WO2014098104A1 - 異種発電装置間の並列運転制御方法および制御システム - Google Patents

異種発電装置間の並列運転制御方法および制御システム Download PDF

Info

Publication number
WO2014098104A1
WO2014098104A1 PCT/JP2013/083822 JP2013083822W WO2014098104A1 WO 2014098104 A1 WO2014098104 A1 WO 2014098104A1 JP 2013083822 W JP2013083822 W JP 2013083822W WO 2014098104 A1 WO2014098104 A1 WO 2014098104A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
parallel operation
power
generator
drooping characteristic
Prior art date
Application number
PCT/JP2013/083822
Other languages
English (en)
French (fr)
Other versions
WO2014098104A8 (ja
Inventor
潮田征弘
千田充
佐藤和憲
立石孝七
Original Assignee
川崎重工業株式会社
株式会社第一テクノ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社, 株式会社第一テクノ filed Critical 川崎重工業株式会社
Priority to JP2014553166A priority Critical patent/JP6131274B2/ja
Priority to EP13865962.8A priority patent/EP2937964A4/en
Priority to KR1020157015896A priority patent/KR101727087B1/ko
Priority to US14/653,422 priority patent/US9899842B2/en
Priority to CA2895270A priority patent/CA2895270A1/en
Priority to CN201380067081.0A priority patent/CN104871390B/zh
Publication of WO2014098104A1 publication Critical patent/WO2014098104A1/ja
Publication of WO2014098104A8 publication Critical patent/WO2014098104A8/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/10The dispersed energy generation being of fossil origin, e.g. diesel generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/02Details of the control

Definitions

  • the present invention relates to a control method for stably performing parallel operation between different types of power generation devices or between a power generation device and a system power supply, and these control systems, and in particular, a voltage control method and control system for shifting to parallel operation About.
  • power generators that are regularly used and power generators that are operated in an emergency or emergency are distinguished according to the type of engine or engine that constitutes them. Not done. However, if a failure occurs in a part of the equipment that is in regular operation, or if the load fluctuation is large and peak cut operation with a standby machine is desired, etc., about the power generator of the same type including the standby machine, It was common to perform parallel operation after adjusting in advance to have the same frequency drooping characteristic and the same voltage drooping characteristic.
  • the power system side Changes always appear in the output voltage droop characteristics and the impedance on the system power supply side.
  • Output voltage drooping characteristics (characteristics in which output voltage decreases with increasing load) must be matched, so in the case of different types of generators, the side having excellent voltage drooping characteristics, that is, Operate while adjusting the voltage drooping characteristic on the side where the output voltage drop due to the increase in load is small to the characteristic on the side where the voltage drooping characteristic is inferior, regardless of whether the generator is running independently or in parallel operation.
  • a single stand-alone operation was performed when the generators were paralleled or released without changing the voltage drooping characteristics. For this reason, at the time of self-supporting operation, the performance inherent to the generator and the prime mover that drives the generator could not be exhibited, which hindered efficient operation.
  • induction generators it is not easy to load the inrush current when the induction generator is turned on in parallel with a small capacity synchronous generator during self-sustained operation. Since the current value is far exceeded, parallel operation with the synchronous power generator has not been performed as described above. The same applies to the direct start of the induction motor. Furthermore, it is difficult to operate an inductive load having a large starting current even in a self-operating power conditioner or a UPS power supply device during self-sustaining operation.
  • the power generation apparatus that operates in parallel with the system side in accordance with the change in the system power supply of the power generation apparatus that is configured (the power generation equipment in operation that constitutes the system) Therefore, there is a need for a control method and a control system that arbitrarily change the voltage drooping characteristics of the power supply and optimally switch the voltage drooping characteristics according to the characteristics between the power generating devices.
  • an object of the present invention is to provide a voltage control method and a control system for stable and highly efficient parallel operation of different types of power generation devices or between power generation devices and a system power supply.
  • a parallel operation control method or a parallel operation control system between different types of power generation devices is a control method for shifting a plurality of different types of power generation devices to parallel operation. At least one of the output voltage and the voltage drooping characteristic of at least one of the power generators is changed.
  • the synchronous operation of the synchronous power generators having different voltage drooping characteristics, the parallel operation of the synchronous power generator and the induction power generator, and the synchronous power generator and system, which have been conventionally difficult, are performed. It becomes possible to operate in parallel with the power supply stably.
  • the plurality of different power generators are a plurality of synchronous power generators having mutually different voltage droop characteristics, and each power generation An output voltage control method or system for shifting the plurality of power generators to parallel operation when the devices are independently operated with different voltage drooping characteristics, and the plurality of power generators operated in parallel Among them, the voltage drooping characteristic of one power generator having a smaller voltage drooping characteristic is changed to match the voltage drooping characteristic of the other power generator, When the voltage drooping characteristic is changed, it is preferable to control the other power generator so that the output voltage is maintained at a value before the start of parallel operation.
  • one of the plurality of power supply devices is a synchronous power generation device and the other is an induction power generation device.
  • the drooping rate of the voltage drooping characteristic of the synchronous power generator may be set to a value larger than the drooping rate during the self-sustaining operation in response to the parallel operation start signal.
  • one of the plurality of power supply apparatuses is a synchronous power generation apparatus
  • the other is a system power supply
  • the system power supply
  • the drooping rate of the voltage drooping characteristic of the synchronous power generator is larger than the drooping rate during the independent operation May be set.
  • the generation of excessive current due to the voltage drop of the system power supply is suppressed, and the step-out due to the expansion of the internal phase angle of the power generator operated in parallel with the system power supply is prevented.
  • stable parallel operation can be maintained even after the system power supply voltage is restored.
  • the standards related to grid interconnection in each country require that operation be maintained for about 1 to 3 seconds even when a large voltage drop occurs, but such standards can be satisfied.
  • FIG. 1 shows a schematic configuration of a drive system DS of a device on which a control system 1 according to an embodiment of the present invention is mounted.
  • the control system 1 is a system for executing a control direction according to an embodiment of the present invention.
  • this control method is used when a plurality of different types of generators having different voltage drooping characteristics, or generators and system power supplies, are independently operated, each having a voltage drooping characteristic that decreases as the load increases. This is a control method for shifting to parallel operation for driving the same drive object.
  • the “power generation device” that is the target of parallel operation in this specification refers to a prime mover having a rotating machine, for example, an electromagnetic induction synchronous power generating apparatus driven by a gas turbine engine or a diesel engine, and a rotating machine.
  • a prime mover having a rotating machine for example, an electromagnetic induction synchronous power generating apparatus driven by a gas turbine engine or a diesel engine, and a rotating machine.
  • power generators capable of independent operation such as fuel cell generators, solar power generators (including solar cells), etc., and induction power generators and system power supplies (commercial power) Power supply).
  • the “parallel operation” in the present specification includes an interconnection operation when one power generation device is a system power supply.
  • the prime mover for driving the electromagnetic induction generator for example, a device having a rotating machine capable of operating an output voltage, such as a gas turbine engine, a diesel engine, a windmill, or a water turbine, can be used.
  • a first generator GE1 driven by a first prime mover (for example, a gas turbine engine) 3 includes a load to be driven via a first circuit breaker 5 and a communication circuit breaker 7. Connected to L.
  • the second generator GE2 driven by the second prime mover (for example, diesel engine) 13 is connected to the load L via the second circuit breaker 15 and the communication circuit breaker 7.
  • the load L is connected to the system power source 19 via the system circuit breaker 17 independently of the generators GE1 and GE2.
  • the first generator GE1 and the second generator GE2 are shifted to parallel operation from the voltage drooping characteristics of each generator, in addition to the voltage droop amount of the counterpart power generator,
  • the load of the other type of generator here, for example, the first generator GE1
  • the load of the other type of generator so as to be a load obtained by subtracting the load of the one type of generator (here, for example, the second generator GE2) from the required load.
  • the voltage drooping characteristic of the first generator GE1 is changed to match the voltage drooping characteristic of the second generator GE2, and when the drooping characteristic is changed, the first generator GE1 is output. Control to maintain the voltage.
  • FIG. 2 shows how reactive current is shared between the two generators GE1 and GE2 with respect to the load.
  • the drooping base point of the first generator GE1 that is, the output voltage at the time of no load, and the drooping base point of the second generator GE2 at the time of no load are different from each other. % And 105%. Therefore, the drooping characteristics, which are output voltage drop rates from the full load (state (A)) with respect to the no load, of the first generator GE1 and the second generator GE2 are 3% and 5%, respectively, which are different from each other. .
  • the balance of the current output distribution between the generators is lost (state (B)) with respect to the fluctuation of the load amount that occurs when the invalid portion of the load fluctuates, and the generated voltage needs to be adjusted.
  • a generator having a low voltage drooping characteristic in this example, the first generator GE1 receives a cross current, and the other (in this example, in this example).
  • the second generator GE2) bears this cross current.
  • the voltage drooping characteristics are consistent between the generators and It is necessary that the base points match. If the voltage drooping characteristics match, the adjustment amount of the cross current sharing between the different generators GE1 and GE2 is small, and the load sharing ratio is uniform. On the other hand, if the voltage droop characteristics do not match, as described above, a significant load current imbalance and a cross current occur in load distribution between the different types of generators GE1 and GE2 at low load.
  • Fig. 5 shows the procedure for shifting to parallel operation when the voltage drooping characteristic is automatically changed.
  • load sharing during parallel operation typically, for example, a capacity ratio for each generator
  • the first generator GE1 and the second generator GE2 which are heterogeneous power generators, are activated by the activation command, and the autonomous operation of each generator is started.
  • the circuit breaker 15 and the communication circuit breaker 7 on the second generator GE2 side are closed in advance, and the load operation by the second generator GE2 is performed.
  • the independent operation of the first generator GE1 is advanced in parallel with the independent operation of the second generator GE2 as preparation for feeding power to the load L.
  • the GE1 side of the first generator may be operated first, and in that case, the circuit breaker 5 is closed instead of the circuit breaker 15.
  • a parallel operation start command is issued to switch the first generator GE1 and the second generator GE2 that have been operated independently from each other to parallel operation
  • a first voltage generator having a smaller voltage drooping characteristic is performed according to the procedure detailed below.
  • the voltage drooping characteristic of one generator GE1 is changed to match the voltage drooping characteristic of the other second generator GE2.
  • the output voltage of the first generator GE1 is maintained according to the load sharing of the predetermined reactive current and active current.
  • the voltage drooping characteristics may be matched at the same time by separately performing effective current balance control.
  • the reactive current load balancing device is operated to shift to a reactive current load balancing state.
  • the voltage drooping characteristic and the output voltage command value are simultaneously changed from the optimum operating condition during the self-sustaining operation of the first generator GE1.
  • the principle of changing the voltage drooping characteristic will be described with reference to FIGS.
  • the state shown by the straight line (1) (the drooping characteristic 3%, the no-load output voltage 103%) is the first generator GE1 in the self-sustaining operation. It is a state.
  • a straight line (2) shows a state in which only the voltage drooping characteristic is changed to 5% without changing the drooping characteristic base point G0 from the straight line (1).
  • a state when only the output voltage command value is changed from the state indicated by the straight line (1) is indicated by the straight line (3).
  • the state of the self-sustained operation indicated by the straight line (5) (voltage drooping characteristic 3%, no load) Operation to change the voltage drooping characteristic to 5% without changing the base point G0 of the voltage drooping characteristic (straight line (6)), and an operation to change the output voltage command value (straight line (101.5%))
  • the output voltage of the first generator GE1 is not changed, and only the voltage drooping characteristic is changed, and the straight line (8) is shifted.
  • the voltage drooping characteristic value indicates the rate of decrease in output voltage at 100% load relative to no load, and the output voltage at no load is the ratio of the output voltage at no load to the output voltage at 100% full load. Indicates.
  • the output voltage of the first generator GE1 is changed by a procedure reverse to the voltage drooping characteristic changing procedure at the start of the parallel operation. Instead, only the voltage drooping characteristics are restored to the values during the independent operation. That is, the first generator GE1 and the second generator GE2 both have a drooping characteristic of 5% and are in parallel operation with a load sharing of 50%, respectively, so that the load of the second generator GE2 is changed to the first generator.
  • the voltage drooping characteristic on the first generator GE1 side is returned from 5% to 3%, and at the same time the output voltage command value is returned to the original value, thereby changing the output voltage of the first generator GE1. Without causing the first generator GE1 to return to the original state in which the first generator GE1 is autonomously operated with a voltage drooping characteristic of 3%.
  • Figures 8 to 10 show specific examples of the output voltage control method for parallel operation.
  • the output voltage command value set by the output voltage command value setting means 21 is compared with the output voltage detection value measured by the output voltage detector of the first generator GE1, and based on these deviations.
  • the proportional gain setting means 25 determines the proportional gain, and performs feedback proportional control in which the output voltage is controlled by adjusting the exciter 27 of the generator based on this proportional gain.
  • FIG. 8 shows an example of a control method in parallel operation between different types of synchronous generators. More specifically, when the first generator GE1 having a voltage drooping characteristic of 3% and the second generator GE2 having a voltage drooping characteristic of 5% are operated in parallel, the drooping characteristic is operated in accordance with 5%.
  • a control method is shown. In this example, the voltage setting value S is ⁇ 0 + 105%, and the proportional gain P is 20.0 times. Note that ⁇ 0 is a value at no load.
  • the case where the voltage drooping characteristic is changed from 3% to 5% is given as an example.
  • the value of the voltage drooping characteristic is arbitrarily changed by changing the proportional gain of the proportional control. can do.
  • the output voltage command value together with the drooping characteristic it is possible to change only the value of the voltage drooping characteristic while maintaining the output voltage of the power generator.
  • the synchronous power generator is Receives excessive current from the induction generator.
  • the voltage setting value S is preferably 70 to 90% of the value based on the voltage drooping characteristic.
  • the starting current is suppressed to about 50 to 80% when the voltage set value S is a value based on the voltage drooping characteristic.
  • the voltage command value S is changed to a value based on the voltage drooping characteristic to return to the specified voltage value.
  • Such control is particularly effective when the starting current of one power generator corresponds to 20 to 50% of the short-circuit current.
  • the voltage drooping amount in the voltage drooping characteristic is greatly increased.
  • the voltage drooping amount is usually 3% to 5%, while the voltage setting value is maintained, 20% to Changing to 30% is also effective.
  • the voltage command value can be changed according to the turn-on timing, or the voltage drooping characteristics can be This change is effective in reducing the starting current.
  • FIG. 9 shows a control method when the power generation device and the system power supply are operated in parallel, and particularly, a control method when a steady operation is performed in the parallel operation of the power generation device and the system power supply.
  • FIG. 10 shows a control method when the power generation device and the system power supply are operated in parallel, and shows a control method when a significant voltage drop occurs in the system power supply.
  • the voltage setting value S on the self-sustained operation generator side in the example of FIG. 8 is changed to, for example, ⁇ 0 + 110% as the parallel operation with the system power source,
  • the proportional gain P may be set to 10.0 times.
  • FIG. 11 when a significant voltage drop ( ⁇ V%) occurs instantaneously in the system power supply, excessive reactive current or power fluctuation is usually generated in the counterpart generator device in parallel operation. Will occur.
  • the chart (a) in FIG. 11 schematically shows the voltage change of the system power supply when there is an instantaneous voltage drop in the system power supply.
  • the chart (b) in FIG. The change of the output voltage and internal phase angle of a generator corresponding to a change is shown. A sudden drop in the voltage of the system power supply has a great influence on the power generation apparatus on the other side.
  • an excessive current of 1 / Xd ′′ ⁇ voltage reduction rate (Xd ′′: power generator initial transient reactance) is generated on the partner power generator side during the voltage drop on the system power source side.
  • Xd ′′ power generator initial transient reactance
  • the internal phase angle of the power generator increases, leading to a step-out phenomenon of the connected generator in a short time (for example, 0.3 to 1.0 seconds).
  • the voltage of the grid power supply recovers while the internal phase angle of the power generator is expanding, an asynchronous turn-on event between the power generator and the grid power supply due to an increase in the phase difference between the power generator and the grid power supply Will occur.
  • the impact in this case is about 1 / Xd ′′ ⁇ 2 times when the internal phase angle of the power generation device is the maximum (phase angle immediately before the power generation device steps out), and an excessive reactive current is generated. An excessive burden of active power is generated in the connected power generation apparatus.
  • power output reduction control corresponding to the amount of voltage drop is performed on the power command (target) set for the power generators to be operated in parallel.
  • the voltage drop amount ⁇ V% for performing such control is, for example, 5% or more and 1.5 to 2.5 times the drooping characteristic value (%) (that is, 7.5 to 12 in this example). .5%).
  • the operation is performed in the reverse procedure at the time of the parallel start described above. That is, the voltage drooping is performed by opening the communication breaker 7 in FIG. 1 after shifting the load as necessary from the state of the parallel operation of the first generator GE1 and the second generator GE2 in this embodiment. A characteristic return change command is issued, and the drooping characteristic of the first generator GE1 is returned and changed from 5% to the original 3%. As described above, even when parallel operation is canceled, the drooping characteristic of the first generator GE1 can be changed to return to the original optimum state as the generator operation. Therefore, the drooping characteristic can be obtained only when parallel operation is necessary. When the operation is performed in a state in which the parallel operation is not required and the independent operation is performed, the generator that performs the independent operation can be operated under the optimum conditions.
  • the control method in the case of starting automatically the parallel operation condition mainly as a change of a voltage drooping characteristic, you may start a drooping characteristic change manually.
  • the drooping change start command can be manually given to change the drooping characteristic, and then the parallel operation start operation can be performed. It is the same.
  • the generator start signal is received and the control logic is initialized.
  • the proportional gain initial value PB is set in the proportional gain setting means 25 and the output voltage setting initial value NB is set in the voltage command value setting means 21 by the initialization command signal from the control constant initialization means 41.
  • the proportional gain is changed.
  • the output voltage change by the voltage command value setting means 21 is always possible, and the rated operation condition of the output voltage may be provided as an interlock.
  • the operation to change the voltage drooping characteristic is started by receiving a drooping characteristic change enable signal and a drooping characteristic change command signal.
  • a drooping characteristic changeable signal a generator rated voltage signal is usually used.
  • the drooping characteristic change command signal is sent when either an automatically changing drooping characteristic change command or a manual changing drooping characteristic change command is issued.
  • the drooping characteristic change command signal for automatic change and manual change is given as follows.
  • the own generator breaker (first breaker in the example of FIG. 1) 5, heterogeneous generator breaker (second breaker in the example of FIG. 1) 15 and communication breaker 7.
  • the drooping characteristic change command signal is automatically changed.
  • a droop characteristic change command signal is manually sent from the droop characteristic manual change command means 43. If all of the own machine breaker 5, the heterogeneous circuit breaker 15 and the contact breaker 7 are shut off before the manual signal from the drooping characteristic manual change command means 43 is input, the change of the voltage drooping characteristic is automatically performed. Be started.
  • the change time setting means 45 sets a gradual change time for changing the voltage drooping characteristic. It is set to change the voltage drooping characteristics instantaneously when the setting is 0, and gradually over a specified time when the setting is other than 0.
  • the proportional gain change amount initial value setting means 47 sets the initial value for changing the proportional gain by changing the voltage drooping characteristic. The total change of the proportional gain change amount is added to complete the change of the proportional gain.
  • the proportional gain change amount calculation means 49 calculates the proportional gain change rate for each fixed cycle (usually the sampling time of the control system) from the change time of the voltage drooping characteristic and the proportional gain change amount, and according to this change rate, the proportional gain change rate is calculated. Subtract from operating value.
  • the proportional gain change amount is equal to the proportional gain change rate, and the entire amount of the proportional gain change amount is subtracted instantaneously (that is, in one cycle of the sampling time) to complete the drooping characteristic change. To do.
  • the proportional gain change rate is subtracted from the initial value of the proportional gain change amount every fixed cycle.
  • the drooping characteristic change determining means 51 determines whether or not the change for the proportional gain change amount has been completed, and when it is determined to be complete, the subtraction of the proportional gain is terminated.
  • the voltage change amount initial value setting means 53 sets the change amount initial value of the output voltage command value when the drooping characteristic is changed. By adding the total output voltage command value change amount, the change of the output voltage command value is completed.
  • the voltage command value change amount calculation means 55 rotates at a constant cycle (usually the sampling time of the control system) from the output voltage command value change amount and the change time of the voltage drooping characteristic set by the change time setting means 45.
  • a command number change rate is calculated and subtracted from the operation value of the output voltage command value setting means 21 according to this change rate.
  • the output voltage command value change amount is equal to the output voltage command value change rate, and the entire output voltage command value change amount is subtracted instantaneously (that is, in one cycle of the sampling time). The change of the output voltage command value is completed.
  • the output voltage command value change rate is subtracted every predetermined cycle from the initial value of the output voltage command value change amount.
  • the output voltage command value change determining means 57 determines whether or not the change for the output voltage command value change amount has been completed.
  • a change to return the voltage drooping characteristic from the value at the time of parallel operation (5% in this embodiment) to the value at the time of independent operation (3% in this embodiment) at the time of disconnection will be referred to as “return change”.
  • the drooping characteristic return change enable signal and the drooping characteristic return change command signal are received, and the drooping characteristic return changing operation is started.
  • the generator rated voltage signal is normally used as the drooping characteristic return changeable signal.
  • the drooping characteristic return change command signal is sent when either an automatic change drooping characteristic return change command or a manual change drooping characteristic return change command is issued.
  • the drooping characteristic return change command signals for automatic change and manual change are given as follows.
  • the drooping characteristic return change command signal is normally obtained by opening at least one of the own generator breaker 5, the inter-engine communication breaker 17, and the heterogeneous generator breaker 15.
  • a drooping characteristic return change command signal is manually sent from the drooping characteristic manual return change command means. If at least one of the own generator circuit breaker 5, the contact circuit breaker 7, and the heterogeneous circuit breaker 15 is opened before the manual signal from the drooping characteristic manual return change command means 143 is input, the drooping characteristic Return changes are made automatically.
  • the gradual change time for performing the return change of the voltage drooping characteristic is set by the return change time setting means 145.
  • the setting is made so that the voltage drooping characteristic is restored and changed gradually over a specified time in a setting other than 0 instantaneously with a setting of 0.
  • the proportional gain return change initial value setting means 147 sets the initial value of the proportional gain return change due to the return change of the voltage drooping characteristic. By adding the entire proportional gain return change amount, the return change of the proportional gain is completed.
  • the proportional gain return change amount calculation means 149 calculates a proportional gain change rate for each fixed cycle (usually the sampling time of the control system) from the change time of the voltage drooping characteristic and the proportional gain return change amount, and according to this change rate, Subtract from the proportional gain operating value.
  • the proportional gain return change amount proportional gain change rate
  • the entire amount of the proportional gain return change amount is subtracted instantaneously (that is, in one cycle of the sampling time). The return change is complete.
  • the proportional gain change rate is subtracted every fixed cycle from the initial value of the proportional gain return change amount.
  • the drooping characteristic return change determination means 151 determines whether or not the change for the proportional gain return change amount has been completed. When it is determined that the change has been completed, the subtraction of the proportional gain is terminated.
  • the output voltage return change initial value setting means 153 sets the return change amount initial value of the output voltage command value when the droop characteristic return change is made. By adding the total output voltage command value return change amount, the return change of the output voltage command value is completed.
  • the output voltage command value return change amount calculation means 155 calculates a fixed cycle (usually the sampling time of the control system) from the output voltage command value return change amount and the return change time of the voltage drooping characteristic set by the return change time setting means. ) The output voltage command value change rate for each is calculated and subtracted from the operation value of the output voltage command value setting means 21 according to this change rate.
  • the output voltage command value return change amount equals the output voltage command value change rate, and the entire output voltage command value return change amount instantaneously (that is, in one sampling time cycle). Is subtracted, and the return change of the output voltage command value is completed.
  • the output voltage command value change rate is subtracted every predetermined cycle from the initial value of the output voltage command value return change amount.
  • the output voltage command value return change determination means 157 determines whether the return change for the output voltage command value return change amount has been completed. When it is determined that the output voltage command value return change has been completed, the subtraction of the output voltage command value ends.
  • the parallel operation of the synchronous power generators having different voltage drooping characteristics, the synchronous power generator and the induction type, which has been conventionally difficult, is performed. It becomes possible to stably operate parallel operation with the power generation device and parallel operation with the synchronous power generation device and the system power supply. Therefore, it is possible to stably perform parallel operation between different types of power generation devices or between the power generation device and the system power supply without impairing the performance of each power generation device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

 複数の異種発電装置を並列運転に移行させる際の制御方法において、前記複数の発電装置の少なくとも一方の出力電圧および電圧垂下特性の少なくとも一方を変更する。前記複数の異種発電装置が、電圧垂下特性が互いに異なる複数の同期型発電装置である場合は、並列運転される前記複数の発電装置(GE1,GE2)のうち、より小さい電圧垂下特性を有する一方の発電装置(GE1)の当該電圧垂下特性を、他方の発電装置(GE2)の電圧垂下特性に合致するよう変更し、前記電圧垂下特性変更時に、前記他方の発電装置(GE2)を、その出力電圧が並列運転開始前の値に維持されるように制御する。

Description

異種発電装置間の並列運転制御方法および制御システム 関連出願
 本出願は、2012年12月21日出願の特願2012-279658の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。
 本発明は、異種発電装置間または発電装置と系統電源との間で安定的に並列運転を行うための制御方法およびこれらの制御システム、特には並列運転に移行する際の電圧制御方法および制御システムに関する。
 一般に、各種電源設備では、常用運用される発電装置と非常時や緊急時に運用される発電装置を、構成するエンジンや機関の種類により区別しており、種類や特性の異なる発電装置同士の並列運用は行われていない。しかし、常用運用されている装置の一部に不具合が発生した場合や、負荷変動が大きく、スタンバイ機によるピークカット運用が望まれる場合等には、スタンバイ機も含めて同一種類の発電装置について、同一周波数垂下特性と同一電圧垂下特性を持つよう、事前に調整を行ったうえで並列運転を行うことが一般的であった。
 また、従来から、自立運転型発電装置として同期型発電機が用いられている一方で、自立運転ができない誘導型発電機は、商用電源のような大きな系統電源との連系運転に限定して使用されている。
 さらに、電源系統を構成する各種発電装置の任意な運転停止や、時間帯や周囲環境等で大きく変わる自然エネルギー回収型の電源設備の場合には、組み合わされた電源仕様に応じて電源系統側の出力電圧垂下特性も系統電源側のインピーダンスにも常に変化が現れてくる。
特開2005-354861号公報
 このように、複数の発電機間で並列運転を行う場合、発電機容量に応じ軽負荷から全負荷まで発電機間の有効電流および無効電流の負荷配分を均等に行うためには、両発電機の出力電圧垂下特性(負荷の増大に応じて出力電圧が低下する特性)を一致させる必要があることから、従来、異種の発電機同士の場合には、優れた電圧垂下特性を有する側、つまり負荷の増大による出力電圧の低下が小さい側の電圧垂下特性を、発電機自立運転時か並列運転時かにかかわらず、電圧垂下特性の劣る側の特性に調整した状態で運転し、運転途中で電圧垂下特性を変更することなく発電機同士の並列または解除時の単独自立運転を行っていた。このため、自立運転時に、発電機や発電機を駆動する原動機が本来有する性能を発揮させることができず、効率的な運転の妨げとなっていた。
 誘導型発電装置に関しては、自立運転中の小容量の同期発電機に対して、誘導発電機の並列投入における突入電流の負担が容易ではなく、この並列突入での始動電流が同期発電機の定格電流値を遥かに超えることになるため、上述のように同期型発電装置との並列運転は行われてこなかった。誘導電動機の直入れ始動でも同様である。さらに、自立運転型パワコンディショナーや自立運転時のUPS電源装置でも、始動電流の大きい誘導型負荷の運転は困難とされている。
 さらには、系統電源と連系する上記のような電源設備に対し、構成する発電装置の系統側電源(系統を構成する運転中の発電設備)の変化に応じ、系統側と並列運転する発電装置の電圧垂下特性を任意に変更し、構成する発電装置間の特性に合わせて、最適に切換えを行う制御方法と制御システムが必要とされてきている。
 そこで、本発明の目的は、異種の発電装置同士、または発電装置と系統電源とを、安定的かつ高効率に並列運転するための電圧制御方法および制御システムを提供することにある。
 上記目的を達成するために、本発明に係る異機種発電装置間の並列運転制御方法または並列運転制御システムは、複数の異種発電装置を並列運転に移行させる際の制御方法であって、前記複数の発電装置の少なくとも一方の出力電圧および電圧垂下特性の少なくとも一方を変更する。
 この構成によれば、従来は困難とされていた、異なる電圧垂下特性を有する同期型発電装置同士の並列運転、同期型発電装置と誘導型発電装置との並列運転、および同期型発電装置と系統電源との並列運転を安定的に運用することが可能となる。
 本発明の一実施形態に係る異機種発電装置間の並列運転制御方法または並列運転制御システムは、前記複数の異種発電装置が、電圧垂下特性が互いに異なる複数の同期型発電装置であり、各発電装置が有する互いに異なる電圧垂下特性で自立運転しているときに、前記複数の発電装置を並列運転に移行させる際の出力電圧の制御方法またはシステムであって、並列運転される前記複数の発電装置のうち、より小さい電圧垂下特性を有する一方の発電装置の当該電圧垂下特性を、他方の発電装置の電圧垂下特性に合致するよう変更し、
 前記電圧垂下特性変更時に、前記他方の発電装置を、その出力電圧が並列運転開始前の値に維持されるように制御することが好ましい。
 この構成によれば、各発電装置がそれぞれの最適な電圧垂下特性において単独で運転されている状態からでも、並列運転移行後に発電装置間で負荷電流の不平衡は発生せず、各発電装置の容量比に基づく運転が可能となる。すなわち、負荷のアンバランスの発生を抑制しながら並列運転へ移行することが可能となる。したがって、各発電装置の性能を損なうことなく、かつ安定的に、異種発電装置同士または発電装置と系統電源との並列運転を行うことができる。
 本発明の一実施形態に係る異機種発電装置間の並列運転制御方法または並列運転制御システムは、前記複数の電源装置の一方が同期型発電装置であり、他方が誘導型発電装置であり、先行して自立運転している前記同期型発電装置と、前記誘導型発電装置とを並列運転に移行させる際の制御方法またはシステムであって、前記同期型発電装置の出力電圧を、並列運転の開始信号を受けて、自立運転時の出力電圧値よりも小さい値に設定することが好ましい。あるいは、前記同期型発電装置の電圧垂下特性の垂下率を、並列運転の開始信号を受けて、自立運転中の垂下率よりも大きい値に設定してもよい。
 この構成によれば、同期型発電装置と大きな始動電流を伴う誘導型発電装置とを並列運転する場合にも、同期型発電装置の電圧垂下特性または電圧設定値を任意に変更することにより、並列運転開始時の瞬間的な過大電流の発生を抑制できるので、安定的に並列運転に移行することが可能となる。
 本発明の一実施形態に係る異機種発電装置間の並列運転制御方法または並列運転制御システムにおいて、前記複数の電源装置の一方が同期型発電装置であり、他方が系統電源であり、前記系統電源に、前記同期型発電装置の電圧垂下特性を超える電圧低下が発生した場合に、この電圧低下量に応じて前記同期型発電装置の出力電圧指令値を低下させることが好ましい。あるいは、前記系統電源に、前記同期型発電装置の電圧垂下特性を超える電圧低下が発生した場合に、前記同期型発電装置の電圧垂下特性の垂下率を、自立運転中の垂下率よりも大きい値に設定してもよい。
 系統電源側で電圧低下が発生した場合、連系中の発電装置において過大な電流の流出とその過電流負担が継続し、時間の経過と共に発電装置の内部位相角が拡大する。さらには発電装置の脱調現象へと至る可能性がある。一方、内部位相角が拡大した状態で系統電源側の電圧が復帰する場合には、内部位相角の拡大状況によって、系統電源と発電装置との位相差拡大による非同期事象となり、大きな衝撃が生じる。また、系統電源の電圧低下から復帰がさらに遅れ、内部位相角が拡大を続けた場合、発電装置は脱調現象へと至り、連系運転の継続は困難となる。以上のような事象に対して、上記構成によれば、系統電源の電圧低下による過大電流発生を抑止し、かつ、系統電源と並列運転される発電装置の内部位相角拡大による脱調を防止して、系統電源の電圧復帰後も、安定的に並列運転を維持することができる。また、各国の系統連系に関する規格では、大きな電圧低下の発生時にも1~3秒前後の運転維持が要求されるが、このような規格を満たすことが可能となる。
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、本発明に含まれる。
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。
本発明の一実施形態に係る方法を実行する制御システムが搭載される機器の駆動系統の概略構成を示すブロック図である。 異種発電機間で電圧垂下特性が異なる場合の状態を示すグラフである。 異種発電機間で電圧垂下特性の基点が不一致の場合の状態を示すグラフである。 異種発電機間で電圧垂下特性およびその基点が一致する場合の状態を示すグラフである。 本発明の一実施形態に係る並列運転手順を示すフロー図である。 本発明の一実施形態における、全負荷運転時の電圧垂下特性変更の原理を説明するためのグラフである。 本発明の一実施形態における、部分負荷運転時の電圧垂下特性変更の原理を説明するためのグラフである。 本発明の一実施形態における電圧垂下比例ゲインの制御方法を示すブロック図である。 本発明の一実施形態における電圧垂下比例ゲインの制御方法(一方の発電装置が系統電源の場合)を示すブロック図である。 本発明の一実施形態における電圧垂下比例ゲインの制御方法(一方の発電装置が系統電源の場合)を示すブロック図である。 本発明の系統電源側の瞬時電圧低下に対する連系発電機への影響解析である。 本発明の一実施形態に係る電圧制御システムを示すブロック図である。
 以下,本発明の好ましい実施形態を図面に基づいて説明する。
 図1に、本発明の一実施形態に係る制御システム1が搭載される機器の駆動系統DSの概略構成を示す。この制御システム1は、本発明の一実施形態に係る制御方向を実行するためのシステムである。また、この制御方法は、負荷の増大に応じて出力電圧が低下する特性である電圧垂下特性が互いに異なる複数の異種発電機同士または発電機と系統電源とを、それぞれ自立運転しているときに、同一の駆動対象を駆動する並列運転に移行させる際の制御方法である。
 なお、本明細書における並列運転の対象となる「発電装置」とは、回転機を有する原動機、例えばガスタービンエンジンやディーゼルエンジンによって駆動される電磁誘導式の同期型発電装置のほか、回転機を有しない静止型の発電装置、例えば燃料電池発電機、太陽光発電機(太陽電池を含む)など、自立運転が可能なあらゆる種類の発電装置を含み、さらには誘導型発電装置および系統電源(商用電源)も含む。また、本明細書における「並列運転」には、一方の発電装置が系統電源の場合の連系運転も含む。電磁誘導式の発電機を駆動する原動機としては、例えば、ガスタービンエンジン、ディーゼルエンジン、風車、水車等、出力電圧操作が可能な回転機を有する装置を使用することができる。
 異種の同期型発電装置の構成例として、第1原動機(例えば、ガスタービンエンジン)3によって駆動される第1発電機GE1は、第1遮断器5および連絡遮断器7を介して駆動対象の負荷Lに接続されている。一方、第2原動機(例えば、ディーゼルエンジン)13によって駆動される第2発電機GE2は、第2遮断器15および連絡遮断器7を介して負荷Lに接続されている。また、負荷Lは、これら発電機GE1,GE2とは独立に、系統遮断器17を介して系統電源19に接続されている。
 本実施形態に係る制御方法では、各発電機毎の電圧垂下特性から第1発電機GE1と第2発電機GE2とを並列運転に移行させる際に、相手側発電装置の電圧垂下量の他、所要負荷から一方の機種の発電装置(ここでは、例えば第2発電機GE2)との負荷を減算した負荷となるように他方の機種の発電装置(ここでは、例えば第1発電機GE1)の負荷から電圧設定値を決定し、第1発電機GE1の電圧垂下特性を、第2発電機GE2の電圧垂下特性に合致するよう変更し、この垂下特性変更時に、第1発電機GE1を、その出力電圧が維持されるように制御する。
 図2は、負荷に対する両発電機GE1,GE2の無効電流分担の様子を示す。第1発電機GE1の垂下基点、つまり無負荷時の出力電圧と、第2発電機GE2の無負荷時の垂下基点は相異なっており、それぞれ、無負荷時の出力電圧に対して、例えば103%と105%である。したがって、第1発電機GE1と第2発電機GE2の、無負荷時に対する全負荷時(状態(A))からの出力電圧低下率である垂下特性は、それぞれ3%、5%となり、互いに異なる。この場合、例えば負荷の無効分が変動したときに起こる負荷量の変動に対して、発電機間の電流出力配分のバランスが崩れ(状態(B))、発生電圧を調整する必要が生じる。また、無効分の調整によって瞬間的に軽負荷となった場合(状態(C))、電圧垂下特性が小さい発電機(この例では第1発電機GE1)が横流を受け、他方(この例では第2発電機GE2)がこの横流分を負担する。
 異種発電機GE1,GE2間の並列運転を、発電機間の横流電流を抑制し負荷のバランスを保ちながら安定的に行うためには、発電機間で電圧垂下特性が一致しており、かつ垂下基点が一致していることが必要である。電圧垂下特性が一致していれば、異種発電機GE1,GE2間での横流電流分担の調整量が少なく、しかも負荷分担率が均一になる。一方、電圧垂下特性が一致していなければ、前述のとおり、低負荷時に異種発電機GE1,GE2間の負荷配分に著しい負荷電流のアンバランスと横流電流が生じる。また、負荷が瞬時に減少した場合、垂下特性の小さい発電機側(図2の例では第1発電機GE1側)に横流電流が流入し、電圧垂下特性の大きい第2発電機GE2側がこの分も負担することによる過電流事象が発生する。
 さらに、図3に示すように、両発電機GE1,GE2が同じ電圧垂下特性を有していても、垂下基点が一致していなければ、やはり異種発電機GE1,GE2間での負荷電流にアンバランスが発生する。しかし、図4に示すように、電圧垂下特性およびその基点が一致していれば、負荷電流の分担も均等に行われ、発電機間の横流抑制や静的な有効・無効負荷電流の分担バランスは崩れない。
 図5に、電圧垂下特性の変更を自動で行う場合の並列運転移行の手順を示す。まず、並列運転時の負荷分担(典型的には、例えば、発電機毎の容量比)が決定される。この状態で、異種発電装置である第1発電機GE1および第2発電機GE2が、起動指令によって起動され、各発電機の自立運転が開始される。より詳細には、予め第2発電機GE2側の遮断器15および連絡遮断器7が閉じられて、第2発電機GE2による負荷運転が行われる。次いで、第1発電機GE1の独立運転が、負荷Lへの給電準備として、第2発電機GE2の独立運転と並行して進められる。なお、先に運転されているのが第1発電機のGE1側であってもよく、その場合、遮断器15の代わりに遮断器5が閉じられる。
 次いで、並列運転のための同期検定が行われる。異種発電機GE1,GE2間で並列運転を行うためには、通常の並列運転と同様に(a)発電機出力電圧、(b)発電機出力周波数、(c)発電機出力電圧の位相、の3点の同期検定条件が満たされていることが必要である。これらの同期検定条件が全て満たされていることが確認された後に、出力電圧垂下特性の小さい側の発電機である第1発電機GE1側の遮断器5が閉じられる。先行で運転される発電機が第1発電機GE1の場合は、第2発電機GE2側の遮断器15が閉じられる。
 それぞれ独立に運転されていた第1発電機GE1と第2発電機GE2を並列運転に切り替える並列運転開始指令が出された場合に、以下に詳述する手順によって、より小さい電圧垂下特性を有する第1発電機GE1の電圧垂下特性を変更して、他方の第2発電機GE2の電圧垂下特性に合致させる。このとき、第1発電機GE1の出力電圧が、所定の無効電流および有効電流の負荷分担にしたがって維持される。並列運転直後には有効電流の平衡制御を別途行うことにより電圧垂下特性の一致を同時に図ってもよい。その後、無効電流負荷平衡装置を作動させて、無効電流の負荷平衡状態に移行する。
 電圧垂下特性の変更時において、具体的な例として、第1発電機GE1の自立運転時の最適な運転条件から、電圧垂下特性と出力電圧指令値を同時に変更する。この電圧垂下特性変更の原理を、図6および図7を参照しながら説明する。第1発電機GE1が全負荷を負担する場合を示す図6において、直線(1)で示される状態(垂下特性3%,無負荷時出力電圧103%)が、第1発電機GE1自立運転時の状態である。直線(1)から、仮に垂下特性の基点G0を変えずに電圧垂下特性のみを5%に変更した場合の状態を直線(2)で示す。また、直線(1)で示される状態から、仮に出力電圧指令値のみを変更した場合の状態を直線(3)で示す。直線(1)から(2)への変更操作と直線(1)から(3)への変更操作を併せて実行することにより、第1発電機GE1の自立運転状態である直線(1)から、第1発電機GE1の出力電圧に変更が生じることなく、電圧垂下特性のみが変更された状態である直線(4)へ移行される。
 同様に、第1発電機GE1が部分負荷電流(例えば50%)を負担する場合も、図7に示すように、直線(5)で示される自立運転の状態(電圧垂下特性3%,無負荷時出力電圧101.5%)から、電圧垂下特性の基点G0を変えずに電圧垂下特性を5%に変更する操作(直線(6))、および、出力電圧指令値を変更する操作(直線(7))を併せて実行することにより、第1発電機GE1の出力電圧に変更がなく、電圧垂下特性のみが変更された状態である直線(8)へ移行される。前述のとおり、電圧垂下特性の数値は無負荷時に対する100%負荷時の出力電圧の低下率を示し、無負荷時出力電圧は100%全負荷時の出力電圧に対する無負荷時の出力電圧の比率を示す。
 なお、並列運転を解除して第1発電機GE1の自立運転に戻す際には、並列運転開始時の電圧垂下特性変更手順と逆の手順によって、第1発電機GE1の出力電圧を変化させることなく、電圧垂下特性のみを自立運転時の値に復帰させる。つまり、第1発電機GE1と第2発電機GE2をいずれも5%の垂下特性で、それぞれ50%の負荷分担で並列運転している状態から、第2発電機GE2の負荷を第1発電機GE1側へ移行させるとともに、第1発電機GE1側の電圧垂下特性を5%から3%へ戻し、同時に出力電圧指令値を元の値に戻すことにより、第1発電機GE1の出力電圧を変化させることなく、第1発電機GE1を電圧垂下特性3%で自立運転する元の状態に戻る。
 図8~10に、並列運転のための出力電圧制御方法の具体例を示す。これらの例では、出力電圧指令値設定手段21によって設定された出力電圧指令値と、第1発電機GE1の出力電圧検出器によって測定された出力電圧検出値とを比較し、これらの偏差に基づいて、比例ゲイン設定手段25が比例ゲインを決定し、この比例ゲインに基づいて発電機の励磁器27を調整することにより出力電圧を制御するというフィードバック比例制御を行う。
 図8は、異種の同期型発電装置間での並列運転における制御方法の例を示している。より具体的には、3%の電圧垂下特性を有する第1発電機GE1と5%の電圧垂下特性を有する第2発電機GE2を並列運転する際に、垂下特性を5%に合せて運転するための制御方法を示している。この例では、電圧設定値Sをε0+105%とし、比例ゲインPを20.0倍としている。なお、ε0は無負荷時の値である。
 本実施形態では、電圧垂下特性を3%から5%に変更する場合を例として挙げているが、このように、比例制御の比例ゲインを変更することにより、電圧垂下特性の値を任意に変更することができる。さらに、垂下特性とともに出力電圧指令値を併せて変更することにより、発電装置の出力電圧を保ちながら電圧垂下特性の値のみを変更することが可能となる。図8では5%垂下時の電圧設定値はS=ε0+105%、10%垂下時はS=ε0+110%と表記されている。
 なお、並列運転対象の発電装置のうちの一方が、大きな始動電流を要する発電装置、例えば風車型発電装置として採用される誘導型発電装置である場合には、並列運転開始時に、同期型発電装置は誘導型発電装置から過大電流を受ける。これを軽減するため、過大電流が発生している間、電圧設定値Sを、電圧垂下特性に基づく値(この例ではS=ε0+105%)よりも低く設定する。この場合の電圧設定値Sは、例えば、電圧垂下特性に基づく値に対して70~90%の値とすることが好ましい。これにより、電圧設定値Sを電圧垂下特性に基づく値とした場合に対して、始動電流が50~80%程度に抑制される。始動電流が突入する時間を経過した後は、電圧指令値Sを電圧垂下特性に基づく値に変更することにより、規定の電圧値に戻す。このような制御が特に有効となるのは、一方の発電装置の始動電流が、短絡時電流の20~50%に相当する場合である。なお、電圧設定値を変更する代わりに、電圧垂下特性における電圧垂下量を大幅に増大させること、例えば、通常3%~5%の電圧垂下量を、電圧設定値は維持した状態で20%~30%へ変更することも有効である。さらに、小容量の発電装置の自立運転中に、その発電機容量に対して大きめの誘導型発電機を投入する場合においても、投入のタイミングに合わせた電圧指令値変更や、電圧垂下特性の一時的変更は、始動電流の軽減に有効である。
 この制御方法によれば、同期型発電装置と大きな始動電流を伴う誘導型発電装置とを並列運転する場合にも、同期型発電装置の電圧垂下特性または電圧設定値を任意に変更することにより、並列運転開始時の瞬間的な過大電流の発生を抑制できる。これら初期過渡電流が減少に合せて、通常運転時での電圧垂下特性や規定の電圧値に戻す。なお、自立運転型パワーコンデショナーや自立運転中のUPS装置で、誘導型負荷の運転でも同様な初期過渡電流値の抑制制御が可能である。また、電圧垂下特性の変更に関しては、運転中の電圧値を維持しながら、電圧垂下量の変更を、瞬時に行ってもよく、または漸変的に行ってもよい。
 図9に、発電装置と系統電源とを並列運転する際の制御方法、特に、発電装置と系統電源との並列運転において、定常的な運転がされている場合の制御方法を示している。一方、図10は、発電装置と系統電源とを並列運転する際の制御方法であって、系統電源に大幅な電圧低下が生じた場合の制御方法を示している。図9に示す発電装置と系統電源との定常的な並列運転では、図8の例における自立運転発電機側の電圧設定値Sを、系統電源との並列運転として、例えばε0+110%と変更し、比例ゲインPを10.0倍とすればよい。
 一方、図11に示すように、系統電源に瞬間的に大幅な電圧低下(ΔV%)が生じた場合、通常は、並列運転中の相手側発電機装置には過大な無効電流や電力動揺が生じることとなる。なお、図11のチャート(a)は、系統電源に瞬間的な電圧低下があった場合の系統電源の電圧変化を模式的に示しており、同図のチャート(b)は、系統電源電圧の変化に対応する、発電装置の出力電圧および内部位相角の変化を示す。系統電源における電圧の急激な低下は、相手側の発電装置にも大きな影響を及ぼすこととなる。すなわち、相手側の発電装置側では、系統電源側の電圧低下の間、1/Xd”×電圧低下率(Xd”:発電装置初期過渡リアクタンス)の過大電流が発生する。系統電源における電圧低下が継続した場合は、発電装置の内部位相角が拡大し、短時間(例えば0.3~1.0秒)で連系中の発電機の脱調現象に至る。また、発電装置の内部位相角が拡大している間に系統電源の電圧が復帰した場合には、発電装置と系統電源との位相差拡大により、発電装置と系統電源との間で非同期投入事象が発生する。この場合の衝撃は、発電装置内部位相角が最大の場合(発電装置が脱調する直前の位相角)で、1/Xd”×2倍程度となり、過大な無効電流が発生するのみならず、過大な有効電力の負担が連系中の発電装置に発生する。
 このような状況を回避するため、図10に示すように、系統電源母線の電圧値を常時監視し、系統電源に瞬間的に大幅な電圧低下が生じた場合、具体的には、例えば、並列運転対象の発電装置の電圧垂下特性値を超える電圧低下(ΔV%)が生じた場合には、母線電圧値の低下分に発電装置の電圧垂下特性値を加算した電圧指令値を与える。つまり、系統電源側の電圧低下量に倣っての電圧指令値の倣い運転をおこなう。すなわち、この電圧低下量に応じて並列運転対象の発電装置の出力電圧指令値を低下させる。さらに、並列運転対象の発電装置に設定された電力指令(目標)に対して、電圧低下量に応じた電力出力の低減制御を行う。なお、このような制御を行うための電圧低下量ΔV%としては、例えば、5%以上かつ垂下特性値(%)の1.5~2.5倍(すなわち、この例では7.5~12.5%)の範囲内に設定する。
 並列運転を解除する場合は、上記で説明した並列開始時の逆の手順で操作を行う。すなわち、本実施形態における第1発電機GE1と第2発電機GE2の並列運転の状態から、必要に応じて負荷を移行させた後、図1の連絡遮断器7を開放することにより、電圧垂下特性復帰変更指令が出され、第1発電機GE1の垂下特性が5%から元の3%へ復帰変更される。このように、並列運転解除においても第1発電機GE1の垂下特性を変更して、発電機運転として元の最適な状態に復帰させることが可能であるので、並列運転が必要な場合のみ垂下特性を変更した状態で運転し、並列運転が不要となり自立運転を行う場合に、自立運転を行う発電機を最適な条件で運転することができる。
 なお、以上で説明したのは、主として電圧垂下特性の変更としての並列運転条件を自動的に開始する場合の制御方法であるが、垂下特性の変更を手動で開始してもよい。垂下特性の変更を手動で開始する場合は、垂下変更開始の指令を手動で与えて垂下特性変更を行い、その後に並列運転開始操作を行えばよく、それ以外の手順については自動変更の場合と同様である。
 以下に、電圧垂下特性を変更するための制御フローを、図12に示す制御ブロック図を参照しながら詳述する。
 並列運転の開始時には、まず、発電機の始動信号を受けて、制御ロジック内の初期化を行う。具体的には、制御定数初期化手段41からの初期化指令信号により、比例ゲイン初期値PBを比例ゲイン設定手段25に設定するとともに、出力電圧設定初期値NBを電圧指令値設定手段21に設定する。電圧垂下特性の変更指令がある毎に、比例ゲインが変更される。また、電圧指令値設定手段21での出力電圧変更は常時可能であり、出力電圧の定格運転条件をインターロックとして持つ場合もある。
 電圧垂下特性を変更する動作は、垂下特性変更可能信号および垂下特性変更指令信号を受けることにより開始される。垂下特性変更可能信号として、通常は発電機の定格電圧信号が用いられる。
 垂下特性変更指令信号は、自動変更の垂下特性変更指令または手動変更の垂下特性変更指令のいずれか一方が発せられた場合に送られる。自動変更の場合と手動変更の場合の垂下特性変更指令信号は、それぞれ以下のように与えられる。
 自動変更の場合、通常、自号発電機遮断器(図1の例では、第1遮断器)5、異種発電機遮断器(図1の例では、第2遮断器)15および連絡遮断器7のすべての投入信号が揃うことにより、自動変更の垂下特性変更指令信号となる。手動変更の場合、垂下特性手動変更指令手段43から手動で垂下特性変更指令の信号が送られる。垂下特性手動変更指令手段43からの手動信号が入る前に、自号機遮断器5、異機種遮断器15および連絡遮断器7のすべてが遮断された場合は、電圧垂下特性の変更が自動的に開始される。
 変更時間設定手段45は、電圧垂下特性の変更を行う漸変的な変更時間の設定を行う。0設定では瞬時に、0以外の設定では指定された時間をかけて漸変的に、電圧垂下特性を変更するよう設定される。
 また、垂下特性変更開始の条件が満たされたときに、比例ゲイン変更量初期値設定手段47により、電圧垂下特性の変更による比例ゲインの変更量初期値を設定する。比例ゲイン変更量の全量が加算されることにより、比例ゲインの変更が完了する。
 比例ゲイン変更量計算手段49は、電圧垂下特性の変更時間と比例ゲイン変更量から、一定サイクル(通常は制御系のサンプリングタイム)毎の比例ゲイン変化率を計算し、この変化率に従って、比例ゲイン動作値から減算する。電圧垂下特性の変更時間が0設定の場合には比例ゲイン変更量=比例ゲイン変化率となり、瞬時に(すなわちサンプリングタイムの1サイクルで)比例ゲイン変更量の全量が減算され、垂下特性変更が完了する。一方、電圧垂下特性を漸変的に変更する設定がなされた場合、比例ゲイン変更量の初期値から一定サイクル毎に比例ゲイン変化率を減算していく。
 垂下特性変更判定手段51により、比例ゲイン変更量分の変更が完了したかを判定し、完了と判定した場合に比例ゲインの減算を終了する。
 また、垂下特性変更開始の条件が満たされたときには、電圧変更量初期値設定手段53により、垂下特性変更時の出力電圧指令値の変更量初期値を設定する。出力電圧指令値変更量の全量が加算されることにより、出力電圧指令値の変更が完了する。
 電圧指令値変更量計算手段55は、出力電圧指令値変更量と、変更時間設定手段45により設定された電圧垂下特性の変更時間とから、一定サイクル(通常は制御系のサンプリングタイム)毎の回転指令数変化率を計算し、この変化率に従って、出力電圧指令値設定手段21の動作値から減算する。電圧垂下特性の変更時間が0設定の場合には出力電圧指令値変更量=出力電圧指令値変化率となり、瞬時に(すなわちサンプリングタイムの1サイクルで)出力電圧指令値変更量の全量が減算され、出力電圧指令値の変更が完了する。一方、電圧垂下特性を漸変的に変更する設定がなされた場合、出力電圧指令値変更量の初期値から一定サイクル毎に出力電圧指令値変化率を減算していく。
 出力電圧指令値変更判定手段57により、出力電圧指令値変更量分の変更が完了したかを判定し、完了と判定した場合に出力電圧指令値の減算を終了する。
 次に、並列運転の解除(解列)時の制御方法について説明する。なお、以下の説明において、解列時に、電圧垂下特性を、並列運転時の値(本実施形態では5%)から自立運転時の値(本実施形態では3%)に戻す変更を「復帰変更」と呼ぶ。解列時には、垂下特性復帰変更可能信号および垂下特性復帰変更指令信号を受けて、垂下特性復帰変更動作が開始される。垂下特性復帰変更可能信号として、通常は発電機の定格電圧信号が用いられる。
 垂下特性復帰変更指令信号は、自動変更の垂下特性復帰変更指令または手動変更の垂下特性復帰変更指令のいずれか一方が発せられた場合に送られる。自動変更の場合と手動変更の場合の垂下特性復帰変更指令信号は、それぞれ以下のように与えられる。
 自動変更の場合、通常、自号発電機遮断器5、エンジン間連絡用遮断器17および異種発電装置遮断器15の少なくともいずれか1つが開放されることにより、垂下特性復帰変更指令信号となる。手動変更の場合、垂下特性手動復帰変更指令手段から手動で垂下特性復帰変更指令の信号が送られる。垂下特性手動復帰変更指令手段143からの手動信号が入る前に、自号発電機遮断器5、連絡用遮断器7および異機種遮断器15の少なくともいずれか1つが開放された場合は、垂下特性復帰変更が自動的に行われる。
 復帰変更時間設定手段145により、電圧垂下特性の復帰変更を行う漸変的な変更時間の設定が行なわれる。0設定では瞬時に、0以外の設定では指定された時間をかけて漸変的に電圧垂下特性を復帰変更するよう設定される。
 また、垂下特性復帰変更開始の条件が満たされたときに、比例ゲイン復帰変更量初期値設定手段147により、電圧垂下特性の復帰変更による比例ゲインの復帰変更量初期値を設定する。比例ゲイン復帰変更量の全量が加算されることにより、比例ゲインの復帰変更が完了する。
 比例ゲイン復帰変更量計算手段149は、電圧垂下特性の変更時間と比例ゲイン復帰変更量から、一定サイクル毎(通常は制御系のサンプリングタイム)の比例ゲイン変化率を計算し、この変化率に従って、比例ゲイン動作値から減算する。電圧垂下特性の復帰変更時間が0設定の場合には比例ゲイン復帰変更量=比例ゲイン変化率となり、瞬時に(すなわちサンプリングタイムの1サイクルで)比例ゲイン復帰変更量の全量が減算され、垂下特性復帰変更が完了する。一方、電圧垂下特性を漸変的に復帰変更する設定がなされた場合、比例ゲイン復帰変更量の初期値から一定サイクル毎に比例ゲイン変化率を減算していく。
 垂下特性復帰変更判定手段151により、比例ゲイン復帰変更量分の変更が完了したかを判定し、完了と判定した場合に比例ゲインの減算を終了する。
 また、垂下特性復帰変更開始の条件が満たされたときには、出力電圧復帰変更量初期値設定手段153により、垂下特性復帰変更時の出力電圧指令値の復帰変更量初期値を設定する。出力電圧指令値復帰変更量の全量が加算されることにより、出力電圧指令値の復帰変更が完了する。
 出力電圧指令値復帰変更量計算手段155は、出力電圧指令値復帰変更量と、復帰変更時間設定手段により設定された電圧垂下特性の復帰変更時間とから、一定サイクル(通常は制御系のサンプリングタイム)毎の出力電圧指令値変化率を計算し、この変化率に従って、出力電圧指令値設定手段21の動作値から減算する。電圧垂下特性の復帰変更時間が0設定の場合には出力電圧指令値復帰変更量=出力電圧指令値変化率となり、瞬時に(すなわちサンプリングタイムの1サイクルで)出力電圧指令値復帰変更量の全量が減算され、出力電圧指令値の復帰変更が完了する。一方、電圧垂下特性を漸変的に復帰変更する設定がなされた場合、出力電圧指令値復帰変更量の初期値から一定サイクル毎に出力電圧指令値変化率を減算していく。
 出力電圧指令値復帰変更判定手段157により、出力電圧指令値復帰変更量分の復帰変更が完了したかを判定し、完了と判定した場合に出力電圧指令値の減算を終了する。
 なお、この制御システムにおいては、異種発電装置の組合せの例である第1発電機GE1と第2発電機GE2の並列運転中に並列解除信号が出された場合のみならず、何らかの原因により突然並列運転が中止されても、この解除指令を取り込み、高垂下特性の第1発電機GE1側において、電圧垂下特性を、並列運転時の5%から並列解除後の3%に、出力電圧を変化させることなく自動的に復帰変更することも可能である。
 このように、本実施形態に係る発電装置の並列運転制御方法によれば、従来は困難とされていた、異なる電圧垂下特性を有する同期型発電装置同士の並列運転、同期型発電装置と誘導型発電装置との並列運転、および同期型発電装置と系統電源との並列運転を安定的に運用することが可能となる。したがって、各発電装置の性能を損なうことなく、かつ安定的に、異種発電装置同士または発電装置と系統電源との並列運転を行うことができる。
 以上のとおり、図面を参照しながら本発明の好適な実施形態を説明したが、本発明の趣旨を逸脱しない範囲内で、種々の追加、変更または削除が可能である。したがって、そのようなものも本発明の範囲内に含まれる。
 1 制御システム
 19 系統電源
 GE1 第1発電機(発電装置)
 GE2 第2発電機(発電装置)
 L 負荷(駆動対象)

Claims (12)

  1.  複数の異種発電装置を並列運転に移行させる際の制御方法であって、
     前記複数の発電装置の少なくとも一方の出力電圧および電圧垂下特性の少なくとも一方を変更する
     異種発電装置間の並列運転制御方法。
  2.  請求項1に記載の並列運転制御方法において、前記複数の異種発電装置が、電圧垂下特性が互いに異なる複数の同期型発電装置であり、各発電装置が有する互いに異なる電圧垂下特性で自立運転しているときに、前記複数の発電装置を並列運転に移行させる際の出力電圧の制御方法であって、
     並列運転される前記複数の発電装置のうち、より小さい電圧垂下特性を有する一方の発電装置の当該電圧垂下特性を、他方の発電装置の電圧垂下特性に合致するよう変更し、
     前記電圧垂下特性変更時に、前記他方の発電装置を、その出力電圧が並列運転開始前の値に維持されるように制御する、
     異種発電装置間の並列運転制御方法。
  3.  請求項1に記載の並列運転制御方法において、前記複数の電源装置の一方が同期型発電装置であり、他方が誘導型発電装置であり、先行して自立運転している前記同期型発電装置と、前記誘導型発電装置とを並列運転に移行させる際の制御方法であって、
     前記同期型発電装置の出力電圧を、並列運転の開始信号を受けて、自立運転時の出力電圧値よりも小さい値に設定する、異種発電装置間の並列運転制御方法。
  4.  請求項1に記載の並列運転制御方法において、前記複数の電源装置の一方が同期型発電装置であり、他方が誘導型発電装置であり、先行して自立運転している前記同期型発電装置と、前記誘導型発電装置とを並列運転に移行させる際の制御方法であって、
     前記同期型発電装置の電圧垂下特性の垂下率を、並列運転の開始信号を受けて、自立運転中の垂下率よりも大きい値に設定する、異種発電装置間の並列運転制御方法。
  5.  請求項1に記載の並列運転制御方法において、前記複数の電源装置の一方が同期型発電装置であり、他方が系統電源であり、前記系統電源に、前記同期型発電装置の電圧垂下特性を超える電圧低下が発生した場合に、この電圧低下量に応じて前記同期型発電装置の出力電圧指令値を低下させる、異種発電装置間の並列運転制御方法。
  6.  請求項1に記載の並列運転制御方法において、前記複数の電源装置の一方が同期型発電装置であり、他方が系統電源であり、前記系統電源に、前記同期型発電装置の電圧垂下特性を超える電圧低下が発生した場合に、前記同期型発電装置の電圧垂下特性の垂下率を、自立運転中の垂下率よりも大きい値に設定する、異種発電装置間の並列運転制御方法。
  7.  複数の異種発電装置を並列運転に移行させる際の制御システムであって、
     前記複数の発電装置の少なくとも一方の出力電圧および電圧垂下特性の少なくとも一方を変更する手段を備える、
     異種発電装置間の並列運転制御システム。
  8.  請求項7に記載の並列運転制御システムにおいて、前記複数の異種発電装置が、電圧垂下特性が互いに異なる複数の同期型発電装置であり、各発電装置が有する互いに異なる電圧垂下特性で自立運転しているときに、前記複数の発電装置を並列運転に移行させる際の出力電圧の制御システムであって、
     並列運転される前記複数の発電装置のうち、より小さい電圧垂下特性を有する一方の発電装置の当該電圧垂下特性を、他方の発電装置の電圧垂下特性に合致するよう変更する手段と、
     前記電圧垂下特性変更時に、前記他方の発電装置を、その出力電圧が並列運転開始前の値に維持する手段と、
     を備える異種発電装置間の並列運転制御システム。
  9.  請求項7に記載の並列運転制御システムにおいて、前記複数の電源装置の一方が同期型発電装置であり、他方が誘導型発電装置であり、先行して自立運転している前記同期型発電装置と、前記誘導型発電装置とを並列運転に移行させる際の制御システムであって、
     前記同期型発電装置の出力電圧を、並列運転の開始信号を受けて、自立運転時の出力電圧値よりも小さい値に設定する手段を備える、異種発電装置間の並列運転制御システム。
  10.  請求項7に記載の並列運転制御システムにおいて、前記複数の電源装置の一方が同期型発電装置であり、他方が誘導型発電装置であり、先行して自立運転している前記同期型発電装置と、前記誘導型発電装置とを並列運転に移行させる際の制御システムであって、
     前記同期型発電装置の電圧垂下特性の垂下率を、並列運転の開始信号を受けて、自立運転中の垂下率よりも大きい値に設定する手段を備える、異種発電装置間の並列運転制御システム。
  11.  請求項7に記載の並列運転制御システムにおいて、前記複数の電源装置の一方が同期型発電装置であり、他方が系統電源であり、前記系統電源に、前記同期型発電装置の電圧垂下特性を超える電圧低下が発生した場合に、この電圧低下量に応じて前記同期型発電装置の出力電圧指令値を低下させる手段を備える、異種発電装置間の並列運転制御システム。
  12.  請求項7に記載の並列運転制御方法において、前記複数の電源装置の一方が同期型発電装置であり、他方が系統電源であり、前記系統電源に、前記同期型発電装置の電圧垂下特性を超える電圧低下が発生した場合に、前記同期型発電装置の電圧垂下特性の垂下率を、自立運転中の垂下率よりも大きい値に設定する、異種発電装置間の並列運転制御方法。
PCT/JP2013/083822 2012-12-21 2013-12-18 異種発電装置間の並列運転制御方法および制御システム WO2014098104A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2014553166A JP6131274B2 (ja) 2012-12-21 2013-12-18 異種発電装置間の並列運転制御方法および制御システム
EP13865962.8A EP2937964A4 (en) 2012-12-21 2013-12-18 CONTROL METHOD AND CONTROL SYSTEM FOR PARALLEL OPERATION BETWEEN DIFFERENT TYPES OF ELECTRICITY GENERATOR
KR1020157015896A KR101727087B1 (ko) 2012-12-21 2013-12-18 이종 발전 장치 간의 병렬 운전 제어 방법 및 제어 시스템
US14/653,422 US9899842B2 (en) 2012-12-21 2013-12-18 Control method and control system for parallel operation between different types of power generator
CA2895270A CA2895270A1 (en) 2012-12-21 2013-12-18 Control method and control system for parallel operation between different types of power generator
CN201380067081.0A CN104871390B (zh) 2012-12-21 2013-12-18 不同种类发电装置之间的并联运行控制方法及控制系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-279658 2012-12-21
JP2012279658 2012-12-21

Publications (2)

Publication Number Publication Date
WO2014098104A1 true WO2014098104A1 (ja) 2014-06-26
WO2014098104A8 WO2014098104A8 (ja) 2015-05-14

Family

ID=50978429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/083822 WO2014098104A1 (ja) 2012-12-21 2013-12-18 異種発電装置間の並列運転制御方法および制御システム

Country Status (7)

Country Link
US (1) US9899842B2 (ja)
EP (1) EP2937964A4 (ja)
JP (1) JP6131274B2 (ja)
KR (1) KR101727087B1 (ja)
CN (1) CN104871390B (ja)
CA (1) CA2895270A1 (ja)
WO (1) WO2014098104A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017060380A (ja) * 2015-09-14 2017-03-23 三菱電機株式会社 配電系統に接続されたマイクログリッドを制御する方法およびシステム
JP2018007458A (ja) * 2016-07-05 2018-01-11 株式会社日立製作所 風力発電設備とその運転方法およびウィンドファーム
JP2018121479A (ja) * 2017-01-27 2018-08-02 株式会社日立産機システム 蓄電池と電力変換装置の連携システムの制御方法、およびパワーコンディショニングシステム
JP2020043647A (ja) * 2018-09-07 2020-03-19 株式会社Ihi原動機 発電設備の運転方法
CN111509779A (zh) * 2020-04-29 2020-08-07 合肥康尔信电力系统有限公司 柴油发电机组并机母线多路输出供电、切换控制系统
JP7337311B1 (ja) * 2023-03-03 2023-09-01 三菱電機株式会社 電力変換装置、電力変換方法、および電力変換プログラム
JP7425267B1 (ja) 2023-05-23 2024-01-30 三菱電機株式会社 分散電源統合管理システム、分散電源統合管理装置、分散電源統合管理方法、および、プログラム

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9760139B2 (en) * 2015-04-02 2017-09-12 Dell Products, L.P. Method and system for power supply unit current sharing
US10330024B2 (en) * 2016-01-06 2019-06-25 General Electric Company Universal external isolation and B and B valve skid for industrial gas appliances
WO2019012725A1 (ja) * 2017-07-13 2019-01-17 三菱電機株式会社 電力変換装置、電力変換システム、および電力変換装置の運転方法
WO2019112607A1 (en) * 2017-12-08 2019-06-13 Mitsubishi Hitachi Power Systems Americas, Inc. Distribution systems using incongruent load imbalance response
KR102118469B1 (ko) 2018-06-15 2020-06-03 신재용 재난 대응용 발전 설비
CN112821417B (zh) * 2021-01-05 2023-05-30 中车株洲电力机车研究所有限公司 一种发电机输出功率控制方法、装置、存储介质以及设备
CN114188984A (zh) * 2021-12-06 2022-03-15 上海发电设备成套设计研究院有限责任公司 棒电源机组及其并车控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57121997A (en) * 1981-01-19 1982-07-29 Shinko Electric Co Ltd Parallel running system of marine main engine driven generator and auxiliary engine driven generator
JPS57160331A (en) * 1981-03-25 1982-10-02 Tokyo Shibaura Electric Co Combined cycle generating plant
JPS61142931A (ja) * 1984-12-14 1986-06-30 石川島播磨重工業株式会社 軸発電機の周波数制御方式
JPS63181621A (ja) * 1987-01-22 1988-07-26 富士電機株式会社 同期発電機用励磁調整装置の電圧設定回路
JPH0265045U (ja) * 1988-11-05 1990-05-16
JP2000262096A (ja) * 1999-03-09 2000-09-22 Hitachi Ltd 発電電動機の制御装置及びこれを用いた発電システム
JP2005354861A (ja) 2004-06-14 2005-12-22 Fuji Electric Systems Co Ltd 原動機駆動電源装置による給電装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101098079A (zh) 2006-05-25 2008-01-02 株式会社荏原制作所 供电装置及电力变换装置的同步运转方法
US20070273342A1 (en) 2006-05-25 2007-11-29 Ebara Corporation Electric power supply apparatus and method of synchronously operating power converter
US7710081B2 (en) * 2006-10-27 2010-05-04 Direct Drive Systems, Inc. Electromechanical energy conversion systems
US8198753B2 (en) * 2007-10-31 2012-06-12 Caterpillar Inc. Power system with method for adding multiple generator sets
EP2192681A1 (en) * 2008-11-26 2010-06-02 Siemens Aktiengesellschaft Power distribution system and method thereof
US9391458B2 (en) 2011-06-22 2016-07-12 Kawasaki Jukogyo Kabushiki Kaisha Control method and control system for parallel operation of different types of power generation apparatuses

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57121997A (en) * 1981-01-19 1982-07-29 Shinko Electric Co Ltd Parallel running system of marine main engine driven generator and auxiliary engine driven generator
JPS57160331A (en) * 1981-03-25 1982-10-02 Tokyo Shibaura Electric Co Combined cycle generating plant
JPS61142931A (ja) * 1984-12-14 1986-06-30 石川島播磨重工業株式会社 軸発電機の周波数制御方式
JPS63181621A (ja) * 1987-01-22 1988-07-26 富士電機株式会社 同期発電機用励磁調整装置の電圧設定回路
JPH0265045U (ja) * 1988-11-05 1990-05-16
JP2000262096A (ja) * 1999-03-09 2000-09-22 Hitachi Ltd 発電電動機の制御装置及びこれを用いた発電システム
JP2005354861A (ja) 2004-06-14 2005-12-22 Fuji Electric Systems Co Ltd 原動機駆動電源装置による給電装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2937964A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017060380A (ja) * 2015-09-14 2017-03-23 三菱電機株式会社 配電系統に接続されたマイクログリッドを制御する方法およびシステム
JP2018007458A (ja) * 2016-07-05 2018-01-11 株式会社日立製作所 風力発電設備とその運転方法およびウィンドファーム
JP2018121479A (ja) * 2017-01-27 2018-08-02 株式会社日立産機システム 蓄電池と電力変換装置の連携システムの制御方法、およびパワーコンディショニングシステム
JP2020043647A (ja) * 2018-09-07 2020-03-19 株式会社Ihi原動機 発電設備の運転方法
CN111509779A (zh) * 2020-04-29 2020-08-07 合肥康尔信电力系统有限公司 柴油发电机组并机母线多路输出供电、切换控制系统
JP7337311B1 (ja) * 2023-03-03 2023-09-01 三菱電機株式会社 電力変換装置、電力変換方法、および電力変換プログラム
JP7425267B1 (ja) 2023-05-23 2024-01-30 三菱電機株式会社 分散電源統合管理システム、分散電源統合管理装置、分散電源統合管理方法、および、プログラム

Also Published As

Publication number Publication date
JPWO2014098104A1 (ja) 2017-01-12
CN104871390B (zh) 2018-01-19
KR20150085057A (ko) 2015-07-22
US20150333519A1 (en) 2015-11-19
EP2937964A4 (en) 2016-09-07
EP2937964A1 (en) 2015-10-28
US9899842B2 (en) 2018-02-20
KR101727087B1 (ko) 2017-04-14
CN104871390A (zh) 2015-08-26
WO2014098104A8 (ja) 2015-05-14
JP6131274B2 (ja) 2017-05-17
CA2895270A1 (en) 2014-06-26

Similar Documents

Publication Publication Date Title
JP6131274B2 (ja) 異種発電装置間の並列運転制御方法および制御システム
JP5721828B2 (ja) 異種発電装置間の並列運転制御方法および制御システム
US9444391B2 (en) Protective module and method against torque peaks between a motor and an electric machine
JP4947926B2 (ja) 電力貯蔵手段を具備した自家発電設備の運転方法及び自家発電設備
JP5508796B2 (ja) 電源システム制御方法及び電源システム制御装置
JP2021511775A (ja) ブラックスタート復旧
JP5626563B2 (ja) 電力システム
JPWO2012070141A1 (ja) 風力発電設備の出力制御方法及び出力制御装置
CN112383071B (zh) 增加新能源场站调节能力的储能确定方法及新能源支撑机
Ilyushin Analysis of the specifics of selecting relay protection and automatic (RPA) equipment in distributed networks with auxiliary low-power generating facilities
CN104505859A (zh) 水电站孤网运行联动并网发电时调速器的使用方法
WO2014073059A1 (ja) ガスタービン発電設備
JP2015109746A (ja) 発電システム
JP2018207574A (ja) マイクログリッド制御システムおよび方法
TW201810921A (zh) 風力發電設備及其之運轉方法以及風力發電廠
Barsali et al. Restoration islands supplied by gas turbines
JP6289123B2 (ja) 発電システム
KR101506530B1 (ko) 발전기 출력 전압의 램프업을 위한 장치 및 그 방법
JP6205398B2 (ja) 同期コンデンサシステム
JP2008067514A (ja) 火力発電プラントの所内単独運転方法および所内単独運転システム
CN116388234B (zh) 并网发电系统的控制方法、系统、控制器及存储介质
JP6853225B2 (ja) 発電設備の運転方法
JPS6359798A (ja) 水車発電機
Kievets et al. Fast valving automation prospects
Vedwal et al. Island Mode Operation (IMO) for Gas Combined SPP Plants

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13865962

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2895270

Country of ref document: CA

Ref document number: 20157015896

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014553166

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14653422

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013865962

Country of ref document: EP