WO2014103657A1 - 偏芯評価方法及びエピタキシャルウェーハの製造方法 - Google Patents

偏芯評価方法及びエピタキシャルウェーハの製造方法 Download PDF

Info

Publication number
WO2014103657A1
WO2014103657A1 PCT/JP2013/082754 JP2013082754W WO2014103657A1 WO 2014103657 A1 WO2014103657 A1 WO 2014103657A1 JP 2013082754 W JP2013082754 W JP 2013082754W WO 2014103657 A1 WO2014103657 A1 WO 2014103657A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
eccentricity
film thickness
thickness distribution
mounting position
Prior art date
Application number
PCT/JP2013/082754
Other languages
English (en)
French (fr)
Inventor
桝村 寿
大西 理
Original Assignee
信越半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越半導体株式会社 filed Critical 信越半導体株式会社
Publication of WO2014103657A1 publication Critical patent/WO2014103657A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/16Controlling or regulating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring

Definitions

  • the present invention relates to a method for evaluating eccentricity of a mounting position of a substrate placed on a susceptor in manufacturing an epitaxial wafer having an epitaxial layer grown on the substrate, and a method for manufacturing an epitaxial wafer using the evaluation result.
  • a step of epitaxially growing a thin film (epitaxial layer) on a substrate by supplying a reaction gas onto the substrate in a chamber in which outside air is shut off.
  • a general epitaxial growth apparatus used for such epitaxial growth will be described with reference to the schematic diagram shown in FIG.
  • An epitaxial growth apparatus 101 shown in FIG. 19 supplies a reaction gas G from the reaction gas supply means 104 into the chamber 102 while being blocked from the outside air, and is supported by a support shaft 107 disposed in the chamber 102.
  • an epitaxial layer is grown on the surface of the substrate 109.
  • the support shaft 107 that supports the susceptor 103 rotates, so that the substrate 109 rotates.
  • the reacted gas G is discharged out of the chamber 102 by the reactive gas discharge means 105.
  • a concave pocket portion 131 that is several millimeters larger than the substrate diameter is formed inside the edge of the susceptor 103.
  • the susceptor 103 has a plurality of through holes 106 for reasons such as for lift pins, for supplying hydrogen to the back surface of the substrate 109, for preventing the substrate 109 from slipping, and for easily removing the substrate 109 after processing. May have.
  • a pyrometer is provided to identify the position of the substrate, thermal radiation is measured, and the improper position of the substrate is estimated by obtaining the fluctuation amplitude of the measurement signal. Is disclosed (see Patent Document 1).
  • Patent Document 2 Also disclosed is a method for detecting a positional deviation of a substrate by providing a laser light source for irradiating the surface of the substrate with laser light and a light amount detector for detecting the condensed reflected light (Patent Document 2).
  • the substrate is placed on a susceptor having a plurality of through holes, an etching gas is introduced at the same temperature as the epitaxial growth temperature, the susceptor through hole pattern is transferred to the back surface of the substrate, and the position of the susceptor through hole pattern is determined.
  • Patent Document 3 A method for measuring and evaluating the amount of eccentricity of the mounting position of the substrate has been proposed (Patent Document 3).
  • Patent Document 1 and Patent Document 2 it is necessary to newly install equipment such as a pyrometer and a light amount detector, or to modify the apparatus, which increases costs. Moreover, there is a problem that the evaluation accuracy is not always sufficient, and it is difficult to correct the mounting position after the evaluation.
  • Patent Document 3 has advantages that the cost is low and the evaluation accuracy is considerably higher than the methods in Patent Document 1 and Patent Document 2.
  • an etching gas is introduced, the susceptor through hole pattern is transferred to the back surface of the substrate, the position of the susceptor through hole pattern is measured, and the amount of eccentricity is obtained.
  • the mounting position could not be corrected.
  • a susceptor without a through hole there is a problem that the mounting position of the substrate cannot be evaluated and the mounting position cannot be corrected because the through hole pattern cannot be transferred.
  • the present invention has been made in view of the above problems, and does not require modification of additional equipment or equipment. Even when a susceptor having no through hole is used, the substrate is mounted at a high temperature during epitaxial growth. It is an object of the present invention to provide a method capable of simply evaluating the eccentricity of the installation position. It is another object of the present invention to provide an epitaxial wafer manufacturing method capable of forming an epitaxial layer having a uniform film thickness on a substrate.
  • the eccentricity evaluation method of the present invention includes a growth step of placing a substrate on the pocket portion of a susceptor having a concave pocket portion and growing an epitaxial layer on the substrate. , A measurement process for measuring the film thickness distribution in the circumferential direction at the outer periphery of the epitaxial layer obtained in the growth process; An evaluation step for evaluating the eccentricity of the mounting position of the substrate in the susceptor based on the film thickness distribution obtained in the measurement step; It is characterized by including.
  • the epitaxial layer is actually grown on the substrate in the growth process.
  • the film thickness distribution reflects the amount of eccentricity and the direction of eccentricity. Therefore, the film thickness distribution in the circumferential direction at the outer peripheral portion of the epitaxial layer is measured in the measurement process, and the evaluation process is performed to observe the measured film thickness distribution, thereby decentering the substrate mounting position (eccentricity, eccentricity). (Core direction) can be evaluated.
  • the eccentricity of the mounting position of the substrate in a high temperature state when the epitaxial layer is grown can be easily evaluated with high accuracy.
  • the eccentricity of the mounting position of the substrate can be evaluated with high accuracy.
  • the eccentricity of the mounting position of the substrate is evaluated based on the deviation of the film thickness distribution from the average value of the film thickness distribution.
  • the deviation from the average value of the film thickness distribution serves as an index representing the characteristics of the film thickness distribution. Therefore, the deviation of the substrate can be easily evaluated by using the deviation.
  • the eccentric amount of the mounting position of the substrate is calculated based on the deviation from the average value of the minimum film thickness in the film thickness distribution.
  • the present inventor has obtained knowledge that the thickness of the epitaxial layer in the substrate portion close to the wall surface of the pocket portion of the susceptor becomes thin. According to the knowledge, it can be considered that the substrate portion having the minimum film thickness in the film thickness distribution is closest to the wall surface of the pocket portion. Therefore, the amount of eccentricity of the substrate can be easily calculated by using the deviation from the average value of the minimum film thickness.
  • the mounting position of the substrate is eccentric in the direction of the position of the minimum film thickness among the positions along the circumferential direction of the outer peripheral portion. Therefore, the eccentric direction of the substrate can be easily evaluated.
  • the present invention includes a relationship acquisition step for obtaining a relationship between the deviation and the eccentricity amount, and the evaluation step calculates the eccentricity amount with respect to the current deviation based on the relationship obtained in the relationship acquisition step. It is preferable to do this.
  • the relationship acquisition step for obtaining a relationship between the deviation and the eccentricity amount
  • the evaluation step calculates the eccentricity amount with respect to the current deviation based on the relationship obtained in the relationship acquisition step. It is preferable to do this.
  • the present invention includes a separation step of filtering the film thickness distribution data to separate the film thickness distribution into a short period component and a long period component, and the evaluation step is obtained in the separation step. It is preferable to evaluate the eccentricity of the mounting position of the substrate based on the data of the long period component of the film thickness distribution.
  • the film thickness distribution of the outer peripheral portion includes a short-period component due to facet growth depending on the crystal orientation of the substrate to be epitaxially grown, in addition to the long-period component due to the eccentricity of the mounting position of the substrate. According to the present invention, since the short period component is separated and the eccentricity is evaluated based on the data of the long period component, the eccentricity of the mounting position of the substrate can be evaluated with higher accuracy.
  • the film thickness distribution can be measured with a Fourier infrared spectrophotometer.
  • the film thickness distribution can be easily measured by using the Fourier infrared spectrophotometer.
  • it is suitable for measuring the film thickness distribution of an epitaxial layer having a higher resistivity than that of the substrate grown on a substrate having a low resistivity.
  • the thickness of the substrate before and after epitaxial growth may be measured, and the film thickness distribution may be measured from the difference. According to this, even when the film thickness distribution cannot be measured with a Fourier infrared spectrophotometer with high accuracy, such as when an epitaxial layer is grown on a high-resistance substrate, the film thickness distribution with high accuracy can be obtained. Can be measured.
  • the method for producing an epitaxial wafer according to the present invention corrects the mounting position of the substrate on the susceptor based on the amount and direction of eccentricity of the substrate evaluated by the eccentricity evaluation method of the present invention, and then on the substrate. An epitaxial layer is grown. According to this, since the mounting position on the susceptor is corrected based on the evaluation result of the eccentric amount and the eccentric direction of the mounting position of the substrate in the high temperature state when growing the epitaxial layer, The eccentricity of the substrate can be suppressed. As a result, an epitaxial wafer in which an epitaxial layer having a uniform film thickness is formed can be obtained.
  • FIG. 1 It is the figure which expressed the eccentric amount and eccentric direction of the comparative example and Example 1 after board
  • FIG. 2 It is the figure which represented the amount of eccentricity and the eccentric direction before the mounting position adjustment of the board
  • FIG. It is the figure which expressed the eccentric amount and eccentric direction after the board
  • FIG. It is the schematic of a general epitaxial growth apparatus.
  • the present inventor has made extensive studies for solving such problems by a simple method without adding special equipment such as a measuring instrument. As a result, when the mounting position of the substrate is shifted, the epitaxial layer film thickness in the outer peripheral portion approaching the wall surface of the pocket portion of the susceptor is thinned, and the epitaxial layer film thickness in the diagonal portion is found to be thick. . Therefore, first, the fact that the phenomenon is correct will be described by an experiment described below.
  • a ⁇ 300 mm silicon wafer was used as the substrate 109, and a silicon epitaxial layer was grown on the surface.
  • the mounting position of the substrate 109 is placed with the notch down (6 o'clock direction) in the pocket portion 131 of the susceptor 103. It is assumed that eccentricity (eccentricity of the substrate center O from the susceptor center C) is eccentric in the 2 o'clock direction (A direction). Then, the film thickness distribution in the A direction and the B direction perpendicular to the grown epitaxial layer was measured. 2A, FIG. 2B, FIG.
  • the film thickness distribution ranges from 2 mm to 50 mm inside from the outer peripheral edge of the substrate 109 (epitaxial layer).
  • 2A and 2B show the film thickness distribution in the A direction
  • FIGS. 3A and 3B show the film thickness distribution in the B direction.
  • 2A, 2B, 3A, and 3B indicate the distance Position from the center O of the substrate 109 (epitaxial layer).
  • the vertical axis indicates deviation Deviation from the target film thickness.
  • 2A shows the film thickness distribution on the root side (the outer peripheral portion 111 side in FIG. 1) of the arrow in the A direction in FIG. FIG.
  • FIG. 2B shows the film thickness distribution on the tip side of the arrow in the A direction (the outer peripheral portion 112 side in FIG. 1).
  • FIG. 3A shows a film thickness distribution on the base side of the arrow in the B direction (the outer peripheral portion 113 side in FIG. 1).
  • FIG. 3B shows the film thickness distribution on the tip side (the outer peripheral portion 114 side in FIG. 1) of the arrow in the B direction.
  • the film thickness in the range 112 (outer peripheral portion 112 in FIG. 1) of the outer periphery 2 mm to 5 mm of the substrate portion where the gap between the wall surface of the pocket portion 131 and the substrate 109 is narrow is in the other range. It is thinner than that.
  • the film thickness of (the outer peripheral portion 111 in FIG. 1) is thicker than the other ranges.
  • the present inventors measure the thickness of the epitaxial layer on the outer peripheral portion of the substrate 109 in the circumferential direction, so that the eccentric direction of the substrate 109 and We found that the amount of eccentricity can be estimated.
  • FIG. 4 is a schematic view (side sectional view) of an example of an epitaxial growth apparatus used in the epitaxial wafer manufacturing method of the present invention.
  • the epitaxial growth apparatus 1 includes a chamber 2 including a transparent quartz member 22 that sandwiches a chamber base 21 made of, for example, SUS from above and below, and an opaque quartz member 23 that covers the chamber base 21.
  • a susceptor 3 made of, for example, graphite for placing a substrate 9 such as a silicon wafer to be epitaxially grown is disposed in the chamber 2.
  • the susceptor 3 having no through hole is used, but a susceptor 3 having a through hole may be used.
  • a pocket portion 31 having a concave shape (circular shape in plan view) that is several millimeters larger than the substrate diameter.
  • the substrate 9 can remain in a specific mounting position even if the is rotated.
  • a heater 10 such as a halogen lamp for heating the substrate 9 to the epitaxial growth temperature during epitaxial growth is disposed around the chamber 2 (in FIG. 4, above and below the chamber 2).
  • an epitaxial growth gas G (reactive gas) containing a source gas and a carrier gas (for example, hydrogen) in the chamber 2 is introduced into an upper region of the susceptor 3, and the main substrate 9 placed on the susceptor 3 is main.
  • Reactive gas supply means 4 for supplying the reactive gas G on the surface is connected.
  • a reaction gas discharge means 5 for discharging the reacted gas G from the chamber 2 is connected to the opposite side of the chamber 2 to the side to which the reaction gas supply means 4 is connected.
  • the susceptor 3 is supported by a support shaft 7 in which a sub column 72 is welded to the upper end of the main column 71.
  • the support shaft 7 is connected to the substrate rotation mechanism 8.
  • the eccentricity evaluation method of the present invention evaluates the eccentricity amount and the eccentricity direction of the mounting position of the substrate 9 placed on the susceptor 3 when, for example, an epitaxial wafer is manufactured using such an epitaxial growth apparatus 1. It is a way for.
  • the eccentricity evaluation method of the present invention will be described in detail.
  • FIG. 5 is a flowchart showing the procedure of the eccentricity evaluation method of the present invention.
  • a relationship (correlation) between a deviation and an eccentricity, which will be described later, is obtained (S1). Details of how to obtain the relationship will be described later for convenience of explanation.
  • the step S1 corresponds to the “relationship acquisition step” of the present invention.
  • the eccentricity of the substrate is actually evaluated in S2 and thereafter.
  • a predetermined surface is formed on the surface of the substrate for eccentricity evaluation under exactly the same epitaxial growth conditions (substrate, growth temperature, gas flow rate, etc.) as those for manufacturing an epitaxial wafer as a product.
  • a thick epitaxial layer is grown (S2).
  • the step S2 corresponds to the “growth step” of the present invention.
  • the outer peripheral film thickness of the epitaxial layer of the epitaxial wafer (eccentricity evaluation substrate) obtained in S2 is measured in the circumferential direction of the substrate (S3). That is, the film thickness distribution in the circumferential direction in the outer peripheral portion of the epitaxial layer is measured (S3).
  • the film thickness of the outer peripheral portion to be measured is outside the outer periphery 5 mm (position 5 mm inside from the outer periphery), Furthermore, it is desirable to measure a position 2 mm from the outer periphery. 2A, FIG. 2B, FIG. 3A, and FIG.
  • the film thickness in the range of 2 mm to 5 mm is likely to change according to the distance from the wall surface of the pocket portion 31.
  • the influence of the facet growth component is strong on the film thickness distribution, so that it becomes difficult to separate the short cycle component in S4 described later.
  • the film thickness measurement itself is difficult (particularly when the film thickness is measured using FTIR). However, if these difficulties can be solved, the film thickness distribution outside the outer circumference of 2 mm may be measured.
  • an epitaxial layer having a higher resistivity than the substrate is formed on a P-type substrate having a low resistivity of 0.02 ⁇ cm or less (on a P + or P ++ substrate) in S2, for example, a Fourier infrared spectrophotometer is used in S3.
  • the film thickness is measured using (FTIR).
  • FTIR Fourier infrared spectrophotometer
  • the thickness of an epitaxial layer can be measured easily.
  • the thickness of the substrate may be measured in advance before epitaxial growth, the thickness of the substrate may be measured again after epitaxial growth, and the thickness of the epitaxial layer may be obtained from the difference.
  • the method of measuring the film thickness from the thickness difference before and after the epitaxial growth is, in particular, when the film thickness measurement is difficult by FTIR.
  • the resistivity is about the same as that of the substrate on a high resistivity substrate (about 10 ⁇ cm). This is suitable when the epitaxial layer is formed.
  • the process of S3 corresponds
  • FIG. 6 illustrates the film thickness distribution at the position of the outer periphery of 2 mm obtained in S3.
  • the horizontal axis in FIG. 6 is an axis representing each position in the circumferential direction of the substrate at an angle of 0 to 360 degrees.
  • shaft of FIG. 6 has shown the deviation from the target film thickness of the film thickness of each position. In the film thickness distribution of FIG. 6, the film thickness becomes thinner or thicker depending on the angle.
  • the film thickness distribution of the epitaxial layer in the outer peripheral portion depends on the component of the long period (long wavelength) resulting from the eccentricity of the substrate mounting position and the crystal orientation of the substrate on which epitaxial growth occurs. Formed by a short period (short wavelength) component by facet growth. For example, when a silicon wafer having a crystal orientation (100) is used, the orientation ⁇ 110> for facet growth appears at a period of 90 degrees on the outer periphery of the silicon wafer. For this reason, the film thickness increases at a period of 90 degrees at the outer peripheral portion of the substrate.
  • the film thickness distribution data obtained in S3 is filtered to separate the long period component and the short period component of the film thickness distribution (S4).
  • the short period component resulting from facet growth is removed from the film thickness distribution obtained in S3 (S4).
  • the moving average of the epitaxial layer film thickness distribution data obtained as the filter processing was obtained, and this was used as the long-period component, and the short-period component due to facet growth was separated (see FIG. 7).
  • FIG. 7 shows the film thickness distribution 200 (film thickness distribution in FIG. 6) obtained in S3, and the long-period component 201 and the short-period component 202 separated from the film thickness distribution 200.
  • the step S4 corresponds to the “separation step” of the present invention.
  • the film thickness distribution after removing the short period component due to facet growth that is, the angle at which the value of the long period component 201 due to the eccentricity of the substrate mounting position is the smallest. D is obtained (S5).
  • the value of the long period component 201 is the smallest around 45 degrees. Since the value of the long-period component 201 is considered to be smaller as the distance between the wall surface of the pocket 131 (see FIG. 1) and the substrate is smaller, the position 210 (see FIG. 8) at which the value of the long-period component 201 is minimized. It can be said that the substrate is closest to the wall surface of the pocket portion 131. Therefore, it can be said that the mounting position of the substrate is eccentric in the direction of the angle D at the position 210.
  • an average value (average film thickness) of the long period component 201 is obtained, and a deviation ⁇ D of the value (minimum value) of the long period component 201 at the angle D from the average value is obtained (S6).
  • a line 203 of the average value of the long period component 201 is illustrated.
  • a deviation ⁇ D between the line 203 and the point 210 (film thickness at an angle D) is obtained.
  • the inventor has found that there is a correlation between the deviation ⁇ D and the amount of eccentricity of the substrate mounting position.
  • the correlation is obtained. Specifically, in S1, a plurality of sample substrates for correlation derivation are prepared, and the above steps S2 to S6 are performed on each sample substrate to calculate the deviation ⁇ D of each sample substrate. At this time, the mounting position of each sample substrate is intentionally decentered, and the amount of decentering of each sample substrate is varied between the sample substrates. Then, along with the calculation of the deviation ⁇ D, the amount of eccentricity of each sample substrate in the high temperature state is obtained by the method of Patent Document 3 or the like.
  • FIG. 10 is a diagram showing the eccentricity and the eccentric direction obtained by the above procedure as a vector 300 (a polar coordinate diagram in which the direction of the notch of the substrate is 6 o'clock).
  • the direction of the vector 300 (the angle D of the vector 300 with respect to the horizontal axis) represents the eccentric direction of the substrate mounting position.
  • the size of the vector 300 represents the amount of eccentricity of the substrate mounting position.
  • the amount of eccentricity and the direction of eccentricity of the substrate mounting position can be more easily evaluated with high accuracy, and correction of the mounting position after evaluation can be easily performed. Become.
  • the manufacturing method of the epitaxial wafer of the present invention will be described in detail.
  • the case where the epitaxial growth apparatus 1 of FIG. 4 is used is demonstrated.
  • the amount of eccentricity and the direction of eccentricity of the substrate mounting position are evaluated by the above-described eccentricity evaluation method of the present invention (procedure of FIG. 5).
  • the epitaxial growth apparatus used at this time is the same as the apparatus used when actually manufacturing the epitaxial wafer, but the substrate may be prepared for evaluation or the same as that actually used for manufacturing. A substrate may be used.
  • the mounting position on the susceptor is corrected based on the eccentric amount and the eccentric direction of the evaluated mounting position of the substrate.
  • This correction can be performed, for example, by correcting a preset placement position when the substrate is held by a robot arm or the like and placed on a preset placement position. Specifically, for example, a preset placement position is corrected in the direction opposite to the eccentric direction obtained by the eccentricity evaluation method by the amount of eccentricity obtained.
  • the substrate mounting position is corrected, and after the substrate (silicon wafer) is mounted at the corrected mounting position, an epitaxial layer is grown to manufacture an epitaxial wafer.
  • the growth of this epitaxial layer can be performed by the same method as the conventional method as follows.
  • the temperature in the chamber 2 is raised by the heater 10 to a desired growth temperature for vapor-phase growth of the epitaxial layer on the substrate.
  • This growth temperature can be set to, for example, 1000 ° C. or higher, which can remove the natural oxide film on the substrate side with hydrogen.
  • a source gas for example, trichlorosilane
  • a carrier gas for example, hydrogen
  • the epitaxial wafer manufacturing method of the present invention after correcting the mounting position based on the highly accurate eccentric amount and the eccentric direction obtained by the eccentricity evaluation method of the present invention, the epitaxial wafer is Therefore, the film thickness uniformity of the epitaxial wafer can be improved.
  • FIG. 11 is a diagram showing the eccentric amount and the eccentric direction of each of the comparative example and Example 1 as points in polar coordinates in which the direction of the notch of the substrate is 6 o'clock.
  • the distance from the origin to the point ⁇ in FIG. 11 indicates the eccentricity amount (906.2 ⁇ m) of Example 1, and the direction (10:30 half direction) from the origin to the point ⁇ indicates the eccentric direction of Example 1.
  • the distance from the origin to the point of ⁇ in FIG. 11 indicates the eccentric amount (899.8 ⁇ m) of the comparative example, and the direction from the origin to the point of ⁇ (10:30 half direction) is the eccentric direction of the comparative example. Is shown.
  • FIG. 12 shows the film thickness distribution obtained when the eccentric amount and the eccentric direction of Example 1 are obtained.
  • the horizontal and vertical axes in FIG. 12 are the same as those in FIG. FIG. 12 specifically shows the film thickness distribution 220 obtained in S3 of FIG. 5 and the long period component 221 and the short period component 222 separated from the film thickness distribution 220 in S4.
  • FIG. 13 is a diagram illustrating the eccentric amounts and the eccentric directions of the comparative example and Example 1 after adjusting the transport position (mounting position) as points in the same polar coordinates as in FIG. 11.
  • FIG. 14 shows the film thickness distribution 230, the long-period component 231 and the short-period component 232 of Example 1 after adjusting the transport position.
  • the present invention has an accuracy equal to or higher than the mounting position eccentricity evaluation method disclosed in Patent Document 3. Further, the film thickness distribution 230 (see FIG. 14) of the epitaxial wafer after adjustment of the transfer position has improved uniformity compared to the film thickness distribution 220 (see FIG. 12) before adjustment.
  • the eccentricity evaluation method of the present invention can easily and accurately evaluate the eccentricity amount and the eccentricity direction of the substrate mounting position in the high temperature state when growing the epitaxial layer, and additional equipment and It was confirmed that it was possible to suppress an increase in cost without requiring modification of the apparatus, and to correct the mounting position with high accuracy based on the evaluation result, and to improve the film thickness uniformity of the epitaxial wafer.
  • Example 2 Using an epitaxial growth apparatus as shown in FIG. 4 having a susceptor without a through hole, a P-type, 0.01 ⁇ cm (so-called P +) ⁇ 300 mm silicon wafer surface has a resistivity of 8 ⁇ cm and an average thickness of 2.75 ⁇ m. An epitaxial layer was grown, and an epitaxial layer thickness distribution with an outer circumference of 2 mm was measured in the circumferential direction. For the measurement of the thickness of the epitaxial layer, an epitaxial layer thickness measuring machine QS3300EG manufactured by Nanometrics using a Fourier transform infrared spectrometer was used.
  • FIG. 15 shows the obtained eccentricity and eccentricity by the point ( ⁇ ) in the same polar coordinates as FIG.
  • FIG. 16 shows the film thickness distribution 240 obtained when the eccentric amount and the eccentric direction in FIG. 15 are obtained, and the long-period component 241 and the short-period component 242 separated from the film thickness distribution 240. Yes.
  • FIG. 17 shows the film thickness distribution 250 obtained when the eccentric amount and the eccentric direction in FIG. 17 are obtained, and the long-period component 251 and the short-period component 252 separated from the film thickness distribution 250. Yes.
  • the film thickness distribution 250 (see FIG. 18) after adjustment of the transfer position is more uniform than the film thickness distribution 240 (see FIG. 16) before adjustment.
  • the eccentricity evaluation method of the present invention can easily increase the amount of eccentricity and the direction of eccentricity of the substrate mounting position at a high temperature when growing an epitaxial layer, regardless of the presence or absence of through holes in the susceptor. The accuracy can be evaluated.
  • the eccentricity amount is calculated using the deviation from the average value of the minimum value of the film thickness distribution, but the eccentricity amount is calculated using the deviation from the average value of the maximum value of the film thickness distribution. May be calculated. Further, the eccentricity may be calculated using deviations at a plurality of positions of the film thickness distribution. Specifically, for example, the sum of deviations at all positions of the film thickness distribution (integrated value of the film thickness distribution) The amount of eccentricity may be calculated using an average value of deviations at all positions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

 サセプタのポケット部に基板を載置して基板上にエピタキシャル層を成長させ(S2)、成長させたエピタキシャル層の外周部における円周方向の膜厚分布を測定する(S3)。測定した膜厚分布にフィルター処理を行ってその膜厚分布からファセット成長に起因する短周期成分を取り除く(S4)。短周期成分を取り除いた後の膜厚分布(長周期成分)の最小値となる外周部の角度Dを基板の偏芯方向として求める(S5)。角度Dでの膜厚値の膜厚平均値からの偏差ΔDを求める(S6)。S1で予め求めておいた偏差ΔDと基板の偏芯量の関係に基づいて、S5で求めた偏差ΔDを偏芯量に換算する(S7)。求めた偏芯量及び偏芯方向に基づいて基板の載置位置を補正する。 これにより、エピタキシャル成長時の高温状態での基板の載置位置の偏芯を簡便に評価できる方法を提供する。

Description

偏芯評価方法及びエピタキシャルウェーハの製造方法
 本発明は、基板にエピタキシャル層を成長させたエピタキシャルウェーハの製造におけるサセプタに載置する基板の載置位置の偏芯を評価する方法、及びこの評価結果を用いてエピタキシャルウェーハを製造する方法に関する。
 半導体デバイスの製造工程においては、外気を遮断したチャンバー内で基板上に反応ガスを供給し、基板上に薄膜(エピタキシャル層)をエピタキシャル成長させる工程がある。このようなエピタキシャル成長に用いる一般的なエピタキシャル成長装置を、図19に示した概略図により説明する。図19に示すエピタキシャル成長装置101は、外気と遮断した状態で、反応ガス供給手段104から反応ガスGをチャンバー102内へと供給し、チャンバー102内に配置されるサポートシャフト107により支持されているサセプタ103上の基板109を処理することにより、基板109の表面にエピタキシャル層を成長させるものである。エピタキシャル層の成長時には、サセプタ103を支持するサポートシャフト107が回転することにより、基板109が回転するようになっている。また、反応後のガスGは反応ガス排出手段105によりチャンバー102外へと排出される。
 このサセプタ103の縁部の内側には基板径よりも数ミリ程度大きい凹形状のポケット部131が形成されている。また、サセプタ103には、リフトピン用や基板109の裏面への水素供給用、又は基板109の滑りを防止するためや処理後の基板109を剥離させやすくするため等の理由により貫通孔106を複数有していることもある。このサセプタ103のポケット部131に基板109が収まることにより、サセプタ103を回転させても基板109が特定の位置に留まることができるようになっており、均質な反応が行われる。
 しかし、ポケット部131に載置された基板109の位置が偏芯して基板109とポケット部131との隙間が不均一になることにより処理ガスの局所的な乱流が発生し、エピタキシャル層膜厚の局所的な不均一が発生し、エピタキシャルウェーハの平坦度の悪化の要因となってしまうという問題がある。
 このような問題に対し、従来、基板の載置位置の偏芯評価方法として、カメラまたは目視により偏芯量を見積もる方法などがある。しかし、これは室温での評価方法であり、エピタキシャル成長時の高温の状態では、サセプタやサポートシャフト等の治具の熱変形等の影響により、例え事前に室温で基板の載置位置を修正したとしても、エピタキシャル層の成長時に基板の載置位置が偏芯してしまう。
 このようなエピタキシャル層成長時の高温の状態で、基板の位置を識別するためにパイロメータを設けて熱放射を測定し、その測定信号のゆらぎの振幅を求めることで基板の不適切な位置を推定する方法が開示されている(特許文献1参照)。
 また、基板の表面にレーザー光を照射するレーザー光源と、集光された反射光を検出する光量検出器を設けて基板の位置ずれを検出する方法が開示されている(特許文献2)。
 さらには、複数の貫通孔を有するサセプタ上に基板を載置させ、エピタキシャル成長温度と同じ温度でエッチングガスを導入し、前記基板の裏面にサセプタ貫通孔パターンを転写させ、サセプタ貫通孔パターンの位置を測定して、基板の載置位置の偏芯量を評価する方法が提案されている(特許文献3)。
特開2010-199586号公報 特開2001-176952号公報 特開2012-227471号公報
 しかし、特許文献1や特許文献2にある従来の方法では、パイロメータや光量検出器等の設備を新たに設ける必要や、装置を改造する必要等がありコストが増加してしまう。また、評価精度が必ずしも十分でなく、評価後の載置位置の補正が困難であるという問題がある。
 特許文献3にある方法については、特許文献1や特許文献2にある方法に比べて、コストが掛からず、評価精度はかなり高い利点がある。しかし、基板のエピタキシャル成長以外に、エッチングガスを導入し、基板の裏面にサセプタ貫通孔パターンを転写させ、サセプタ貫通孔パターンの位置を測定して偏芯量を求める工程が必要となり、簡便に基板の載置位置の補正ができないという問題があった。また、貫通孔の無いサセプタを用いた場合には、貫通孔パターンの転写ができない為、基板の載置位置の評価ができず、載置位置の補正ができないという問題があった。
 本発明は上記問題に鑑みてなされたものであり、追加の設備や装置の改造を必要とせず、貫通孔を有していないサセプタを用いた場合でも、エピタキシャル成長時の高温状態での基板の載置位置の偏芯を簡便に評価できる方法を提供することを課題とする。また、基板上に均一な膜厚のエピタキシャル層を形成できるエピタキシャルウェーハの製造方法を提供することを課題とする。
 上記課題を解決するために、本発明の偏芯評価方法は、凹形状のポケット部が形成されたサセプタの前記ポケット部に基板を載置して前記基板上にエピタキシャル層を成長させる成長工程と、
 その成長工程で得られたエピタキシャル層の外周部における円周方向の膜厚分布を測定する測定工程と、
 その測定工程で得られた膜厚分布に基づいて前記サセプタにおける前記基板の載置位置の偏芯を評価する評価工程と、
 を含むことを特徴とする。
 本発明によれば、成長工程において、基板上に実際にエピタキシャル層を成長させる。その成長の際、ポケット部における基板の載置位置が偏芯すると、ポケット部の壁面と基板外周との距離に偏りが生じ、その結果、得られるエピタキシャル層の外周部の膜厚分布が、基板の偏芯量及び偏芯方向を反映した膜厚分布となる。そこで、測定工程でエピタキシャル層の外周部における円周方向の膜厚分布を測定し、評価工程では、測定した膜厚分布を見ることで、基板の載置位置の偏芯(偏芯量、偏芯方向)を評価することができる。これにより、エピタキシャル層を成長させる際の高温状態での基板の載置位置の偏芯を簡便に高精度に評価できる。また、追加の設備や装置の改造を必要とせず、コストの増加を抑制できる。更には、貫通孔を有していないサセプタを用いた場合でも簡便で、高精度に基板の載置位置の偏芯を評価できる。
 また、前記評価工程では、前記膜厚分布の平均値からの前記膜厚分布の偏差に基づいて前記基板の載置位置の偏芯を評価する。このように、膜厚分布の平均値からの偏差は膜厚分布の特徴をあらわした指標となるので、その偏差を用いることで簡便に基板の偏差を評価できる。
 この場合、評価工程では、前記膜厚分布における最小の膜厚の前記平均値からの偏差に基づいて前記基板の載置位置の偏芯量を算出する。本発明者は、サセプタのポケット部の壁面に近づいた基板部分のエピタキシャル層の膜厚が薄くなるという知見を得ている。その知見によると、膜厚分布における最小の膜厚をとる基板部分が、ポケット部の壁面に最も近づいていると考えることができる。よって、最小の膜厚の平均値からの偏差を用いることで、簡便に基板の偏芯量を算出できる。
 またこの場合、評価工程では、前記外周部の円周方向に沿った各位置のうち前記最小の膜厚の位置の方向に前記基板の載置位置が偏芯していると評価する。これによって、簡便に基板の偏芯方向を評価できる。
 また、本発明は前記偏差と前記偏芯量の関係を求める関係取得工程を含み、前記評価工程では、前記関係取得工程で得られた関係に基づいて今回の前記偏差に対する前記偏芯量を算出するのが好ましい。このように、関係取得工程で偏差と偏芯量の関係(相関)を予め求めておくことで、以降、その関係を参照することで今回の偏差に対する偏芯量を簡便に算出できる。
 また、本発明は、前記膜厚分布のデータをフィルタリング処理して前記膜厚分布を短周期成分と長周期成分とに分離する分離工程を含み、前記評価工程では、前記分離工程で得られた前記膜厚分布の長周期成分のデータに基づいて前記基板の載置位置の偏芯を評価するのが好ましい。外周部の膜厚分布は、基板の載置位置の偏芯に起因する長周期成分の他に、エピタキシャル成長する基板の結晶方位に依存したファセット成長による短周期成分が含まれている。本発明によれば、その短周期成分を分離して、長周期成分のデータで偏芯を評価するので、基板の載置位置の偏芯をより高精度に評価できる。
 また、前記測定工程では、フーリエ赤外分光光度計にて前記膜厚分布を測定することができる。このようにフーリエ赤外分光光度計を用いることで、膜厚分布を簡便に測定することができる。特に、低抵抗率の基板上に基板よりも高抵抗のエピタキシャル層を成長させた場合におけるそのエピタキシャル層の膜厚分布の測定に好適である。
 また、前記測定工程では、エピタキシャル成長前後の前記基板の厚み測定を行い、その差から前記膜厚分布を測定するようにしても良い。これによれば、高抵抗の基板にエピタキシャル層を成長させた場合のように、フーリエ赤外分光光度計では高精度に膜厚分布を測定できない場合であっても、膜厚分布を高精度に測定することができる。
 本発明のエピタキシャルウェーハの製造方法は、本発明の偏芯評価方法によって評価した前記基板の偏芯量及び偏芯方向に基づいて、前記サセプタにおける基板の載置位置を補正した後、基板上にエピタキシャル層を成長させることを特徴とする。これによれば、エピタキシャル層を成長させる際の高温状態での基板の載置位置の偏芯量及び偏芯方向の評価結果に基づいてサセプタ上の載置位置を補正しているので、エピタキシャル成長時の基板の偏芯を抑えることができる。その結果、均一な膜厚のエピタキシャル層が形成されたエピタキシャルウェーハを得ることができる。
サセプタ及びそのサセプタに載置された基板を上から見た図である。 図1のA方向の矢印における根本側のエピタキシャル層の膜厚分布である。 図1のA方向の矢印における先端側のエピタキシャル層の膜厚分布である。 図1のB方向の矢印における根本側のエピタキシャル層の膜厚分布である。 図1のB方向の矢印における先端側のエピタキシャル層の膜厚分布である。 エピタキシャル成長装置の概略図である。 基板の偏芯評価方法の手順を示したフローチャートである。 エピタキシャル層の外周2mmでの膜厚分布である。 外周部の膜厚分布とその膜厚分布から分離した長周期成分と短周期成分とを例示した図である。 長周期成分が最小値となる角度Dやその最小値の平均値からの偏差ΔDを示した図である。 偏差ΔDと偏芯量の関係を例示した図である。 偏芯量及び偏芯方向のベクトルを示した図である。 比較例及び実施例1における基板の載置位置調整前の偏芯量と偏芯方向とを極座標中の点としてあらわした図である。 実施例1における基板の載置位置調整前の膜厚分布である。 基板の載置位置調整後の比較例及び実施例1の偏芯量と偏芯方向とを極座標中の点としてあらわした図である。 実施例1における基板の載置位置調整後の膜厚分布である。 実施例2における基板の載置位置調整前の偏芯量と偏芯方向とを極座標中の点としてあらわした図である。 実施例2における基板の載置位置調整前の膜厚分布である。 実施例2における基板の載置位置調整後の偏芯量と偏芯方向とを極座標中の点としてあらわした図である。 実施例2における基板の載置位置調整後の膜厚分布である。 一般的なエピタキシャル成長装置の概略図である。
 以下、本発明についての実施の形態を説明するが、本発明はこれに限定されるものではない。
 従来、エピタキシャルウェーハの製造において、サセプタ上に載置する基板の載置位置の偏芯によって処理ガスの局所的な乱流が発生し、エピタキシャル層膜厚の局所的な不均一が発生する問題があった。基板のサセプタへの載置調整は通常常温で行われ、この際に偏芯しないように載置位置が調整される。しかし、エピタキシャル成長時の高温の状態では、サセプタやサポートシャフト等の治具の熱変形等の影響により基板の載置位置が変化し、偏芯してしまう。
 このような問題に対して、本発明者は特別な測定器具などの設備を追加することなく、簡便な方法で解決するための鋭意検討を重ねた。その結果、基板の載置位置がずれた場合、サセプタのポケット部の壁面に近づいた外周部分のエピタキシャル層膜厚が薄くなり、その対角の部分のエピタキシャル層膜厚が厚くなる現象を見出した。そこで、先ず、以下に説明する実験により、その現象が正しいことについて説明する。
 図19で示したような一般的なエピタキシャル成長装置において、基板109としてφ300mmシリコンウェーハを用い、その表面にシリコンエピタキシャル層を成長させた。この際、図1(サセプタ103及び基板109を上から見た図)に示すように、サセプタ103のポケット部131の中で、基板109の載置位置がノッチを下(6時方向)にして2時方向(A方向)に偏芯(サセプタ中心Cからの基板中心Oの偏芯)していたとする。その後、成長させたエピタキシャル層のA方向及びそれに垂直なB方向での膜厚分布をそれぞれ測定した。図2A、図2B、図3A、図3Bはその測定結果であり、詳細には基板109(エピタキシャル層)の外周縁から内側の2mmから50mmまでの範囲の膜厚分布を示している。なお、図2A、図2BはA方向の膜厚分布を示しており、図3A、図3BはB方向の膜厚分布を示している。図2A、図2B、図3A、図3Bの横軸は基板109(エピタキシャル層)の中心Oからの距離Positionを示している。図2A、図2B、図3A、図3Bの縦軸は、目標膜厚からの偏差Deviaitonを示している。図2Aは、図1のA方向の矢印の根本側(図1の外周部111側)の膜厚分布を示している。図2Bは、A方向の矢印の先端側(図1の外周部112側)の膜厚分布を示している。図3Aは、B方向の矢印の根本側(図1の外周部113側)の膜厚分布を示している。図3Bは、B方向の矢印の先端側(図1の外周部114側)の膜厚分布を示している。
 図2Bに示すように、ポケット部131の壁面と基板109との隙間が狭くなっている基板部分の外周2mmから5mmの範囲112(図1の外周部112)の膜厚がそれ以外の範囲に比べて薄くなっている。他方、図2Aに示すように、図2Bの範囲112と対角方向のポケット部131の壁面と基板109との隙間が広くなっている基板部分については、基板109の外周2mmから5mmの範囲111(図1の外周部111)の膜厚がそれ以外の範囲に比べて厚くなっている。これに対して、図3A、図3Bに示すように、基板109の偏芯方向Aに垂直なB方向については、対角同士で外周2mmから5mmの範囲113、114の膜厚分布に差が見られない事が分かる。
 以上の考察を経て、本発明者らは、基板109が偏芯している場合に、基板109の外周部のエピタキシャル層膜厚を円周方向に測定することにより、基板109の偏芯方向及び偏芯量を推定できることを見出した。
 図4は、本発明のエピタキシャルウェーハ製造方法で用いるエピタキシャル成長装置の一例の概略図(側面断面図)である。図4に示すように、エピタキシャル成長装置1は、例えばSUSからなるチャンバーベース21を上下から挟む透明石英部材22と、チャンバーベース21をカバーする不透明石英部材23とからなるチャンバー2を備える。そのチャンバー2内には、エピタキシャル成長させるシリコンウェーハ等の基板9を載置する為の例えば黒鉛製のサセプタ3が配置されている。図4では、貫通孔の開いていないサセプタ3を用いているが、貫通孔の開いているサセプタ3を用いても良い。サセプタ3の縁部の内側には基板径よりも数ミリ程度大きい凹形状(平面視で円状)のポケット部31が形成されており、このポケット部31に基板9が収まることにより、サセプタ3を回転させても基板9が特定の載置位置に留まることができるようになっている。
 チャンバー2の周囲(図4ではチャンバー2の上下)には、エピタキシャル成長時に基板9をエピタキシャル成長温度に加熱するハロゲンランプ等のヒータ10が配置されている。
 チャンバー2には、チャンバー2内に原料ガス及びキャリアガス(例えば水素)を含むエピタキシャル成長ガスG(反応ガス)をサセプタ3の上側の領域に導入して、サセプタ3に載置された基板9の主表面上に反応ガスGを供給する、反応ガス供給手段4が接続されている。また、チャンバー2の反応ガス供給手段4が接続された側の反対側には、チャンバー2内から反応後のガスGを排出する、反応ガス排出手段5が接続されている。サセプタ3は、主支柱71の上端に副支柱72が溶接されたサポートシャフト7により支持されている。そのサポートシャフト7は、基板回転機構8に接続されている。そして、エピタキシャル成長を行う際には、基板回転機構8により、サポートシャフト7に支持されたサセプタ3(基板9)がサセプタ3の中心周りに回転するようになっている。これによって、基板9上に均等に反応ガスGを供給するようにしている。
 本発明の偏芯評価方法は、例えばこのようなエピタキシャル成長装置1を用いてエピタキシャルウェーハを製造する際に、サセプタ3に載置する基板9の載置位置の偏芯量及び偏芯方向を評価するための方法である。以下、本発明の偏芯評価方法について詳細に説明する。
 図5は、本発明の偏芯評価方法の手順を示したフローチャートである。先ず、基板の偏芯評価をする事前準備として、後述する偏差と偏芯量の関係(相関)を求める(S1)。その関係の求めかたの詳細は、説明の便宜上、後述する。なお、S1の工程が本発明の「関係取得工程」に相当する。
 S1で偏差と偏芯量の関係を予め求めたら、S2以降で実際に基板の偏芯を評価することになる。先ず、図4のエピタキシャル成長装置1を用いて、製品となるエピタキシャルウェーハを製造するときと全く同一のエピタキシャル成長条件(基板、成長温度、ガス流量等)で、偏芯評価用の基板の表面に所定の厚さのエピタキシャル層を成長させる(S2)。なお、S2の工程が本発明の「成長工程」に相当する。
 次に、S2で得られたエピタキシャルウェーハ(偏芯評価用の基板)のエピタキシャル層の外周膜厚を基板の円周方向に対して測定する(S3)。つまり、エピタキシャル層の外周部における円周方向の膜厚分布を測定する(S3)この際、測定する外周部の膜厚は、基板の外周5mm(外周縁から5mm内側の位置)よりも外側、さらには外周縁から2mmの位置を測定するのが望ましい。図2A、図2B、図3A、図3Bで説明したように、外周2mmから5mmの範囲(特に外周2mm)の膜厚は、ポケット部31の壁面からの距離に応じて変化しやすいからである。なお、外周2mmよりも外側(例えば外周1mm)では、ファセット成長成分(短周期成分)の影響が膜厚分布に強くでるので、後述するS4で短周期成分の分離が困難となる。また、外周2mmよりも外側では、膜厚測定自体も困難(特にFTIRを用いて膜厚測定する場合)となる。ただし、それら困難が解決できるのであれば、外周2mmよりも外側の膜厚分布を測定してもかまわない。
 S2で例えばP型の低抵抗率0.02Ωcm以下の基板上(P+あるいはP++の基板上)に基板よりも高抵抗率のエピタキシャル層を形成した場合には、S3では例えばフーリエ赤外分光光度計(FTIR)を用いた膜厚測定を行う。これにより、簡単にエピタキシャル層の膜厚を測定できる。あるいは、エピタキシャル成長前に予め基板の厚さを測定し、エピタキシャル成長後に再度基板の厚みを測定し、その差からエピタキシャル層の厚さを求めても良い。このエピタキシャル成長前後の厚み差から膜厚を測定する手法は、特に、FTIRで膜厚測定が困難な場合、具体的には、高抵抗率(10Ωcm程度)の基板上に基板と同程度の抵抗率のエピタキシャル層を形成した場合に、好適である。なお、S3の工程が本発明の「測定工程」に相当する。
 図6は、S3で得られる外周2mmの位置での膜厚分布を例示している。なお、図6の横軸は、基板の円周方向の各位置を0から360度の角度であらわした軸である。図6の縦軸は、各位置の膜厚の目標膜厚からの偏差を示している。図6の膜厚分布では、角度に応じて膜厚が薄くなったり厚くなったりしている。
 ここで、外周部のエピタキシャル層の膜厚分布(図6の膜厚分布)は、基板の載置位置の偏芯に起因する長周期(長波長)の成分とエピタキシャル成長する基板の結晶方位に依存したファセット成長による短周期(短波長)の成分とで形成されている。例えば、結晶方位(100)のシリコンウェーハを用いた場合には、そのシリコンウェーハの外周部では、ファセット成長する方位<110>が90度周期で現れる。そのため、基板の外周部では、90度周期で膜厚が大きくなる。
 そこで、S3で得られた膜厚分布のデータをフィルター処理して、膜厚分布の長周期成分と短周期成分とを分離する(S4)。言い換えると、S3で得られた膜厚分布からファセット成長に起因した短周期成分を取り除く(S4)。ここでは、フィルター処理として得られたエピタキシャル層膜厚分布データの移動平均を求め、それを長周期成分とし、ファセット成長起因による短周期成分を分離した(図7参照)。図7は、S3で得られた膜厚分布200(図6の膜厚分布)と、その膜厚分布200から分離した長周期成分201と短周期成分202とを示している。なお、移動平均以外のフィルター処理(例えば高速フーリエ変換)を用いて長周期成分と短周期成分とを分離しても良い。なお、S4の工程が本発明の「分離工程」に相当する。
 次に、図8に示すように、ファセット成長に起因した短周期成分を除いた後の膜厚分布、つまり基板の載置位置の偏芯に起因する長周期成分201の値が最も小さくなる角度Dを求める(S5)。図8の例では、45度付近で長周期成分201の値が最も小さくなっている。ポケット部131(図1参照)の壁面と基板との距離が小さいほど、長周期成分201の値が小さくなると考えられるので、長周期成分201の値が最小となる位置210(図8参照)で、基板はポケット部131の壁面に最接近していると言える。よって、その位置210での角度Dの方向に基板の載置位置が偏芯していると言える。
 次に、長周期成分201の平均値(平均膜厚)を求め、角度Dでの長周期成分201の値(最小値)の、平均値からの偏差ΔDを求める(S6)。なお、図8には、長周期成分201の平均値のライン203を図示している。図8の例では、ライン203と点210(角度Dでの膜厚)の偏差ΔDを求める。
 本発明者は、その偏差ΔDと基板の載置位置の偏芯量とに相関があるという知見を得ている。先のS1では、その相関を求めることになる。具体的には、S1では、相関導出用の複数のサンプル基板を準備し、各サンプル基板に対して上述のS2~S6の工程を実施して各サンプル基板の偏差ΔDを算出する。この際、各サンプル基板の載置位置を故意に偏芯させるとともに、各サンプル基板の偏芯量をサンプル基板間で異ならせる。そして、偏差ΔDの算出と共に特許文献3等の方法で高温状態での各サンプル基板の偏芯量を求める。ここで、図9は、S1で得られた各サンプル基板の偏差ΔDと偏芯量との関係401を例示している。図9に示すように、偏差ΔDが大きくなるほど偏芯量が大きくなることが分かる。また、偏差ΔDと偏芯量はほぼ線形関係となっている。
 S7では、S1で求めた関係401(図9参照)に基づいて、S6で求めた偏差ΔDを偏芯量に換算する。図9の例では関係401は直線となっているので、直線401の傾きを換算係数として求めてその換算係数を偏差ΔDに乗じることで偏芯量に換算できる。図10は、以上の手順で得られた偏芯量及び偏芯方向をベクトル300として示した図(基板のノッチの方向を6時方向とした極座標の図)である。図10において、ベクトル300の向き(横軸に対するベクトル300の角度D)が基板の載置位置の偏芯方向をあらわしている。ベクトル300の大きさが基板の載置位置の偏芯量をあらわしている。なお、S5~S7の工程が本発明の「評価工程」に相当する。
 このように、図5に示した手順を実施することで、より簡便に基板の載置位置の偏芯量及び偏芯方向を高精度に評価でき、評価後の載置位置の補正も容易となる。
 次に、本発明のエピタキシャルウェーハの製造方法について詳細に説明する。ここでは、図4のエピタキシャル成長装置1を用いた場合について説明する。先ず、上記した本発明の偏芯評価方法(図5の手順)によって基板の載置位置の偏芯量及び偏芯方向を評価する。このときに用いるエピタキシャル成長装置は実際にエピタキシャルウェーハを製造する際に用いる装置と同一のものを用いるが、基板は評価用のものを準備しても良いし、実際に製造に用いているものと同じ基板を用いても良い。
 そして、評価した基板の載置位置の偏芯量及び偏芯方向に基づいてサセプタ上の載置位置を補正する。この補正は、例えばロボットアーム等によって基板を保持して予め設定された載置位置に載置するときの予め設定する載置位置を補正することによって行うことができる。具体的には例えば、予め設定する載置位置を、偏芯評価方法で得られた偏芯方向と逆方向に、得られた偏芯量の分だけ補正する。
 このようにして基板の載置位置を補正し、その補正後の載置位置に基板(シリコンウェーハ)を載置した後、エピタキシャル層を成長させることによってエピタキシャルウェーハを製造する。このエピタキシャル層の成長は、以下のような従来と同様の方法によって行うことができる。
 先ず、チャンバー2内に水素ガスを流した状態で、ヒータ10により、チャンバー2内の温度を基板にエピタキシャル層を気相成長するための所望の成長温度まで昇温する。この成長温度は基板方面の自然酸化膜を水素で除去できる例えば1000℃以上に設定することができる。
 次に、チャンバー2内を所望の成長温度に保持したまま、基板の表面上に反応ガス供給手段4を介して原料ガス(例えばトリクロロシラン)及びキャリアガス(例えば水素)をそれぞれ略水平に供給することによって、基板の表面上にエピタキシャル層を気相成長させてシリコンエピタキシャルウェーハを製造する。最後に、取り出し温度(例えば650℃)まで降温し、シリコンエピタキシャルウェーハをチャンバー2外へと搬出する。
 このように、本発明のエピタキシャルウェーハの製造方法によれば、本発明の偏芯評価方法で得られた高精度な偏芯量及び偏芯方向に基づいて載置位置を補正した後に、エピタキシャルウェーハを製造しているので、エピタキシャルウェーハの膜厚均一性を向上することができる。
 以下、本発明の実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
 (比較例及び実施例1)
 貫通孔が形成されたサセプタを有した図4に示すようなエピタキシャル成長装置を用いて、特許文献3にある方法を用いてφ300mmシリコンウェーハの裏面側に貫通孔を転写させ、その貫通孔パターンより載置位置の偏芯量を求めた。その偏芯方向はノッチを下(6時方向)にして10時半方向で、偏芯量は899.8μmであった(比較例)。
 次に比較例と同じエピタキシャル成長装置で、予め厚さを測定したP型8-12Ωcmのφ300mmシリコンウェーハの基板を用い、その基板上に平均厚さ2.75μmのエピタキシャル層を成長させ、エピタキシャル成長後に厚さを再測定して、円周方向について外周2mmのエピタキシャル層膜厚分布を求めた。厚さの測定には、ケー・エル・エー・テンコール社製のウェーハサイトを用いた。求めた膜厚分布から本発明の手法を用いて載置位置の偏芯量及び偏芯方向を求めた。その偏芯方向はノッチを下(6時方向)にして10時半方向で、偏芯量は906.2μmであった(実施例1)。図11は、比較例及び実施例1のそれぞれの偏芯量と偏芯方向とを、基板のノッチの方向を6時方向とした極座標中の点としてあらわした図である。図11の原点から●の点までの距離が実施例1の偏芯量(906.2μm)を示し、原点から●の点に向かう方向(10時半方向)が実施例1の偏芯方向を示している。同様に、図11の原点から△の点までの距離が比較例の偏芯量(899.8μm)を示し、原点から△の点に向かう方向(10時半方向)が比較例の偏芯方向を示している。
 また、図12は、実施例1の偏芯量及び偏芯方向を求める際に得られた膜厚分布を示している。なお、図12の横軸、縦軸は図7と同じである。図12は、具体的には、図5のS3で得られた膜厚分布220とその膜厚分布220からS4で分離された長周期成分221と短周期成分222とを示している。
 次に、比較例及び実施例1で求めた載置位置の偏芯量及び偏芯方向を基にそれぞれ搬送位置(載置位置)を調整した後に再度上記と同じ条件で載置位置の偏芯量及び偏芯方向を求めた。その結果、比較例は282.3μm、実施例1は260.1μmに改善された。なお、偏芯方向は比較例、実施例1共に10時半方向となった。図13は、搬送位置(載置位置)の調整後の比較例及び実施例1のそれぞれの偏芯量と偏芯方向とを図11と同じ極座標中の点としてあらわした図である。また、図14は、搬送位置の調整後の実施例1の膜厚分布230、長周期成分231及び短周期成分232を示している。
 図11、図13の結果から、本発明は特許文献3にある載置位置の偏芯評価方法と同等以上の精度を有していることが確認された。また、搬送位置の調整後のエピタキシャルウェーハの膜厚分布230(図14参照)は、調整前の膜厚分布220(図12参照)に比べて均一性が向上している。
 このように、本発明の偏芯評価方法により、エピタキシャル層を成長させる際の高温状態での基板の載置位置の偏芯量及び偏芯方向を簡便に高精度に評価でき、追加の設備や装置の改造を必要とせず、コストの増加を抑制でき、さらに、この評価結果に基づいて載置位置を高精度に補正でき、エピタキシャルウェーハの膜厚均一性を向上できることが確認できた。
 (実施例2)
 貫通孔の無いサセプタを有した図4に示すようなエピタキシャル成長装置を用いて、P型、抵抗率0.01Ωcm(いわゆるP+)のφ300mmシリコンウェーハ表面に、抵抗率8Ωcm、平均厚さ2.75μmのエピタキシャル層を成長させ、円周方向に外周2mmのエピタキシャル層膜厚分布を測定した。エピタキシャル層の膜厚測定には、フーリエ変換赤外分光器を用いたナノメトリクス社製エピタキシャル層膜厚測定機QS3300EGを用いた。
 図5に示した手順で載置位置の偏芯量及び偏芯方向を求めた結果、偏芯方向はノッチを下(6時方向)にして2時半方向で、偏芯量は906.2μmであった(実施例2)。図15は、得られた偏芯量、偏芯方向を図11と同じ極座標中の点(●)であらわしている。また、図16は、図15の偏芯量及び偏芯方向を求める際に得られた膜厚分布240とその膜厚分布240から分離された長周期成分241と短周期成分242とを示している。
 次に、図15の偏芯量及び偏芯方向を基に搬送位置を調整した後に再度載置位置の偏芯量及び偏芯方向を求めた。その結果、図17に示すように、偏芯量は290.0μmに改善された(実施例2)。また、図18は、図17の偏芯量及び偏芯方向を求める際に得られた膜厚分布250とその膜厚分布250から分離された長周期成分251と短周期成分252とを示している。搬送位置の調整後の膜厚分布250(図18参照)のほうが、調整前の膜厚分布240(図16参照)よりも均一性が向上している。
 このように、本発明の偏芯評価方法はサセプタの貫通孔の有無によらず、エピタキシャル層を成長させる際の高温状態での基板の載置位置の偏芯量及び偏芯方向を簡便に高精度に評価できる。
 なお、本発明は上記実施形態に限定されるものではなく、請求の範囲の記載を逸脱しない限度で種々の変更が可能である。例えば、上記実施形態では、膜厚分布の最小値の平均値からの偏差を用いて偏芯量を算出していたが、膜厚分布の最大値の平均値からの偏差を用いて偏芯量を算出しても良い。また、膜厚分布の複数の位置での偏差を用いて偏芯量を算出しても良く、具体的には例えば膜厚分布の全位置での偏差の総和(膜厚分布の積分値)や全位置での偏差の平均値等を用いて偏芯量を算出しても良い。
 1 エピタキシャル成長装置
 2 チャンバー
 21 チャンバーベース
 22 透明石英部材
 23 不透明石英部材
 3 サセプタ
 31 ポケット部
 4 反応ガス供給手段
 5 反応ガス排出手段
 7 サポートシャフト
 71 主支柱
 72 副支柱
 8 ウェーハ回転機構
 9 基板
 10 ヒータ

Claims (9)

  1.  凹形状のポケット部が形成されたサセプタの前記ポケット部に基板を載置して前記基板上にエピタキシャル層を成長させる成長工程と、
     その成長工程で得られたエピタキシャル層の外周部における円周方向の膜厚分布を測定する測定工程と、
     その測定工程で得られた膜厚分布に基づいて前記サセプタにおける前記基板の載置位置の偏芯を評価する評価工程と、
     を含むことを特徴とする偏芯評価方法。
  2.  前記評価工程では、前記膜厚分布の平均値からの前記膜厚分布の偏差に基づいて前記基板の載置位置の偏芯を評価することを特徴とする請求項1に記載の偏芯評価方法。
  3.  前記評価工程では、前記膜厚分布における最小の膜厚の前記平均値からの偏差に基づいて前記基板の載置位置の偏芯量を算出することを特徴とする請求項2に記載の偏芯評価方法。
  4.  前記評価工程では、前記外周部の円周方向に沿った各位置のうち前記最小の膜厚の位置の方向に前記基板の載置位置が偏芯していると評価することを特徴とする請求項3に記載の偏芯評価方法。
  5.  前記偏差と前記偏芯量の関係を求める関係取得工程を含み、
     前記評価工程では、前記関係取得工程で得られた関係に基づいて今回の前記偏差に対する前記偏芯量を算出することを特徴とする請求項3又は4に記載の偏芯評価方法。
  6.  前記膜厚分布のデータをフィルタリング処理して前記膜厚分布を短周期成分と長周期成分とに分離する分離工程を含み、
     前記評価工程では、前記分離工程で得られた前記膜厚分布の長周期成分のデータに基づいて前記基板の載置位置の偏芯を評価することを特徴とする請求項1乃至5のいずれか1項に記載の偏芯評価方法。
  7.  前記測定工程では、フーリエ赤外分光光度計にて前記膜厚分布を測定することを特徴とする請求項1乃至6のいずれか1項に記載の偏芯評価方法。
  8.  前記測定工程では、エピタキシャル成長前後の前記基板の厚み測定を行い、その差から前記膜厚分布を測定することを特徴とする請求項1乃至6のいずれか1項に記載の偏芯評価方法。
  9.  請求項1乃至8のいずれか1項に記載の偏芯評価方法によって評価した前記基板の偏芯量及び偏芯方向に基づいて、前記サセプタにおける基板の載置位置を補正した後、基板上にエピタキシャル層を成長させることを特徴とするエピタキシャルウェーハの製造方法。
     
PCT/JP2013/082754 2012-12-26 2013-12-06 偏芯評価方法及びエピタキシャルウェーハの製造方法 WO2014103657A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012283437A JP5943201B2 (ja) 2012-12-26 2012-12-26 偏芯評価方法及びエピタキシャルウェーハの製造方法
JP2012-283437 2012-12-26

Publications (1)

Publication Number Publication Date
WO2014103657A1 true WO2014103657A1 (ja) 2014-07-03

Family

ID=51020751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082754 WO2014103657A1 (ja) 2012-12-26 2013-12-06 偏芯評価方法及びエピタキシャルウェーハの製造方法

Country Status (2)

Country Link
JP (1) JP5943201B2 (ja)
WO (1) WO2014103657A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113644017A (zh) * 2020-04-27 2021-11-12 上海新昇半导体科技有限公司 一种对晶圆进行定位的方法和半导体制造设备
EP3957776A1 (de) 2020-08-17 2022-02-23 Siltronic AG Verfahren zum abscheiden einer epitaktischen schicht auf einer substratscheibe
US11260496B2 (en) * 2017-10-24 2022-03-01 Ebara Corporation Polishing method and polishing apparatus
EP3996130A1 (de) 2020-11-09 2022-05-11 Siltronic AG Verfahren zum abscheiden einer epitaktischen schicht auf einer substratscheibe
US20220270904A1 (en) * 2019-07-17 2022-08-25 Tokyo Electron Limited Substrate processing apparatus, information processing apparatus, and substrate processing method
TWI812229B (zh) * 2021-06-01 2023-08-11 德商世創電子材料公司 在沉積設備中之半導體材料的基板晶圓上沉積磊晶層的方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6330720B2 (ja) * 2015-04-30 2018-05-30 信越半導体株式会社 エピタキシャルウェーハの製造方法及び気相成長装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62221128A (ja) * 1986-03-24 1987-09-29 Hitachi Electronics Eng Co Ltd 処理装置
JPH05275510A (ja) * 1992-03-27 1993-10-22 Toshiba Corp 基板処理装置
JPH10269308A (ja) * 1997-03-25 1998-10-09 Toray Ind Inc 信号処理方法および信号処理装置
JPH11150069A (ja) * 1997-11-17 1999-06-02 Sony Corp 成膜方法及びこれに用いる減圧cvd装置
JP2001102313A (ja) * 1999-09-29 2001-04-13 Hitachi Kokusai Electric Inc 基板処理装置及び基板処理方法
JP2002016008A (ja) * 2000-06-30 2002-01-18 Toshiba Ceramics Co Ltd 薄膜気相成長方法及び薄膜気相成長装置
JP2003037075A (ja) * 2001-07-26 2003-02-07 Tokyo Electron Ltd 移載装置の制御方法および熱処理方法並びに熱処理装置
JP2012227471A (ja) * 2011-04-22 2012-11-15 Shin Etsu Handotai Co Ltd 偏心量の評価方法及びエピタキシャルウェーハの製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004134612A (ja) * 2002-10-11 2004-04-30 Nec Kansai Ltd 有機金属気相成長装置
DE102009010555A1 (de) * 2009-02-25 2010-09-02 Siltronic Ag Verfahren zum Erkennen einer Fehllage einer Halbleiterscheibe während einer thermischen Behandlung

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62221128A (ja) * 1986-03-24 1987-09-29 Hitachi Electronics Eng Co Ltd 処理装置
JPH05275510A (ja) * 1992-03-27 1993-10-22 Toshiba Corp 基板処理装置
JPH10269308A (ja) * 1997-03-25 1998-10-09 Toray Ind Inc 信号処理方法および信号処理装置
JPH11150069A (ja) * 1997-11-17 1999-06-02 Sony Corp 成膜方法及びこれに用いる減圧cvd装置
JP2001102313A (ja) * 1999-09-29 2001-04-13 Hitachi Kokusai Electric Inc 基板処理装置及び基板処理方法
JP2002016008A (ja) * 2000-06-30 2002-01-18 Toshiba Ceramics Co Ltd 薄膜気相成長方法及び薄膜気相成長装置
JP2003037075A (ja) * 2001-07-26 2003-02-07 Tokyo Electron Ltd 移載装置の制御方法および熱処理方法並びに熱処理装置
JP2012227471A (ja) * 2011-04-22 2012-11-15 Shin Etsu Handotai Co Ltd 偏心量の評価方法及びエピタキシャルウェーハの製造方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11260496B2 (en) * 2017-10-24 2022-03-01 Ebara Corporation Polishing method and polishing apparatus
US20220270904A1 (en) * 2019-07-17 2022-08-25 Tokyo Electron Limited Substrate processing apparatus, information processing apparatus, and substrate processing method
US11804395B2 (en) * 2019-07-17 2023-10-31 Tokyo Electron Limited Substrate processing apparatus, information processing apparatus, and substrate processing method
CN113644017A (zh) * 2020-04-27 2021-11-12 上海新昇半导体科技有限公司 一种对晶圆进行定位的方法和半导体制造设备
EP3957776A1 (de) 2020-08-17 2022-02-23 Siltronic AG Verfahren zum abscheiden einer epitaktischen schicht auf einer substratscheibe
WO2022037889A1 (de) 2020-08-17 2022-02-24 Siltronic Ag Verfahren zum abscheiden einer epitaktischen schicht auf einer substratscheibe
TWI777712B (zh) * 2020-08-17 2022-09-11 德商世創電子材料公司 用於在基板晶圓上沉積磊晶層的方法
CN116057202A (zh) * 2020-08-17 2023-05-02 硅电子股份公司 用于在衬底晶圆上沉积外延层的方法
EP3996130A1 (de) 2020-11-09 2022-05-11 Siltronic AG Verfahren zum abscheiden einer epitaktischen schicht auf einer substratscheibe
WO2022096332A1 (de) 2020-11-09 2022-05-12 Siltronic Ag Verfahren zum abscheiden einer epitaktischen schicht auf einer substratscheibe
TWI812229B (zh) * 2021-06-01 2023-08-11 德商世創電子材料公司 在沉積設備中之半導體材料的基板晶圓上沉積磊晶層的方法

Also Published As

Publication number Publication date
JP2014127595A (ja) 2014-07-07
JP5943201B2 (ja) 2016-06-29

Similar Documents

Publication Publication Date Title
WO2014103657A1 (ja) 偏芯評価方法及びエピタキシャルウェーハの製造方法
JP5445508B2 (ja) 偏心量の評価方法及びエピタキシャルウェーハの製造方法
TWI458945B (zh) 用於現場高溫計校正之方法及系統
JP6132163B2 (ja) 偏芯評価方法及びエピタキシャルウェーハの製造方法
US9273414B2 (en) Epitaxial growth apparatus and epitaxial growth method
KR101516164B1 (ko) 에피텍셜 성장용 서셉터
TWI672402B (zh) 經磊晶塗布的單晶矽半導體晶圓以及其製造方法
US20180005816A1 (en) Semiconductor laminate
JP2014239093A (ja) 枚葉式気相成長装置用サセプタ、枚葉式気相成長装置及びそれを用いた枚葉式気相成長方法
JP3594074B2 (ja) シリコンエピタキシャルウェーハおよびその製造方法
JP5988486B2 (ja) 成膜装置および成膜方法
JP2013098340A (ja) 成膜装置および成膜方法
JP5464068B2 (ja) エピタキシャル成長装置における内部部材の位置調整方法
US9234280B2 (en) Epitaxial growth apparatus and epitaxial growth method
JP6493498B1 (ja) 半導体ウェーハの載置位置測定方法および半導体エピタキシャルウェーハの製造方法
JP5444874B2 (ja) エピタキシャルシリコンウェーハの製造方法
JP2010141068A (ja) エピタキシャルウェーハの製造方法
US20230197533A1 (en) Method for evaluating peripheral strain of wafer
JP5942939B2 (ja) エピタキシャルウェーハの製造方法
JP2023060720A (ja) エピタキシャル成長装置の基板載置位置の偏心量を評価する方法及び当該評価方法を用いたエピタキシャルウェーハの製造方法
JP2010040575A (ja) 気相成長装置の温度校正方法、半導体ウェーハの製造方法
JP2011060979A (ja) エピタキシャルウェーハの製造方法
JP6605197B2 (ja) 気相成長方法および気相成長装置
TW202146845A (zh) 晶圓外周變形之評價方法
JP5626188B2 (ja) 半導体ウェーハの熱処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13869625

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13869625

Country of ref document: EP

Kind code of ref document: A1