WO2014098357A1 - 리튬 함유 용액으로부터 리튬을 추출하는 방법 - Google Patents

리튬 함유 용액으로부터 리튬을 추출하는 방법 Download PDF

Info

Publication number
WO2014098357A1
WO2014098357A1 PCT/KR2013/009005 KR2013009005W WO2014098357A1 WO 2014098357 A1 WO2014098357 A1 WO 2014098357A1 KR 2013009005 W KR2013009005 W KR 2013009005W WO 2014098357 A1 WO2014098357 A1 WO 2014098357A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
precipitate
containing solution
amount
extracting
Prior art date
Application number
PCT/KR2013/009005
Other languages
English (en)
French (fr)
Inventor
전웅
김기영
한기천
장영석
송창호
박운경
정기억
정소라
Original Assignee
재단법인 포항산업과학연구원
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020120151349A external-priority patent/KR101384803B1/ko
Priority claimed from KR1020120151293A external-priority patent/KR101380405B1/ko
Priority claimed from KR1020120152564A external-priority patent/KR101527140B1/ko
Application filed by 재단법인 포항산업과학연구원, 주식회사 포스코 filed Critical 재단법인 포항산업과학연구원
Priority to CN201380067333.XA priority Critical patent/CN104884648B/zh
Publication of WO2014098357A1 publication Critical patent/WO2014098357A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • C22B26/12Obtaining lithium

Definitions

  • a method of extracting lithiumol from a lithium-containing solution A method of extracting lithiumol from a lithium-containing solution.
  • Lithium is widely used in various industries such as secondary batteries, glass, ceramics, alloys, lubricants, and pharmaceuticals. Lithium secondary batteries have recently been attracting attention as a major power source for hybrid and electric vehicles. The battery market is also expected to grow into a huge 100x market.
  • These sources of lithium are minerals, brine and sea water, among which minerals are spodumene, petalite and
  • Lipidolite is a relatively large amount of lithium (about 1 to 1.5%), but lithium is extracted from minerals by flotation, high temperature heating, grinding, acid mixing, extraction, refining, concentration, and precipitation. Since the recovery procedure is complicated, high energy consumption is expensive, and there is a serious problem of environmental pollution by using acid in the process of extracting lithium.
  • lithium is mainly extracted from the brine, and the brine is produced in a natural salt lake, and salts such as Mg, Ca, B, Na, K, and S0 4 including lithium hull are dissolved together. It is. And, the concentration of lithium in the brine is about 0.3 to 1.5g / L, lithium in the brine is mainly extracted in the form of lithium carbonate, the solubility of the lithium carbonate is about 13g / L, Assuming that all the lithium contained is converted to lithium carbonate, the concentration of lithium carbonate in the brine is 1.59 to 7.95 g / L (Li 2 CO 3 molecular weight is 74 and the atomic weight of Li is 74 ⁇ 14 5.3, so By multiplying the lithium concentration by 5.3, the concentration of lithium carbonate can be estimated.) Therefore, since most of the lithium carbonate concentration is lower than the solubility of lithium carbonate, the precipitated lithium carbonate is re-dissolved so that the solid-liquid separation is difficult and the lithium recovery rate is very high. There is
  • the brine in order to extract the brine-containing lithium in the form of lithium carbonate, the brine is pumped from a natural salt lake and confined in evaporation ponds of open land, and then naturally evaporated for a long time of several months to one year.
  • a method of recovering lithium by concentrating lithium tens of times, precipitating and removing impurities such as Mg, Ca, and B, and allowing lithium carbonate solubility or more to precipitate is used.
  • brine containing a large amount of silver carbonate concentrates more than lithium because it precipitates as lithium carbonate when the concentration of lithium is more than 2.481 g / L [solubility of lithium carbonate 13.2 g / L, (20 ° C)]. Can not.
  • preparing a lithium-containing solution containing carbonate ions Lithium-containing solution so that the concentration of lithium is less than 2.481g / L Concentrating to obtain a first precipitate; Solid-liquid separation of the concentrated lithium-containing solution and the first precipitate; Introducing a phosphorus supply material into the concentrated lithium-containing solution to precipitate dissolved lithium into lithium phosphate; Re-concentrating the filtrate in which the lithium phosphate is precipitated to a concentration of lithium of 2.481 g / L or less to obtain a second precipitate; Solid-liquid separation of the re-concentrated filtrate and the second precipitate; And depositing lithium lithium phosphate by introducing nuclear particles into the re-concentrated filtrate.
  • re-concentrating the filtrate precipitated lithium phosphate so that the concentration of lithium is less than 2.481g / L to obtain a Crab 2 precipitate; Solid-liquid separation of the re-concentrated filtrate and the second precipitate; And depositing lithium phosphate in the dissolved lithium by adding nuclear particles to the re-concentrated filtrate; may be repeatedly performed.
  • the first precipitate and the second precipitate are independently of each other, NaCl, KCl or
  • Steps may further include.
  • the divalent or higher ions may be sulfate ions (S0 4 2 ⁇ ) or carbonates (C0 3 2- ).
  • the pore size of the separator having a negative charge on the surface may be 0.5 to lnm.
  • the thickness of the separator having a negative charge on the surface may be 0.5 to L5.
  • the surface of the separator having a negative charge on the surface may be a sulfone group introduced.
  • the lithium-containing solution may include sulfate ion (so 4 2 ).
  • the first precipitate may include potassium chloride (KC1) and NaK 3 (S0 4 ) 2 .
  • the first precipitate may include potassium chloride and NaK 3 (S0 4 ) 2 , and the content of potassium chloride in the first precipitate may be greater than NaK 3 (S0 4 ) 2 .
  • the section according to the amount of water evaporation may be 48 to 54% of the amount of water evaporation.
  • the section according to the amount of water evaporation may be 64 to 68% of the water evaporation amount.
  • the section according to the amount of water evaporation may be 70 to 73% of the water evaporation amount.
  • the obtained first precipitate was added to a saturated solution of sodium chloride and potassium chloride.
  • Input step Adding a surfactant to a saturated solution of sodium chloride and potassium chloride to which the first precipitate was added, thereby changing the surface of potassium chloride to be hydrophobic; And recovering the calcium chloride whose surface is changed to hydrophobic using bubbles.
  • the amount of the surfactant is the precipitate 100 It may be 0.0001 to 2 parts by weight relative to parts by weight.
  • the first precipitate may include potassium chloride and NaK: 3 (S0 4 ) 2 , and the content of potassium chloride in the first precipitate may be less than NaK 3 (S0 4 ) 2 .
  • the section according to the water evaporation amount may be a section within 40% of the water evaporation amount.
  • the section according to the amount of water evaporation may be a section within 37% of the amount of water evaporation.
  • the section according to the amount of water evaporation may be 0.1 to 37% section of the amount of water evaporation.
  • Recovering NaK 3 (S0 4 ) 2 may further include.
  • a surfactant to the sodium chloride and NaK 3 (S0 4 ) 2 saturated solution to which the obtained system 1 precipitate was added to change the surface of NaK 3 (S0 4 ) 2 hydrophobic; It may be 0.0001 to 2 parts by weight based on 100 parts by weight of the precipitate.
  • the recovered NaK 3 (S0 4 ) 2 may be further reacted with potassium chloride to obtain potassium sulfate.
  • the surfactant may be silicon-based, fluorine-based, polyether-based, or a combination thereof.
  • the surfactant may be an alkali metal organic sulfonate.
  • the surfactant may be a complex salt of hydrocarbon sulfonate, hydrocarbon sulfate, fatty acid, or a combination thereof.
  • the nuclear particle may have a particle size of 100 or less.
  • the nuclear particle may have a particle diameter of 40 or less.
  • the nuclear particle may have a particle diameter of 25 imi or less.
  • the nuclear particle may have a particle size of 1 or less.
  • the nuclear particle may have a specific surface area of 1 to 100 m 2 / g.
  • the nuclear particle may have a specific surface area of 50 to 100 m 2 / g.
  • the nuclear particle may be a lithium compound.
  • the nuclear particle may be a poorly soluble lithium compound.
  • the nuclear particle may be a poorly soluble organic compound, a poorly soluble inorganic compound, or a combination thereof.
  • the content of the nuclear particles added to the lithium-containing solution may be 0.05 g / L or less with respect to the total lithium-containing solution.
  • the nuclear particle may be Li 3 P0 4 , Li 2 CO 3 , LiF or a combination thereof.
  • the nuclear particles are Ca 3 (P0 4 ) 2 , hydroxyapatite,
  • the phosphorus feed material may be one or more selected from phosphorus, phosphoric acid or phosphate. 13009005
  • the concentration of the lithium phosphate may be 0.39 g / L or more.
  • the lithium containing solution may be brine.
  • the lithium concentration of the lithium-containing solution may be greater than or equal to O.lg / L.
  • the method may further include extracting lithium phosphate by filtering the precipitated lithium phosphate from the lithium-containing solution.
  • the lithium is economically extracted at a high recovery rate without the need for a long time evaporation and concentration of the brine; Can be.
  • the brine containing carbonate ions can be concentrated to a high concentration without loss of lithium to extract lithium with high efficiency.
  • Figure 1 shows the change in the lithium ion concentration of the filtrate according to the amount of water evaporation when the brine is concentrated.
  • Figure 2 shows the change in the concentration of lithium in brine over time after the addition of phosphoric acid in Example 2.
  • Example 3 is a mineral phase analysis result of the precipitate after the reaction in Example 2.
  • Figure 4 shows, in Example 3, the change in the concentration of lithium in saline with time after nuclear injection.
  • FIG. 5 is a working example of a schematic separator according to an embodiment of the present invention.
  • Figure 6 shows the mineral phase of the precipitate according to the amount of water evaporation when concentrated brine containing a large amount of sulfate ions and brine from which the silver sulfate was removed through the separation membrane.
  • Figure 7 shows the mineral phase of the suspended solids after adding the precipitate to the saturated solution of sodium chloride and potassium chloride after the addition of a surfactant.
  • Figure 9 shows the mineral phase of the substance suspended by the sodium chloride and potassium chloride mixture and the flotation according to Example 9.
  • Figure 10 shows the mineral phase of the material precipitated at 37.8% water evaporation when concentrated brine containing a large amount of sulfate ions according to Example 10.
  • Figure 11 shows the mineral phase of the sodium chloride and potassium salt (NaK 3 (S0 4 ) 2 ) mixture according to Example 11 and the suspended material by flotation.
  • FIG. 12 shows the mineral phase of potassium sulfate according to Example 12.
  • substituted means that at least one hydrogen in a substituent or compound is a deuterium, halogen group, hydroxy group, amino group, substituted or unsubstituted C1 to C20 amine group, nitro group, substituted or unsubstituted.
  • C1 to C10 such as C3 to C40 silyl group, C1 to C30 alkyl group, C1 to C10 alkylsilyl group, C3 to C30 cycloalkyl group, C6 to C30 aryl group, C1 to C20 alkoxy group, fluoro group, trifluoromethyl group, etc.
  • substituted halogen group, hydroxy group, amino group, substituted or unsubstituted C1 to C20 amine group, nitro group, substituted or unsubstituted C3 to C40 silyl group, C1 to C30 alkyl group, C1 to C10 alkylsilyl group, C3 to Two adjacent substituents of C1 to C10 trifluoroalkyl group or cyano group such as C30 cycloalkyl group, C6 to C30 aryl group, C1 to C20 alkoxy group, fluoro group and trifluoromethyl group may be fused to form a ring. .
  • hetero means that one functional group contains 1 to 3 heteroatoms selected from the group consisting of N, 0, S, and P, and the rest are tanned. .
  • an "alkyl group” is aliphatic
  • alkyl group may be branched, straight chain or cyclic.
  • the alkyl group may be an alkyl group of C1 to C20. More specifically, the alkyl group may be a C1 to C10 alkyl group or a C1 to C6 alkyl group.
  • a C1 to C4 alkyl group has 1 to 4 carbon atoms in the alkyl chain, i.e., the alkyl chain is methyl, ethyl, propyl, iso-propyl, ⁇ -butyl, iso-butyl, sec-butyl and t-butyl Selected from the group consisting of:
  • the alkyl group may be a methyl group, an ethyl group, a propyl group, isopropyl group, a butyl group, an isobutyl group, a t-butyl group, a pentyl group, a nuclear group, an ethenyl group, a propenyl group, a butenyl group, a cyclopropyl group, and a cyclo group.
  • a butyl group, a cyclopentyl group, a cyclonuclear group, etc. are meant.
  • One embodiment of the present invention preparing a lithium-containing solution containing carbonate ions; Concentrating the lithium-containing solution to a concentration of lithium of 2.481 g / L or less to obtain a first precipitate; Solid-liquid separation of the concentrated lithium-containing solution and the first precipitate; Introducing a phosphorus supply material into the concentrated lithium-containing solution to precipitate dissolved lithium into lithium phosphate; Re-concentrating the filtrate in which the lithium phosphate is precipitated to a concentration of lithium of 2.481 g / L or less to obtain a second precipitate; Solid-liquid separation of the re-concentrated filtrate and the second precipitate; And depositing lithium lithium phosphate by introducing nuclear particles into the re-concentrated filtrate.
  • Lithium carbonate (Li 2 CO 3 ) has a solubility of about 13 g / L, which corresponds to a substance that is dissolved in a relatively large amount.
  • lithium has a concentration of 0.5 to 1.5 g / L (carbonate Since a small amount is dissolved at 2.65 to 7.95 g / L in terms of lithium, even when sodium carbonate or the like is added to the lithium-containing solution to produce lithium carbonate, most of it is redissolved again, making it difficult to extract lithium.
  • Lithium phosphate (Li 3 P0 4 ), on the other hand, has a solubility of about 39 g / L, which is much lower than that of lithium carbonate, so that a small amount of lithium phosphate is dissolved in a lithium-containing solution such as brine. Lithium at a concentration of 5 to 1.5 g / L (2.75 to 16.5 g / L in terms of lithium phosphate) can be easily precipitated and separated into lithium phosphate in a solid state.
  • each salt lake since the salt components of each salt lake are different from each other, for example, in the case of brine containing a large amount of carbonate ions, lithium is precipitated in the form of lithium carbonate before the concentration becomes a certain concentration.
  • the brine containing a large amount of carbonate ions are concentrated in a range in which lithium carbonate does not precipitate, and the concentrated brine is subjected to solid-liquid separation, and then the phosphorus feed material to the solid-liquid separated brine By adding lithium
  • a method of extracting with lithium phosphate can be used.
  • lithium carbonate precipitates, so it is better to concentrate up to 2.481g / L or less.
  • the solubility of lithium carbonate may decrease or increase depending on the salinity of the brine, it is preferable to concentrate the lithium concentration to about 1.8 g / L at room temperature.
  • the phosphorus feed material may be introduced in the same equivalent weight as lithium in solid-liquid separated brine. Most of the dissolved lithium precipitates in the form of lithium phosphate, but lithium within the solubility range of lithium phosphate continues to remain in the filtrate.
  • the brine from which lithium phosphate was extracted can be concentrated again in a range in which lithium carbonate does not precipitate, and lithium can be extracted once again by adding nuclear particles without adding a phosphorus supply material.
  • Lithium phosphate can be obtained.
  • the filtrate (saline) from which lithium is recovered in the filtrate (saline) from which lithium is recovered
  • the process of recovering the remaining phosphorus feed material can be omitted again, which is advantageous in process design.
  • the filtrate is concentrated again, the precipitate is solid-liquid separated, and the process of extracting the lithium phosphate by inputting the nuclear particles may be repeatedly performed.
  • the recovery rate of lithium may be greatly increased.
  • the present invention further, by re-concentrating the filtrate of the lithium phosphate precipitated to less than the concentration of lithium 2.481g / L to obtain a second precipitate; Solid-liquid separation of the re-concentrated filtrate and the second precipitate; And injecting nuclear particles into the re-concentrated filtrate to precipitate dissolved lithium phosphate.
  • the first precipitate and the second precipitate may include, independently of each other, NaCl, KCl or NaK 3 (S0 4 ) 2 . These precipitates can be effectively reused as a resource after solid-liquid separation.
  • the step of concentrating the lithium-containing solution so that the concentration of lithium is less than 2.481g / L to obtain a first precipitate; before, by using a separator having a negative charge on the surface Separating divalent or more ions in the lithium-containing solution; may further include.
  • the concentration of sulfate ion in the concentrated lithium-containing solution is reduced, so that the content of KC1 may be increased in the system 1 precipitate than the content of NaK 3 (S0 4 ) 2.
  • the concentration of carbonate ions in the concentrated lithium-containing solution may also be partially reduced.
  • the separator has a negative charge on its surface, and can selectively separate ions.
  • the divalent anions such as S0 4 2- , C0 3 2 -are more negatively charged than the monovalent anions such as cr and the repulsive force, making it difficult to pass through the separation membrane. This is because the magnitude of the charge and the electrostatic force are proportional to the knot's law. Therefore, the divalent anion and monovalent anion may be separated by the negatively charged separator.
  • divalent cations such as Ca 2+ , Mg 2+, etc. make the divalent anions electrostatically paired, making it difficult to pass through the separator together with the divalent anions. This is also because the size of the divalent cation is larger than that of the monovalent cation.
  • the monovalent anions such as C1- may pass through the separator together with electrostatically paired monovalent cations such as Li + , Na + , K +, and the like. .
  • the separation by the membrane is a physical separation, not all monovalent ions and divalent silver can be separated, but monovalent ions and divalents with high efficiency. This can be separated.
  • the pore size of the separator having a negative charge on the surface may be 0.5 to lnm. If the above range is satisfied, it is effective for separating monovalent ions and divalent ions.
  • the thickness of the separator having a negative charge on the surface may be 0.5 to 1.5. If the above range is satisfied, divalent cations such as Ca 2+ , Mg 2+, and the like, and divalent anions such as S0 4 2- , C0 3 2 -and the like are effectively separated into a lithium-containing solution (eg, Brine) to increase the efficiency of the lithium extraction process.
  • a lithium-containing solution eg, Brine
  • the surface of the separator having a negative charge on the surface may be a sulfone group introduced. More specifically, the negative separator on the surface may be prepared by applying a sulfone group which may cause negative charge on the polyamide substrate. However, as long as the substituent can have a negative charge on the surface, it is not limited to the sulfone group, and the substrate is not limited to the polyamide substrate.
  • one embodiment of the present invention can control the type of precipitate by adjusting the concentration step when the lithium-containing solution (eg, brine) is concentrated by evaporation.
  • the lithium-containing solution eg, brine
  • the content of each of the heterogeneous precipitates precipitated for each section according to the amount of evaporation of water in the lithium-containing solution may be controlled.
  • the lithium-containing solution may be a lithium-containing solution containing sulfate ion (so 4 2- ).
  • sulfate ion sodium bicarbonate
  • the lithium-containing solution may be a lithium-containing solution containing sulfate ion (so 4 2- ).
  • sulfate ion sodium bicarbonate
  • the content (or content ratio) of potassium chloride and NaK 3 (S0 4 ) 2 in the precipitate obtained for each section according to the evaporation amount of water in the lithium-containing solution may vary.
  • One embodiment of the present invention according to the amount of evaporation of water in the lithium-containing solution It is possible to recover potassium chloride in the lithium-containing solution by selectively obtaining a precipitate having a high content of potassium chloride with respect to the precipitate obtained by each section.
  • an embodiment of the present invention selectively obtains lithium by obtaining a precipitate having a high content of NaK 3 (S0 4 ) 2 with respect to the precipitate obtained for each section according to the evaporation amount of water in the lithium-containing solution. Potassium sulfate in the solution can be recovered.
  • Such an embodiment of the present invention uses only the evaporation of water, and thus can not only prevent environmental pollution due to separate by-products, but also need no special process facility, so it is easy to apply to a salt water field.
  • the section according to the amount of water evaporation may be 48 to 54% of the amount of water evaporation. More specifically, the interval may be 48.6 to 54.0% interval.
  • the step of obtaining a precipitate for each section according to the amount of water evaporation may be a 64 to 68% water evaporation section. More specifically, the interval may be 64.8 to 67.5% interval.
  • the section according to the moisture evaporation amount may be a 70 to 73% section of the water evaporation amount. More specifically, the interval may be 70.2 to 72.9%.
  • the range is not limited thereto as an example of a section having a high content of potassium chloride.
  • One embodiment of the present invention the step of injecting the obtained precipitate into a saturated sodium chloride and potassium chloride solution; Adding a surfactant to a saturated solution of sodium chloride and potassium chloride to which the precipitate was added, thereby changing the surface of potassium chloride to be hydrophobic; And recovering potassium chloride having the surface changed to hydrophobic using bubbles.
  • the saturated solution is a saturated solution of sodium chloride and potassium chloride, the obtained precipitates sodium chloride and potassium chloride are no longer dissolved.
  • the surface of the potassium chloride can be changed to hydrophobic by adding a surfactant to the sodium chloride and potassium chloride saturated solution to which the obtained precipitate is added. At this time, only the surface of potassium chloride is selectively changed to hydrophobic due to the action of the surfactant.
  • surfactants more specifically, anionic surfactants
  • potassium chloride has a contact angle of 8 °, and is easier to bind with a surfactant than sodium chloride having a contact angle of 0 °.
  • the bubble can then be used to recover potassium chloride whose surface has been changed to hydrophobic. More specifically, when bubbles are generated, potassium chloride particles having a hydrophobic surface adhere to the bubbles and float on water. Therefore, only the floated potassium chloride particles can be selectively recovered.
  • the water evaporation amount in the section according to the water evaporation amount, may be within 40%. More specifically, the section may be within 37%.
  • the section according to the water evaporation amount may be 1 to 37% of the water evaporation amount.
  • the range is not limited thereto as an example of a section having a high content ratio of NaK 3 (S0 4 ) 2 .
  • the obtained precipitate is added to a saturated solution of sodium chloride and NaK 3 (S0 4 ) 2 ; Sodium chloride to which the precipitate obtained above was added and
  • NaK 3 (S0 4) 2 In the step of a surface active agent to a saturated solution to change the surface of NaK 3 (S0 4) 2 as hydrophobic; And the surface is changed to hydrophobicity using bubbles.
  • Recovering NaK 3 (S0 4 ) 2 may further include.
  • the saturated solution is a saturated solution of sodium chloride and NaK 3 (SO 4 ) 2
  • the obtained precipitates sodium chloride and NaK 3 (SO 4 ) 2 are no longer dissolved.
  • the surface of NaK 3 (S0 4 ) 2 may be changed to hydrophobicity by adding a surfactant to sodium chloride and a saturated solution of NaK 3 (S0 4 ) 2 to which the obtained precipitate is added. At this time, only the surface of NaK 3 (S0 4 ) 2 is selectively changed to hydrophobic due to the action of the surfactant.
  • surfactants (more specifically, anionic surfactants) have hydrophobicity on one side and ionized on one side to have (-) surface charge.
  • NaK 3 (S0 4) is due to selective adsorption by a 2 to change the NaK 3 (S0 4) 2 to a hydrophobic state.
  • a surfactant to the sodium chloride and NaK 3 (S0 4 ) 2 saturated solution to which the obtained precipitate was added to change the surface of NaK 3 (S0 4 ) 2 hydrophobic;
  • the amount of the surfactant is the precipitate It may be 0.0001 to 2 parts by weight based on 100 parts by weight. If this range is satisfied, NaK 3 (S0 4 ) 2 can be extracted effectively without wasting surfactant.
  • bubbles may be used to recover NaK 3 (S0 4 ) 2 having the surface changed to hydrophobic. More specifically, when bubbles are generated, NaK 3 (S0 4 ) 2 particles having a hydrophobic surface adhere to the bubbles and float on water. Thus, only the floating NaK 3 (S0 4 ) 2 particles can be selectively recovered.
  • one embodiment of the present invention may further comprise the step of obtaining potassium sulfate by reacting the recovered NaK 3 (S0 4 ) 2 with potassium chloride. More specifically, potassium sulfate may be obtained through a path such as the following reaction formula 1 below.
  • the surfactant may be silicon-based, fluorine-based, polyether-based, or a combination thereof.
  • the surfactant may be an alkali metal organic sulfonate. More specifically, the alkali metal of the surfactant is sodium, potassium, lithium or
  • the surfactant may be sodium octane sulfonate, potassium octane sulfonate, lithium octane sulfonate, sodium dodecane Sulfonate, potassium dodecane sulfonate, or lithium dodecane sulfonate.
  • the surfactant may be a complex salt of hydrocarbon sulfonate, hydrocarbon sulfate, fatty acid, or a combination thereof.
  • surfactant examples include, but are not limited to, BM-1000®, BM ⁇ 1100®, etc. manufactured by BMChemie; Mecha Pack F142D®, Copper F172®, Copper F 173®, Copper F 183®, etc. of Dai Nippon Inki Chemical Co., Ltd .; Prorad FC-135®, Copper FC-170C®, Copper FC-430®, Copper FC-431®, and the like, of Sumitomo 3M Corporation; Saffron S-112®, S-113®, S-131®, S-141®, S-145®, etc. manufactured by Asahi Grass Co., Ltd .; Toray Silicone Co., Ltd. SH-28PA®, copper-190®, copper-193®, SZ-6032®, SF-8428®, etc. are commercially available products.
  • the lithium concentration of the lithium-containing solution may be 0.1 g / L unknown. More specifically, it may be 0.2g / L or more. Since the description of the concentration of lithium is as described above, it will be omitted.
  • one or more selected from phosphorus, phosphoric acid or phosphate as the phosphorus supplying material is added to the lithium-containing solution to react with lithium to produce lithium phosphate. It is natural that the concentration must be 0.39 g / L or more in order to precipitate in the solid state.
  • phosphate salt examples include potassium phosphate, sodium phosphate,
  • Ammonium phosphate for example, the ammonium may be ( ⁇ 3 ⁇ 4) 3 ⁇ 0 4 , and R is independently hydrogen, deuterium, a substituted or unsubstituted C1 to C10 alkyl group), and the like.
  • the phosphate is potassium monophosphate, potassium diphosphate, potassium triphosphate,
  • the phosphorous feed material may be water soluble.
  • reaction with lithium included in the lithium-containing solution may be easy. .
  • the precipitated lithium phosphate is lithium-containing by filtration.
  • the nuclear particle may be a homogeneous nuclear particle. Or the nuclear particles are heterogeneous It may be a nuclear particle.
  • the shape of the nuclear particles is not limited.
  • the nuclear particle may have a particle size of 100 or less. More specifically, the nuclear particles may have a particle diameter of 40 // m or less, 25 / iin or less, 6 or less, or ffli or less.
  • the particle diameter may be an average particle diameter.
  • the smaller the particle diameter may be good lithium phosphate extraction efficiency, but is not limited to the above range.
  • the nuclear particles may be poorly soluble to the lithium-containing solution.
  • the nuclear particle may be a lithium compound.
  • the nuclear particles are not limited in kind. For example, metal particles, inorganic compound particles, organic compound particles, and the like are all possible.
  • the nuclear particle may be a poorly soluble lithium compound.
  • the nuclear particle may be a poorly soluble inorganic compound, poorly soluble organic compound or a superpolymer thereof.
  • the nuclear particles may be Li 3 P0 4 , Li 2 CO 3 , UF, or a combination thereof.
  • the nuclear particles may be MgO, MgAl 2 O 4 , A1 2 O 3 , plastic particles or a combination thereof.
  • the nuclear particles may be Ca 3 (P0 4 ) 2 , hydroxyapatite, zirconia, Ti0 2 , Se0 2 , Mg 3 (P0 4 ) 2, and the like.
  • Specific examples of the plastic particles include Teflon particles, PVD particles : urethane particles, and the like. However, it is not limited to the above examples.
  • the nuclear particles may be present as impurities when the lithium phosphate is precipitated, it is preferable to use the target lithium phosphate itself as a nuclear particle.
  • the amount of the nuclear particles added to the lithium-containing solution is 20 g / L or less, 10 g / L or less, 5 g / L or less, 2 g / L or less, lg / L or less, 0.5 g with respect to the total lithium-containing solution. / L or less, 0.1 g / L or less, or 0.05g / L or less.
  • the nuclear particle may have a specific surface area of 1 to 100 m 2 / g. If this range is satisfied, lithium can be effectively extracted. More specifically, the nuclear particle may have a specific surface area of 50 to 100 m 2 / g.
  • a phosphorus supply material is added to the lithium-containing solution to dissolve the lithium.
  • the step of economically extracting lithium from the lithium-containing solution by precipitation and precipitation with lithium phosphate may be performed at room temperature. More specifically, it may be carried out at 20 ° C or more, 30 ° C or more, 50 ° C or more or 90 ° C or more.
  • the room temperature does not mean a constant temperature, but means a temperature in a state in which no external energy is added. Therefore, room temperature may change according to place and time.
  • the lithium-containing solution may be brine.
  • Evaporation was carried out at 40 ° C. using an evaporator.
  • Figure 1 shows the change in the concentration of lithium iridium in the filtrate according to the amount of water evaporation when the brine is concentrated.
  • Concentration of brine causes the lithium concentration in the brine to increase as moisture evaporates.
  • Table 2 shows the dissolved ion concentration of the filtrate after evaporation of 37.8% of the water in the brine containing a large amount of carbonate ions.
  • Lithium concentration of the concentrated filtrate was 1.8g / L by adding phosphoric acid corresponding to the equivalent of lithium concentration was measured for the lithium concentration with time at room temperature.
  • Figure 2 shows the change in the concentration of lithium in brine over time after the addition of phosphoric acid.
  • the concentration of lithium gradually decreased with time at an initial 1.8 g / L, and a lithium recovery rate of 0.4 g / L at a reaction time of 3 hours was 77.7%.
  • Figure 3 shows the mineral phase analysis of precipitates after reaction, which was Li 3 P0 4 , showing a purity of more than 98%.
  • Example 3 Reconcentration of the Filtrate and Lipophosphate Extraction Using Nuclear Particles
  • the brine from which the lithium was extracted was concentrated again to the extent that lithium did not precipitate.
  • the main mineral phase of the precipitated material was NaCI, KCl, NaK 3 (S0 4 ) 2 .
  • Table 3 below shows the composition of the filtrate at 60% moisture evaporation.
  • lithium phosphate was added as a nuclear particle (seed) without adding water-soluble phosphoric acid, and then 1 equivalent of dissolved lithium was measured.
  • Figure 4 shows the change in lithium concentration in the brine with time after the nuclear injection was maintained after reducing to 0.2g / L after 2 hours from the initial lithium concentration 0.877g / L. In other words, the recovery was about 77%.
  • Example 4 Re-concentration of the Filtrate and Repeating Lithium Phosphate Extraction Using Nuclear Particles
  • the solution from which the lithium was extracted secondary was concentrated again to the extent that lithium did not precipitate.
  • the lithium concentration was 0.8 g / L, and lithium phosphate was added as the equivalent amount of dissolved lithium as nuclear particles in the same manner as the secondary lithium extraction.
  • the total lithium recovery rate was 98.27% by repeating the step of concentrating and depositing lithium as lithium phosphate as described above three times.
  • the concentration of sulfate ions is 11.14g / L in the treated water was found to be reduced by almost 1/3 compared to the concentration of sulfuric acid 31.20g / L of raw water.
  • Example 6 obtaining a precipitate comprising sodium chloride and potassium chloride
  • Figure 6 shows the mineral phase of the precipitate according to the amount of water evaporation when each of the brine containing a large amount of sulfate ions and concentrated through the separation membrane to remove the silver sulfate.
  • the precipitated materials are NaCl, KCl and NaK 3 (SO 4 ) 2 .
  • S0 4 of high raw water is precipitated with a substance containing a potassium KC1 and NaK 3 (S0 4) 2 heunjae as the water evaporates. Both of these materials are hydrophobic and are separated by hydrophobic action, making it difficult to separate KC1 purely.
  • Table 6 shows mineral compositions of precipitates when concentrated brine containing a large amount of sulfate ions and concentrated brine treated with a separator.
  • Precipitate separation membrane-treated concentrated brine is KC111.31 weight 0/0, NaK 3 with NaCI (SO 4) 2 yeoteuna 37.86% by weight, and brine and then concentrated to precipitate separation membrane treatment is KC16.61 weight 0/0, NaK 3 (SO 4 2 ) 0.67% by weight, indicating that most of potassium precipitated as potassium chloride.
  • the sodium chloride and potassium chloride mixture precipitated by the concentration was added to a saturated solution of sodium chloride and potassium chloride to prepare 5% of the slurry.
  • the slurry was placed in a floater, 2mL of an aqueous surfactant solution was conditioned for 2 minutes, and then suspended. Flotation screening time was 3 minutes. The weight ratio of the used surfactant to the precipitated slurry was 0.2: 100.
  • the surfactant used was sodium dodecylsulfate (SDS).
  • Figure 7 shows the mineral phase of a substance suspended by sodium chloride and potassium chloride mixtures and by flotation. Through this procedure, the recovery rate of potassium chloride was 85.7%, and the suspended matter was potassium chloride, and the purity was 97%.
  • Example 8 Control of Sediment According to Water Evaporation Amount
  • KC1 is 11.31 to 13.63 weight 0 / ⁇
  • NaK 3 (S0 4 ) 2 is 37.86 to 37.75% by weight of NaK 3 (S0 4 ) 2 compared to KC1
  • NaK 3 (S0 4 ) 2 is 4.19 weight 0 /. It can be seen that KC1 precipitates 6 times or more than NaK 3 (S0 4 ) 2 .
  • 67.5% in the amount of precipitation of KC1 include potassium precipitated as NaK 3 (S0 4) compared to two or more 31 times, evaporation, 70.2 to 72.9% in the amount of precipitation of KC1 NaK 3 (S0 4) 2 times or more than 2 It can be seen that there is an evaporation section where KC1 occupies most of the salt. have.
  • Evaporation amount of 48.6% to 54.0% and 64.8 to 67.5% of the evaporation amount of KC1 representing most of the salt containing potassium was mixed, and NaCl and KC1 were added to a solution prepared by dissolving and saturating a 5% slurry.
  • the slurry was placed in a floater, 2mL of an aqueous surfactant solution was conditioned for 2 minutes, and then suspended. Flotation screening time was 3 minutes. The weight ratio of the used surfactant to the precipitated slurry was 0.2: 100.
  • the surfactant used was sodium dodecylsulfate (SDS).
  • Example 10 shows the mineral phase of a substance suspended by sodium chloride and potassium chloride mixtures and by flotation. Through this procedure, the recovery rate of potassium chloride was 82%, the suspended solids was potassium chloride, and the purity was 96%.
  • Example 10 Direct precipitation of potassium salt n aK3 (S0 4 ) 2 ) with sodium chloride
  • FIG. 11 shows the mineral phase of sodium chloride and potassium salts (NaK 3 (S0 4 ) 2 ) mixture and suspended matter by flotation. It can be confirmed that the potassium salt (NaK 3 (S0 4 ) 2 ) was recovered through the above process.
  • Example 12 Preparation of Potassium Sulfate from Potassium Salt (Na (S0 4 ) 2 )
  • the slurry was prepared by adding 20 parts by weight of potassium salt (NaK 3 (S0 4 ) 2 ) containing sulfated ion suspended by the above-mentioned flotation with respect to 100 parts by weight of saturated potassium chloride solution, and then reacting with stirring at 2 hours. .
  • potassium salt NaK 3 (S0 4 ) 2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Inorganic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

리튬 함유 용액으로부터 리튬을 추출하는 방법에 관한 것으로, 구체적으로 탄산 이온이 포함된 리튬 함유 용액을 준비하는 단계; 상기 리튬 함유 용액을 리튬의 농도가 2.481g/L 이하가 되도록 농축시켜 제1 침전물을 수득하는 단계; 상기 농축된 리튬 함유 용액과 상기 제1 침전물을 고액 분리하는 단계; 상기 농축된 리튬 함유 용액에 인 공급 물질을 투입하여 용존 리튬을 인산리튬으로 석출시키는 단계; 상기 인산리튬이 석출된 여액을 리튬의 농도가 2.481g/L 이하가 되도록 재농축시켜 제2 침전물을 수득하는 단계; 상기 재농축된 여액과 상기 제2 침전물을 고액 분리하는 단계; 및 상기 재농축된 여액에 핵입자를 투입하여 용존 리튬을 인산리튬을 석출시키는 단계;를 포함하는 리튬 함유 용액으로부터 리튬을 추출하는 방법을 제공할 수 있다.

Description

【명세서】
【발명의 명칭】
리튬 함유 용액으로부터 리튬을 추출하는 방법
【기술분야】
리튬 함유 용액으로부터 리튬올 추출하는 방법에 관한 것이다.
【배경기술】
리튬은 2차전지, 유리, 세라믹, 합금, 윤활유, 제약 등 각종 산업 전반에 다양하게 사용되고 있는데, 특히 리튬 2차전지는 최근 하이브리드 및 전기 자동차의 주요 동력원으로 주목받고 있으며, 휴대폰, 노트북 등 기존의 소형 배터리 시장 또한 향후 100배 규모의 거대 시장으로 성장할 것으로 예측되고 있다.
게다가, 범 세계적으로 이루어지고 있는 환경 규제 강화 움직임으로 인하여 가까운 미래에는 하이브리드 및 전기 자동차산업 뿐만 아니라 전자, 화학, 에너지 등으로 그 응용 분야도 크게 확대되어 21세기 산업 전반에 걸쳐 리륨에 대한 국내외 수요가 급증할 것으로 예상되고 있다.
이러한 리튬의 공급원은 광물 (mineral), 염수 (brine) 및 해수 (sea water) 등이고, 이 중 광물은 스포듀민 (spodumene), 페탈라이트 (petalite) 및
레피돌라이트 (lepidolite) 등으로서 리튬이 약 1 내지 1.5%로 비교적 많이 함유되어 있지만, 광물로부터 리륨을 추출하기 위해서는 부유선별, 고온가열, 분쇄, 산 흔합, 추출, 정제, 농축, 침전 등의 공정을 거쳐야 하기 때문에 회수 절차가 복잡하고, 고에너지 소비로 인해 비용이 많이 소비되며, 리륨을 추출하는 과정에서 산을 사용함으로써 환경 오염이 극심한 문제가 있다.
또한, 해수에는 리튬이 총 2.5X1011톤이 용존되어 있는 것으로 알려져 있고, 흡착제가 포함된 회수장치를 해수에 투입하여 리튬을 선택적으로 흡착시킨 후 산처리하여 리튬을 추출하는 기술이 주를 이루고 있으나, 해수에 포함된 리튬의 농도가 0.17ppm에 불과하여 해수로부터 리튬을 추출하는 것은 매우
비효율적이어서 경제성이 떨어지는 문제가 있다.
이러한 문제들로 인하여, 현재 리튬은 주로 염수로부터 추출되고 있는데, 염수는 천연의 염호 (salt lake)에서 산출되고, 리튬훌 비롯한 Mg, Ca, B, Na, K, S04 등의 염류가 함께 용존되어 있다. 그리고, 상기 염수에 함유된 리튬의 농도는 약 0.3 내지 1.5g/L 정도이고, 염수에 함유된 리튬은 주로 탄산리튬의 형태로 추출되는데, 상기 탄산리튬의 용해도는 약 13g/L로서, 염수에 함유된 리튬이 모두 탄산리튬으로 변환된다고 가정하여도 염수 중 탄산리튬의 농도는 1.59 내지 7.95g/L인 바 (Li2C03 분자량이 74이고 Li의 원자량이 7이므로 74÷14 5.3이며, 따라서 리튬 농도에 5.3을 곱하면 탄산리튬의 농도를 추정할 수 있음), 따라서 상기 탄산리튬 농도의 대부분은 탄산리튬의 용해도 보다 낮기 때문에 석출된 탄산리튬이 재용해됨으로써 고액분리가 곤란하여 리튬 회수율인 매우 낮은 문제가 있다.
따라서, 종래에는 염수 함유 리튬을 탄산리튬 형태로 추출하기 위해서, 천연의 염호에서 염수를 펌핑하여 노지 (露地)의 증발못 (evaporation ponds)에 가둔 후 수개월 내지 1년 정도의 장시간에 걸쳐 자연증발시켜 리튬을 수십배로 농축시킨다음, Mg,Ca,B 등의 불순물을 침전시켜 제거하고, 탄산리튬 용해도 이상의 양이 석출되도록 하여 리튬을 회수하는 방법이 사용되어 왔다.
한편, 탄산이은이 다량 포함된 염수는 리튬의 농도가 2.481g/L [탄산리튬의 용해도 13.2g/L,(20°C)] 이상 농축하게 되면 탄산리튬으로 석출하기 때문에 리튬을 그 이상 농축할 수 없다.
또한, 탄산리튬의 용해도 이상으로 농축하면, 염수 중 리튬은
탄산리튬으로 석출하지만 할라이트 (NaCl)를 포함하는 많은 염들이 함께 침전하여 순수한 탄산리튬을 희수하는 것은 매우 어려운 실정이다.
따라서, 탄산이온이 다량 포함된 염수는 현행 자연 증발법에 의해서는 리튬올 추출하기 어렵기 때문에 효율적인 리튬 추출 공정의 개발이 필요하다. 【발명의 내용】
【해결하려는 과제】
본 발명의 일 구현예에서는 염수에 용존되어 있는 리튬을 용해도가 낮은 인산리튬을 이용하여 석출시킴으로써, 장시간에 걸친 염수의 증발 및 농축 과정이 필요 없고, 고회수율로 리튬을 경제적으로 추출할 수 있는 염수로부터 고순도의 인산리륨 추출 방법을 제공할 수 있다.
【과제의 해결 수단】
본 발명의 일 구현예에서는, 탄산 이온이 포함된 리튬 함유 용액을 준비하는 단계; 상기 리륨 함유 용액을 리튬의 농도가 2.481g/L 이하가 되도록 농축시켜 제 1 침전물을 수득하는 단계; 상기 농축된 리튬 함유 용액과 상기 제 1 침전물을 고액 분리하는 단계; 상기 농축된 리튬 함유 용액에 인 공급 물질을 투입하여 용존 리튬을 인산리튬으로 석출시키는 단계; 상기 인산리튬이 석출된 여액을 리튬의 농도가 2.481g/L 이하가 되도록 재농축시켜 제 2 침전물을 수득하는 단계; 상기 재농축된 여액과 상기 제 2 침전물을 고액 분리하는 단계; 및 상기 재농축된 여액에 핵입자를 투입하여 용존 리튬을 인산리륨을 석출시키는 단계;를 포함하는 리튬 함유 용액으로부터 리튬을 추출하는 방법을 제공한다.
또한, 상기 인산리튬이 석출된 여액을 리튬의 농도가 2.481g/L 이하가 되도록 재농축시켜 게 2 침전물을 수득하는 단계; 상기 재농축된 여액과 상기 제 2 침전물을 고액 분리하는 단계; 및 상기 재농축된 여액에 핵입자를 투입하여 용존 리튬을 인산리튬을 석출시키는 단계;는, 반복적으로 수행될 수 있다.
상기 제 1 침전물 및 제 2 침전물은 서로 독립적으로, NaCl,KCl 또는
NaK3(S04)2 를 포함할 수 있다.
상기 리튬 함유 용액을 리튬의 농도가 2.481g/L 이하가 되도록 농축시켜 제 1 침전물을 수득하는 단계;이전에, 표면에 음전하를 띄는 분리막을 이용하여 상기 리튬 함유 용액 내 2가 이상의 이온을 분리하는 단계;를 더 포함할 수 있다. 상기 2가 이상의 이온은 황산이온 (S04 2ᅳ)또는 탄산이온 (C03 2-)일 수 있다. 상기 표면에 음전하를 띄는 분리막의 기공 크기는 0.5 내지 lnm일 수 있다. 상기 표면에 음전하를 띄는 분리막의 두께는 0.5 내지 L5 일 수 있다. 상기 표면에 음전하를 띄는 분리막의 표면은 술폰기가 도입된 것일 수 있다.
상기 리튬 함유 용액을 리튬의 농도가 2.48 lg/L 이하가 되도록 농축시켜 제 1 침전물을 수득하는 단계; 및 상기 농축된 리튬 함유 용액과 상기 제 1 침전물을 고액 분리하는 단계;는, 상기 리튬 함유 용액 내 수분을 증발시켜 리튬의 농도가 2.481g/L 이하가 되도록 농축시키는 단계; 상기 수분 증발량에 따른 구간별로 게 1 침전물을 수득하는 단계; 및 제 1 침전물을 고액 분리하는 단계;를 포함할 수 있다.
상기 리튬 함유 용액은 황산이온 (so4 2을 포함할 수 있다.
상기 수분 증발량에 따른 구간별로 계 1 침전물올 수득하는 단계;에서, 상기 제 1 침전물은 염화 칼륨 (KC1)과 NaK3(S04)2를 포함할 수 있다. 상기 제 1 침 전물은 염화 칼륨과 NaK3(S04)2를 포함하고, 상기 제 1 침 전물 내 염화 칼륨의 함량이 NaK3(S04)2보다 클 수 있다.
상기 수분 증발량에 따른 구간별로 제 1 침 전물을 수득하는 단계;에서 , 상기 수분 증발량에 따른 구간은, 수분 증발량 48 내지 54% 구간일 수 있다.
상기 수분 증발량에 따른 구간별로 제 1 침 전물을 수득하는 단계;에서 , 상기 수분 증발량에 따른 구간은, 수분 증발량 64 내지 68% 구간일 수 있다.
상기 수분 증발량에 따른 구간별로 제 1 침 전물을 수득하는 단계;에서 , 상기 수분 증발량에 따른 구간은, 수분 증발량 70 내지 73% 구간일 수 있다.
상기 수득한 제 1 침 전물을 염화 나트륨 및 염화 칼륨 포화 용액에
투입하는 단계 ; 상기 수득한 제 1 침 전물이 투입 된 염화 나트륨 및 염화 칼륨 포화 용액에 계면 활성 제를 투입하여 염화 칼륨의 표면을 소수성으로 변화시 키는 단계; 및 기포를 이용하여 상기 표면이 소수성으로 변화된 염화 칼튬을 회수하는 단계;를 더 포함할 수 있다.
상기 수득한 제 1 침 전물이 투입된 염화 나트륨 및 염화 칼륨 포화 용액에 계면 활성 제를 투입 하여 염화 칼륨의 표면을 소수성으로 변화시 키는 단계;에서 , 상기 계면 활성 제의 투입 량은 상기 침 전물 100중량부에 대해 0.0001 내지 2 중량부일 수 있다.
상기 제 1 침 전물은 염화 칼륨과 NaK:3(S04)2를 포함하고, 상기 제 1 침 전물 내 염화 칼륨의 함량이 NaK3(S04)2보다 작을 수 있다.
상기 수분 증발량에 따른 구간별로 제 1 침 전물을 수득하는 단계;에서, 상기 수분 증발량에 따른 구간은, 수분 증발량 40% 이내 구간일 수 있다.
상기 수분 증발량에 따른 구간별로 제 1 침 전물을 수득하는 단계;에서 , 상기 수분 증발량에 따른 구간은, 수분 증발량 37% 이내 구간일 수 있다.
상기 수분 증발량에 따른 구간별로 제 1 침 전물을 수득하는 단계;에서, 상기 수분 증발량에 따른 구간은, 수분 증발량 0.1 내지 37% 구간일 수 있다.
상기 수득한 제 1 침전물을 염화 나트륨 및 NaK3(S04)2 포화 용액에 투입하는 단계; 상기 수득한 제 1 침 전물이 투입된 염화 나트륨 및 NaK3(S04)2 포화 용액에 계면 활성 제를 투입하여 NaK3(S04)2의 표면을 소수성으로
변화시키는 단계 ; 및 기포를 이용하여 상기 표면이 소수성으로 변화된
NaK3(S04)2을 회수하는 단계;를 더 포함할 수 있다. 상기 수득한 계 1 침전물이 투입된 염화 나트륨 및 NaK3(S04)2 포화 용액에 계면 활성제를 투입하여 NaK3(S04)2의 표면을 소수성으로 변화시키는 단계;에서, 상기 계면 활성제의 투입량은 상기 침전물 100중량부에 대해 0.0001 내지 2 중량부일 수 있다.
상기 회수한 NaK3(S04)2을 염화 칼륨과 반웅시켜 황산 칼륨을 수득하는 단계를 더 포함할 수 있다.
상기 계면 활성제는 실리콘계, 불소계, 폴리에테르계 또는 이들의 조합일 수 있다.
상기 계면 활성제는 알칼리 금속 유기 술포네이트일 수 있다.
상기 계면 활성제는 하이드로카본 술포네이트 (hydrocarbon sulfonate), 하이드로카본 술페이트 (hydrocarbon sulfate), 지방산 (fatty acid) 또는 이들의 조합의 착염일 수 있다.
상기 핵입자는 입경이 100 이하일 수 있다.
상기 핵입자는 입경이 40 이하일 수 있다.
상기 핵입자는 입경이 25imi이하일 수 있다.
상기 핵입자는 입경이 1 이하일 수 있다.
상기 핵입자는 비표면적이 1 내지 100m2/g일 수 있다.
상기 핵입자는 비표면적이 50 내지 100m2/g일 수 있다.
상기 핵입자는 리튬 화합물일 수 있다.
상기 핵입자는 난용성 리튬 화합물일 수 있다.
상기 핵입자는 난용성 유기 화합물, 난용성 무기 화합물 또는 이들의 조합일 수 있다.
상기 리튬 함유 용액에 투입된 핵입자의 함량은 전체 리튬 함유 용액에 대해 0.05g/L 이하일 수 있다.
상기 핵입자는 Li3P04, Li2C03, LiF 또는 이들의 조합일 수 있다.
상기 핵입자는 Ca3(P04)2, 하이드록시 아파타이트 (hydroxyapatite),
지르코니아, Ti02, Se02, Mg3(P04)2, MgO, MgAl204, A1203, 플라스틱 입자 또는 이들의 조합일 수 있다.
상기 인 공급 물질은 인, 인산 또는 인산염에서 선택된 1종 이상일 수 있다. 13009005
상기 인산리튬의 농도는 0.39g/L 이상일 수 있다.
상기 리튬 함유 용액은 염수일 수 있다.
상기 리튬 함유 용액의 리튬 농도는 O.lg/L이상일 수 있다.
상기 석출된 인산리튬을 상기 리튬 함유 용액으로부터 여과시켜 인산리튬을 추출하는 공정을 더 포함할 수 있다.
【발명의 효과】
본 발명의 일 구현예에 의하면, 염수에 용존되어 있는 리튬올 용해도가 낮은 인산리튬올 이용하여 석출시킴으로써, 장시간에 걸친 염수의 증발 및 농축 과정이 필요 없이 고회수율로 리륨을 경제적으로 추출힐; 수 있다.
보다 구체적으로 탄산이온이 포함된 염수를 리튬의 손실 없이 고농도로 농축하여 높은 효율로 리튬을 추출할 수 있다.
【도면의 간단한 설명】
도 1은 실시예 1에서, 염수를 농축시킬 때 수분 증발량에 따른 여액의 리튬이온 농도의 변화를 나타낸 것이다.
도 2는 실시예 2에서, 인산을 투입한 후 시간에 따른 염수 중 리튬의 농도변화를 나타낸 것이다.
도 3은 실시예 2에서, 반응 후 석출물의 광물상 분석 결과이다.
도 4는 실시예 3에서, 핵 투입 후 시간에 따른 염수 중 리륨 농도의 변화를 나타낸 것이다.
도 5는 본 발명의 일 구현예에 따른 개략적인 분리막의 작용예이다.
도 6은 황산이온이 다량 함유된 염수와 분리막을 통과하여 황산이은이 제거된 염수를 각각 농축했을 때, 수분 증발량에 따른 석출물의 광물상올 나타낸 것이다.
도 7은 침전물을 염화나트륨과 염화칼륨의 포화용액에 투입한 후 계면활성화제 투입 후 부유물의 광물상을 나타낸 것이다.
도 8은 각 수분 증발 구간별 광물상의 분석결과이다.
도 9는 실시예 9에 따른 염화나트륨과 염화칼륨 흔합물과 부유선별에 의해 부유한 물질의 광물상을 나타낸 것이다.
도 10은 실시예 10에 따른 황산이온이 다량 함유된 염수를 농축했을 때, 수분 증발량 37.8%에서 석출된 물질의 광물상을 나타낸 것이다. 도 11은 실시예 11에 따른 염화나트륨과 칼륨염 (NaK3(S04)2) 흔합물과 부유선별에 의해 부유한 물질의 광물상을 나타낸 것이다.
도 12는 실시예 12에 따른 황산 칼륨의 광물상을 나타낸 것이다.
【발명을 실시하기 위한 구체적인 내용】
이하, 본 발명의 구성에 관하여 도면을 참조하여 상세히 설명한다.
본 명세서에서 "치환 "이란 별도의 정의가 없는 한, 치환기 또는 화합물 중의 적어도 하나의 수소가 중수소, 할로겐기, 히드록시기, 아미노기, 치환 또는 비치환된 C1 내지 C20 아민기, 니트로기, 치환 또는 비치환된 C3 내지 C40 실릴기, C1 내지 C30 알킬기, C1 내지 C10 알킬실릴기, C3 내지 C30 시클로알킬기, C6 내지 C30 아릴기, C1 내지 C20 알콕시기, 플루오로기, 트리플루오로메틸기 등의 C1 내지 C10 트리플루오로알킬기 또는 시아노기로 치환된 것을 의미한다. 또한 상기 치환된 할로겐기, 히드록시기, 아미노기, 치환 또는 비치환된 C1 내지 C20 아민기, 니트로기, 치환 또는 비치환된 C3 내지 C40 실릴기, C1 내지 C30 알킬기, C1 내지 C10 알킬실릴기, C3 내지 C30 시클로알킬기, C6 내지 C30 아릴기, C1 내지 C20 알콕시기, 플루오로기, 트리플루오로메틸기 등의 C1 내지 C10 트리플루오로알킬기 또는 시아노기 중 인접한 두 개의 치환기가 융합되어 고리를 형성할 수도 있다.
본 명세서에서 "헤테로' '란 별도의 정의가 없는 한, 하나의 작용기 내에 N, 0, S 및 P로 이루어진 군에서 선택되는 헤테로 원자를 1 내지 3개 함유하고, 나머지는 탄^인 것을 의미한다.
본 명세서에서 "이들의 조합' '이란 별도의 정의가 없는 한, 둘 이상의 치환기가 연결기로 결합되어 있거나, 둘 이상의 치환기가 축합하여 결합되어 있는 것을 의미한다.
본 명세서에서 "알킬 (alkyl)기"이란 별도의 정의가 없는 한, 지방족
탄화수소기를 의미한다. 또한, 상기 알킬기는 분지형, 직쇄형 또는 환형일 수 있다. 상기 알킬기는 C1 내지 C20인 알킬기일 수 있다. 보다 구체적으로 알킬기는 C1 내지 C10 알킬기 또는 C1 내지 C6 알킬기일 수도 있다ᅳ
예를 들어, C1 내지 C4 알킬기는 알킬쇄에 1 내지 4 개의 탄소원자, 즉, 알킬쇄는 메틸, 에틸, 프로필, 이소-프로필 ,η-부틸, 이소-부틸, sec-부틸 및 t-부틸로 이루어진 군에서 선택됨을 나타낸다. 구체적인 예를 들어 상기 알킬기는 메틸기, 에틸기, 프로필기, 이소프로필기, 부틸기, 이소부틸기, t-부틸기, 펜틸기, 핵실기, 에테닐기, 프로페닐기, 부테닐기, 시클로프로필기, 시클로부틸기, 시클로펜틸기, 시클로핵실기 등을 의미한다.
본 발명의 일 구현예는, 탄산 이온이 포함된 리튬 함유 용액을 준비하는 단계; 상기 리튬 함유 용액을 리튬의 농도가 2.481g/L 이하가 되도록 농축시켜 제 1 침전물을 수득하는 단계; 상기 농축된 리튬 함유 용액과 상기 제 1 침전물을 고액 분리하는 단계; 상기 농축된 리튬 함유 용액에 인 공급 물질을 투입하여 용존 리튬을 인산리튬으로 석출시키는 단계; 상기 인산리튬이 석출된 여액을 리튬의 농도가 2.481g/L 이하가 되도록 재농축시켜 제 2 침전물을 수득하는 단계; 상기 재농축된 여액과 상기 제 2 침전물을 고액 분리하는 단계; 및 상기 재농축된 여액에 핵입자를 투입하여 용존 리튬을 인산리륨을 석출시키는 단계;를 포함하는 리튬 함유 용액으로부터 리튬을 추출하는 방법을 제공한다.
탄산리륨 (Li2C03)은 용해도가 약 13g/L여서 물 속에 비교적 많은 양이 용해되는 물질에 해당하는 바, 염수와 같은 리튬 함유 용액의 경우 리튬이 0.5 내지 1.5g/L의 농도 (탄산리튬으로 환산시 2.65 내지 7.95g/L)로 소량 용존되어 있기 때문에 탄산나트륨 등을 상기 리튬 함유 용액에 투입하여 탄산리튬을 생성시켜도 대부분 다시 재용해되어 리튬의 추출이 곤란하다.
반면에, 인산리튬 (Li3P04)은 용해도가 약 39g/L여서 탄산리튬에 비하여 용해도가 매우 낮으므로 리튬 함유 용액에 인 공급물질을 투입하여 염수와 같은 리륨 함유 용액에 소량 용존되어 있는 으 5 내지 1.5g/L 농도의 리튬 (인산리튬으로 환산시 2.75 내지 16.5g/L)을 고체 상태의 인산리튬으로 용이하게 석출시켜 분리할 수 있다.
또한, 인산리튬 형태로 리튬을 추출하는 경우 염수 내 리튬의 농도를 고농도로 농축하여 리튬 회수율을 개선할 수 있다.
다만, 각 염호별 염수의 성분은 일부 상이하기에 구체적인 예를 들어, 탄산 이온이 다량 포함된 염수의 경우 이를 농축하게 되면 리튬이 일정 농도가 되기 전에 탄산리튬 형태로 침전된다.
이러한 경우, 이후 높은 회수율의 인산리튬을 이용한 리튬의 추출 방법을 이용하더라도 이미 침전된 탄산리튬으로 인해 리튬의 회수율이 감소하게 된다. 따라서 본 발명와 일 구현예에서는, 구체적인 예를 들어 , 탄산이온이 다량 함유된 염수를 탄산리튬이 침전하지 않는 범위에서 농축하고, 상기 농축된 염수를 고액 분리한 후, 고액 분리된 염수에 인 공급 물질을 투입하여 리륨을
인산리튬으로 추출하는 방법을 이용할 수 있다.
0) 때, 리륨의 농도가 2.481g/L이상 농축하면 탄산리튬으로 석출하기 때문에 2.481g/L이하까지 농축하는 것이 좋다ᅳ 온도가 높아질수록 탄산리튬의 용해도가 감소하기 때문에 증발 온도가 높올 경우 더 낮은 리튬 농도까지만 농축하는 것이 바람직하다.
특히, 염수의 염도에 따라 탄산리튬의 용해도가 감소 또는 증가할 수 있기 때문에 상온에서는 리튬의 농도가 1.8g/L내외까지 농축하는 것이 바람직하다. 상기 인 공급 물질은 고액 분리된 염수 내 리튬과 동일한 당량으로 투입될 수 있다. 대부분의 용존 리튬은 인산리튬 형태로 석출되나 인산리튬의 염수 내 용해도 범위 내에 있는 리튬은 계속해서 여액 내에 남게 된다.
따라서 , 이에 더하여 인산리튬을 추출한 염수를 다시 탄산리튬이 침전하지 않는 범위에서 농축하고, 인 공급 물질을 투입하지 않고 핵입자를 투입하여 다시 한번 리튬을 인산리튬으로 추출할 수 있다.
이때, 인 공급 물질을 투입하지 않아도, 이미 이전 단계에서 투입된 인 공급 물질이 잔류하고 있기 때문에 반응을 위한 핵입자만을 투입하여도
인산리륨을 수득할 수 있다. 이러한 경우, 리튬을 회수한 여액 (염수) 내에
잔류하는 인 공급 물질올 다시 회수하는 과정을 생략할 수 있어 공정 설계시 이점이 있다.
물론, 인산리튬이 추출된 여액을 다시 농축한 후, 침전물을 고액 분리하고, 핵입자를 투입하여 인산리륨을 추출하는 과정은 반복적으로 수행될 수 있다. 상기 과정을 반복적으로 수행하게 되어 최종적으로 리튬의 회수율이 크게 증가할 수 있다.
즉 본 발명의 일 구현예에서는, 또한, 상기 인산리튬이 석출된 여액을 리튬의 농도가 2.481g/L 이하가 되도톡 재농축시켜 제 2 침전물을 수득하는 단계; 상기 재농축된 여액과 상기 제 2 침전물을 고액 분리하는 단계; 및 상기 재농축된 여액에 핵입자를 투입하여 용존 리튬을 인산리튬을 석출시키는 단계;가
반복적으로 수행될 수 있다. 상기 제 1 침전물 및 제 2 침전물은 서로 독립적으로, NaCl,KCl 또는 NaK3(S04)2 를 포함할 수 있다. 이러한 침전물은 고액 분리 후 효과적으로 자원으로 재이용될 수 있다.
보다 구체적으로, 본 발명의 일 구현예는, 상기 리튬 함유 용액을 리튬의 농도가 2.481g/L 이하가 되도록 농축시켜 제 1 침전물을 수득하는 단계;이전에, 표면에 음전하를 띄는 분리막을 이용하여 상기 리튬 함유 용액 내 2가 이상의 이온을 분리하는 단계;를 더 포함할 수 있다.
상기 단계에 의해 리튬 함유 용액 내 황산이온 또는 탄산이온의 농도를 일부 감소시킨 후에, 상기 리튬 함유 용액을 리튬의 농도가 2.481g/L 이하가 되도록 농축시켜 제 1 침전물을 수득하는 단계;를 수행할 수 있다.
이러한 경우 상기 농축되는 리튬 함유 용액 내 황산이온의 농도가보다 감소하여, 계 1 침전물에는 NaK3(S04)2 의 함유량보다 KC1의 함유량이 증가할 수 있다ᅳ
또한, 상기 농축되는 리튬 함유 용액 내 탄산이온의 농도도 일부 감소할 수 있다.
도 5은 본 발명의 일 구현예에 따른 개략적인 분리막의 작용예이다. 도 5과 같이, 상기 분리막은 표면에 음전하를 띄고 있어, 이온을 선택적으로 분리할 수 있다. 구체적인 예를 들어, S04 2-,C03 2- 등과 같은 2가 음이온은 cr등과 같은 1가 음이온에 비해 음전하를 띄고 있는 분리막과 반발력이 커서 분리막을 통과하기가 어렵게 된다. 이는 클통의 법칙에 따라 전하의 크기와 정전기력이 비례하기 때문이다. 따라서, 상기 2가 음이온과 1가 음이온은 상기 음전하를 띄고 있는 분리막에 의해 분리될 수 있다.
또한, Ca2+,Mg2+ 등과 같은 2가 양이온은 상기 2가 음이온은 정전기적으로 쌍올 이루게 되어 상기 2가 음이온과 함께 분리막을 통과하기가 어렵게 된다. 이는 2가 양이온의 크기가 1가 양이온의 크기보다 크기 때문이기도 하다.
전술한 바와 같이 C1- 등과 같은 1가 음이온은 상대적으로 상기 분리막을 통과하기가 용이하기 때문에 정전기적으로 쌍을 이루는 Li+,Na+,K+ 등과 같은 1가 양이온과 함께 분리막을 통과할 수 있다.
다만, 상기 분리막에 의한 분리는 물리적인 분리이기 때문에 모든 1가 이온과 2가 이은을 분리할 수 있는 것은 아니나, 높은 효율로 1가 이온과 2가 이은을 분리할 수 있다.
상기 표면에 음전하를 띄는 분리막의 기공 크기는 0.5 내지 lnm일 수 있다. 상기 범위를 만족하는 경우, 1가 이온과 2가 이온의 분리에 효과적이다.
상기 표면에 음전하를 띄는 분리막의 두께는 0.5 내지 1.5 일 수 있다. 상기 범위를 만족하는 경우, 염수 중에 존재하는 Ca2+,Mg2+ 등과 같은 2가 양이온과 S04 2-,C03 2-등과 같은 2가 음이온을 효과적으로 분리하여 리튬 함유 용액 (예를 들어, 염수)에서 리튬을 추출하는 공정의 효율을 높일 수 있다.
상기 표면에 음전하를 띄는 분리막의 표면은 술폰기가 도입된 것일 수 있다. 보다 구체적으로 상기 표면에 음전하는 띄는 분리막은 플리아미드 기재에 음전하를 유발할 수 있는 술폰기를 도포하여 제조된 것일 수 있다. 다만, 표면에 음전하를 가질 수 있는 치환기라면 술폰기에 제한되지 않으며, 상기 기재는 폴리아미드 기재에 제한되지 않는다.
보다 구체적으로, 상기 리튬 함유 용액을 리튬의 농도가 2.481g/L 이하가 되도록 농축시켜 제 1 침전물을 수득하는 단계; 및 상기 농축된 리튬 함유 용액과 상기 계 1 침전물을 고액 분리하는 단계;는, 상기 리튬 함유 용액 내 수분을 증발시켜 리튬의 농도가 1481g/L 이하가 되도록 농축시키는 단계; 상기 수분 증발량에 따른 구간별로 제 1 침전물을 수득하는 단계; 및 제 1 침전물을 고액 분리하는 단계;를 포함할 수 있다.
보다 구체적으로, 본 발명의 일 구현예는 리튬 함유 용액 (예를 들어, 염수)를 증발시켜 농축시킬 때 농축 단계를 조절하여 침전물의 종류를 제어할 수 있다.
즉, 리튬 함유 용액 내 수분 증발량에 따른 구간별로 침전되는 이종 이상의 침전물의 각각의 함량이 제어될 수 있다.
보다 구체적으로 상기 리튬 함유 용액은 황산이온 (so4 2-)을 포함하고 있는 리튬 함유 용액일 수 있다ᅳ 구체적인 예를 들어, 리튬 함유 용액 내 포함된 황산이온의 함량이 높을 경우, 리튬 함유 용액을 증발시켜 침전물을 수득할 때 다량의 염화 칼륨과 NaK3(S04)2이 수득될 수 있다.
이 때 리튬 함유 용액 내 수분의 증발량에 따른 구간별로 수득되는 침전물 내에 염화 칼륨과 NaK3(S04)2의 함량 (또는 함량 비율)이 달라질 수 있다.
본 발명의 일 구현예는 상기 리튬 함유 용액 내 수분의 증발량에 따른 구간별로 수득되는 침 전물에 대해 염화 칼륨의 함량이 많은 구간의 침 전물을 수득하여 선택적으로 리튬 함유 용액 내 염화 칼륨을 회수할 수 있다.
또는 그 반대로 본 발명의 일 구현예는 상기 리륨 함유 용액 내 수분의 증발량에 따른 구간별로 수득되는 침 전물에 대해 NaK3(S04)2의 함량이 많은 구간의 침 전물을 수득하여 선택적으로 리튬 함유 용액 내 황산 칼륨을 회수할 수 있다.
이 러 한 본 발명 의 일 구현예는 수분의 증발만을 이용하기 때문에 별도의 부산물로 인한 환경 오염을 방지할 수 있을 뿐만 아니 라, 특별한 공정 시설이 필요하지 않아 염수 현장에 적용이 용이하다.
보다 구체적으로, 상기 수분 증발량에 따른 구간별로 침 전물을 수득하는 단계 ;에서, 상기 수분 증발량에 따른 구간은, 수분 증발량 48 내지 54% 구간일 수 있다. 보다 구체적으로, 상기 구간은 48.6 내지 54.0% 구간일 수 있다.
또 다른 예로, 상기 수분 증발량에 따른 구간별로 침 전물을 수득하는 단계;에서 , 상기 수분 증발량에 따른 구간은, 수분 증발량 64 내지 68% 구간일 수 있다. 보다 구체적으로, 상기 구간은 64.8 내지 67.5% 구간일 수 있다.
또 다른 예로, 상기 수분 증발량에 따른 구간은, 수분 증발량 70 내지 73% 구간일 수 있다. 보다 구체적으로, 상기 구간은 70.2 내지 72.9%일 수 있다. 상기 범위는 염화 칼륨의 함량 비율이 높은 구간의 예로 이에 제한되는 것은 아니다.
본 발명 의 일 구현예는, 상기 수득한 침 전물을 염 화 나트륨 및 염화 칼륨 포화 용액에 투입 하는 단계; 상기 수득한 침 전물이 투입된 염화 나트륨 및 염화 칼륨 포화 용액에 계면 활성 제를 투입 하여 염화 칼륨의 표면을 소수성으로 변화시 키는 단계; 및 기포를 이용하여 상기 표면이 소수성으로 변화된 염화 칼륨을 회수하는 단계 ;를 더 포함할 수 있다.
상기 포화 용액은 염화 나트륨 및 염 화 칼륨의 포화 용액이 기 때문에 상기 수득한 침전물인 염화 나트륨 및 염 화 칼륨은 더 이상 용해되지 않는다.
상기 수득한 침 전물이 투입 된 염화 나트륨 및 염화 칼륨 포화 용액에 계면 활성 제를 투입하여 염화 칼륨의 표면을 소수성으로 변화시 킬 수 있다. 이 때, 계면 활성 제의 작용으로 인해 염화 칼륨의 표면만이 선택적으로 소수성으로 변하게 된다. 이는 계면활성화제 (보다 구체적으로, 음이온 계면활성화제)는 물속에서 한쪽은 소수성을 한쪽은 이온화되어 (-)를 가지는데 (+)의 표면전하를 갖는 염화 칼륨에 선택적으로 흡착하여 염화 칼륨을 소수성으로 변화시키기 때문이다. 또한, 염화 칼륨은 접촉각이 8°로, 접촉각이 0。인 염화 나트륨에 비해 계면활성화제가 결합하기 더욱 용이하다.
상기 수득한 침전물이 투입된 염화 나트륨 및 염화 칼륨 포화 용액에 계면 활성제를 투입하여 염화 칼륨의 표면을 소수성으로 변화시키는 단계;에서, 상기 계면 활성제의 투입량은 상기 침전물 100중량부에 대해 0.0001 내지 2 중량부일 수 있다. 이러한 범위를 만족하는 경우, 계면 활성제를 낭비하지 않고 효과적으로 염화 칼륨을 추출할 수 있다.
이후, 기포를 이용하여 상기 표면이 소수성으로 변화된 염화 칼륨을 회수할 수 있다. 보다 구체적으로, 기포가 발생하게 되면 소수성 표면을 가진 염화 칼륨 입자가 기포에 부착하여 물위에 부상하게 된다. 따라서, 상기 부상한 염화 칼륨 입자만을 선택적으로 회수할 수 있다.
또한 본 발명의 일 구현예는, 보다 구체적으로 상기 수분 증발량에 따른 구간별로 침전물을 수득하는 단계;에서, 상기 수분 증발량에 따른 구간은, 수분 증발량 40% 이내 일 수 있다. 보다 구체적으로, 상기 구간은 37% 이내 일 수 있다.
또 다른 예로, 상기 수분 증발량에 따른 구간별로 침전물을 수득하는 단계;에서, 상기 수분 증발량에 따른 구간은, 수분 증발량 으 1 내지 37% 구간일 수 있다.
상기 범위는 NaK3(S04)2의 함량 비율이 높은 구간의 예로 이에 제한되는 것은 아니다.
본 발명의 일 구현예는, 상기 수득한 침전물을 염화 나트륨 및 NaK3(S04)2 포화 용액에 투입하는 단계; 상기 수득한 침전물이 투입된 염화 나트륨 및
NaK3(S04)2 포화 용액에 계면 활성제를 투입하여 NaK3(S04)2의 표면을 소수성으로 변화시키는 단계; 및 기포를 이용하여 상기 표면이 소수성으로 변화된
NaK3(S04)2을 회수하는 단계;를 더 포함할 수 있다.
상기 포화 용액은 염화 나트륨 및 NaK3(S04)2의 포화 용액이기 때문에 상기 수득한 침전물인 염화 나트륨 및 NaK3(S04)2은 더 이상 용해되지 않는다. 상기 수득한 침전물이 투입된 염화 나트륨 및 NaK3(S04)2 포화 용액에 계면 활성제를 투입하여 NaK3(S04)2의 표면을 소수성으로 변화시킬 수 있다. 이 때, 계면 활성제의 작용으로 인해 NaK3(S04)2의 표면만이 선택적으로 소수성으로 변하게 된다.
이는 계면활성화제 (보다 구체적으로, 음이온 계면활성화제)는 물속에서 한쪽은 소수성을 한쪽은 이온화되어 (-)를 가지는데 (+)의 표면전하를 갖는
NaK3(S04)2에 선택적으로 흡착하여 NaK3(S04)2을 소수성으로 변화시키기 때문이다. 상기 수득한 침전물이 투입된 염화 나트륨 및 NaK3(S04)2 포화 용액에 계면 활성제를 투입하여 NaK3(S04)2의 표면을 소수성으로 변화시키는 단계;에서, 상기 계면 활성제의 투입량은 상기 침전물 100중량부에 대해 0.0001 내지 2 중량부일 수 있다. 이러한 범위를 만족하는 경우, 계면 활성제를 낭비하지 않고 효과적으로 NaK3(S04)2을 추출할 수 있다.
이후, 기포를 이용하여 상기 표면이 소수성으로 변화된 NaK3(S04)2을 회수할 수 있다. 보다 구체적으로, 기포가 발생하게 되면 소수성 표면을 가진 NaK3(S04)2 입자가 기포에 부착하여 물위에 부상하게 된다. 따라서, 상기 부상한 NaK3(S04)2 입자만을 선택적으로 회수할 수 있다.
또한, 본 발명의 일 구현예는 상기 회수한 NaK3(S04)2을 염화 칼륨과 반응시켜 황산 칼륨을 수득하는 단계를 더 포함할 수 있다. 보다 구체적으로 황산 칼륨은 하기 반웅식 1와 같은 경로를 거쳐 수득될 수 있다.
[반웅식 1]
NaK3(S04)2 + KC1 2K2S04 + NaCl 보다 구체적으로, 상기 계면 활성제는 실리콘계, 불소계, 폴리에테르계 또는 이들의 조합일 수 있다.
또한, 상기 계면 활성제가 알칼리 금속 유기 술포네이트일 수 있다. 더욱 구체적으로, 상기 계면 활성제의 알칼리 금속은 나트륨, 칼륨, 리튬 또는
마그네슘으로부터 선택될 수 있고, 유기 부분이 탄소수 2 내지 16의 지방족기인, 알칼리 금속 유기 술포네이트일 수 있다. 더욱 구체적으로, 계면 활성제가 나트륨 옥탄 술포네이트, 칼륨 옥탄 술포네이트, 리튬 옥탄 술포네이트, 나트륨 도데칸 술포네이트, 칼륨 도데칸 술포네이트, 또는 리튬 도데칸 술포네이트로부터 선택될 수 있다.
또한, 상기 계면 활성제는 하이드로카본 술포네이트 (hydrocarbon sulfonate), 하이드로카본 술페이트 (hydrocarbon sulfate), 지방산 (fatty acid) 또는 이들의 조합의 착염일 수 있다.
상기 계면 활성제의 예로는, BMChemie사의 BM-1000®, BMᅳ 1100® 등; 다이 닛폰 잉키 가가꾸 고교 (주)사의 메카 팩 F142D®, 동 F172®, 동 F 173®, 동 F 183® 등; 스미토모 스리엠 (주)사의 프로라드 FC-135®, 동 FC-170C®, 동 FC- 430®, 동 FC-431® 등; 아사히 그라스 (주)사의 사프론 S-112®, 동 S-113®, 동 S- 131®, 동 S-141®, 동 S-145® 등; 도레이 실리콘 (주)사의 SH-28PA®, 동 -190®, 동- 193®, SZ-6032®, SF-8428® 등의 시판품 등이 있다.
상기 리튬 함유 용액의 리튬 농도는 0.1g/L 미상일 수 있다. 보다 구체적으로 0.2g/L이상일 수 있다. 리튬의 농도에 대한 설명은 전술한 바와 같기 때문에 생략하도록 한다.
이 때, 상기 인 공급 물질로 인, 인산 또는 인산염에서 선택된 1종 이상이 리튬 함유 용액에 투입되어 리튬과 반웅하여 인산리튬을 생성하게 된다ᅳ 또한, 상기 인산리튬이 리튬 함유 용액에 재용해되지 않고 고체 상태로 석출되기 위해서는 그 농도가 0.39g/L 이상이어야 함은 당연하다.
상기 인산염의 구체적인 예로는, 인산칼륨, 인산나트륨,
인산암모늄 (구체적인 예를 들어, 상기 암모늄은 (Ν¾)3Ρ04일 수 있으며, 상기 R은 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C10 알킬기일 수 있음) 등이다ᅳ
보다 구체적으로 상기 인산염은 1인산칼륨, 2인산칼륨, 3인산칼륨,
1인산소다, 2인산소다, 3인산소다, 인산알루미늄, 인산아연, 폴리인산암모늄, 소디움핵사메타포스페이트 , 1인산칼슘, 2인산칼슘, 3인산칼슘 등일 수 있다.
상기 인 공급 물질은 수용성일 수 있다. 상기 인 공급 물질이 수용성인 경우 상기 리튬 함유 용액에 포함된 리튬과 반웅이 용이할 수 있다. .
그리고, 상기 석출된 인산리튬은 여과에 의해 상기 리튬 함유
용액으로부터 분리되어 추출될 수 있다.
상기 핵입자는 균질 핵입자일 수도 있다. 또는 상기 핵입자는 불균질 핵입자일 수도 있다. 상기 핵입자의 형태는 제한되지 않는다.
상기 핵입자는 입경이 100 이하일 수 있다. 보다 구체적으로 상기 핵입자는 입경이 40//m 이하, 25/iin 이하, 6 이하 또는 ffli 이하 일 수 있다. 상기 입경은 평균 입경일 수 있다. 또한, 상기 입경이 작을수록 인산리튬 추출 효율이 좋을 수 있으나, 상기 범위에 제한되는 것은 아니다.
또한, 상기 핵입자는 상기 리튬 함유 용액에 대해 난용성일 수 있다.
상기 핵입자의 존재로 인해 상기 리튬 함유 용액으로부터 인산리튬을 석출시키는 효율이 보다 좋아질 수 있다. 이는 상기 핵입자가 리튬 함유 용액 내에서 인산리튬이 석출될 때의 활성화 에너지를 낮추어 줄 수 있기 때문이다. 상기 핵입자는 리튬 화합물일 수 있다. 다만, 상기 핵입자는 종류에 제한되지 않는다. 예를 들어, 금속 입자, 무기 화합물 입자, 유기 화합물 입자 등이 모두 가능하다.
보다 구체적으로, 상기 핵입자는 난용성 리튬 화합물일 수 있다.
보다 구체적으로, 상기 핵입자는 난용성 무기 화합물, 난용성 유기 화합물 또는 이들의 초합일 수 있다.
보다 구체적인 예를 들어, 상기 핵입자는 Li3P04, Li2C03, UF 또는 이들의 조합일 수 있다. 또 다른 예를 들어, 상기 핵입자는 MgO, MgAl204, A1203, 플라스틱 입자 또는 이들의 조합일 수 있다. 또 다른 예를 들어, 상기 핵입자는 Ca3(P04)2, 하이드록시 아파타이트 (hydroxyapatite), 지르코니아, Ti02, Se02, Mg3(P04)2 등이 될 수 있다. 상기 플라스틱 입자의 구체적인 예로는, 테프론 입자, PVD 입자 : 우레탄 입자, 등이 있다. 다만 상기 제시한 예에 제한되는 것은 아니다.
다만, 인산리튬을 석출 시킬 때 상기 핵입자가 불순물로 존재할 수 있기 때문에 목적물인 인산리튬 자체를 핵입자로 사용하는 것이 좋다.
상기 리튬 함유 용액에 투입된 핵입자의 함량은 전체 리튬 함유 용액에 대해 상기 핵입자의 투입량은 20g/L 이하, 10g/L 이하, 5g/L 이하, 2g/L 이하, lg/L 이하, 0.5g/L 이하, 0.1 g/L 이하, 또는 0.05g/L 이하일 수 있다.
상기 핵입자는 비표면적이 1 내지 100m2/g일 수 있다. 이러한 범위를 만족하는 경우 효과적으로 리튬을 추출할 수 있다. 보다 구체적으로, 상기 핵입자는 비표면적이 50 내지 100m2/g일 수 있다.
또한, 상기 리튬 함유 용액에 인 공급 물질을 투입하여 용존 리튬을 인산리튬으로 석.출시켜 리튬 함유 용액으로부터 리튬을 경제적으로 추출하는 단계는 상온에서 수행될 수 있다. 보다 구체적으로는 20°C이상, 30°C이상, 50°C이상 또는 90 °C이상에서 수행될 수 있다.
본 명세서에서 상온은 일정한 온도를 의미하는 것이 아 며, 외부적인 에너지의 부가 없는 상태의 온도를 의미한다. 따라서, 장소, 시간에 따라 상온은 변화될 수 있다.
또한, 상기 리튬 함유 용액은 염수 일 수 있다.
이하, 본 발명의 실시예에 대하여 도면을 참조하여 상세히 설명한다. 다만, 하기 실시예는 본 발명을 예시하기 위해 기재한 것일 뿐 본 발명은 이에
한정되지 않는다. 실시예 1: 탄산이은이 함유된 염수의 농축 및 침전물 고액 분리
하기 표 1과 같은 Li, Na, K, S04, CI, C03 등이 함유된 용액을 준비하였다. [표 1]
Figure imgf000019_0001
상기와 같이 제조된 Li, Na, K, S04, CI, C03 등이 함유된 용액을
증발농축기를 사용하여 40oC에서 감압증발하였다.
도 1은 염수를 농축시킬 때, 수분 증발량에 따른 여액의 리륨이은 농도의 변화를 나타낸 것이다.
염수를 농축하면 수분이 증발함에 따라 염수 중 리튬 농도는 초기
1.04g/L에서 높아져 수분증발량 37.8%에서 1.80g/L까지 증가하였다.
그러나, 수분증발량 37.8%이상에서는 염수를 농축하여도 리튬의 농도는 증가하지 않았으며, 이는 염수 중 리튬이 탄산리륨으로 석출하기 때문이다ᅳ 수분증발량 54%이상에서 석출된 물질의 주된 광물상은 NaCl, KC1, NaK3(S04)2으로 탄산리튬은 매우 소량 석출되는 것으로 판단된다.
이것은 탄산이온이 다량 포함된 염수로부터 탄산리튬을 회수하는 경우, 현행 자연 증발하여 리튬을 농축하는 방법으로는 효과적으로 리튬을 추출할 수 없음을 나타내는 것이다.
따라서, 리륨이 l.80g/L까지 농축시킨 후 고액 분리하여 그 여액을 리튬 추출을 위한 시료로서 사용하였다. 실시예 2: 농축된 염수로부터 인산리튬 추출
하기 표 2는 상기 탄산이온이 다량 함유된 염수 중 수분을 37.8% 증발시킨 후 여액의 용존 이온 농도를 나타낸 것이다.
[표 2]
Figure imgf000020_0001
상기 농축된 여액의 리륨 농도는 1.8g/L로 리튬 농도의 당량에 해당하는 인산을 투입하여 상온에서 시간에 따른 리륨 농도를 측정하였다.
도 2는 인산을 투입한 후 시간에 따른 염수 중 리튬의 농도변화를 나타낸 것이다.
도 2에 따르면 리튬의 농도는 초기 1.8g/L에서 시간에 따라 점차 감소하여 반응시간 3시간에서 0.4g/L로 리튬 회수율은 77.7%였다.
도 3은 반웅 후 석출물의 광물상 분석 결과로 Li3P04였으며 ,98%이상의 순도를 나타내었다. 실시예 3: 여액의 재농축 및 핵입자를 이용한 인산리톱 추출
상기 리튬이 추출된 염수를 다시 리튬이 석출하지 않는 범위까지 농축하였다. 석출된 물질의 주된 광물상은 NaCI,KCl,NaK3(S04)2이었다.
하기 표 3은 수분 증발량 60%에서의 여액의 조성을 나타낸 것이다.
[표 3]
Figure imgf000020_0002
Figure imgf000021_0001
상기 용액에 리튬을 추출하기 위해 수용성 인산의 투입 없이 인산리튬을 핵입자 (seed)로서 용존 리륨의 1당량 투입한 후 시간쎄 따른 리튬 농도를 측정하였다.
도 4는 핵 투입 후 시간에 따른 염수 중 리튬 농도의 변화를 나타낸 것으로 초기 리튬농도 0.877g/L에서 반응 2시간 후에 0.2g/L까지 감소한 후 유지되었다. 즉, 약 77%의 회수율을 나타내었다.
이는 2차 리튬 추출시에는 인 공급 물질올 재투입하지 않고 핵만을 투입하더라도 효과적으로 리튬을 추출할 수 있음을 보여준다. 실시예 4: 여액의 재농축 및 핵입자를 이용한 인산리튬 추출의 반복 상기 리튬을 2차 추출한 용액을 다시 리튬이 석출하지 않는 범위까지 농축하였다. 이 때, 리튬 농도 0.8g/L이었으며, 2차 리튬 추출과 동일한 방법으로 인산리튬을 핵입자로 용존 리튬의 당량만큼 투입하였다.
2시간 반웅 후 리튬의 농도는 0.274g/L였으며, 이 때의 리튬 회수율은
68%였다.
상기와 같이 농축 및 인산리튬으로써 리튬을 석출하는 단계를 3회 반복함으로써 총 리튬회수율은 98.27%를 나타내었다.
이러한 결과는 용존 리튬의 당량에 해당하는 인 공급 물질을 투입한 후 농축 및 인산리튬으로 리튬을 회수하는 단계를 반복함으로써 인 공급 물질의 잔류량을 최소화하고 염수로부터 리륨의 회수율올 극대화시킬 수 있음을 보여준다. 실시예 5·. 황산 이온의 분리
하기 표 4와 같은 Na,K,S04,Cl등이 함유된 용액을 준비하였다.
[표 4]
Figure imgf000021_0002
Figure imgf000022_0001
상기와 같이 제조된 Na,K,S04,Cl 등이 함유된 용액을 분리막을 통해 가압하였다. 사용한 분리막은 코크사의 에스알 100이다.
상기 가압하여 분리막을 통과한 처리수의 용액 중의 이온 농도를
측정하였으며 그 결과는 하기 표 2와 같다.
표 5에서 알 수 있듯이, 황산 이온의 농도가 처리수의 경우 11.14g/L로 원수의 황산농도 31.20g/L에 비해 거의 1/3로 감소하였음을 알 수 있다.
[표 5]
Figure imgf000022_0002
실시예 6: 염화나트륨 및 염화칼륨을포함하는 침전물의 수득
도 6은 황산이온이 다량 함유된 염수와 분리막을 통과하여 황산이은이 제거된 염수를 각각 농축했올,때, 수분 증발량에 따른 석출물의 광물상을 나타낸 것이다.
도 6에 나타난 바와 같이 원수를 농축시켰을 때, 염수에 포함된 물을 37.8% 증발시켰을 때, 석출되는 물질은 NaCl,KCl 및 NaK3(S04)2이다.
즉, S04가 높은 원수는 물이 증발함에 따라 칼륨을 포함하는 물질이 KC1과 NaK3(S04)2가 흔재하여 석출한다. 이 두 물질은 계면활성제가 작용하여 모두 소수성으로 되어 분리됨으로써 KC1을 순수하게 분리하기 어렵다.
반면에 분리막으로 처리하여 S04가 낮아진 처리수를 37.8% 증발시켰을 때, 석출된 물질의 광물상으로 NaCi과 KC1만이 석출되었음을 알 수 있다.
하기 표 6은 황산이온이 다량 함유된 염수를 농축했을 때와 분리막 처리된 염수를 농축했을 때 석출물의 광물상 조성을 나타낸 것이다. 분리막 처리 전 염수 농축 석출물에는 NaCI과 함께 KC111.31중량0 /0,NaK3(SO4)237.86중량 %였으나, 분리막 처리 후 염수 농축 석출물은 KC16.61중량0 /0,NaK3(SO4)20.67중량 %로 칼륨이 대부분 염화칼륨으로 석출되었음을 알 수 있다. [표 6]
Figure imgf000023_0001
실시예 7: 침전물로부터 염화 칼륨의 회수
상기 도 6에 나타난 바와 같이 처리수의 농축에 따라 석출된 침전상의 광물상 분석 결과에서 알 수 있듯이 분리막 처리수는 농축시 대부분 염화 나트륨과 염화 칼륨으로 침전물이 생성됨을 볼 수 있다.
상기 농축에 의해 침전된 염화 나트륨과 염화 칼륨 흔합물을 염화 나트륨과 염화 칼륨 포화 용액에 투입하여 5%의 술러리를 제조하였다.
상기 슬러리 2L를 부유 선별기 (flotator)에 넣고 계면활성제 수용액 2mL 넣어 2분간 컨디셔닝한 후 부유선별 하였다. 부유선별 시간은 3분으로 하였다. 사용한 계면 활성제와 침전된 슬러리의 중량 비율은 0.2 : 100이었다. 사용한 계면 활성제는 SDS(sodiumdodecylsulfate)였다.
도 7은 염화나트륨과 염화칼륨 흔합물과 부유선별에 의해 부유한 물질의 광물상을 나타낸 것이다. 상기 과정을 통해 염화 칼륨의 회수율은 85.7%였고, 부유된 물질은 염화 칼륨으로 순도는 97%였다. 실시예 8: 수분 증발량에 따른 침전물의 조절
하기 표 7과 같은 Na,K,S04,Cl등이 함유된 용액을 준비하였다.
[표 7]
Figure imgf000023_0002
상기와 같이 제조된 Na,K,S04,Cl 등이 함유된 용액을 증발 농축하여 수분 증발량에 따라 석출된 침전물의 광물상과 그 구성비를 측정하였으며, 그 결과는 하기 표 8와 같다.
[표 8]
Figure imgf000024_0001
상기 표 8에 나타난 바와 같이 염수가 증발함에 따라 NaCl,KCl 및 NaK3(S04)2가 모두 석출하였다. 그러나, 증발량에 따라 칼륨을 포함하는 염인 KC1, NaK3(S04)2의 구성비가 변화되는 것을 알 수 있다.
수분 증발량 46.8%까지는 전체 석출물에서 KC1은 11.31 내지 13.63중량0 /<»,
NaK3(S04)2은 37.86 내지 37.75중량 %로 NaK3(S04)2의 석출량이 KC1에 비해
3배이상 높았다.
그러나, 수분 증발량 48.6 내지 54.0%까지는 KC1은 18.기증량0 /。,
NaK3(S04)2은 4.19중량0 /。로 KC1이 NaK3(S04)2에 비해 6배 이상 석출됨을 알 수 있다.
이와 같이 증발 구간별 석출물의 구성비에서 증발량 64.8 내지
67.5%에서는 KC1의 석출량이 NaK3(S04)2에 비해 31배 이상, 증발량 70.2 내지 72.9%에서는 KC1의 석출량이 NaK3(S04)2에 비해 약 2배이상으로 석출되는 칼륨을 포함하는 염으로 KC1이 대부분을 차지하는 증발구간이 존재하고 있음을 알 수 있다.
도 8은 각 수분 증발 구간별 광물상의 분석결과이다. 도 8로부터 상기 표 2에 나타난 석출물의 광물상 조성결과에 부합하는 것을 알 수 있다. 실시예 9: 침전물로부터 염화 칼륨의 회수
상기 KC1이 칼륨을 포함하는 염의 대부분을 나타내는 증발량 48.6% 내지 54.0% 및 64.8 내지 67.5%의 석출물을 흔합하여 NaCl과 KC1을 용해, 포화시켜 제조한 용액에 투입하여 5%의 슬러리를 제조하였다.
상기 슬러리 2L를 부유 선별기 (flotator)에 넣고 계면활성제 수용액 2mL 넣어 2분간 컨디셔닝한 후 부유선별 하였다. 부유선별 시간은 3분으로 하였다. 사용한 계면 활성제와 침전된 슬러리의 중량 비율은 0.2 : 100이었다. 사용한 계면 활성제는 SDS(sodiumdodecylsulfate)이었다.
도 9는 염화나트륨과 염화칼륨 흔합물과 부유선별에 의해 부유한 물질의 광물상을 나타낸 것이다. 상기 과정을 통해 염화 칼륨의 회수율은 82%였고, 부유된 물질은 염화 칼륨으로 순도는 96%였다. 실시예 10: 칼륨염 n aK3(S04)2)과 염화나트륨의 직접 석출
하기 표 9와 같은 Na, K, S04, C1등이 함유된 용액을 준비하였다.
[표 9]
Figure imgf000025_0001
상기와 같이 제조된 Na,K,S04,Cl 등이 함유된 용액을 농축하였다.
도 10은 황산이온이 다량 함유된 염수를 농축했을 때, 수분 증발량 3그 8%에서 석출된 물질의 광물상을 나타낸 것으로, 주요 광물상은 NaCl, NaK3(S04)2이며, KCl이 소량 포함되어 있다.
즉, S04가 높은 염수를 증발시키면 염화칼륨은 거의 석출하지 않고 칼륨을 포함하는 석출물은 주로 황산이은을 포함하는 NaK3(S04)2임을 알 수 있다. 석출물의 광물 조성은 중량 %로 NaCl 66.03%, KC14.5%, NaK3(S04)229.47%였다. 실시예 11: 칼륨염 (NaK^SO^)의 회수
상기 농축에 의해 침전된 염화나트륨과 칼륨염 (NaK3(S04)2)의 흔합물을 염화나트륨과 칼륨염 (NaK3(S04)2)을 용해, 포화시켜 제조한 용액에 투입하여 5%의 슬러리를 제조하였다.
상기 슬러리 2L를 부유 선별기 (flotator)에 넣고 계면활성제 수용액 0.3mL 넣어 2분간 컨디셔닝한 후 부유선별 하였다. 부유선별 시간은 3분으로 하였다. 사용한 계면 활성제와 침전된 슬러리의 중량 비율은 0.03: 100)이었다. 사용한 계면 활성제는 SDS(sodiumdodecylsulfate)이었다.
도 11은 염화나트륨과 칼륨염 (NaK3(S04)2) 흔합물과 부유선별에 의해 부유한 물질의 광물상을 나타낸 것이다. 상기 과정을 통해 칼륨염 (NaK3(S04)2)이 회수된 것을 확인할 수 있다. 실시예 12: 칼륨염 (Na (S04)2)으로부터 황산 칼륨의 제조
상기 부유선별에 의해 부유된 황산이온이 포함된 칼륨염 (NaK3(S04)2)을 염화칼륨 포화 용액 100중량부에 대해 20중량부 첨가하여 슬러리를 제조한 후 상은에서 교반시키면서 2시간 반웅시켰다.
도 12는 반웅 후 석출물의 광물상을 나타낸 것으로 칼륨염이 포함된 NaK3(S04)2가 황산칼륨으로 전환되었음을 알 수 있다. 이때, 황산칼륨의 순도는 97%이상이었다.
이상에서 본 발명의 바람직한 실시예들에 대하여 상세하게 설명하였지만 본 발명의 권리 범위는 이에 한정되는 것은 아니고 다음의 청구 범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리 범위에 속하는 것이다.

Claims

【특허청구범위】
【청구항 1】
탄산 이온이 포함된 리륨 함유 용액을 준비하는 단계;
상기 리튬 함유 용액을 리튬의 농도가 2.48 lg/L 이하가 되도록 농축시켜 제 1 침전물을 수득하는 단계 ;
상기 농축된 리튬 함유 용액과 상기 제 1 침전물을 고액 분리하는 단계; 상기 농축된 리튬 함유 용액에 인 공급 물질을 투입하여 용존 리튬을 인산리튬으로 석출시키는 단계;
상기 인산리튬이 석출된 여액을 리튬의 농도가 2.481g/L 이하가 되도톡 재농축시켜 제 2 침전물을 수득하는 단계;
상기 재농축된 여액과 상기 제 2 침전물을 고액 분리하는 단계; 및 상기 재농축된 여액에 핵입자를 투입하여 용존 리튬을 인산리튬을 석출시키는 단계;
를 포함하는 리튬 함유 용액으로부터 리튬을 추출하는 방법.
【청구항 2】
게 1항에 있어서,
상기 인산리튬이 석출된 여액을 리튬의 농도가 2.481g/L 이하가 되도록 재농축시켜 게 2 침전물을 수득하는 단계;
상기 재농축된 여액과 상기 제 2 침전물을 고액 분리하는 단계; 및 상기 재농축된 여액에 핵입자를 투입하여 용존 리튬을 인산리튬을 석출시키는 단계;는, 반복적으로 수행될 수 있는 것인 리튬 함유 용액으로부터 리튬을 추출하는 방법.
【청구항 3】
제 1항에 있어서,
상기 제 1 침전물 및 게 2 침전물은 서로 독립적으로, NaCl,KCl 또는
NaK3(S04)2 를 포함하는 것인 리튬 함유 용액으로부터 리튬을 추출하는 방법.
【청구항 4】
제 1항에 있어서,
상기 리튬 함유 용액을 리튬의 농도가 2.481g/L 이하가 되도록 농축시켜 게 1 침전물을 수득하는 단계;이전에, 표면에 음전하를 띄는 분리막을 이용하여 상기 리튬 함유 용액 내 2가 이상의 이은을 분리하는 단계;
를 더 포함하는 것인 리튬 함유 용액으로부터 리륨올 추출하는 방법.
【청구항 5】
제 4항에 있어서,
상기 2가 이상의 이온은 황산이온 (S04 2-) 또는 탄산이온 (C03 2ᅳ)인 것인 리튬 함유 용액으로부터 리튬을 추출하는 방법.
【청구항 6】
제 4항에 있어서,
상기 표면에 음전하를 띄는 분리막의 기공 크기는 0.5 내지 lnm인 것인 리튬 함유 용액으로부터 리튬을 추출하는 방법.
【청구항 7】
제 4항에 있어서,
상기 표면에 음전하를 띄는 분리막의 두께는 0.5 내지 1.5ΛΠ인 것인 리륨 함유 용액으로부터 리튬을 추출하는 방법.
【청구항 8】
제 4항에 있어서,
상기 표면에 음전하를 띄는 분리막의 표면은 술폰기가 도입된 것인 것인 리튬 함유 용액으로부터 리튬을 추출하는 방법.
【청구항 9】
제 1항에 있어서,
상기 리튬 함유 용액을 리튬의 농도가 2.481g/L 이하가 되도록 농축시켜 거 11 침전물을 수득하는 단계; 및 상기 농축된 리튬 함유 용액과 상기 제 1 침전물을 고액 분리하는 단계;는,
상기 리륨 함유 용액 내 수분을 증발시켜 리튬의 농도가 2.481g/L 이하가 되도록 농축시키는 단계; 상기 수분 증발량에 따른 구간별로 제 1 침전물올 수득하는 단계; 및 제 1 침전물을 고액 분리하는 단계;를 포함하는 것인 리튬 함유 용액으로부터 리튬을 추출하는 방법.
【청구항 10]
제 9항에 있어서, 상기 리튬 함유 용액은 황산이온 (so4 2-)을 포함하고 있는 것인 리튬 함유 용액으로부터 리튬을 추출하는 방법.
【청구항 11】
게 9항에 있어서,
상기 수분 증발량에 따른 구간별로 제 1 침전물을 수득하는 단계;에서, 상기 제 1 침전물은 염화 칼륨 (KC1)과 NaK3(S04)2를 포함하는 것인 리튬 함유 용액으로부터 리튬을 추출하는 방법.
【청구항 12]
제 9항에 있어서,
상기 제 1 침전물은 염화 칼륨과 NaK3(S04)2를 포함하고, 상기 제 1 침전물 내 염화 칼륨의 함량이 NaK3(S04)2보다 큰 것인 리튬 함유 용액으로부터 리튬을 추출하는 방법ᅳ
【청구항 13】
제 12항에 있어서,
상기 수분 증발량에 따른 구간별로 게 1 침전물을 수득하는 단계;에서, 상기 수분 증발량에 따른 구간은, 수분 증발량 48 내지 54% 구간인 것인 리륨 함유 용액으로부터 리튬을 추출하는 방법.
【청구항 14】
제 12항에 있어서,
상기 수분 증발량에 따른 구간별로 게 1 침전물을 수득하는 단계;에서, 상기 수분 증발량에 따른 구간은, 수분 증발량 64 내지 68% 구간인 것인 리튬 함유 용액으로부터 리튬을 추출하는 방법.
【청구항 15】
제 12항에 있어서,
상기 수분 증발량에 따른 구간별로 제 1 침전물을 수득하는 단계;에서, 상기 수분 증발량에 따른 구간은, 수분 증발량 70 내지 73% 구간인 것인 리튬 함유 용액으로부터 리튬을 추출하는 방법.
【청구항 16】
제 12항에 있어서,
상기 수득한 게 1 침전물을 염화 나트륨 및 염화 칼륨 포화 용액에 투입하는 단계;
상기 수득한 제 1 침전물이 투입된 염화 나트륨 및 염화 칼륨 포화 용액에 계면 활성제를 투입하여 염화 칼륨의 표면을 소수성으로 변화시키는 단계; 및 기포를 이용하여 상기 표면이 소수성으로 변화된 염화 칼륨을 회수하는 단계;를 더 포함하는 리튬 함유 용액으로부터 리튬을 추출하는 방법.
【청구항 17]
제 16항에 있어서,
상기 수득한 제 1 침전물이 투입된 염화 나트륨 및 염화 칼륨 포화 용액에 계면 활성제를 투입하여 염화 칼륨의 표면을 소수성으로 변화시키는 단계;에서, 상기 계면 활성제의 투입량은 상기 침전물 100중량부에 대해 0.0001 내지 2 중량부인 것인 리튬 함유 용액으로부터 리튬을 추출하는 방법.
【청구항 18)
제 9항에 있어서,
상기 제 1 침전물은 염화 칼륨과 NaK3(S04)2를 포함하고, 상기 제 1 침전물 내 염화 칼륨의 함량이 NaK3(S04)2보다 작은 것인 리튬 함유 용액으로부터 리튬을 추출하는 방법.
【청구항 19】
제 18항에 있'어서,
상기 수분 증발량에 따른 구간별로 게 1 침전물을 수득하는 단계;에서, 상기 수분 증발량에 따른 구간은, 수분 증발량 40% 이내 구간인 것인 리튬 함유 용액으로부터 리튬을 추출하는 방법.
【청구항 20】
제 18항에 있어서,
상기 수분 증발량에 따른 구간별로 제 1 침전물을 수득하는 단계;에서, 상기 수분 증발량에 따른 구간은, 수분 증발량 37% 이내 구간인 것인 리튬 함유 용액으로부터 리튬을 추출하는 방법.
【청구항 21】
제 18항에 있어서,
상기 수분 증발량에 따른 구간별로 제 1 침전물을 수득하는 단계;에서, 상기 수분 증발량에 따른 구간은, 수분 증발량 0.1 내지 37% 구간인 것인 리튬 함유 용액으로부터 리튬을 추출하는 방법.
【청구항 22]
제 18항에 있어서,
상기 수득한 게 1 침전물을 염화 나트륨 및 NaK3(S04)2 포화 용액에 투입하는 단계;
상기 수득한 제 1 침전물이 투입된 염화 나트륨 및 NaK3(S04)2 포화 용액에 계면 활성제를 투입하여 NaK3(S04)2의 표면을 소수성으로 변화시키는 단계; 및 기포를 이용하여 상기 표면이 소수성으로 변화된 NaK3(S04)2을 회수하는 단계;를 더 포함하는 리튬 함유 용액으로부터 리튬을 추출하는 방법.
【청구항 23】
제 22항에 있어서,
상기 수득한 제 1 침전물이 투입된 염화 나트륨 및 NaK3(S04)2 포화 용액에 계면 활성제를 투입하여 NaK3(S04)2의 표면을 소수성으로 변화시키는 단계;에서, 상기 계면 활성제의 투입량은 상기 침전물 100중량부에 대해 0.0001 내지 2 중량부인 것인 리튬 함유 용액으로부터 리튬을 추출하는 방법.
【청구항 24】
제 22항에 있어서,
상기 회수한 NaK3(S04)2을 염화 칼륨과 반응시켜 황산 칼륨올 수득하는 단계를 더 포함하는 것인 리튬 함유 용액으로부터 리튬을 추출하는 방법.
【청구항 25】
제 16항 또는 제 22항에 있어서,
상기 계면 활성제는 실리콘계, 불소계, 폴리에테르계 또는 이들의 조합인 것인 리튬 함유 용액으로부터 리튬을 추출하는 방법.
【청구항 26]
제 16항 또는 제 22항에 있어서,
상기 계면 활성제는 알칼리 금속 유기 술포네이트인 것인 리튬 함유 용액으로부터 리튬을 추출하는 방법.
【청구항 27]
제 16항 또는 제 22항에 있어서,
상기 계면 활성제는 하이드로카본 술포네이트 (hydrocarbon sulfonate), 하이드로카본 술페이트 (hydrocarbon sulfate), 지방산 (fatty acid) 또는 이들의 조합의 착염인 것인 리튬 함유 용액으로부터 리튬을 추출하는 방법.
【청구항 28】
제 1항에 있어서,
상기 핵입자는 입경이 100 이하인 것인 리튬 함유 용액으로부터 리튬을 추출하는 방법.
【청구항 29]
거 U항에 있어서,
상기 핵입자는 입경이 40 이하인 것인 리튬 함유 용액으로부터 리튬을 추출하는 방법.
【청구항 30]
거 11항에 있어서, ¬상기 핵입자는 입경이 25^이하인 것인 리튬 함유 용액으로부터 리튬을 추출하는 방법.
【청구항 31】
거 U항에 있어서,
상기 핵입자는 입경아 1 이하인 것인 리튬 함유 용액으로부터 리튬을 추출하는 방법.
【청구항 32]
게 1항에 있어서,
상기 핵입자는 비표면적이 1 내지 100m2/g인 것인 리륨 함유
용액으로부터 리튬을 추출하는 방법ᅳ
【청구항 33]
제 1항에 있어서,
상기 핵입자는 비표면적이 50 내지 100m2/g인 것인 리튬 함유
용액으로부터 리튬을 추출하는 방법.
【청구항 34]
제 1항에 있어서,
상기 핵입자는 리튬 화합물인 것인 리튬 함유 용액으로부터 리튬을 추출하는 방법ᅳ
【청구항 35】
제 1항에 있어서,
상기 핵입자는 난용성 리튬 화합물인 것인 리튬 함유 용액으로부터 리튬올 추출하는 방법.
【청구항 36】
제 1항에 있어서,
상기 핵입자는 난용성 유기 화합물, 난용성 무기 화합물 또는 이들의 조합인 것인 리튬 함유 용액으로부터 리튬을 추출하는 방법.
【청구항 37】
제 1항에 있어서,
상기 핵입자는 Li3P04, Li2C03, LiF 또는 이들의 조합인 것인 리륨 함유 용액으로부터 리륨을 추출하는 방법.
【청구항 38]
제 1항에 있어서,
상기 핵입자는 Ca3(P04)2, 하이드록시 아파타이트 (hydroxyapatite), 지르코니아, Ti02, Se02, Mg3(P04)2, MgO, MgAl204, A1203, 플라스틱 입자 또는 이들의 조합인 것인 리튬 함유 용액으로부터 리튬을 추출하는 방법.
【청구항 39】
제 1항에 있어서,
상기 인 공급 물질은 인, 인산 또는 인산염에서 선택된 1종 이상인 것인 리튬 함유 용액으로부터 리튬을 추출하는 방법.
【청구항 40】
제 1항에 있어서,
상기 인산리튬의 농도는 0.39g/L 이상인 것인 리튬 함유 용액으로부터 리튬을 추출하는 방법.
【청구항 41]
제 1항에 있어서,
상기 리튬 함유 용액은 염수인 것인 리튬 함유 용액으로부터 리튬을 추출하는 방법.
【청구항 42】 제 1항에 있어서,
상기 리튬 함유 용액의 리튬 농도는 O.lg/L이상인 것인 리튬 함유 용액으로부터 리튬을 추출하는 방법.
【청구항 43]
제 1항에 있어서,
상기 석출된 인산리튬을 상기 리튬 함유 용액으로부터 여과시켜 인산리튬을 추출하는 공정올 더 포함하는 것인 리륨 함유 용액으로부터 리튬을 추출하는 방법.
PCT/KR2013/009005 2012-12-21 2013-10-08 리튬 함유 용액으로부터 리튬을 추출하는 방법 WO2014098357A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201380067333.XA CN104884648B (zh) 2012-12-21 2013-10-08 从含锂溶液中提取锂的方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR1020120151349A KR101384803B1 (ko) 2012-12-21 2012-12-21 리튬 함유 용액으로부터 리튬을 추출하는 방법
KR1020120151293A KR101380405B1 (ko) 2012-12-21 2012-12-21 염수로부터 염화 칼륨을 추출하는 방법
KR10-2012-0151293 2012-12-21
KR10-2012-0151349 2012-12-21
KR10-2012-0152564 2012-12-24
KR1020120152564A KR101527140B1 (ko) 2012-12-24 2012-12-24 염수로부터 칼륨을 추출하는 방법

Publications (1)

Publication Number Publication Date
WO2014098357A1 true WO2014098357A1 (ko) 2014-06-26

Family

ID=50978638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/009005 WO2014098357A1 (ko) 2012-12-21 2013-10-08 리튬 함유 용액으로부터 리튬을 추출하는 방법

Country Status (2)

Country Link
CN (1) CN104884648B (ko)
WO (1) WO2014098357A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180135742A (ko) * 2017-06-13 2018-12-21 재단법인 포항산업과학연구원 황산 칼륨의 제조 방법
CN110683525A (zh) * 2018-07-04 2020-01-14 全雄 提取锂的方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI746818B (zh) * 2017-04-07 2021-11-21 比利時商烏明克公司 回收鋰之程序
CN108285156B (zh) * 2017-11-24 2019-10-25 中南大学 一种从含磷酸锂废渣中提取高纯碳酸锂或氢氧化锂的方法
KR102141058B1 (ko) * 2018-04-23 2020-08-04 주식회사 포스코 리튬 흡착 성형체 및 그의 제조 방법
CN110357055B (zh) * 2019-08-09 2022-07-15 深圳市德方纳米科技股份有限公司 一种从盐湖卤水中提取锂并制备磷酸锂的方法及其用途
PE20220205A1 (es) * 2020-05-12 2022-02-01 Energy Exploration Tech Inc Sistemas y metodos para recuperar litio de salmueras

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008066019A (ja) * 2006-09-05 2008-03-21 Sumitomo Osaka Cement Co Ltd 電極材料の製造方法、リチウムの回収方法、正極材料及び電極並びに電池
KR20120005980A (ko) * 2010-07-09 2012-01-17 재단법인 포항산업과학연구원 리튬 함유 용액으로부터 리튬을 경제적으로 추출하는 방법
KR20120021675A (ko) * 2010-08-12 2012-03-09 재단법인 포항산업과학연구원 고순도 탄산리튬의 제조 방법
JP5138640B2 (ja) * 2009-07-06 2013-02-06 Jx日鉱日石金属株式会社 リチウムイオン2次電池回収物からの炭酸リチウムの製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100469697C (zh) * 2007-08-21 2009-03-18 四川天齐锂业股份有限公司 硫酸锂溶液生产低镁电池级碳酸锂的方法
TW201029918A (en) * 2009-02-12 2010-08-16 Enerage Inc Method for synthesizing lithium phosphate compound having olivine crystal structure
CN101508450B (zh) * 2009-03-18 2010-12-08 中南大学 一种钙循环固相转化法从低镁锂比盐湖卤水中提取锂盐的方法
EP2591130B1 (en) * 2010-07-09 2017-05-03 Research Institute Of Industrial Science&Technology Method for economical extraction of lithium from solution including lithium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008066019A (ja) * 2006-09-05 2008-03-21 Sumitomo Osaka Cement Co Ltd 電極材料の製造方法、リチウムの回収方法、正極材料及び電極並びに電池
JP5138640B2 (ja) * 2009-07-06 2013-02-06 Jx日鉱日石金属株式会社 リチウムイオン2次電池回収物からの炭酸リチウムの製造方法
KR20120005980A (ko) * 2010-07-09 2012-01-17 재단법인 포항산업과학연구원 리튬 함유 용액으로부터 리튬을 경제적으로 추출하는 방법
KR20120021675A (ko) * 2010-08-12 2012-03-09 재단법인 포항산업과학연구원 고순도 탄산리튬의 제조 방법

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180135742A (ko) * 2017-06-13 2018-12-21 재단법인 포항산업과학연구원 황산 칼륨의 제조 방법
KR102378525B1 (ko) 2017-06-13 2022-03-23 재단법인 포항산업과학연구원 황산 칼륨의 제조 방법
CN110683525A (zh) * 2018-07-04 2020-01-14 全雄 提取锂的方法

Also Published As

Publication number Publication date
CN104884648A (zh) 2015-09-02
CN104884648B (zh) 2019-01-15

Similar Documents

Publication Publication Date Title
WO2014098357A1 (ko) 리튬 함유 용액으로부터 리튬을 추출하는 방법
EP2591130B1 (en) Method for economical extraction of lithium from solution including lithium
KR101321070B1 (ko) 염수로부터 고순도의 인산리튬 추출 방법
CN103898341B (zh) 从硫酸锂粗矿分离提取锂的方法
Alsabbagh et al. Lithium enrichment optimization from Dead Sea end brine by chemical precipitation technique
Ye et al. Fractionating magnesium ion from seawater for struvite recovery using electrodialysis with monovalent selective membranes
EP2791375B1 (en) Method for extraction of lithium from lithium bearing solution
JP2013193940A (ja) 炭酸リチウムを製造する方法
CN110683525B (zh) 提取锂的方法
KR20120089515A (ko) 염수로부터 경제적으로 고순도의 인산리튬을 추출하는 방법
KR101353342B1 (ko) 리튬 함유 용액으로부터 리튬을 경제적으로 추출하는 방법
JP2019099901A (ja) リチウム含有水溶液からリチウムを回収する方法
KR101889457B1 (ko) 수산화 리튬 수용액의 제조 방법 및 이를 이용한 탄산 리튬의 제조 방법
WO2014104548A1 (ko) 염수로부터 칼륨을 추출하는 방법
CN108187917B (zh) 一种芳香基膦酸及其盐类捕收剂及其应用
KR101946483B1 (ko) 수산화리튬 수용액의 제조 방법 및 이를 이용한 탄산리튬의 제조 방법
KR101384803B1 (ko) 리튬 함유 용액으로부터 리튬을 추출하는 방법
AU2016376980A1 (en) Method for the control of sulphate forming compounds in the preparation of potassium sulphate from potassium-containing ores at high ambient temperatures
KR101380405B1 (ko) 염수로부터 염화 칼륨을 추출하는 방법
KR20140144381A (ko) 염수로부터 황산 리튬의 효율적 추출 방법
US20220274842A1 (en) Method for producing lithium hydroxide
Valdez et al. Influence of the evaporation rate over lithium recovery from brines
Suud et al. Lithium Extraction Method from Geothermal Brine to Find Suitable Method for Geothermal Fields in Indonesia: A Review
CN104150458B (zh) 一种从含氯磷矿石中分离回收氯离子的方法
KR101326172B1 (ko) 리튬 함유 용액으로부터 리튬을 경제적으로 추출하는 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13864479

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13864479

Country of ref document: EP

Kind code of ref document: A1