WO2014098229A1 - プラスチック系複合廃棄物の分別回収方法 - Google Patents

プラスチック系複合廃棄物の分別回収方法 Download PDF

Info

Publication number
WO2014098229A1
WO2014098229A1 PCT/JP2013/084286 JP2013084286W WO2014098229A1 WO 2014098229 A1 WO2014098229 A1 WO 2014098229A1 JP 2013084286 W JP2013084286 W JP 2013084286W WO 2014098229 A1 WO2014098229 A1 WO 2014098229A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
plastic
component
components
waste
Prior art date
Application number
PCT/JP2013/084286
Other languages
English (en)
French (fr)
Inventor
孝 立花
Original Assignee
アースリサイクル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アースリサイクル株式会社 filed Critical アースリサイクル株式会社
Priority to JP2014553225A priority Critical patent/JP6050834B2/ja
Publication of WO2014098229A1 publication Critical patent/WO2014098229A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B5/00Washing granular, powdered or lumpy materials; Wet separating
    • B03B5/28Washing granular, powdered or lumpy materials; Wet separating by sink-float separation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/18Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material
    • C08J11/22Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds
    • C08J11/24Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds containing hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/10Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal from rubber or rubber waste
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • B29B2017/0213Specific separating techniques
    • B29B2017/0293Dissolving the materials in gases or liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2009/00Layered products
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention relates to plastic composite waste, particularly various plastic composite waste, composite electrical products of metals and plastics and automobile products, medical waste, blended products of synthetic fibers and natural fibers, and composite plastics such as FRP.
  • the present invention relates to a method for separating and collecting waste.
  • thermoplastic resins As types of waste plastics, there are thermoplastic resins and thermosetting resins, and the method of separating them by specific gravity has been practiced for a long time.
  • thermoplastic resins are widely recycled. Since PVC discharges chlorine gas when it is subjected to thermal incineration, it is necessary to recover this chlorine gas (Patent Document 1). If these are liquefied, they cause equipment corrosion and increase the processing cost. .
  • the decomposition reaction with diethylene glycol is difficult if PET resin does not use caustic soda as a catalyst (Patent Document 2). However, if caustic soda is used, it is depolymerized to produce terephthalate, etc., and recycled by washing with water. It is necessary and post-processing is troublesome.
  • thermosetting resin On the other hand, recycling of the thermosetting resin is difficult.
  • a cured epoxy resin is excellent in electrical characteristics, heat resistance, and adhesiveness, and thus is used in a wide range of fields such as insulating materials, adhesives, and paints.
  • thermal decomposition is difficult and recycling is difficult.
  • fiber reinforced plastics hereinafter referred to as FRP
  • FRP fiber reinforced plastics
  • Non-patent Document 3 FRP products using unsaturated polyester as the matrix resin and organic fibers other than glass fibers as the reinforcing fibers are decomposed using glycol, and the resulting decomposition products are condensed with dibasic acid and recycled.
  • Patent Document 3 A method has been proposed (Patent Document 3).
  • Patent Documents 1 and 2 an atmospheric pressure dissolution method using diethylene glycol monomethyl ether as a solvent and tripotassium phosphate hydrate as a catalyst has been proposed (Non-patent Documents 1 and 2).
  • renal dialysis set and infusion set waste is highly infectious because it contains bodily fluids such as blood and injection needles, and the material contains a large amount of vinyl chloride resin and metal. , One of the most difficult waste to process. Therefore, the actual situation is that the waste from the renal dialysis set has been incinerated for the purpose of heat sterilization treatment, although there is a problem of generation of hydrogen chloride gas and dioxin.
  • plastic products including metal materials such as various electrical products such as OA equipment, mobile terminals, mobile phones, TVs, vacuum cleaners, refrigerators, especially printed wiring boards used in these control units, and melting It is formed integrally with a metal material such as a pipe joint, a resin-coated electric wire, an optical cable, or a fiber reinforced plastic.
  • metal-containing plastic products it is required to cleanly and efficiently separate the metal material and the plastic material in the disposal process or the recycling process of the product that has become defective in the manufacturing process. Therefore, various treatment methods have been proposed as treatment methods in which a plastic material of a metal-containing plastic product is dissolved by heating and separated from the metal material or the like.
  • Patent Document 4 edible waste oil is heated to 170 to 175 ° C., a metal-containing plastic product is introduced into this edible waste oil, and the edible waste oil is stirred to melt the plastic, and the metal material is exposed.
  • the metal material selection method of the plastic waste which stops the heating of edible waste oil, naturally cools, and takes out a metal material from edible waste oil after that is proposed.
  • Patent Document 5 discloses that waste of electrical products such as OA equipment and home appliances is put into vegetable oil such as tempura oil heated to a temperature at which the plastic material is softened and melted, and then softened and melted to produce vegetable matter.
  • thermosetting resin substrate such as an epoxy resin in an electrical component
  • an oil heating treatment is applied.
  • the present invention uses triethylene glycol (TEG) as a solvent, and when heated near the boiling point (286 ° C), it is possible to perform sterilization necessary for medical waste and sufficient temperature treatment to melt the thermoplastic resin, while thermosetting Since it functions as a reaction solvent for resin such as depolymerization, various processed materials are added as separation solvents to provide a universal separation and recovery method that can be widely applied to a wide variety of complex wastes.
  • TOG triethylene glycol
  • the present invention provides a universal separation and recovery method that can be widely applied to a wide variety of plastic wastes, particularly composite wastes, and provides a very practical method that replaces the method using only triethylene glycol. For the purpose.
  • the present invention is a method for treating and recovering plastic composite waste by separating it into a floating system component, a dissolution system component and a sedimentation system component, Using ethylene glycol as a reaction initiator, heating and melting a melted resin to form a reaction melt, Separating the plastic composite waste into a plastic component and a non-plastic component using the reaction melt as a separation solvent A; Separating the separated plastic component into a floating component, a dissolution component, and a sediment component using the reaction melt, A method for separating and recovering plastic composite waste, wherein a non-plastic component, a precipitated plastic component, a dissolved plastic component and a floating plastic component are separated and recovered.
  • the ester resin melt formed by reaction with ethylene glycol has a higher boiling point than ethylene glycol used as a decomposition initiator.
  • Separation of floating components such as PP, PE, PS, etc. not only maintaining the separation performance from plastic components but also suitable for oiling, while dissolving other plastic components and separating them by vacuum distillation PVC, epoxy resin, etc. can be recovered by sedimentation. That is, for example, the boiling point of ethylene glycol is 186 ° C., but the melt of 50:50 blend of ethylene glycol and PET has a boiling point of 220 ° C., and 288 ° C. of 5:95 blend is as follows. Moreover, the melt of triethylene glycol (TEG) and ester resin is as follows. Compounding amount (vs.
  • the boiling point was defined as the liquid temperature when a drop dropped from the outlet during atmospheric distillation. Therefore, not only the processing efficiency is improved by raising the boiling point of the solvent, but also the amount of ethylene glycol used can be reduced and recovered, which is extremely practical. Therefore, in the present invention, the separation solvent A is one or more selected from the group consisting of ethylene glycol, ethylene glycol, diethylene glycol, and triethylene glycol, and the resin component that dissolves in the ethylene glycol to form a reaction melt.
  • the boiling point of the separation solvent A used at a blending ratio of A decomposition solvent having a high boiling point of 300 ° C. or higher can shorten the processing time and is suitable for FRP and substrate processing.
  • Plastic composite waste medical waste, automobile waste, fishing nets, solar cells, mobile phones, home appliances, FRP and other plastic and non-plastic composites, with non-plastic components as metals and non-metals Inorganic substances such as semiconductors, glass fibers, and carbon fibers are included.
  • the plastic composite waste is immersed in the heating bath of the separation solvent B composed of cyclohexanone (or cyclohexane) or methyl isobutyl ketone and, if necessary, a xylene mixture thereof.
  • the separation solvent B composed of cyclohexanone (or cyclohexane) or methyl isobutyl ketone and, if necessary, a xylene mixture thereof.
  • MIBK methyl isobutyl ketone
  • MIBK 20 to 80% a mixture of xylene and xylene
  • FRP such as epoxy resin and unsaturated polyester resin
  • the carbon fiber and the matrix resin can be separated and recovered.
  • the plastic composite waste contains PVC, and the PVC component is not dissolved in the separation solvent A, but separated from the other floating and dissolution system components and settled or heated in the separation solvent A with the addition of an alkaline agent. In addition to desalination treatment, it can be separated and collected from other floating and dissolution system components, and separated and recovered. In the range of 220 to 310 ° C., it can be desalted and separated by precipitation. In this case, it is preferable to neutralize the reaction system by adding an alkali agent to prevent the formation of dioxane. Further, at 220 ° C. or lower, PVC can be precipitated and collected separately without desalting.
  • the inside of the composite material separation tank is 220 ° C. or lower, and the plastic component and the metal component are separated and recovered at the temperature at which PVC does not decompose. .
  • a melt system component selected from the group consisting of PET resin, PC resin, PU resin, and PA resin is reacted with ethylene glycol heated near the boiling point under pressure or normal pressure, and the resulting melt or its solidified powder is the main component. At least 5 parts by weight of ethylene glycol is added to 50 parts by weight of a polyester resin component selected from the group consisting of PET resin, PC resin, and PU resin.
  • a separation solvent which is a melt obtained by reacting with each other or a coagulated powder thereof is preferable.
  • the melt containing the reacted plastic component can be distilled under reduced pressure to recover ethylene glycol as an unreacted volatile component and reused.
  • the waste plastic when the waste plastic contains PVC, it can be desalted without using a catalyst by melting in an ester resin melt that can be heated to 220 ° C. or higher and 350 ° C. under pressure or atmospheric pressure.
  • an ester resin melt that can be heated to 220 ° C. or higher and 350 ° C. under pressure or atmospheric pressure.
  • low-temperature corrosion is less likely to occur, and the dechlorination effect is excellent, and the residual chlorine concentration of pyrolysis oil is well below the national limit of 100 ppm.
  • an ester resin melt having a boiling point of 220 ° C. to 390 ° C. obtained by reacting with ethylene glycols as a reaction initiator can be used as a separation solvent for treating composite plastics.
  • the boiling point of ethylene glycol is 186 ° C., but the melt of ethylene glycol and PET at 50:50 has a boiling point of 220 ° C., and the melt of ethylene glycol and PET at 5:95 has a boiling point of 288 ° C.
  • ethylene glycol has a boiling point of 286 ° C., but it has a 50:50 distribution ratio with PC (polycarbonate) at 350 ° C. and a 5:95 distribution ratio at 384, PET (polyethylene).
  • 50:50 distribution ratio with terephthalate) reaches 3720 ° C. and 5:95 distribution ratio reaches 390 ° C. Therefore, the boiling point of the separation solvent that can be substituted for triethylene glycol can be increased, and the processing efficiency can be improved.
  • the separation solvent according to the present invention is extremely practical because it not only improves the processing efficiency in the plastic composite waste processing method but also reduces the amount of triethylene glycol used.
  • medical waste is not a thermal incineration method, and can be sterilized without any problem of exhaust gas treatment by high-temperature heat treatment in a melt. Can be separated and recovered. That is, according to the present invention, medical waste containing chlorine-containing and metal-containing plastics can be sterilized (detoxified) and plastics can be collected separately.
  • the waste FRP product when disassembling a FRP product using a thermosetting resin as a matrix resin, the waste FRP product is not separated or pulverized without using an alkali metal hydroxide.
  • the resin and the reinforcing fiber can be separated.
  • the plastic composite waste of the present invention is a composite material of plastic and non-plastic such as medical waste, automobile waste, fishing net, solar cell, mobile phone, home appliance, FRP, etc. Inorganic materials such as metals, non-metals, semiconductors, glass fibers, and carbon fibers are included.
  • pretreatment using the separation solvent B in advance.
  • the separation and recovery device used in the present invention includes a composite material separation device 10 containing ethylene glycols as a solvent.
  • Waste A that can be introduced here includes dissolved plasticizer, dissolved residue, Al / PET / PE composite material, carpet, X-ray film, medical infectious plastic, GFRP (glass fiber FRP), CFRP (carbon fiber FRP), Includes substrate, automobile plastic, and used clothing.
  • Waste A is separated in the separator 10 by floating plastic P1 (PE: polyethylene, PP: polypropylene, PS: polystyrene), sediment (metal, glass fiber, carbon fiber), and reaction plastic P2 (PET: polyethylene terephthalate, PC: polycarbonate, PU: polyurethane, PA: polyamide) and thermosetting plastic P3 (PVC: thermosetting plastic such as polyvinylidene chloride and epoxy resin).
  • PVC thermosetting plastic such as polyvinylidene chloride and epoxy resin.
  • PVC should be recovered at 220 ° C or lower without being decomposed, but it is dechlorinated by raising the temperature to 270 to 280 ° C, and reacted with ethylene glycols such as TEG through a gas cleaning device 80 and recovered as acids (dioxane). May be.
  • the receiving tank 20 is connected to the bottom of the separation device 10, and the dissolved plastics P2 and P3 are recovered together with the separation solvent A (S).
  • An evaporating tank 30 is connected to the receiving tank 20 via a filter (not shown), and the unreacted solid is heated to a boiling point or higher under reduced pressure to evaporate ethylene glycol and circulate to the separator 10 while the residue is removed. Collect as reactant.
  • the dissolved resin is a PET resin, it is used as it is as an extender of the PET resin, and when it contains other resins, it is used as a mixed resin.
  • molten floating plastic (PE, PP, PS, etc.) P1 is sent from the reaction separation tank 10 to the thermal decomposition apparatus 40, and if necessary, it is thermally decomposed together with waste B (waste edible oil, waste tire, waste lubricant oil).
  • the distillation apparatus 50 fractionates into cracked gas (in-house fuel), light oil (in-house fuel), and heavy oil (in-house fuel), and a part thereof is described in the quality improvement apparatus 60 (for example, Japanese Patent No. 5144020) It is recovered as boiler fuel through a quality improvement device that uses alcohol and used for power generation by the generator 70. Further, it is recovered as a partial residue.
  • sediment metal, non-metal, glass fiber, carbon fiber (filament), filler, cotton, hemp, acrylic, etc.
  • the washing water can be used by evaporating the water to recover the solvent and circulating it to the decomposition apparatus 10.
  • the solvent composition in the separation apparatus is adjusted so that the composition ratio of polyester resin such as PET, PC, PU, etc. with respect to TEG is 95% by weight or less and 50% by weight or more.
  • TEG triethylene glycol
  • separation solvents I having boiling points of 372 ° C., 373 ° C. and 390 ° C. are obtained, respectively.
  • the solvent composition is a composition ratio of polyester resin such as PET, PC, PU, etc.
  • Example 2 The plastic composite waste is treated as follows using the facility shown in FIG. Add 50 parts by weight of TEG (triethylene glycol) to 50 parts by weight of PET and heat and melt it in the batch-type dissolution tank 100, and then add aluminum / PET / PE / PVC composite waste to 220 A while stirring and stirring. Heat and hold at ⁇ 250 ° C. for 0.5 to 1 hour to separate resin and aluminum. Next, since the resin component PE that floats is suitable for oiling, it is once taken out into a washing tank, washed with TEG at 220 ° C., sent to a thermal decomposition apparatus, and oil is recovered. The TEG used for washing is collected in the separating agent receiving tank 101.
  • TEG triethylene glycol
  • the separation solvent containing the dissolved resin component is transferred to the separating agent receiving tank 101 and sent to the vacuum distillation apparatus 102 to separate the TEG and the PET mixed resin, and the TEG is recovered via the condenser 103, and the separating agent receiving tank. Return to 102. Since undissolved aluminum and precipitated PVC remain in the dissolution tank, these are taken out, dried, and separated into aluminum and PVC. In the upper part of the dissolution tank 100, the solvent to be vaporized is condensed by the condenser 104, recovered and returned to the dissolution tank. In this embodiment, 1) PE, PP, and PS do not react in the separation solvent, but float upward and are separated from other resins.
  • PE resin can be recovered as an oily raw material, aluminum as a material, PET resin as a filler, and PVC resin as a raw material. Therefore, it is suitable for separating and collecting carpets (PET / PE), elution residues (PET / aluminum / other resins), fishing nets, medical waste, automobile waste, used clothes, and the like.
  • Example 3 The CFRP, which is a plastic composite waste, is processed by the equipment shown in FIG. A 7-mm thick CFRP tube is added to a separation solvent A prepared by adding 25 parts by weight of TEG (triethylene glycol) to 75 parts by weight of PET and melted by heating in a batch-type dissolution tank 100. Hold for a while to separate the defibrated FRP (68% by weight) and the resin content (32%). Unwinding is taken out after washing with TEG, etc., dried and reused, while the resin content is collected in the solvent receiving tank 101 together with the separation solvent and sent to the vacuum distillation apparatus 102 to separate the resin content such as TEG and epoxy, TEG is recovered via the condenser 103 and returned to the separating agent receiving tank 101.
  • TEG triethylene glycol
  • Resin such as epoxy is reused as a binder. Others are the same as in the second embodiment.
  • this embodiment is suitable for processing GFRP, substrates, and the like. ⁇ The substrate is separated into epoxy resin and metal with a separation solvent and separated. 5) FRP is divided into a glass fiber and a resin component, the glass fiber remains in the dissolution tank, and the resin component is dissolved and recovered in the separation solvent.
  • FIG. 4 shows a facility for processing wallpaper (PVC / paper), which is a plastic composite waste.
  • PVC polyvinyl chloride
  • FIG. 4 shows a facility for processing wallpaper (PVC / paper), which is a plastic composite waste.
  • the paper is dried and collected.
  • the resin content is recovered in the solvent receiving tank 101 together with the separation solvent B, cooled by the cooler 110 and sent to the methanol distribution tank 111 to separate the cyclohexanenon and methanol content from the cyclohexanenon and PVC resin content, and cyclohexanenon and methanol.
  • the methanol evaporator 112 separates the cyclohexanone and methanol, the methanol is returned to the methanol evaporator 112 and the cyclohexanone is returned to the solvent receiving tank 101, while the cyclohexanone and the PVC resin are separated from each other by the cyclohexanone evaporator 113. Recover.
  • this embodiment is suitable for the processing of automobile window frames made of iron and PVC, distribution lines made of copper and PVC, and the like.
  • FIG. 5 shows a facility for processing a mobile phone (PVC / substrate) which is a plastic composite waste.
  • PVC mobile phone
  • substrate plastic composite waste.
  • the separation solvent B is collected in the preliminary solvent receiving tank 121 and circulated.
  • the substrate is put into the processing facility of FIG. The same number is attached to the same member, and the description is omitted.
  • the substrate is treated in the same manner as in Example 3, and the substrate is separated into glass fibers and noble metals that do not dissolve in the separation solvent A, and resins such as epoxy that dissolve in the separation solvent A.
  • the separation solvent B methyl isobutyl ketone or methyl ethyl ketone may be used instead of cyclohexanone.
  • this embodiment is suitable for processing of electrical equipment including a substrate.
  • Example 6 Example 2 Aluminum / PET / PE / PVC Composite Waste and Example 3 CFRP
  • the processing equipment for continuously performing the process is as shown in FIGS.
  • the continuous processing equipment is a continuous dissolution tank 200 into which raw materials such as aluminum / PET / PE / PVC composite waste and CFRP are added, and the vertical tank 201 and the subsequent horizontal tank 202 are L-shaped. And an inclined discharge tank 204 extending obliquely upward from the end thereof and a dryer 205 horizontally provided from the upper end thereof.
  • the horizontal tank 202 is provided with a horizontal rotary transfer machine 206 from the beginning to the end, and the discharge tank 203 is provided with an oblique rotary transfer machine 207 to feed the raw material forward and obliquely upward.
  • the dissolved liquid level L of the vertical tank 201 and the inclined discharge tank 203 is the same, and the level L is exceeded from the inclined discharge tank 203, the dissolved liquid overflows and is discharged to the vacuum distillation apparatus 208, where the decomposition solvent A Dissolve TEG and dissolved resin dissolved in a dissolved solution such as PET.
  • the distilled TEG is returned to the vertical tank 201 as a decomposing agent via the aggregator 209.
  • Aluminum, PE resin, and PVC are discharged up the inclined discharge tank 204, but are TEG washed from above in the inclined discharge tank 204, dried by the dryer 205, and discharged.
  • Other conditions are the same as those in the first embodiment, and a description thereof will be omitted.
  • the separation material from the dryer 205 is defibrated CFRP
  • the separation resin from the vacuum distillation unit 208 is a resin such as epoxy. Since other conditions are the same as those in the third embodiment, description thereof is omitted.
  • advantages of using the present invention include the following points.
  • PVC treatment of the present invention the PVC resin can be separated and recovered by precipitating the PVC from the separation solvent A by treating the PVC resin at a decomposition temperature of 220 ° C. or lower.
  • the dechlorination treatment can be performed at a temperature of 270 to 280 ° C. When it becomes acidic due to the influence of chlorine gas, it is preferably neutralized by adding an alkali agent.
  • Conventional plastic waste needs to be collected separately and processed, but according to the present invention, a boiling point solvent of 300 ° C. or higher is obtained without using a large amount of expensive triethylene glycol (TEG). By using this, the processing efficiency can be improved.
  • TOG triethylene glycol
  • Decomposition at a high temperature of 300 ° C. or higher is suitable for separating and collecting CFRP, GFRP reinforced with glass fiber or graphite fiber, and reinforced fiber and matrix resin in a carbon resin molded product. Therefore, the separation solvent can be selectively formed so that the composition and the mixing ratio of the separation solvent A are 220.degree. 3) Further, the resin component can be separated and recovered without separating the resin component floating without reacting with the solvent and the PET resin reacting with the solvent. While PE, PP, and PS that float on the solvent can be recovered as an effective oil component, the resin component that dissolves and reacts in the solvent is recovered as a reactant and can be used as a useful material.
  • pre-treatment is performed by immersing in a warming bath of separation solvent B consisting of methyl isobutyl ketone or a mixture of xylene and xylene (preferably methyl isobutyl ketone 20 to 80%) that swells PVC resin. It is efficient to take out the semiconductor, the substrate, etc. and leave it to the decomposition treatment with the separation solvent A. Wallpapers, automobile window frames, etc.
  • separation solvent B consisting of methyl isobutyl ketone or a mixture of xylene and xylene (preferably methyl isobutyl ketone 20 to 80%) that swells PVC resin.
  • the present invention includes a composite plastic waste separation process consisting of a two-stage process of pretreatment and composite material separation process. 6)
  • the batch-type dissolution tank is a continuous processing facility as shown in FIGS. 6 and 7, continuous processing of composite waste is possible and the efficiency is excellent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Sustainable Development (AREA)
  • Polymers & Plastics (AREA)
  • Wood Science & Technology (AREA)
  • Mechanical Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Processing Of Solid Wastes (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

【課題】多種多様なプラスチック系複合廃棄物に対し広く適用でき、プラスチック成分と非プラスチック成分とを分別するだけでなく、プラスチック成分から油化適正成分を分別して回収する方法の提供すること。 【解決手段】プラスチック系複合廃棄物、特に各種熱可塑性プラスチック、熱硬化性プラスチックおよび非プラスチック成分とが複合化してなるプラスチック系複合廃棄物を処理して各成分を分別回収するにあたり、エチレングリコール類を反応開始剤とし溶解系樹脂を溶融して反応融液を得、該反応融液を分離溶剤としてプラスチック系成分と非プラスチック系成分と溶融分離する一方、プラスチック系成分を浮上系成分、溶解系成分、沈降系成分に分別し回収するプラスチック系複合廃棄物の分別回収方法を提供する。

Description

プラスチック系複合廃棄物の分別回収方法
 本発明はプラスチック系複合廃棄物、特に各種プラスチック系複合廃棄物、金属とプラスチックとの複合系電気製品および自動車製品、医療廃棄物、合成繊維と天然繊維との混紡品、FRP等の複合系プラスチック廃棄物の分別回収方法に関する。
 廃プラスチックの種類としては熱可塑性樹脂と熱硬化性樹脂とがあり、これらを比重分離する方法は古くから行われている。ただ、熱可塑性樹脂は広くリサイクルが行われている。PVCは熱焼却処理すると塩素ガスを排出するのでこの塩素ガスを回収する必要があり(特許文献1)、これらを油化処理すると、設備腐食の原因となり、処理コストが高額となるという難点がある。他方、PET樹脂は触媒として苛性ソーダを用いないとジエチレングリコールでの分解反応が難しい(特許文献2)が、苛性ソーダを用いると解重合してテレフタール酸塩等を生じ、再利用には水洗して再生する必要があり、後処理が面倒である。他方、熱硬化性樹脂のリサイクルは難しい。例えば、エポキシ樹脂硬化物は、電気特性、耐熱性、接着性に優れているため、絶縁材、接着剤、塗料などの広い分野で利用されているが、熱分解が難しいため、リサイクルは難しい。他方、繊維強化プラスチック(以下、FRPという)は一般に強化繊維としてガラス繊維を使用するものが軽量性や耐久性という点で優れていることから、自動車、航空機、スポーツ用品、その他の分野で広く採用されているが、強化繊維に起因してリサイクルが困難となっている。そこで、不飽和ポリエステルをマトリックス樹脂とし、ガラス繊維以外の有機繊維を強化繊維とするFRP製品についてはグリコールを用いてこれを分解し、得られた分解生成物を二塩基酸と縮合反応させてリサイクルする方法が提案されている(特許文献3)。他方、FRPのリサイクルする方法としてジエチレングリコールモノメチルエーテルを溶剤とし、触媒としてリン酸三カリウム水和物を用いて常圧溶解法が提案されている(非特許文献1及び2)。
 また、医療廃棄物では腎透析セット、点滴セットの廃棄物は、血液等の体液、注射針を含むために感染性である可能性が高い上、材質中に塩化ビニル樹脂、金属を多く含むため、最も処理が困難な廃棄物の一つである。そのため、従来から、腎透析セットの廃棄物は塩化水素ガスやダイオキシンの発生という問題がありながら熱殺菌処理の関係上焼却処分されてきたのが実情である。
 さらに、金属材料等を備えたプラスチック製品、例えばOA機器、携帯端末、携帯電話、テレビ、掃除機、冷蔵庫などの各種電気製品、特にこれらの制御部に用いられているプリント配線基板、更には溶融管継手、樹脂被覆電線、光ケーブル、繊維強化プラスチックなど、金属材料と一体に形成される。これら金属含有プラスチック製品においては、廃棄処理、或いは製造過程において成形不良となった製品の再利用処理においては、金属材料とプラスチック材料とをきれいに、しかも効率良く分離することが求められる。そこで従来、処理方法として、金属含有プラスチック製品のプラスチック材料を加熱溶解させて金属材料等と分離させる処理方法が各種提案されてきた。例えば、特許文献4は、食用廃油を170~175℃に加温し、この食用廃油中に金属含有プラスチック製品を投入すると共に食用廃油を攪拌してプラスチックを溶融させ、金属素材が剥き出しになったところで食用廃油の加熱を中止して自然冷却させ、その後、食用廃油中から金属素材を取り出すというプラスチック廃棄物の金属素材選別方法を提案している。また、特許文献5は、プラスチック材が軟化溶融する温度に加熱されたてんぷら油などの植物性油内に、OA機器や家電製品などの電気製品の廃棄物を投入し、軟化溶融して植物性油の上部に浮上した溶解プラスチック材を取り出し、その後、油槽内に残留する金属材を取り出す電気製品の廃棄物の処理方法を提案している。しかしながら、加熱媒体としての油中に金属含有プラスチック製品、例えば携帯電話などを投入すると、食品を油で揚げる如くプラスチック材料が加熱溶解して塊となって油上に浮上する一方、その他の金属材料等は油底に沈降するが、同時に、油中にプラスチック材料を投入すると、プラスチック材料が溶融した際に発火する場合があり、危険である。そこで、金属含有プラスチック製品の処理において、プラスチック材料を油層中で安全かつ効率良く加熱溶解させることができる金属含有プラスチック製品の処理方法が提案されている(特許文献6)。しかしながら、近年電気部品ではエポキシ樹脂等の熱硬化性樹脂基板上に半導体回路等の電気回路を形成する場合が多いにも拘わらず、かかる熱硬化性樹脂の場合に、油加熱処理を適用しても金属材料および樹脂材料を有効に分別回収することは困難であり、エポキシ樹脂など熱硬化性樹脂を使用する多くの電気製品には適用できないという難点がある。
 その他、現状では各種の複合系プラスチック廃棄物がリサイクル困難な廃棄物として出現しているが、製品として、アルミ/PP/PET三層シート、PE/PETカーペット、銀層/PETシート積層X線フィルム、ナイロン/PETボトル、PET/綿/ナイロン/アクリル混紡衣料、FRP製ボートおよび浴槽、炭素繊維系配管および部品、鉛付き漁網、電線、PVC用紙など各種各様で焼却が困難なもの、焼却可能であるが材料を再利用できるように分離回収したい材料が多いが分離回収が困難なため、焼却されているのが現状である。
特開2001-55583号公報 特開2006-110531号公報 特許第4096000号公報 特開平5-147041号公報 特開昭10-137734号公報 特開2008-213480号公報
日立化成テクニカルレポートNo.42(2004.1) 常圧溶解法によるエポキシCFRPリサイクル
 医療廃棄物、FRPを含め、かかる複合系プラスチック廃棄物を焼却処理することなく、プラスチック及び金属などの有効成分を分離回収して有効利用できる方法および装置を提供すべく鋭意研究の結果、本発明者は溶剤としてトリエチレングリコール(TEG)を用い、沸点(286℃)近傍に加熱すると、医療廃棄物に必要な殺菌、熱可塑性樹脂の溶融に十分な温度処理が可能である一方、熱硬化性樹脂に対して解重合等の反応溶剤として機能するので、これを分離溶剤として各種被処理物を投入し、多種多様な複合系廃棄物に対し広く適用できる万能型分離回収方法を提供した。しかしながら、トリエチレングリコールを用いる方法は、塩ビ処理における塩素関連腐食から解放され、種々の複合系プラスチックを処理できる利点はあるものの、溶剤コストが高く、ランニングコストが高くなるという問題点がある。そこで、本発明は多種多様なプラスチック廃棄物、特に複合系廃棄物に対し広く適用できる万能型分離回収方法であって、トリエチレングリコールのみを使用する方法に代替する極めて実用的な方法を提供することを目的とする。
 本発明者は、エチレングリコール類に対しPET、PU、PC等の溶解系樹脂を溶融処理していると、エチレングリコール類の分率が低下しているにも拘らずエチレングリコール類と反応した融液中ではプラスチック成分と金属等の非プラスチック成分との分離効率が低下しないことを見出し、これに着目し、エチレングリコール類を用いて形成したエステル系樹脂融液を分離溶剤として鋭意研究の結果、本発明を完成した。すなわち、本発明はプラスチック系複合廃棄物を処理して浮上系成分、溶解系成分及び沈降系成分とに分別して回収する方法であって、
 エチレングリコール類を反応開始剤とし、溶解系樹脂を加熱溶融して反応融液を形成する工程と、
 該反応融液を分離溶剤Aとしてプラスチック系複合廃棄物をプラスチック系成分と非プラスチック系成分とに分離する工程と、
 分離したプラスチック系成分を該反応融液で浮上系成分、溶解系成分、沈降系成分に分別する工程とを備え、
 非プラスチック系成分、沈降プラスチック成分、溶解プラスチック成分及び浮上プラスチック成分を分別し、回収することを特徴とするプラスチック系複合廃棄物の分別回収方法にある。
 したがって、本発明によれば、非プラスチック成分とプラスチック成分とを分離するだけでなく、分離溶剤Aに浮上する成分としてPP,PE,PS系樹脂と、分離溶剤Aに溶解する成分としてPET,PU,PC及びPA系樹脂と、分離溶剤Aから沈降する成分としてPVCとに、プラスチック成分は三種に分別回収することができる。
 また、本発明によれば、エチレングリコール類と反応して形成されるエステル系樹脂融液は分解開始剤として使用されるエチレングリコール類より高い沸点を有することになり、プラスチック成分と金属等の非プラスチック成分との分離性能が維持されるだけでなく、油化に適する、PP,PE,PS等の浮上系成分を浮上分別させる一方、その他のプラスチック成分を溶解させ、真空蒸留して分離することができ、PVC、エポキシ樹脂等は沈降回収することができることになる。すなわち、例えば、エチレングリコールの沸点は186℃であるが、エチレングリコールとPETの50対50配合での溶融液は沸点220℃となり、5対95配合では288℃となり、以下の通りである。また、トリエチレングリコール(TEG)とエステル系樹脂との溶融液は以下の通りである。
配合量(対EG)    50%            95%
PET         221℃           288℃
PC          350            372
PU          360            370
 
 
配合量(対TEG)   50%    75%     95%
PET         372    373     390
PC          352    358     384
PU          370    372     378
 ここで、沸点とは常圧蒸留時の出口から一滴落ちた時の液温を沸点とした。
したがって、溶剤の高沸点化により処理効率は向上するだけでなく、エチレングリコール類の使用量を低減させ,回収することができるので極めて実用的である。
 したがって、本発明において、前記分離溶剤Aをエチレングリコール類がエチレングリコール、ジエチレングリコール及びトリエチレングリコールからなる群から選ばれる1種以上と、該エチレングリコール類に溶解して反応融液を形成する樹脂分がPET樹脂(ポリエチレンテレフタレート)、PC樹脂(ポリカーボネイト)、PU樹脂(ポリウレタン)、PA樹脂(ナイロン)から選ばれる1種以上とから選択すれば、エチレングリコール類と溶解系樹脂類の成分選択及び両者の配合率で使用する分離溶剤Aの沸点を決定することができる。300℃以上の高い沸点を有する分解溶剤は処理時間を短縮することができ、FRPや基板処理に適する。
 プラスチック系複合廃棄物として、医療用廃棄物、自動車用廃棄物、漁網、ソーラセル、携帯電話、家電製品、FRP等のプラスチックと非プラスチックの複合材であって、非プラスチック成分としては金属、非金属、半導体、ガラス繊維、炭素繊維等の無機物を含む。
 分離溶剤A中で加熱分別する工程の前に、シクロヘキサノン(又はシクロヘキサン)或はメチルイソブチルケトン、要すればそれらのキシレン混合液からなる分離溶剤Bの加温浴中に前記プラスチック系複合廃棄物を浸漬し、プラスチック成分を溶解又は膨潤させ、その他の非プラスチック成分と予め分別する予備処理を行うことができる。
PVCの溶解にはシクロヘキサノン(シクロヘキサン)又はそれとキシレンとの混合液(キシレン80%以下)を常圧下90~100℃に加温した浴に浸漬し、壁紙及び自動車窓枠の予備処理に使用することができる。PVCの膨潤にはメチルイソブチルケトン(MIBK)又はそれとキシレンとの混合液(MIBK20~80%)を常圧下常温~70℃に加温した浴に浸漬し、膨潤させて携帯、ソーラパネルから回路基を取り出す予備処理に使用することができる。
 本発明においては、エポキシ樹脂及び不飽和ポリエステル樹脂等のFRPを強化繊維と分離して分別回収することができる。炭素繊維製品においても炭素繊維とマトリックス樹脂とを分離して回収することができる。
 プラスチック系複合廃棄物がPVCを含み、該PVC成分を分離溶剤Aに溶解させず、その他の浮上及び溶解系成分と分別して沈降させるか分離溶剤A中でにアルカリ剤の添加の下に加熱して脱塩処理するとともにその他の浮上及び溶解系成分と分別して沈降させて、分別回収することができる。220から310℃の範囲で脱塩処理するとともに沈降させ、分別することができる。この場合、アルカリ剤の投入により反応系を中性となし、ジオキサンの形成を防止するのがよい。また、220℃以下では脱塩処理することなく、PVCを沈降させ分別回収することもできる。
 本発明方法は廃プラスチック製品が医療廃棄物である場合は、複合材分離槽内を220℃以下となし、PVCが分解しない温度で殺菌処理とともにプラスチック成分と金属成分と分別して回収するのが好ましい。
 PET樹脂、PC樹脂、PU樹脂、PA樹脂からなる群から選ばれる溶解系成分を加圧又は常圧下沸点近くに加熱したエチレングリコール類と反応させ、得られる融液またはその凝固粉末を主成分とすることを特徴とするプラスチック系複合廃棄物の分別回収用分離溶剤、特に、PET樹脂、PC樹脂、PU樹脂からなる群から選ばれるポリエステル樹脂成分50重量部にエチレングリコール類を少なくとも5重量部添加して反応させ、得られる融液またはその凝固粉末である分離溶剤が好ましい。
 本発明においては、反応したプラスチック系成分を含む融液は減圧蒸留して未反応揮発成分としてエチレングリコール類を回収し、再利用することができる。
 本発明において、廃プラスチックがPVCを含むときは、加圧又は常圧下220℃以上350℃に加熱可能なエステル系樹脂融液中で溶融することにより触媒を使用することなく脱塩処理することができ、従来の油化装置と異なり、低温腐食が起こりにくくなるだけでなく、脱塩素効果に優れ、熱分解油の残留塩素濃度は国の制限値100ppmを大きく下回ることになる。
 本発明において、エチレングリコール類を反応開始剤とし、反応させて得られる沸点220℃から390℃であるエステル系樹脂融液は複合系プラスチックを処理する分離溶剤として利用することができる。
 エチレングリコールの沸点は186℃であるが、エチレングリコールとPETの50対50での溶融液は沸点220℃となり、エチレングリコールとPETの5対95での溶融液は沸点288℃となる。トリエチレングリコールとエステル系樹脂との溶融液はエチレングリコールの沸点は286℃であるが、PC(ポリカーボネイト)との50対50配分率で350℃、5対95の配分率で384、PET(ポリエチレンテレフタレート)との50対50配分率で3720℃、5対95の配分率で390℃に至る。したがって、トリエチレングリコールに代替しうる分離溶剤の高沸点化を図ることができ、処理効率を向上させることができる。
 よって、本発明にかかる分離溶剤はプラスチック系複合廃棄物の処理方法における処理効率は向上するだけでなく、トリエチレングリコールの使用量を低減させることができるので極めて実用的である。
  さらに、本発明によれば、医療廃棄物においても、熱焼却法でなく、融液中で高温加熱処理することにより排ガス処理の問題もなく、殺菌処理が可能な上、プラスチック成分と金属成分とが分別され、回収できる。すなわち、本発明によれば、塩素含有、金属含有プラスチックを含む医療廃棄物を殺菌(無害化)とともにプラスチック等を分別回収できる。
 さらにまた、本発明によれば、熱硬化性樹脂をマトリックス樹脂として使用したFRP製品を解体処理するに当たり、廃FRP製品を分別せずそのまま又は粉砕してアルカリ金属水酸化物を使用せず、マトリックス樹脂と強化繊維とを分別することができる。
本発明の複合系プラスチックの処理プロセスを示す概要図である。 アルミ/PET/PE/PVC複合廃棄物の処理設備の概要図である。 CFRPの処理設備の概要図である。 壁紙(PVC/紙)の処理設備の概要図である。 携帯電話の処理設備の概要図である。 アルミ/PET/PE/PVC複合廃棄物の連続処理設備の概要図である。 携帯電話の連続処理設備の概要図である。
 以下、実施例に基づき、本発明の実施形態について説明する。本発明のプラスチック系複合廃棄物としては、医療用廃棄物、自動車用廃棄物、漁網、ソーラセル、携帯電話、家電製品、FRP等のプラスチックと非プラスチックの複合材であって、非プラスチック成分としては金属、非金属、半導体、ガラス繊維、炭素繊維等の無機物を含む。廃棄物の種類によっては予め分離溶剤Bを用いて予備処理を行うのが好ましい。壁紙、自動車窓枠ではシクロヘキサノン又はそれとキシレンとの混合液(第2石:灯油相当)とし、常圧、90ないし100℃の温度でPVCを溶解処理するのが好ましい場合がある。また、携帯電話との基板部品を含む電気製品や半導体、金属枠等を含む太陽光パネルではメチルイソブチルケトン又はそれとキシレンとの混合液(第2石:灯油相当)とし、常圧、常温~70℃の温度でPVC膨潤させ、基板と金属枠、半導体等を分別しておくのがよい。
(実施例1)
 本発明で用いる分離回収装置は、溶剤としてエチレングリコール類を含む複合材分離装置10を備える。ここに投入できる廃棄物Aには溶リプラ、溶リ残渣、Al/PET/PE系複合材、カーペット、X線フィルム、医療感染性プラ、GFRP(ガラス繊維FRP)、CFRP(カーボン繊維FRP)、基板、自動車プラ、古着を含む。廃棄物Aは分離装置10内で浮上物プラスチックP1(PE:ポリエチレン、PP:ポリプロピレン、PS:ポリスチレン)と、沈降物(金属、ガラス繊維、炭素繊維)と、反応プラスチックP2(PET:ポリエチレンテレフタレート,PC:ポリカーボネート,PU:ポリウレタン、PA:ポリアミド)及び熱硬化性プラスチックP3(PVC:ポリ塩化ビニリデン、エポキシ樹脂等の熱硬化性プラスチック)とに分離することができる。PVCは220℃以下で分解させず回収するのがよいが、270~280℃に上げて脱塩素し、ガス洗浄装置80を介してTEG等エチレングリコール類と反応させ、酸類(ジオキサン)として回収してもよい。
 上記分離装置10の底部には受槽20が接続し、分離溶剤A(S)とともに溶解プラスチックP2及びP3を回収する。受槽20には図示しないフィルタを介して蒸発槽30が接続し、未反応固形物を減圧下に溶剤を沸点以上に加熱してエチレングリコール類を蒸発させ、分離装置10に循環させる一方、残渣を反応物として回収する。溶解樹脂がPET樹脂である場合はそのまま、PET樹脂の増量剤として使用し、その他の樹脂を含む場合は混合樹脂として利用する。
 他方、反応分離槽10から溶融浮上プラスチック(PE,PP,PS等)P1は熱分解装置40に送られ、要すれば廃棄物B(廃食用油、廃タイヤ、廃潤滑油)とともに熱分解され、蒸留装置50で分解ガス(自家燃料)、軽質油(自家燃料)、重質油(自家燃料)に分留されるとともに、一部は高品質化装置60(例えば、特許第5144020号に記載のアルコールを使用する高品質化装置)を介してボイラー燃料として回収され、発電機70で発電に利用される。また、一部残渣として回収される。
 他方、沈降物(金属、非金属、ガラス繊維、炭素繊維(解糸)、フィラー、綿、麻、アクリル等)は、例えば加熱したエチレングリコール類、スチーム洗浄及び熱風乾燥後再生品として回収される。洗浄水は水を蒸発させて溶剤を回収し、分解装置10に循環させて使用することができる。
  (分離溶剤の調整)
 本発明においては分離装置内の溶剤組成をTEGに対するPET、PC、PU等のポリエステル系樹脂の組成比を95重量%以下、50重量%以上に調整しておくことが肝要であり、PET50、75、95重量部に対しTEG(トリエチレングリコール)50、25、5重量部を加えて加熱して溶融させると、それぞれ、沸点372℃、373℃及び390℃の分離溶剤Iが得られる。溶剤組成をEGに対するPET、PC、PU等のポリエステル系樹脂の組成比をPET50、95重量部に対しEG(エチレングリコール)50、5重量部を加えて加熱して溶融させると、それぞれ、沸点221℃、288℃の分離溶剤Iが得られる。
 他方、PC95、75、50重量部にTEG(トリエチレングリコール)5、25、50重量部を加えて加熱して溶融させると、沸点352℃、358℃及び384℃の分離溶剤IIが得られる。PC50、95重量部にEG(エチレングリコール)50、5重量部を加えて加熱して溶融させると、沸点350℃、372℃の分離溶剤IIが得られる。
 更に、PU50、75、95重量部にTEG(トリエチレングリコール)50、5重量部を加えて加熱して溶融させると、沸点350℃、372℃の分離溶剤IIIが得られる。PU50、95重量部にEG(エチレングリコール)50、5重量部を加えて加熱して溶融させると、沸点360℃、370℃の分離溶剤IIIが得られる。
 (実施例2)
 図2の設備によりプラスチック系複合廃棄物を次のように処理する。PET50重量部にTEG(トリエチレングリコール)50重量部を添加してバッチ式溶解槽100で加熱溶融させて調整した分離溶剤Aにアルミ/PET/PE/PVC複合廃棄物を投入、攪拌しながら220~250℃で0.5~1時間加熱保持し、樹脂分とアルミ分を分離する。ついで、浮上する樹脂分PEは油化に適するため、一旦洗浄槽に取り出し、220℃のTEGで洗浄し、熱分解装置に送られ、油を回収する。洗浄に使ったTEGは分離剤受槽101に回収される。他方、溶解系樹脂分を含む分離溶剤は分離剤受槽101に移送され、減圧蒸留器102に送られ、TEGとPET混合樹脂を分離し、TEGは凝縮器103を介して回収し、分離剤受槽102に戻す。溶解槽中には未溶解のアルミと沈降したPVCが残留するので、これらを取り出し、乾燥後アルミとPVCに分別する。溶解槽100の上部には気化する溶剤を凝縮器104で凝集し、回収して溶解槽に戻すようになっている。
 本実施例では1)PE,PP,PSは分離溶剤中で反応せず、上方に浮上してその他の樹脂と分離される。
2)PVCに分離溶剤に溶解せず、金属等と一緒に分離されるので、PVCを事前に分別しておく必要がなくなる。
3)PE樹脂は油化原料に、アルミはマテリアルとして回収し、PET樹脂は増量剤に、PVC樹脂は素材として再利用することができる。したがって、カーペット(PET/PE),溶離残渣(PET/アルミ/その他の樹脂)、漁網、医療系廃棄物、自動車廃材、古着等の分別回収に適する。
 (実施例3)
 図3に示す設備によりプラスチック系複合廃棄物であるCFRPを処理する。PET75重量部にTEG(トリエチレングリコール)25重量部を添加してバッチ式溶解槽100で加熱溶融させて調整した分離溶剤Aに厚み7mmのCFRP管を投入、攪拌しながら常圧で270℃6時間保持し、解糸FRP(68重量%)と樹脂分(32%)を分離する。解糸はTEG等で洗浄後取り出し、乾燥して再利用する一方、樹脂分は分離溶剤とともに溶剤受槽101に回収され、減圧蒸留器102に送られ、TEGとエポキシ等の樹脂分を分離し、TEGは凝縮器103を介して回収し、分離剤受槽101に戻す。エポキシ等の樹脂分はバインダーとして再利用する。その他は実施例2と同様である。
 本実施例はその他、GFRP,基板等の処理に適する。
・ 基板は分離溶剤でエポキシ樹脂と金属とに分離され、分別される。
5)FRPはガラス繊維と樹脂分に分かれ、ガラス繊維は溶解槽に残り、樹脂分は分離溶剤中に溶解し、回収される。
 (実施例4)
 図4はプラスチック系複合廃棄物である壁紙(PVC/紙)を処理する設備を示す。シクロヘキサノン70重量部にキシレン30重量部を混合してバッチ式溶解槽100で80~100℃に加熱させて調整した分離溶剤Bに壁紙を投入し、攪拌しながら常圧で20分保持し、PVC(70重量%)と紙分(30%)を分離する。紙は乾燥させて回収する。樹脂分は分離溶剤Bとともに溶剤受槽101に回収され、冷却器110で冷却後メタノール分理槽111に送られ、シクロヘキサンノン及びメタノール分とシクロヘキサンノン及びPVC樹脂分とを分離し、シクロヘキサンノン及びメタノール分はメタノール蒸発器112でシクロヘキサノンとメタノールを分離し、メタノールはメタノール蒸発器112に戻すとともにシクロヘキサノンは溶剤受槽101に戻す一方、シクロヘキサノンとPVC樹脂分はシクロヘキサノン蒸発器113で両者を分離し、PVC樹脂を回収する。
 本実施例はその他、鉄とPVCからなる自動車窓枠、銅とPVCからなる配電線等の処理に適する。
(実施例5)
 図5はプラスチック系複合廃棄物である携帯電話(PVC/基板)を処理する設備を示す。メチルイソブチルケトン80重量部にキシレン20重量部を混合して予備溶解槽120で70℃に加熱させて調整した分離溶剤Bに携帯電話を投入し、攪拌しながら常圧で20分保持し、PVC(70重量%)を膨潤させ、基板(30%)と分離する。分離溶剤Bは予備溶剤受槽121で回収し、循環される。基板は分離溶剤Aとともに図3の処理設備に投入される。同一部材に同一番号を付して説明を省略する。その後は実施例3と同様に処理され、基板は分離溶剤Aに溶解しないガラス繊維及び貴金属と、分離溶剤Aに溶解するエポキシ等の樹脂に分別される。分離溶剤Bとしてはシクロヘキサノンの代わりにメチルイソブチルケトン又はメチルエチルケトンを使用しても良い。
 本実施例はその他、基板を含む電気機器の等の処理に適する。
(実施例6)
 実施例2のアルミ/PET/PE/PVC複合廃棄物及び実施例3のCFRP
の処理を連続的に行う処理設備は、図6及び図7の通りとなる。連続処理設備は原料であるアルミ/PET/PE/PVC複合廃棄物及びCFRPを投入する連続式溶解槽200が縦型槽201とそれに続く水平槽202とでL字形となし、その外周をジャケット203で包囲され、加温できるようになっており、その終端から斜め上方に延びる傾斜排出槽204とその上方終端から水平に乾燥器205が設けられる。上記水平槽202には始端から終端に渡って水平ロータリー移送機206が内装され、上記排出槽203には斜めロータリー移送機207が内装され、原料は溶解されつつ前方及び斜め上方に送られる。上記縦型槽201と傾斜排出槽203の溶解液レベルLを同一とし、傾斜排出槽203からレベルLを越えると、溶解液がオーバーフローし、減圧蒸留機208に排出され、そこで、分解溶剤Aの溶解液TEGとPET等の溶解液に溶解した溶解系樹脂を分別する。蒸留されたTEGは凝集器209を介して分解剤として縦型槽201に戻される。傾斜排出槽204を登ってアルミ、PE樹脂及びPVCは排出されるが、傾斜排出槽204中で上方からTEG洗浄され、乾燥機205で乾燥させて排出する。その他の条件は実施例1と同様であり、説明を省略する。
 図7では縦型槽201への投入原料がCFRPであるので,乾燥器205からの分別材料が解糸CFRPとなり、減圧蒸留機208からの分別樹脂がエポキシ等樹脂となる。その他の条件は実施例3と同様であるので説明を省略する。
 特に、本発明を利用する時の利点は次点が挙げられる。
 1)本発明のPVC処理 
 本発明ではPVC樹脂は分解温度を220℃以下において処理することによりPVCを分離溶剤Aから沈降させて分別回収することができる。温度270~280℃で脱塩素処理することもでき、塩素ガスの影響で酸性になる場合はアルカリ剤を添加して中和するのが好ましい。
 2)従来のプラスチック廃棄物は分別回収して処理する必要があったが、本発明によれば、高価なトリエチレングリコール(TEG)を大量に使用することなく、300℃以上の沸点溶剤を得ることができ、これを用いることにより、処理効率を向上させることができる。300℃以上の高温での分解はガラス繊維又はグラファイト繊維で強化したCFRP,GFRP並びに炭素樹脂成形品中の強化繊維とマトリックス樹脂との分離回収に適する。したがって、分離溶剤Aの組成及びその配合率で220℃以下、220~280℃、300℃以上と分解処理の温度に合うように分離溶剤を選択形成することができる。
 3)また、樹脂分は溶剤に反応せず浮上する樹脂分と溶剤に反応するPET樹脂等を分別することなく、分離回収することができる。溶剤に浮上するPE,PP,PSは有効な油化成分として回収できる一方、溶剤に溶解反応する樹脂分は反応物として回収され、有益な材料として利用可能である。
 4)従来多くが焼却されていた金属を含む医療廃棄物及び基板から貴重な金属を有効に分離回収できるので、実用性が高い。
 5)ソーラパネル、携帯電話等では予め、PVC樹脂を膨潤させるメチルイソブチルケトンまたはそれとキシレンとの混合物(メチルイソブチルケトン20~80%が好ましい)からなる分離溶剤Bの加温浴に浸漬して処理し、半導体、基板等を取り出して分離溶剤Aでの分解処理に委ねるのが効率的である。壁紙、自動車窓枠などはPVC樹脂を溶解するシクロヘキサノン又はそれとキシレンの混合物(シクロヘキサノン20~80%が好ましい)分離溶剤Bの加温浴に浸漬して処理し、予め樹脂類と紙、金属等を分離しておくのが好ましい。
 したがって、本発明では予備処理と複合材分離処理の二段階工程からなる複合プラスチック系廃棄物の分別処理を含む。
 6)特に、バッチ式溶解槽を図6及び図7に示すように連続処理設備とすると、複合廃棄物の連続処理が可能で効率に優れる。
10 分離装置
20 溶剤受槽
30 溶剤蒸発槽
40 熱分解装置
50 蒸留装置
60 高品質化装置
70 発電機
80 ガス洗浄装置
100 バッチ式溶解槽
101 分離剤受槽
102 減圧蒸発器
200 連続式溶解槽
208 減圧蒸発器

Claims (10)

  1.  プラスチック系複合廃棄物を処理して浮上系成分、溶解系成分及び沈降系成分とに分別して回収する方法であって、
     エチレングリコール類を反応開始剤とし、溶解系樹脂を加熱溶融して反応融液を形成する工程と、
     該反応融液を分離溶剤Aとしてプラスチック系複合廃棄物をプラスチック系成分と非プラスチック系成分とに分離する工程と、
     該反応融液で分離したプラスチック系成分を浮上系成分、溶解系成分、沈降系成分に分別する工程とを備え、
     非プラスチック系成分、沈降プラスチック成分、溶解プラスチック成分及び浮上プラスチック成分に分別し、回収することを特徴とするプラスチック系複合廃棄物の分離分別回収方法。
  2.  分離溶剤Aに浮上する成分としてPP,PE,PS系樹脂を含み、分離溶剤Aに溶解する成分としてPET,PU,PC及びPA系樹脂を含み、分離溶剤Aから沈降する成分としてPVC系樹脂を含み、請求項1記載の方法。
  3.  エチレングリコール類としてエチレングリコール、ジエチレングリコール及びトリエチレングリコールからなる群から選ばれる1種以上と、該エチレングリコール類に溶解して反応融液を形成する樹脂分がPET樹脂、PC樹脂、PU樹脂、PA樹脂位から選ばれる1種以上とから前記分離溶剤Aを構成し、エチレングリコール類とエステル樹脂類の成分選択及び両者の配合率で使用する分離溶剤Aの沸点を決定する請求項1記載の方法。
  4.  プラスチック系複合廃棄物が医療用廃棄物、自動車用廃棄物、漁網、ソーラセル、携帯電話、家電製品、FRP、溶離残渣等のプラスチックと非プラスチックの複合材であって、非プラスチック成分が金属、非金属、半導体、ガラス繊維、炭素繊維等の無機物を含む請求項1記載の方法。
  5.  分離溶剤A中で加熱分別する工程の前に、シクロヘキサノン、シロヘキサン又はメチルイソブチルケトン或いはそれらのキシレン混合液からなる分離溶剤Bの加温浴中に前記プラスチック系複合廃棄物を浸漬し、プラスチック成分を溶解又は膨潤させ、その他の非プラスチック成分と予め分別する予備処理を行う請求項1記載の方法。  
  6.  プラスチック系複合廃棄物がエポキシ樹脂及び不飽和ポリエステル樹脂等FRP又は炭素繊維製品であって、マトリックス樹脂と強化繊維と分離する工程を含む請求項1に記載の方法。
  7.  プラスチック系複合廃棄物がPVCを含み、該PVC成分を分離溶剤Aから沈降させ、その他の浮上及び溶解系成分と分別する請求項1に記載の方法。
  8.  廃プラスチック製品が医療廃棄物であって、殺菌処理とともに金属成分と樹脂成分を分離する請求項1に記載の方法。
  9.  PET樹脂、PC樹脂、PU樹脂、PA樹脂からなる群から選ばれる溶解系成分を加圧又は常圧下沸点近くに加熱したエチレングリコール類と反応させ、得られる融液またはその凝固粉末を主成分とすることを特徴とするプラスチック系複合廃棄物の分別回収用分離溶剤。
  10.  PET樹脂、PC樹脂、PU樹脂、PA樹脂からなる群から選ばれる溶解系樹脂成分50重量部にエチレングリコール類を少なくとも5重量部添加して反応させ、得られる融液またはその凝固粉末であって、沸点220℃~390℃の範囲にある請求項9記載の分離溶剤。
         
PCT/JP2013/084286 2012-12-20 2013-12-20 プラスチック系複合廃棄物の分別回収方法 WO2014098229A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014553225A JP6050834B2 (ja) 2012-12-20 2013-12-20 プラスチック系複合廃棄物の分別回収方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-278364 2012-12-20
JP2012278364 2012-12-20

Publications (1)

Publication Number Publication Date
WO2014098229A1 true WO2014098229A1 (ja) 2014-06-26

Family

ID=50978543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084286 WO2014098229A1 (ja) 2012-12-20 2013-12-20 プラスチック系複合廃棄物の分別回収方法

Country Status (2)

Country Link
JP (1) JP6050834B2 (ja)
WO (1) WO2014098229A1 (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017154449A (ja) * 2016-03-04 2017-09-07 株式会社クリーンシステム 金属複合材料の分離方法
WO2017154098A1 (ja) * 2016-03-08 2017-09-14 日立化成株式会社 無機材料の分離方法、再生材料の製造方法、及び有機物の除去方法
FR3051194A1 (fr) * 2016-05-13 2017-11-17 Faurecia Interieur Ind Methode de separation de polyolefine d'un materiau plastique
JP2018016695A (ja) * 2016-07-26 2018-02-01 太平洋セメント株式会社 炭素繊維強化プラスチックの処理方法及び燃料の製造方法
JPWO2017154097A1 (ja) * 2016-03-08 2019-01-10 日立化成株式会社 無機材料の分離方法、再生材料の製造方法、及び有機物の除去方法
JP2019505601A (ja) * 2015-12-18 2019-02-28 コンチネンタル ストラクチュラル プラスティックス, インコーポレイテッド 炭素繊維系材料の再利用
CN109786506A (zh) * 2019-01-08 2019-05-21 苏州福斯特光伏材料有限公司 一种复合型背板生产废料的在线处理方法
JP2019104861A (ja) * 2017-12-14 2019-06-27 埼玉県 繊維強化樹脂複合材のリサイクル方法及びそのシステム
JP2019155237A (ja) * 2018-03-09 2019-09-19 太平洋セメント株式会社 漁網のリサイクル装置及び方法
CN110862535A (zh) * 2019-11-15 2020-03-06 浙江理工大学 一种解聚含锦纶废聚酯制备共聚酯酰胺的方法
US20200181354A1 (en) * 2018-12-11 2020-06-11 Earthrecycle Co., Ltd. Separation and collection apparatus of plastic-based complex waste
CN111363194A (zh) * 2020-03-17 2020-07-03 江门市恒聚科技有限公司 一种回收橡胶的分离液及其应用
JP2020157667A (ja) * 2019-03-27 2020-10-01 凸版印刷株式会社 不燃シートの再資源化方法及び不燃シートの再資源化装置
CN113102454A (zh) * 2021-04-09 2021-07-13 新疆农业大学 一种虫菌复合技术分离棉田残膜回收混合物的方法
CN113560319A (zh) * 2021-07-21 2021-10-29 中南大学 一种废弃线路板的溶剂气化热解装置及方法
EP4079798A4 (en) * 2019-12-19 2023-10-25 Joaquim Antunes Quevedo, Edson METHOD FOR RECYCLING LAMINATED POLYMER PACKAGING USING ETHYLENE GLYCOL
WO2024004833A1 (ja) * 2022-06-30 2024-01-04 住友化学株式会社 炭素原子数2~8の不飽和炭化水素の製造方法、炭素原子数2~8の不飽和炭化水素混合物の製造方法、オレフィン系重合体の製造方法、化合物の製造方法、重合体の製造方法、オレフィン系重合体および重合体
JP7446038B1 (ja) 2023-09-20 2024-03-08 ドナウ商事株式会社 ポリアミド系樹脂及びポリオレフィン系樹脂を含有する複合樹脂材料のリサイクル方法
WO2024063099A1 (ja) * 2022-09-22 2024-03-28 三菱重工業株式会社 分離システム及び分離方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09278930A (ja) * 1996-04-16 1997-10-28 Aasuingu:Kk 再生プラスチック原料とその製造方法
JP2000169623A (ja) * 1998-12-10 2000-06-20 Is:Kk ポリエチレンテレフタレ―ト廃棄物のケミカルリサイクル方法
JP2006110531A (ja) * 2004-10-13 2006-04-27 Aasu Recycle Kk Pvc(塩化ビニリデンも),petを含む混合プラスチックやアルミ複合フイルム等から有用物質の分離法
JP2007186549A (ja) * 2006-01-11 2007-07-26 Cien Kk 繊維補強不飽和ポリエステル樹脂の分解方法、燃料、再合成不飽和ポリエステル樹脂および再生不飽和ポリエステル樹脂の製造方法
JP2009112642A (ja) * 2007-11-08 2009-05-28 Matsumoto Nurse Sangyo Kk 使用済み紙おむつの処理機

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4768920B2 (ja) * 2001-01-24 2011-09-07 アースリサイクル株式会社 廃プラスチックの熱分解法
AR082900A1 (es) * 2010-09-10 2013-01-16 Green Source Energy Llc Composiciones y metodos para reciclar plasticos que comprenden polimeros mediante el tratamiento de solvente
JP5883585B2 (ja) * 2011-06-24 2016-03-15 アースリサイクル株式会社 複合系プラスチック廃棄物の分離回収方法及びそれに用いる万能型分離回収装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09278930A (ja) * 1996-04-16 1997-10-28 Aasuingu:Kk 再生プラスチック原料とその製造方法
JP2000169623A (ja) * 1998-12-10 2000-06-20 Is:Kk ポリエチレンテレフタレ―ト廃棄物のケミカルリサイクル方法
JP2006110531A (ja) * 2004-10-13 2006-04-27 Aasu Recycle Kk Pvc(塩化ビニリデンも),petを含む混合プラスチックやアルミ複合フイルム等から有用物質の分離法
JP2007186549A (ja) * 2006-01-11 2007-07-26 Cien Kk 繊維補強不飽和ポリエステル樹脂の分解方法、燃料、再合成不飽和ポリエステル樹脂および再生不飽和ポリエステル樹脂の製造方法
JP2009112642A (ja) * 2007-11-08 2009-05-28 Matsumoto Nurse Sangyo Kk 使用済み紙おむつの処理機

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10875213B2 (en) 2015-12-18 2020-12-29 Continental Structural Plastics, Inc. Recycling carbon fiber based materials
JP2019505601A (ja) * 2015-12-18 2019-02-28 コンチネンタル ストラクチュラル プラスティックス, インコーポレイテッド 炭素繊維系材料の再利用
EP3389972A4 (en) * 2015-12-18 2019-08-21 Continental Structural Plastics, Inc. RECYCLING MATERIALS BASED ON CARBON FIBERS
JP2017154449A (ja) * 2016-03-04 2017-09-07 株式会社クリーンシステム 金属複合材料の分離方法
US10774194B2 (en) 2016-03-08 2020-09-15 Hitachi Chemical Company, Ltd. Method of separating inorganic material, method of producing reprocessed material and method of removing organic substance
JPWO2017154098A1 (ja) * 2016-03-08 2019-01-10 日立化成株式会社 無機材料の分離方法、再生材料の製造方法、及び有機物の除去方法
JPWO2017154097A1 (ja) * 2016-03-08 2019-01-10 日立化成株式会社 無機材料の分離方法、再生材料の製造方法、及び有機物の除去方法
WO2017154098A1 (ja) * 2016-03-08 2017-09-14 日立化成株式会社 無機材料の分離方法、再生材料の製造方法、及び有機物の除去方法
US10773422B2 (en) 2016-03-08 2020-09-15 Hitachi Chemical Company, Ltd. Method of separating inorganic material, method of producing reprocessed material and method of removing organic substance
FR3051194A1 (fr) * 2016-05-13 2017-11-17 Faurecia Interieur Ind Methode de separation de polyolefine d'un materiau plastique
JP2018016695A (ja) * 2016-07-26 2018-02-01 太平洋セメント株式会社 炭素繊維強化プラスチックの処理方法及び燃料の製造方法
JP2019104861A (ja) * 2017-12-14 2019-06-27 埼玉県 繊維強化樹脂複合材のリサイクル方法及びそのシステム
JP2019155237A (ja) * 2018-03-09 2019-09-19 太平洋セメント株式会社 漁網のリサイクル装置及び方法
US20200181354A1 (en) * 2018-12-11 2020-06-11 Earthrecycle Co., Ltd. Separation and collection apparatus of plastic-based complex waste
CN109786506B (zh) * 2019-01-08 2020-12-08 苏州福斯特光伏材料有限公司 一种复合型背板生产废料的在线处理方法
CN109786506A (zh) * 2019-01-08 2019-05-21 苏州福斯特光伏材料有限公司 一种复合型背板生产废料的在线处理方法
JP2020157667A (ja) * 2019-03-27 2020-10-01 凸版印刷株式会社 不燃シートの再資源化方法及び不燃シートの再資源化装置
JP7375272B2 (ja) 2019-03-27 2023-11-08 Toppanホールディングス株式会社 不燃シートの再資源化方法及び不燃シートの再資源化装置
CN110862535B (zh) * 2019-11-15 2022-03-11 浙江理工大学 一种解聚含锦纶废聚酯制备共聚酯酰胺的方法
CN110862535A (zh) * 2019-11-15 2020-03-06 浙江理工大学 一种解聚含锦纶废聚酯制备共聚酯酰胺的方法
EP4079798A4 (en) * 2019-12-19 2023-10-25 Joaquim Antunes Quevedo, Edson METHOD FOR RECYCLING LAMINATED POLYMER PACKAGING USING ETHYLENE GLYCOL
CN111363194A (zh) * 2020-03-17 2020-07-03 江门市恒聚科技有限公司 一种回收橡胶的分离液及其应用
CN113102454A (zh) * 2021-04-09 2021-07-13 新疆农业大学 一种虫菌复合技术分离棉田残膜回收混合物的方法
CN113560319A (zh) * 2021-07-21 2021-10-29 中南大学 一种废弃线路板的溶剂气化热解装置及方法
WO2024004833A1 (ja) * 2022-06-30 2024-01-04 住友化学株式会社 炭素原子数2~8の不飽和炭化水素の製造方法、炭素原子数2~8の不飽和炭化水素混合物の製造方法、オレフィン系重合体の製造方法、化合物の製造方法、重合体の製造方法、オレフィン系重合体および重合体
WO2024063099A1 (ja) * 2022-09-22 2024-03-28 三菱重工業株式会社 分離システム及び分離方法
JP7446038B1 (ja) 2023-09-20 2024-03-08 ドナウ商事株式会社 ポリアミド系樹脂及びポリオレフィン系樹脂を含有する複合樹脂材料のリサイクル方法

Also Published As

Publication number Publication date
JPWO2014098229A1 (ja) 2017-01-12
JP6050834B2 (ja) 2016-12-21

Similar Documents

Publication Publication Date Title
JP6050834B2 (ja) プラスチック系複合廃棄物の分別回収方法
JP5883585B2 (ja) 複合系プラスチック廃棄物の分離回収方法及びそれに用いる万能型分離回収装置
JP4574543B2 (ja) 層廃フィルムのリサイクル方法
KR101561528B1 (ko) Pet 폐기물의 화학적 재활용 방법
CN102292415B (zh) 从废弃物和/或生物质生成合成气和/或液体原料和/或能源材料的工艺
US20140174257A1 (en) Method for decomposing cured epoxy resin
Swain et al. Recycling of waste automotive laminated glass and valorization of polyvinyl butyral through mechanochemical separation
CN1213096C (zh) 一种热固性环氧复合材料的化学回收方法
CN104527177A (zh) 一种用于印刷电路板的可回收半固化片、固化片、覆铜板及其制备、回收方法
JP5880960B2 (ja) 複合体からの不溶物の回収方法
KR100635622B1 (ko) 폴리에스테르의 클리닝 및 오염 제거 방법
CN109134921A (zh) 塑料系复合废弃物的分离回收装置
US6689821B2 (en) Chemical method of removing paint film on plastic resin using isopropyl alcohol
KR101552868B1 (ko) Pet 폐기물의 화학적 재활용 방법
TW202000415A (zh) 塑膠系複合廢棄物之分離回收裝置
JP2009256161A (ja) 塩化水素ガス液化濃縮装置
US8304464B2 (en) Polyester with caustic material mixing methods and mixing reactors
JP3419624B2 (ja) 廃プラスチックの処理装置及び処理方法
JP2009120766A (ja) テレフタル酸ジメチル及びエチレングリコールの回収方法
US20200181354A1 (en) Separation and collection apparatus of plastic-based complex waste
JP2010150297A (ja) プラスチックの処理方法
Di Persio et al. Recyclability of novel energy harvesting and storage technologies for IoT and wireless sensor networks
JPWO2003011956A1 (ja) 難燃剤含有ポリスチレン系プラスチックを含むプラスチック系廃棄物の処理方法及び処理装置
TR2021007024T2 (tr) Şi̇şe sinifi pet reçi̇nesi̇ üreti̇mi̇nde kullanilmak üzere şeffaf pet atiklarinin geri̇ dönüştürüldüğü ki̇myasal gli̇koli̇z yöntemi̇
Salmela Chemical recycling of carbon fibre-reinforced epoxy composites

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13864884

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014553225

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13864884

Country of ref document: EP

Kind code of ref document: A1