도록 장치 내에 포함될 수 있다. 집광판으로는, 광원으로부터 조사된 광을 집광할 수 있도록 형성되어 있다면, 이 분야에서 통상 사용되는 구성을 사용할 수 있다. 집광판으로는, 렌티큘러 렌즈층 등이 예시될 수 있다.
장치가 상기와 같은 구성을 포함하는 경우에, 상기 장치는, 옐르 들면, 순차로 배치된 광원, 집광판, 편광 마스크 및 거치 수단을 포함할 수 있다. 이에 따라 광원에서 조사된 광이 우선 집광판에 입사하여 집광되고, 다시 편광 마스크에 입사한 후에 그를 투과하여 피조사체의 표면에 조사될 수 있다.
본 출원은, 광 조사 방법 또는 광학 소자의 제조 방법에 대한 것이다. 예시적인 상기 방법은, 상기 기술한 장치를 사용하여 수행할 수 있다.
상기 방법은, 예를 들면, 상기 편광 마스크의 하부에 배향막, 예를 들면, 광배향막을 배치하고, 상기 편광 마스크를 매개로 상기 배향막에 광을 조사하는 과정을 포함할 수 있다. 상기 과정은, 예를 들면, 상기 배향막의 상기 편광 마스크에 대한 상대적 위치를 제 1 방향(편광 라인의 길이 방향)을 따라 변화시키면서 수행할 수 있다.
이러한 과정을 거쳐서 상기 언급한 광학 소자를 구현할 수 있는 배향막이 제공될 수 있다. 예를 들어, 도 9을 참조하여 이를 설명한다. 도 9와 같은 형태의 편광 마스크의 하부를 적절한 배향막을 제 1 방향(도면의 세로 방향)을 따라 이동시키면서 노광하는 경우, 예를 들어, 편광 라인 A의 하부를 지나는 배향막의 영역은 각각 67.5도, 67.5도, 90도, 67.5도 및 67.5도로 편광된 직선 편광에 순차적으로 노광된다. 같은 방식으로 편광 라인 B 내지 H의 하부를 지나는 배향막의 영역은 각 편광 영역들의 투과축 방향에 대응하는 각도로 편광된 직선 편광에 순차 노광되게 된다. 전술한 바와 같이 편광 라인들의 평균 투과축은 서로 상이하면, 소정의 규칙을 가지고 배치되어 있고, 이에 따라 각 편광 라인의 하부를 거친 배향막의 영역은, 각 편광 라인의 편광 영역들의 배치 및 평균 투과축에 따라서 변화하는 정렬 방향을 가지게 되고, 그에 따라 그 상부에 형성되는 광학층의 광축 또는 광흡수축은 상기 언급한 구조로 구현될 수 있다.
상기 과정에서 배향막과 편광 마스크간의 제 1 방향을 따른 상대적 위치의 변화 속도는 적절한 배향이 이루어질 수 있다면 특별히 제한되지 않으며, 예를 들면, 약 5 m/min 이하의 범위에서 속도가 결정될 수 있다. 상기 속도는, 다른 예시에서 약 4 m/min 이하 또는 약 3 m/min 이하일 수 있다. 또한, 상기 속도는, 예를 들면, 약 0.5 m/min 이상, 약 1 m/min 이상일 수 있다.
전술한 바와 같이 상기 노광 공정은 피조사체인 배향막의 표면을 곡면으로 유지한 상태로 수행될 수 있다.
상기와 같이 형성된 배향막상에 광학층을 형성하여 광학 소자를 제조할 수 있다. 광학층을 형성하는 방법은 특별히 제한되지 않으며, 예를 들면, 배향막상에 상기 언급한 중합성 액정 화합물 및/또는 이색성 염료 등을 포함하는 층을 형성하고, 배향시킨 후에 광의 조사 또는 열의 인가 등의 방식으로 에너지를 부여하여 형성할 수 있다.
상기에서 액정 화합물 및/또는 이색성 염료 등을 포함하는 층을 형성하고, 배향 처리, 즉 하부의 배향막의 배향 패턴에 따라서 정렬시키는 방식이나, 정렬된 액정 화합물 등을 중합시키는 방식은 특별히 제한되지 않는다. 예를 들면, 배향은, 액정 화합물 및/또는 이색성 염료의 종류에 따라서 정렬이 될 수 있는 적절한 온도에서 유지하는 방식 등으로 진행될 수 있다. 또한, 중합은, 액정 화합물의 종류에 따라서 적절한 가교 또는 중합이 유도될 수 있는 수준의 광을 조사하거나 혹은 열을 인가하여 수행할 수 있다.
본 출원에서는, 광축 또는 광흡수축의 변화가 연속적으로 일어나는 광학층을 포함하는 광학 소자가 제공된다. 본 출원의 광학 소자는, 예를 들면, 빌딩이나 자동차 등의 창문이나 셰이드(shade) 등과 같이 열, 광 또는 눈부심의 조절이 필요한 영역에서 사용되거나, 기타 광축 또는 광흡수축의 연속적인 변화가 요구되는 다양한 장치 등에서 효과적으로 사용될 수 있다.
도 1 내지 3은 예시적인 광학 소자를 보여주는 개념도이다.
도 4 내지 6은, 예시적인 광학 패널의 배치를 보여주는 개념도이다.
도 7 내지 9는 예시적인 편광 마스크를 보여주는 도면이다.
도 10은, 예시적인 장치의 형태를 보여주는 도면이다.
도 11 및 12는 실시예에서 사용한 편광 마스크를 설명하기 위한 도면이다.
도 13 및 14는 실시예에서 제조된 광학층의 광축 변화를 보여주는 도면이다.
<도면 부호의 설명>
10: 기재층
20: 광학층
30: 광학 소자
101, 102, 103, 104, 105, A, B, C, D, E, F, G, H: 편광 라인
1011 내지 1015,2011 내지 2015, 3011 내지 3015, 4011 내지 4015, 5011 내지 5015: 편광 영역
40: 편광 마스크
50: 피조사체
60: 거치 수단
이하 실시예를 통하여 상기 광학 소자 등을 구체적으로 설명하지만, 상기 광학 소자 등의 범위가 하기 실시에에 의해 제한되는 것은 아니다.
실시예 1.
편광 마스크의 제작
[규칙 제91조에 의한 정정 12.03.2014] 
통상적 WGP(Wire Grid Polarizer)를 가로 및 세로의 길이가 각각 10 mm가 되도록 재단하여 편광 영역을 구성할 WGP를 준비하였다. 그 후 5개의 WGP(편광 영역)가 하나의 편광 라인을 구성하도록 부착하여 편광 마스크를 제작하였다. 이 때 편광 마스크의 편광 영역의 투과축 배치는 도 11 및 도 12와 같이 설정하였다. 도 11 및 도 12에서 기재된 숫자는 각 영역의 투과축의 각도를 나타낸다. 즉, 도 11을 참조하면, 가장 하측에 0도의 투과축을 가지도록 배치된 5개의 WGP가 존재하고, 상부 방향으로 모두 16개의 편광 라인이 존재하고 있다. 편광 마스크는 도 11의 마스크의 상단과 도 12의 마스크의 하단을 서로 부착하여 최종적으로 제작하였다.
배향막의 형성
[규칙 제91조에 의한 정정 12.03.2014] 
배향성 화합물로서, 한국 등록특허 제1064585호에 개시되어 있는 바와 같은 신나메이트기를 가지는 폴리노르보넨을 적정량의 광개시제(Igacure 907)와 배합한 혼합물을 톨루엔 용매에 배향성 화합물의 고형분 농도가 2 중량%가 되도록 용해시켜 배향막 전구체를 제조하였다. 이어서, PET(poly(ethylene terephthalate)) 필름의 일면에 상기 전구체를 코팅하고, 적정 온도에서 건조시켰다. 그 후 상기 건조된 층을 상기 제작된 편광 마스크의 하부를 통과하도록 이동시키면서 편광 마스크의 상부로부터 자외선(1,200 mJ/cm2)을 조사하여 배향막을 형성하였다. 상기에서 배향막의 이동은, 도 11 및 도 12를 참조하면, 도면의 우측에서 좌측 방향으로 이동시켰으며, 이동 속도는 약 2.5 m/min 정도로 유지하였다.
광학 소자의 제조
중합성 액정 화합물(LC242, BASF(제))을 적정량의 광개시제(Igacure 907)와 배합한 코팅액을 배향막상에 적정 두께로 코팅하고, 하부 배향막의 배향 패턴에 따라서 배향시킨 상태로 자외선(30mW/cm2)을 조사하여 광학층을 형성하고, 광학 소자를 제조하였다. 도 13은 상기와 같은 방식으로 형성된 광학층의 광축 분포를 보여주는 도면이고, 도 14은, 상기 광학층의 가로 방향을 X축(TD축)으로 하고, 광축(지상축)의 각도를 Y축(retardation orientation)으로 하여 도시한 그래프이다. 도 14에서 Y축의 단위는 도(degree)이며, X축의 단위는 mm이다. 도면으로부터 각 영역간의 경계가 관찰되지 않고, 균일하게 광축이 변화하는 광학층이 형성된 것을 확인할 수 있다.
실시예 2.
배향막의 형성을 위한 자외선의 조사 시에 배향막의 이동 속도를 약 1 m/min로 변경한 것을 제외하고는 실시예 1과 동일한 방식으로 광학층을 형성하여 광학 소자를 제조하였다. 도 14에는 이러한 광학층의 가로 방향을 X축으로 하고, 광축(지상축)의 각도를 Y축으로 하여 도시한 그래프가 실시예 1의 결과와 함께 나타나 있다. 도 14에서 그래프가 실시예 1의 결과와 거의 중첩되어 관찰되어 있고, 이로부터 역시 각 영역간의 경계가 관찰되지 않고 균일하게 광축이 변화하는 광학층이 형성된 것을 확인할 수 있다.
실시예 3.
중합성 액정 화합물을 포함하는 코팅액에 중합성 액정 화합물의 배향에 따라서 배향하고, 가시광 영역(400 nm 내지 800 nm) 내에서 최대 흡광도를 가지는 아조계 이색성 염료를 배합한 코팅액을 사용한 것을 제외하고는 실시예 1과 동일한 방식으로 광학 소자를 제조하였다. 이러한 광학 소자에서는 상기 이색성 염료에 의하여 실시예 1에서의 광축 분포에 준한 방식으로 연속적으로 변화하는 광흡수축을 가지는 광학층이 형성되었다.
실시예 4.
중합성 액정 화합물을 포함하는 코팅액에 중합성 액정 화합물의 배향에 따라서 배향하고, 가시광 영역(400 nm 내지 800 nm) 내에서 최대 흡광도를 가지는 아조계 이색성 염료를 배합한 코팅액을 사용한 것을 제외하고는 실시예 2와 동일한 방식으로 광학 소자를 제조하였다. 이러한 광학 소자에서는 상기 이색성 염료에 의하여 실시예 2에서의 광축 분포에 준한 방식으로 연속적으로 변화하는 광흡수축을 가지는 광학층이 형성되었다.

Claims (11)

  1. 광축 또는 광흡수축의 방향이 일 방향을 따라서 변화하며, 하기 수식 1에 따라 정해지는 상기 광축 또는 광흡수축의 평균 변화율(V)이 0을 초과하고, 5 이하인 변화 영역을 포함하는 광학층을 가지는 광학 소자:
    [수식 1]
    V = 360/P
    수식 1에서 V는 평균 변화율이고, P는 변화 영역의 피치이다.
  2. 제 1 항에 있어서, 변화 영역 내에서 광축 또는 광흡수축이 서로 상이한 영역간에 경계가 관찰되지 않는 광학 소자.
  3. 제 1 항에 있어서, 변화 영역의 광축 또는 광흡수축의 변화가 하기 수식 3을 만족하는 광학 소자:
    [수식 3]
    Y = a × X
    수식 3에서 X는 변화 영역의 시작 지점에서부터 일 방향에 따라 측정되는 거리이고, Y는 변화 영역의 시작 지점의 광축 또는 광흡수축을 기준으로 측정한 상기 X 지점에서 광축 또는 광흡수축이 회전한 각도이며, a는 0을 초과하고, 5 이하인 범위 내의 수이다.
  4. 제 1 항에 있어서, 광학층은 단일층인 광학 소자.
  5. 제 1 항에 있어서, 하기 수식 2에 따라 정해지는 변화 영역의 회전각(φ)이 40도 이상인 광학 소자:
    [수식 4]
    φ = V × L
    수식 4에서 φ는 회전각이고, V는, 평균 변화율이며, L는 변화 영역의 길이이다.
  6. 제 1 항에 있어서, 광학층은 액정 고분자층인 광학 소자.
  7. 제 1 항에 있어서, 광학층은, 이색성 염료를 포함하는 액정 고분자층 또는 유방성 액정층인 광학 소자.
  8. 제 1 항에 있어서, 기재층을 추가로 포함하고, 광학층은 상기 기재층의 일면에 형성되어 있는 광학 소자.
  9. 제 1 항에 있어서, 광학층과 접하는 배향막을 추가로 포함하는 광학 소자.
  10. 제 9 항에 있어서, 배향막은 가역성을 가지는 배향성 화합물을 포함하는 광학 소자.
  11. 대향 배치되어 있는 두 개의 제 1 항에 따른 광학 소자를 포함하고, 상기 두 개의 광학 소자는 서로에 대한 상대적 위치가 변화될 수 있도록 배치되어 있으며, 상기 상대적 위치의 변화에 의해 광의 투과율 또는 편광 상태가 조절되는 광학 패널.
PCT/KR2013/012419 2012-12-31 2013-12-31 광학 소자 WO2014104862A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015546404A JP6354106B2 (ja) 2012-12-31 2013-12-31 光学素子の製造方法
EP13868206.7A EP2940496B1 (en) 2012-12-31 2013-12-31 Optical element
CN201380068371.7A CN104884982B (zh) 2012-12-31 2013-12-31 光学装置
US14/649,850 US9599833B2 (en) 2012-12-31 2013-12-31 Optical device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR20120158197 2012-12-31
KR20120158198 2012-12-31
KR10-2012-0158197 2012-12-31
KR10-2012-0158198 2012-12-31
KR1020130168246A KR101622012B1 (ko) 2012-12-31 2013-12-31 광학 소자
KR10-2013-0168246 2013-12-31

Publications (1)

Publication Number Publication Date
WO2014104862A1 true WO2014104862A1 (ko) 2014-07-03

Family

ID=51736824

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/KR2013/012420 WO2014104863A1 (ko) 2012-12-31 2013-12-31 편광 마스크
PCT/KR2013/012419 WO2014104862A1 (ko) 2012-12-31 2013-12-31 광학 소자

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/012420 WO2014104863A1 (ko) 2012-12-31 2013-12-31 편광 마스크

Country Status (7)

Country Link
US (2) US9599833B2 (ko)
EP (2) EP2940496B1 (ko)
JP (2) JP6124228B2 (ko)
KR (3) KR101622014B1 (ko)
CN (2) CN105008970B (ko)
TW (2) TWI553356B (ko)
WO (2) WO2014104863A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106814419A (zh) * 2015-09-25 2017-06-09 株式会社Lg化学 光学元件

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6032452B2 (ja) * 2013-09-30 2016-11-30 エルジー・ケム・リミテッド 光学素子
KR102260874B1 (ko) * 2014-11-13 2021-06-04 삼성디스플레이 주식회사 곡면형 액정 표시 장치 및 그 제조 방법
KR102469691B1 (ko) * 2015-11-30 2022-11-22 엘지디스플레이 주식회사 액정표시장치 및 그 제조방법
CN109752883B (zh) * 2017-09-20 2022-08-09 香港科技大学 制作具有连续变化的取向方向的光取向层的方法
CN107656333B (zh) * 2017-10-10 2019-12-06 惠科股份有限公司 偏光板及其制作方法、曲面显示面板
KR102057764B1 (ko) 2017-12-21 2019-12-19 율촌화학 주식회사 스마트 윈도우, 스마트 윈도우의 제조방법 및 스마트 윈도우의 제조장치
WO2020066910A1 (ja) * 2018-09-28 2020-04-02 富士フイルム株式会社 積層体の製造方法、光学部材の製造方法
CN109273508B (zh) * 2018-10-11 2021-03-30 京东方科技集团股份有限公司 显示装置及其制造方法
KR102248880B1 (ko) * 2019-02-14 2021-05-06 율촌화학 주식회사 배향막, 편광판, 및 위상차판, 그 제조방법 및 제조장치
JP7421730B2 (ja) 2020-03-31 2024-01-25 日本精機株式会社 ヘッドアップディスプレイ装置及びヘッドアップディスプレイシステム
WO2021246286A1 (ja) * 2020-06-01 2021-12-09 富士フイルム株式会社 光学要素、画像表示装置、仮想現実表示装置、電子ファインダー、偏光子の製造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5707566A (en) 1995-06-02 1998-01-13 Hoechst Celanese Corp. Process for preparing high performance polarizer films
KR100364504B1 (ko) 2001-02-20 2002-12-18 엘지전선 주식회사 광배향막을 이용한 위상차 필름의 제조 방법
KR20050000572A (ko) * 2003-06-24 2005-01-06 엘지.필립스 엘시디 주식회사 위상차 필름의 제조방법 및 이를 이용한 액정표시장치의제조방법
JP2006003479A (ja) * 2004-06-16 2006-01-05 Nikon Corp 光学素子及び照明光学系
KR20060001291A (ko) * 2004-06-30 2006-01-06 엘지.필립스 엘시디 주식회사 액정 표시 장치 및 이의 제조방법
KR20080077975A (ko) 2005-12-09 2008-08-26 코니카 미놀타 옵토 인코포레이티드 위상차 필름, 위상차 필름의 제조 방법, 편광판 및 액정표시 장치
KR101064585B1 (ko) 2010-01-22 2011-09-15 주식회사 엘지화학 광배향막 배향 처리용 점착 필름
KR20120069298A (ko) * 2010-12-20 2012-06-28 에스케이이노베이션 주식회사 패턴화된 광위상변조판 및 이의 제조방법
US20120169950A1 (en) * 2010-12-30 2012-07-05 Ryan Tatzel Variable Transmission Window

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG50586A1 (en) * 1991-07-26 2000-05-23 Rolic Ag Liquid crystal display cell
JP2596851Y2 (ja) * 1993-04-07 1999-06-21 株式会社村上開明堂 防眩インナーミラー
GB2286058A (en) * 1994-01-21 1995-08-02 Sharp Kk Switchable holographic apparatus
JPH0921913A (ja) * 1995-07-05 1997-01-21 Sharp Corp 軸対称偏光板及びその製造方法,並びに液晶表示装置
US20050068629A1 (en) 2003-09-26 2005-03-31 Primal Fernando Adjustably opaque window
US7162136B1 (en) * 2004-12-22 2007-01-09 West Virginia University Non-circular, mechanically variable optical attenuator
JP2006195395A (ja) * 2005-01-13 2006-07-27 Toshikazu Yoshida 偏光板を使用した透過光量調整装置
JP5310971B2 (ja) * 2005-10-25 2013-10-09 凸版印刷株式会社 潜像表示方法、真偽判定方法および情報伝達方法
JP2008076825A (ja) * 2006-09-22 2008-04-03 Seiko Epson Corp 配向膜製造用マスク及び液晶装置の製造方法
JP2008083215A (ja) * 2006-09-26 2008-04-10 Seiko Epson Corp 配向膜製造用マスク及び液晶装置の製造方法
US8703253B2 (en) * 2008-01-18 2014-04-22 Lg Chem, Ltd. Composition for liquid crystal alignment layer, preparation method of liquid crystal alignment layer using the same, and optical film comprising the liquid crystal alignment layer
US20100060985A1 (en) * 2008-09-09 2010-03-11 Fujifilm Corporation Method for producing polarizing plate, and automobile's windshield
JP2010156720A (ja) * 2008-09-09 2010-07-15 Fujifilm Corp 偏光板及びその製造方法、並びに自動車用前窓
JP5514738B2 (ja) * 2008-12-19 2014-06-04 株式会社有沢製作所 液晶フィルタ、位相差板及び光学ローパスフィルタ
CN102272658B (zh) * 2009-02-03 2014-11-05 株式会社Lg化学 立体图像显示装置用滤光片的制备方法
KR101213496B1 (ko) * 2010-07-19 2013-01-18 삼성디스플레이 주식회사 레이저 조사 장치 및 이를 이용한 유기 발광 표시 장치의 제조 방법
US9069257B2 (en) * 2010-07-26 2015-06-30 Lg Chem, Ltd. Mask and optical filter manufacturing apparatus including the same
WO2012044077A2 (ko) * 2010-09-29 2012-04-05 동우화인켐 주식회사 노광 시스템
KR101818246B1 (ko) 2011-05-17 2018-01-12 엘지디스플레이 주식회사 패턴 리타더 방식의 입체영상 표시장치와 그 제조방법
TWM440900U (en) 2012-06-28 2012-11-11 Tseng Chung Hsin Lifting window capable of regulating light transmittance

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5707566A (en) 1995-06-02 1998-01-13 Hoechst Celanese Corp. Process for preparing high performance polarizer films
KR100364504B1 (ko) 2001-02-20 2002-12-18 엘지전선 주식회사 광배향막을 이용한 위상차 필름의 제조 방법
KR20050000572A (ko) * 2003-06-24 2005-01-06 엘지.필립스 엘시디 주식회사 위상차 필름의 제조방법 및 이를 이용한 액정표시장치의제조방법
JP2006003479A (ja) * 2004-06-16 2006-01-05 Nikon Corp 光学素子及び照明光学系
KR20060001291A (ko) * 2004-06-30 2006-01-06 엘지.필립스 엘시디 주식회사 액정 표시 장치 및 이의 제조방법
KR20080077975A (ko) 2005-12-09 2008-08-26 코니카 미놀타 옵토 인코포레이티드 위상차 필름, 위상차 필름의 제조 방법, 편광판 및 액정표시 장치
KR101064585B1 (ko) 2010-01-22 2011-09-15 주식회사 엘지화학 광배향막 배향 처리용 점착 필름
KR20120069298A (ko) * 2010-12-20 2012-06-28 에스케이이노베이션 주식회사 패턴화된 광위상변조판 및 이의 제조방법
US20120169950A1 (en) * 2010-12-30 2012-07-05 Ryan Tatzel Variable Transmission Window

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106814419A (zh) * 2015-09-25 2017-06-09 株式会社Lg化学 光学元件

Also Published As

Publication number Publication date
US9599833B2 (en) 2017-03-21
TW201502602A (zh) 2015-01-16
US9846312B2 (en) 2017-12-19
JP2016502147A (ja) 2016-01-21
EP2940497A4 (en) 2016-08-31
EP2940496B1 (en) 2020-09-30
WO2014104863A1 (ko) 2014-07-03
KR101622013B1 (ko) 2016-05-17
KR101622012B1 (ko) 2016-05-17
US20150309324A1 (en) 2015-10-29
TW201443493A (zh) 2014-11-16
US20150301250A1 (en) 2015-10-22
CN105008970A (zh) 2015-10-28
JP2016501387A (ja) 2016-01-18
KR20140088034A (ko) 2014-07-09
EP2940497A1 (en) 2015-11-04
KR20140088035A (ko) 2014-07-09
TWI553356B (zh) 2016-10-11
EP2940496A1 (en) 2015-11-04
CN104884982B (zh) 2017-09-08
KR101622014B1 (ko) 2016-05-17
CN105008970B (zh) 2017-10-20
JP6124228B2 (ja) 2017-05-10
JP6354106B2 (ja) 2018-07-11
EP2940497B1 (en) 2017-08-30
TWI540346B (zh) 2016-07-01
EP2940496A4 (en) 2016-12-28
CN104884982A (zh) 2015-09-02
KR20140088036A (ko) 2014-07-09

Similar Documents

Publication Publication Date Title
WO2014104862A1 (ko) 광학 소자
US9791607B2 (en) Optical element
WO2014092518A1 (ko) 액정 소자
JP6500286B2 (ja) 偏光素子
KR101415127B1 (ko) 액정셀
WO2019146977A1 (ko) 다층 액정 필름, 편광판 및 편광판의 제조방법
WO2013115628A1 (ko) 액정 조성물
WO2012144874A2 (ko) 액정 조성물
WO2018043979A1 (ko) 다층 액정 필름의 제조 방법
WO2018021837A1 (ko) 투과도 가변 필름, 그 제조 방법 및 용도
WO2013085315A1 (ko) 액정셀
WO2017003268A1 (ko) 게스트호스트형 액정 조성물
WO2015047013A1 (ko) 광학 소자
WO2018080089A1 (ko) 투과도 가변 필름
WO2023055021A1 (ko) 편광판의 제조 방법
WO2013032283A2 (ko) 액정셀
US11999119B2 (en) Method for manufacturing polarizing plate
WO2014092519A1 (ko) 중합성 조성물
WO2019245351A1 (ko) 편광판의 제조 방법
WO2020022832A1 (ko) 광학 필름
WO2015046983A1 (ko) 광학 필름

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13868206

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013868206

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015546404

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14649850

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE