JPWO2012070141A1 - 風力発電設備の出力制御方法及び出力制御装置 - Google Patents

風力発電設備の出力制御方法及び出力制御装置 Download PDF

Info

Publication number
JPWO2012070141A1
JPWO2012070141A1 JP2011502967A JP2011502967A JPWO2012070141A1 JP WO2012070141 A1 JPWO2012070141 A1 JP WO2012070141A1 JP 2011502967 A JP2011502967 A JP 2011502967A JP 2011502967 A JP2011502967 A JP 2011502967A JP WO2012070141 A1 JPWO2012070141 A1 JP WO2012070141A1
Authority
JP
Japan
Prior art keywords
power
wind
storage device
operation mode
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011502967A
Other languages
English (en)
Other versions
JP5308511B2 (ja
Inventor
明 八杉
明 八杉
正明 南
正明 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Application granted granted Critical
Publication of JP5308511B2 publication Critical patent/JP5308511B2/ja
Publication of JPWO2012070141A1 publication Critical patent/JPWO2012070141A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/66Regulating electric power
    • G05F1/67Regulating electric power to the maximum power available from a generator, e.g. from solar cell
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/10Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/10Combinations of wind motors with apparatus storing energy
    • F03D9/11Combinations of wind motors with apparatus storing energy storing electrical energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • F03D9/255Wind motors characterised by the driven apparatus the apparatus being an electrical generator connected to electrical distribution networks; Arrangements therefor
    • F03D9/257Wind motors characterised by the driven apparatus the apparatus being an electrical generator connected to electrical distribution networks; Arrangements therefor the wind motor being part of a wind farm
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/70Regulating power factor; Regulating reactive current or power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/337Electrical grid status parameters, e.g. voltage, frequency or power demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2101/00Special adaptation of control arrangements for generators
    • H02P2101/15Special adaptation of control arrangements for generators for wind-driven turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Abstract

蓄電装置の過負荷を防止し、風力発電装置と蓄電装置との最適な統括出力制御を可能とした風力発電設備の出力制御方法及び出力制御装置を提供することを目的とする。風力発電装置と蓄電装置とが電力系統に並列に接続された風力発電設備の出力制御方法において、電力系統に供給する全体有効電力及び全体無効電力を算出し、風力発電装置で出力可能な風力要求有効電力及び風力要求無効電力を風力発電装置に出力させるとともに、全体有効電力と風力要求有効電力との差分、及び全体無効電力と風力要求無効電力との差分に対応する蓄電要求有効電力及び蓄電要求無効電力を蓄電装置に出力させる第1運転モードと、蓄電要求有効電力及び蓄電要求無効電力に基づく皮相電力が蓄電装置の設定皮相電力を超過するときに、蓄電要求有効電力を維持しながら蓄電要求無効電力を低減させ、該蓄電要求無効電力の低減量を風力要求無効電力に付加させる第2運転モードとを選択的に切り替える。

Description

本発明は、風力発電装置に蓄電装置が併設された風力発電設備の出力制御方法及び出力制御装置に係り、特に、系統擾乱による電力系統の周波数変動又は電圧変動を抑制可能な風力発電設備の出力制御方法及び出力制御装置に関する。
従来より、風力発電装置に蓄電装置が併設された風力発電設備が知られている。
図5は、この風力発電設備の構成を示す図である。この風力発電設備は、複数の風力発電装置51が設けられるとともに、この風力発電装置51に並列に蓄電装置55が設けられ、これらが系統連系部60を介して電力系統61に接続されている。ここで電力系統61とは、一般需要家が供給を受けている商用電力系統をいう。一般に風力発電装置51は、風車ブレードの回転が増速機を介して発電機52に入力され、この発電機52で発電した電力を変圧器53で変圧し系統連系部60を介して電力系統61に供給するようになっている。
しかし風力発電装置51においては、出力は風速の変動に伴い変動するためこれに対応して電力系統61の需給バランスや周波数に影響を及ぼす可能性がある。電力系統61へ供給される電力はその電圧及び周波数が許容範囲内に維持されることが求められるため、従来は系統側で要求される有効電力及び無効電力に対して風力発電装置51の供給能力から不足する電力を蓄電装置55で補償する構成としていた。ここで蓄電装置55は、蓄電池56からの直流出力を直流−交流変換器57を介して交流出力に変換した後、変圧器58で変圧し系統連系部60を介して電力系統61に供給するようになっている。このように、従来風力発電装置51に併設される蓄電装置55は主に風力発電装置51による出力変動を平滑化するために用いられていた。
一方、落雷等の系統事故により系統側の電圧や周波数に擾乱が発生することがある。従来は系統事故が発生したときに風力発電設備を解列して対処することがあったが、近年は風力発電設備を電力系統から解列せずに運転を継続し、系統の事故復帰後にすぐさま定常運転を再開することが求められている。さらにこれに加えて、系統事故が発生したときに発電設備の有効電力と無効電力を同時出力制御することにより系統の安定化を図る技術が検討され始めている。
例えば特許文献1(特許第3352662号公報)には、系統擾乱時に電力系統を安定化させる装置が開示されており、この装置は、風力発電機や太陽光発電機等の電力系統に電力を出力する第1の設備と、定格値より大きい電力で充放電する過充放電運転を考慮した電池を含む二次電池システムとを有する。さらに、電力系統における有効電力の事前の設定値、無効電力の事前の設定値、基準周波数及び基準電圧とそれぞれの現状の値との差を検出し、この検出結果に応じて蓄電装置の過負荷出力と出力継続時間特性に基づいて蓄電装置から出力される有効電力量及び無効電力量を制御する構成となっている。
特許第3352662号公報
上記したように風力発電設備においては、系統擾乱時に電力系統の電圧変動及び周波数変動を抑制することが求められている。ここで、風力発電設備から供給される無効電力を制御することによって系統電圧の変動を抑制することが可能であり、また有効電力を制御することによって系統周波数の変動を抑制することが可能であることが知られている。その場合、上記したように風力発電装置の出力は風速に依存するため、有効電力を制御することは難しかった。そこで特許文献1に開示されるように、風力発電装置で制御不可能な有効電力を蓄電装置で補償することが考えられる。蓄電装置は直流−交流変換器により自動周波数制御機能を有しているため、電力系統の周波数変動を抑制するために必要な有効電力を供給することができるものである。
しかし特許文献1に記載される二次電池システムは、定格値より大きい電力で充放電する過充放電運転を考慮した電池を含むものであり、一般に蓄電装置に具備される蓄電池は予め設定された容量を超過すると過負荷運転となり、耐用期間が短くなるおそれがある。蓄電池は高価である上に設置費用も嵩むため、過負荷運転とならない適切な運転制御が求められている。
したがって、本発明はかかる従来技術の問題に鑑み、系統擾乱時に電力系統の電圧変動及び周波数変動を抑制可能で、且つ蓄電装置の過負荷を防止し、風力発電装置と蓄電装置との最適な統括出力制御を可能とした風力発電設備の出力制御方法及び出力制御装置を提供することを目的とする。
上記の課題を解決するために、本発明に係る風力発電設備の出力制御方法は、風風力発電装置と蓄電装置とが系統連系部を介して電力系統に並列に接続された風力発電設備の出力制御方法において、前記風力発電設備の系統接続端で検出される電圧情報及び電流情報に基づいて、前記風力発電設備から前記電力系統に供給する全体有効電力及び全体無効電力を算出し、前記全体有効電力及び前記全体無効電力のそれぞれの範囲内にて、前記風力発電装置で出力可能な上限に適合した風力要求有効電力及び風力要求無効電力を前記風力発電装置に出力させるとともに、前記全体有効電力と前記風力要求有効電力との差分、及び、前記全体無効電力と前記風力要求無効電力との差分にそれぞれ対応する蓄電要求有効電力及び蓄電要求無効電力を前記蓄電装置に出力させる第1運転モードと、前記第1運転モードにて前記蓄電要求有効電力及び前記蓄電要求無効電力に基づく皮相電力が前記蓄電装置の設定皮相電力を超過するときに、前記蓄電要求有効電力を維持しながら前記蓄電要求無効電力を低減させ、前記蓄電要求無効電力の低減量を前記風力要求無効電力に付加させる第2運転モードとを選択的に切り替えることを特徴とする。
ここで、全体有効電力及び全体無効電力とは、電力系統の周波数と電圧を許容範囲内に維持するために風力発電設備全体に要求される有効電力及び無効電力である。この全体有効電力及び全体無効電力は、風力発電装置と蓄電装置とにそれぞれ所定の出力配分で割り当てられる。
風力要求有効電力及び風力要求無効電力は、全体有効電力及び全体無効電力から割り当てられた、風力発電装置に要求される有効電力及び無効電力である。
蓄電要求有効電力及び蓄電要求無効電力は、全体有効電力及び全体無効電力から割り当てられた、蓄電装置に要求される有効電力及び無効電力である。
本発明において、第1運転モードは主に電力系統の定常状態時に設定される。第1運転モードでは、風力発電装置に割り当てられる風力要求有効電力と風力要求無効電力とを、風力発電装置で出力可能な上限に適合するように最大限に設定しているため、再生エネルギーである風力エネルギーを有効に活用できる。なお、定常状態とは、上記した風力発電装置と蓄電装置の出力配分において蓄電要求有効電力及び蓄電要求無効電力に基づく皮相電力が蓄電装置の設定皮相電力を超過しない状態であり、すなわち電力系統の電圧変動又は周波数変動が系統擾乱時よりも小さいときである。
一方、第2運転モードは主に系統擾乱時に第1運転モードから切り替えられて設定される。系統擾乱時には、系統周波数及び系統電圧の少なくとも一方が電力系統の許容範囲から外れて変動することがあり、系統周波数の変動抑制のために風力発電設備から供給する全体有効電力を制御し、系統電圧の変動抑制のために全体無効電力を制御する。この制御量に応じて蓄電装置に割り当てられる蓄電要求有効電力及び蓄電要求無効電力に基づく皮相電力が蓄電装置の設定皮相電力を超過する場合に第2運転モードに切り替えられる。この第2運転モードでは、系統擾乱時において全体有効電力と全体無効電力とが大幅に変動した場合であっても蓄電装置が過負荷になることを防止できる。また、有効電力を自在に調整できる蓄電装置で有効電力を優先的に出力し、有効電力を調整できないが無効電力を調整可能な風力発電装置で無効電力を優先的に出力するため、擾乱抑制に必要とされる要求皮相電力を適切な電力配分で出力することができる。
なお、蓄電装置が過負荷にならない程度の微小な擾乱に対する変動抑制は第1運転モードで対応可能である。
このように本発明によれば、再生エネルギーを最大限に有効活用できるとともに蓄電装置の過負荷を防止できる有効電力及び無効電力の最適な出力配分制御が可能となる。
また、前記第1運転モードから前記第2運転モードへの切り替えは、前記蓄電装置の出力から導出される要求皮相電力が、予め設定された前記蓄電装置の設定皮相電力を超過したときに行い、前記第2運転モードでは、前記蓄電要求有効電力と前記低減させた蓄電要求無効電力とから導出される要求皮相電力が前記設定皮相電力以下となるまで前記蓄電要求無効電力を低減させることが好ましい。
このように、蓄電装置に割り当てられた蓄電要求有効電力と蓄電要求無効電力とから蓄電装置への要求皮相電力を導出し、要求皮相電力が設定皮相電力を超過したときに蓄電装置が設備容量を超過したものと判断することにより、蓄電要求有効電力及び蓄電要求無効電力から簡単に蓄電装置の容量超過を判断することが可能となる。なお、設定皮相電力は蓄電装置の能力と充電量とにより決定するものである。
さらに、前記蓄電装置の残容量を検出し、前記残容量に応じて前記設定皮相電力を変更することが好ましく、これにより系統擾乱時のみでなく、蓄電装置の残容量に応じて第2運転モードで要求有効電力と要求無効電力を蓄電装置と風力発電装置のそれぞれに適切に出力配分することが可能となる。
さらにまた、前記第2運転モードでは、前記第1運転モードでの前記風力発電装置と前記蓄電装置との出力配分における前記蓄電装置の前記要求皮相電力を監視し、前記要求皮相電力が前記設定皮相電力を下回ったときに、前記第2運転モードから前記第1運転モードに切り替えることが好ましい。
本構成は、第2運転モードで運転中に、第1運転モードでの出力配分における要求皮相電力を監視しておき、要求皮相電力が設定皮相電力を下回ったとき、すなわち蓄電装置が第1運転モードにおいても過負荷とならなくなったときに、第2運転モードから第1運転モードに切り替える構成としている。これにより蓄電装置が過負荷にならないときは常に第1運転モードで運転することが可能となり、風力エネルギーを最大限活用することが可能となる。
また、本発明に係る風力発電設備の出力制御装置は、風力発電装置と蓄電装置とが系統連系部を介して電力系統に並列に接続された風力発電設備の出力制御装置において、前記風力発電装置の系統接続端の電圧情報及び電流情報が入力される統括制御手段と、前記統括制御手段からの出力指令に基づいて、前記風力発電装置の出力を制御する風力発電制御手段及び前記蓄電装置の出力を制御する蓄電制御手段とを備え、前記統括制御手段は、前記電圧情報及び前記電流情報に基づいて前記風力発電設備から前記電力系統に供給する全体有効電力及び全体無効電力を算出する電力算出部と、前記全体有効電力及び前記全体無効電力のそれぞれの範囲内にて、前記風力発電装置で出力可能な上限に適合した風力要求有効電力及び風力要求無効電力を前記風力発電装置に出力させるとともに、前記全体有効電力と前記風力要求有効電力との差分、及び、前記全体無効電力と前記風力要求無効電力との差分にそれぞれ対応する蓄電要求有効電力及び蓄電要求無効電力を前記蓄電装置に出力させる第1運転モードと、前記第1運転モードにて前記蓄電装置の出力から導出される要求皮相電力が、予め設定された前記蓄電装置の設定皮相電力を超過するときに、前記蓄電要求有効電力を維持しながら前記蓄電要求無効電力を低減させ、前記蓄電要求無効電力の低減量を前記風力要求無効電力に付加させる第2運転モードとを選択的に切り替える運転モード切替部とを有することを特徴とする。
さらに、前記蓄電装置の残容量を検出する残容量検出手段をさらに備え、前記統括制御手段は、前記残容量検出手段で検出された前記残容量に応じて前記設定皮相電力を変更することが好ましい。
以上記載のように本発明によれば、主に電力系統の定常状態時に設定される第1運転モードと、主に系統擾乱時に設定される第2運転モードとを選択的に切り替える構成としたため、再生エネルギーである風力エネルギーを最大限に有効活用できるとともに蓄電装置の過負荷を防止できる有効電力及び無効電力の最適な出力配分制御が可能となる。
本発明の実施形態に係る風力発電設備の出力制御装置を含む全体構成図である。 本発明の実施形態における統括制御手段の制御ブロック図である。 本発明の実施形態における蓄電装置の設定皮相電力曲線を示す図である。 本発明の実施形態に係る風力発電設備の出力制御方法を示すフローチャートである。 従来の風力発電装置の全体構成図である。
以下、図面を参照して本発明の好適な実施形態を例示的に詳しく説明する。但しこの実施形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。
まず最初に、図1を参照して風力発電設備の全体構成を説明する。
この風力発電設備は、風力発電装置1と蓄電装置2とを有し、これらの風力発電装置1及び蓄電装置2は系統連系部4に並列に接続されている。
風力発電装置1は一又は複数設けられる。風力発電装置1が複数設けられる場合はそれぞれが系統連系部4に並列に接続されている。風力発電装置1の構成は、複数の風車ブレードが取り付けられたロータを有し、ロータは増速機を介して発電機11に接続されている。発電機11の出力端子に接続された母線は、変圧器12を経由して系統連系部4の系統接続端6に接続されている。この風力発電装置1では、風車ブレードの回転が増速機を介して発電機11に入力され、この発電機11で発電した電力を変圧器12で変圧した後系統連系部4を介して電力系統7に供給するようになっている。
蓄電装置2は一又は複数設けられる。蓄電装置2が複数設けられる場合はそれぞれが系統連系部4に並列に接続される。蓄電装置2の構成は、一又は直列に接続された複数の蓄電池21を有し、蓄電池21の出力端子に接続された母線は、直流出力を交流出力に変換する直流−交流変換器22、変圧器23を経由して系統連系部4の系統接続端6に接続されている。この蓄電装置2では、放電した直流出力を直流−交流変換器22で交流出力に変換し、交流出力を変圧器23で所定電圧に変圧した後系統連系部4を介して電力系統7に供給するようになっている。なお、蓄電装置2は必要に応じて電力系統7から充電される。このとき、後述する蓄電制御手段20に電力系統7の電圧情報及び電流情報が入力され、これらに基づいて充放電制御されることが好ましい。
ここで、系統連系部4は、風力発電設備を電力系統7に連系するための設備であり、電力系統7との間で定められた系統連系の条件に基づいて供給電力の各種調整を行う。例えば系統連系の条件として、連系点における電圧の変動や出力値を許容範囲内とする条件が設定されている。なお、系統連系部4には変圧器5を含んでいてもよい。
また、電力系統7とは、発電設備で発電した出力を送電線、変電所を介して需要家へ送る設備機器群であり、ここでは一般需要家が供給を受けている商用電力系統をいう。
上記した構成を有する発電設備の出力制御装置は、風力発電装置1の出力を制御する風力発電制御手段(WTG CONTROLLER)10と、蓄電装置2の出力を制御する蓄電制御手段(POWER CONTROLLER)20と、風力発電制御手段10と蓄電制御手段20とにそれぞれ有効電力指令と無効電力指令とを与える統括制御手段(MASTER CONTROLLER)30とを有する。
図2を参照して、統括制御手段30の制御動作を説明する。なお図2は本発明の実施形態における統括制御手段の制御ブロック図である。
統括制御手段30は、風力発電設備から電力系統7に供給する全体有効電力及び全体無効電力を、風力発電制御手段10と蓄電制御手段20のそれぞれへ割り当て、風力発電装置1への風力要求有効電力及び風力要求無効電力と、蓄電装置2への蓄電要求有効電力及び蓄電要求無効電力とを設定することにより、有効電力及び無効電力の出力配分制御を行うものである。
ここで、全体有効電力及び全体無効電力とは、電力系統7の周波数と電圧を許容範囲内に維持するために風力発電設備全体に要求される有効電力及び無効電力である。この全体有効電力及び全体無効電力は、風力発電装置1と蓄電装置2とにそれぞれ所定の出力配分で割り当てられる。
風力要求有効電力及び風力要求無効電力は、全体有効電力及び全体無効電力から割り当てられた、風力発電装置1に要求される有効電力及び無効電力である。
蓄電要求有効電力及び蓄電要求無効電力は、全体有効電力及び全体無効電力から割り当てられた、蓄電装置2に要求される有効電力及び無効電力である。
具体的に統括制御手段30は、電力算出部34と運転モード切替部35とを含み、系統接続端6の電圧情報及び電流情報が入力される。
電力算出部34は、入力された電圧情報及び電流情報に基づいて電力系統7に供給する全体有効電力と全体無効電力とをそれぞれ算出する。例えば、電力算出部34はまずPLL(Phase
Locked Loop)31で系統接続端6の電圧情報から周波数を検出し、この周波数に基づいて周波数−有効電力変換回路32で全体有効電力を導出する。ここで周波数−有効電力変換回路32は、周波数に対応した有効電力をマップとして格納しておき、このマップに基づいて周波数から全体有効電力を求めてもよい。また電圧情報とは電圧の経時変化、すなわち電圧波形を含む情報で、電流情報とは電流の経時変化、すなわち電流波形を含む情報である。
一方電力算出部34では入力された電圧情報から電圧−無効電流変換回路33で無効電流を導出し、電圧情報と合わせて電力系統が必要とする全体無効電力を算出する。
運転モード切替部35は、風力発電装置1と蓄電装置2とにそれぞれ割り当てられる有効電力及び無効電力の出力配分を変更することにより、風力発電設備の運転モードを第1運転モードと第2運転モードとに選択的に切り替える。
運転モード切替部35は第1運転モードにて、電力算出部34で算出された全体有効電力と全体無効電力のそれぞれの範囲内にて、風力発電装置1で出力可能な上限に適合した風力要求有効電力と風力要求無効電力を風力発電装置1に出力させる制御を行う。この制御は、運転モード切替部35で、風力発電装置1に上記した風力要求有効電力を出力させるための制御信号である有効電力指令と、上記した風力要求無効電力を出力させるための制御信号である無効電力指令とを生成し、これらの有効電力指令及び無効電力指令を風力発電制御手段10に送信することにより実行される。
また、運転モード切替部35は第1運転モードにて、全体有効電力と風力要求有効電力との差分、及び、全体無効電力と風力要求無効電力との差分にそれぞれ対応する蓄電要求有効電力及び蓄電要求無効電力を蓄電装置2に出力させる制御を行う。この制御は、運転モード切替部35で、蓄電装置2に上記した蓄電要求有効電力を出力させるための制御信号である有効電力指令と、上記した蓄電要求無効電力を出力させるための制御信号である無効電力指令とを生成し、これらの有効電力指令及び無効電力指令を蓄電制御手段20に送信することにより実行される。
上記した第1運転モードは、主に、電力系統7の定常状態時において設定される。なお、定常状態とは、第1運転モードの風力発電装置と蓄電装置の出力配分において蓄電要求有効電力及び蓄電要求無効電力に基づく皮相電力が蓄電装置の設定皮相電力を超過しない状態であり、すなわち電力系統の電圧変動又は周波数変動が系統擾乱時よりも小さいときである。
さらに、運転モード切替部35は、第1運転モードにて蓄電要求有効電力及び蓄電要求無効電力に基づく皮相電力が蓄電装置2の設定皮相電力を超過するときに、第1運転モードから第2運転モードに切り替える。
運転モード切替部35は第2運転モードにて、蓄電装置2への蓄電要求有効電力を維持しながら蓄電要求無効電力を低減させ、この蓄電要求無効電力の低減量を風力発電装置1の風力要求無効電力に付加させる制御を行う。この制御は、運転モード切替部35で、蓄電装置2に第1運転モードと同一の蓄電要求有効電力を出力させるための制御信号である有効電力指令と、第1運転モードより低減させた蓄電要求無効電力を出力させるための制御信号である無効電力指令とを生成し、これらの有効電力指令及び無効電力指令を蓄電制御手段20に送信することにより実行される。さらにまた、運転モード切替部35で、風力発電装置1に第1運転モードと同一の風力要求有効電力を出力させるための制御信号である有効電力指令と、蓄電要求無効電力の低減量を付加した風力要求無効電力を出力させるための制御信号である無効電力指令とを生成し、これらの有効電力指令及び無効電力指令を蓄電制御手段20に送信することにより実行される。
上記した第2運転モードは主に、系統擾乱時に第1運転モードから切り替えられて設定される。
さらに好ましくは、第1運転モードから第2運転モードへの切り替えは、蓄電装置2への出力から導出される要求皮相電力が、予め設定された蓄電装置の設定皮相電力を超過したときに行う。このとき、第2運転モードでは、蓄電要求有効電力と蓄電要求無効電力とから導出される要求皮相電力が設定皮相電力以下となるまで蓄電要求無効電力を低減させる。
図3を用いて第1運転モードから第2運転モードへの切り替えと、第2運転モードにおける出力指令とについて説明する。なお、図3は本発明の実施形態における蓄電装置2の設定皮相電力曲線を示す図である。同図において、Pは蓄電要求有効電力、Qは蓄電要求無効電力であり、図中の半円曲線は設定皮相電力曲線である。この図において、蓄電装置2の運転ポイントが設定皮相電力曲線内である場合は蓄電装置2の運転可能範囲内の状態であり、設定皮相電力曲線の外側に位置する場合は蓄電装置2が過負荷の状態である。
第1運転モードにおける蓄電装置2の運転ポイントをS1(P1、Q1)とする。S1は蓄電装置2の能力と充電量とにより決定する設定皮相電力曲線上に存在するため、蓄電装置2の負荷内で運転されていることとなる。
ここで、系統周波数が低減した場合、若しくは周波数制御運転状態において風力発電装置1の出力が低下した場合、蓄電要求有効電力がP2となり運転ポイントがS1’(P2,Q1)へ移行しようとしたとき、移行後の運転ポイントでは蓄電要求有効電力P2と蓄電要求無効電力Q1から導出される要求皮相電力が設定皮相電力を超過してしまう。すなわち、運転ポイントS1’は設定皮相電力曲線の外側に位置し、蓄電装置2が過負荷の状態となる。
そこで、第2運転モードに切り替えて、蓄電装置2が過負荷とならないように運転ポイントS1’の蓄電要求有効電力P2は維持した状態で蓄電要求無効電力をQ2に低減した運転ポイントS2(P2、Q2)へ自動的に移行させる。さらに、低減前の蓄電要求無効電力と低減させた蓄電要求無効電力の差分である低減量ΔQ(=Q1−Q2)を統括制御手段30の運転モード切替部35に送信する。運転モード切替部35では、蓄電要求無効電力の低減量ΔQを風力発電装置1の風力要求無効電力に付加した無効電力指令を風力発電制御手段10へ送信する。
本実施形態において、第1運転モードは主として定常状態時に適用され、風力発電装置に割り当てられる風力要求有効電力と風力要求無効電力とを、風力発電装置で出力可能な上限に適合するように最大限に設定しているため、再生エネルギーである風力エネルギーを有効に活用できる。
一方、第2運転モードは主として定常状態時に適用され、系統擾乱時に全体有効電力と全体無効電力とが大幅に変動した場合であっても蓄電装置2が過負荷になることを防止できる。また、有効電力を自在に調整できる蓄電装置2で有効電力を優先的に出力し、有効電力を調整できないが無効電力を調整可能な風力発電装置1で無効電力を優先的に出力するため、擾乱抑制に必要とされる要求皮相電力を適切な電力配分で出力することができる。なお、蓄電装置2が過負荷にならない程度の微小な擾乱に対する変動抑制は第1運転モードで対応可能である。
このように本実施形態によれば、再生エネルギーを最大限に有効活用できるとともに蓄電装置2の過負荷を防止できる有効電力及び無効電力の最適な出力配分制御が可能となる。
また、蓄電装置2に割り当てられた蓄電要求有効電力と蓄電要求無効電力とから要求皮相電力を導出し、要求皮相電力が設定皮相電力を超過した場合に蓄電装置2が設備容量を超過したものと判断することにより、蓄電要求有効電力及び蓄電要求無効電力から簡単に蓄電装置2の容量超過を判断することが可能となる。
さらに、図1に示すように本実施形態において蓄電装置2は、残容量を検出する残容量検出手段25を有していてもよい。残容量検出手段25の構成は特に限定されないが、例えば、蓄電池21の出力ライン(充放電ライン)中に流れる充放電電流に基づいて残容量を検出する構成が用いられる。この残容量検出手段25で検出された蓄電装置2の残容量は統括制御手段30に入力される。統括制御手段30では、残容量検出手段25で検出された蓄電装置2の残容量に応じて設定皮相電力を変更することが好ましい。
これにより系統擾乱時のみでなく、蓄電装置2の残容量に応じても第2運転モードで有効電力と無効電力を蓄電装置2と風力発電装置1のそれぞれに適切に出力配分制御することが可能となる。
さらにまた、運転モード切替部35は第2運転モードにて、第1運転モードでの風力発電装置1と蓄電装置2との出力配分における蓄電装置2の要求皮相電力を監視し、要求皮相電力が設定皮相電力を下回ったときに、第2運転モードから第1運転モードに切り替えることが好ましい。具体的には、第2運転モードで運転中に、第1運転モードでの出力配分における要求皮相電力を監視しておき、要求皮相電力が設定皮相電力を下回ったとき、すなわち蓄電装置2が第1運転モードにおいても過負荷とならなくなったときに、第2運転モードから第1運転モードに切り替える構成としている。これにより蓄電装置2が過負荷にならないときは常に第1運転モードで運転することが可能となり、風力エネルギーを最大限活用することが可能となる。
次に、図4により本実施形態に係る風力発電設備の出力制御方法を説明する。なお図4は、本実施形態に係る風力発電設備の出力制御方法を示すフローチャートである。説明中に示す符号は図1及び図2に対応している。
まず、統括制御手段30に、系統接続端6の電圧情報と電流情報とが入力される(S1)。図2で説明したように統括制御手段30では、電力算出部34にて系統接続端6の電圧情報及び電流情報に基づいて電力系統7で必要とされる全体有効電力と全体無効電力とを算出する(S2)。
そして、電力系統7が主として定常状態においては、統括制御手段30の運転モード切替部35は、第1運転モードで風力発電装置1と蓄電装置2への出力配分制御を行う(S3)。すなわちこの第1運転モードでは、電力算出部34で算出された全体有効電力と全体無効電力の範囲内にて、風力発電装置1で出力可能な上限に適合した風力要求有効電力及び風力要求無効電力を風力発電装置1に出力させる指令を風力発電制御手段10に送信するとともに、全体有効電力と風力要求有効電力との差分、及び、全体無効電力と風力要求無効電力との差分にそれぞれ対応する蓄電要求有効電力及び蓄電要求無効電力を蓄電装置2に出力させる指令を蓄電制御手段20に送信する。風力発電制御手段10は統括制御手段30から送信された風力要求有効電力の指令と風力要求無効電力の指令に応じて風力発電装置1を出力制御する。同様に蓄電制御手段20はこの統括制御手段30から送信された蓄電要求有効電力の指令と蓄電要求無効電力の指令に応じて蓄電装置2を出力制御する。
ここで、残容量検出手段25により蓄電池21の残容量を検出する(S4)。蓄電池21の残容量が前回検出時から変化しているか否かを判定し(S5)、蓄電池21の残容量が変化している場合には、設定皮相電力を残容量に対応した値に変更する(S6)。設定皮相電力は上記で説明した通りである。蓄電池21の残容量が変化していない場合は設定皮相電力は変更しないものとする。
次いで、運転モード切替部35で、第1運転モードで蓄電装置2に割り当てられた要求皮相電力と、設定皮相電力とを比較し(S7)、要求皮相電力が設定皮相電力内であれば第1運転モードの出力制御を続行する(S8)。一方、例えば系統擾乱により要求皮相電力が設定皮相電力を超過している場合、第1運転モードから第2運転モードへ切り替え、第2運転モードで風力発電装置1と蓄電装置2への出力配分制御を行う(S9)。第2運転モードは、蓄電装置2の蓄電要求有効電力を維持しながら蓄電要求無効電力を低減させ、この低減させた蓄電要求無効電力の低減量を風力発電装置の風力要求無効電力に付加させる。風力発電制御手段10は統括制御手段30から送信された風力要求有効電力の指令と風力要求無効電力の指令に応じて風力発電装置1を出力制御する。同様に蓄電制御手段20はこの統括制御手段30から送信された蓄電要求有効電力の指令と蓄電要求無効電力の指令に応じて蓄電装置2を出力制御する。
さらに、第2運転モードで運転中に、第1運転モードでの出力配分における要求皮相電力を監視しておき、要求皮相電力と設定皮相電力とを比較する(S10)。そして、要求皮相電力が設定皮相電力を下回ったとき、すなわち蓄電装置2が第1運転モードにおいても過負荷とならなくなったときに、第2運転モードから第1運転モードに切り替える(S)。なお、要求皮相電力が設定皮相電力を下回らないうちは第2運転モードを続行する(S9)。
このように本実施形態によれば、主に電力系統の定常状態時に設定される第1運転モードと、主に系統擾乱時に設定される第2運転モードとを選択的に切り替える構成としたため、再生エネルギーを最大限に有効活用できるとともに蓄電装置の過負荷を防止できる有効電力及び無効電力の最適な出力配分制御が可能となる。
1 風力発電装置
2 蓄電装置
4 系統連系部
5、12、23 変圧器
6 系統接続端
7 電力系統
10 風力発電制御手段(WTG CONTROLLER)
11 発電機
20 蓄電制御手段(POWER CONTROLLER)
21 蓄電池
22 直流−交流変換器
25 残容量検出手段
30 統括制御手段(MASTER CONTROLLER)
本発明は、風力発電装置に蓄電装置が併設された風力発電設備の出力制御方法及び出力制御装置に係り、特に、系統擾乱による電力系統の周波数変動又は電圧変動を抑制可能な風力発電設備の出力制御方法及び出力制御装置に関する。
従来より、風力発電装置に蓄電装置が併設された風力発電設備が知られている。
図5は、この風力発電設備の構成を示す図である。この風力発電設備は、複数の風力発電装置51が設けられるとともに、この風力発電装置51に並列に蓄電装置55が設けられ、これらが系統連系部60を介して電力系統61に接続されている。ここで電力系統61とは、一般需要家が供給を受けている商用電力系統をいう。一般に風力発電装置51は、風車ブレードの回転が増速機を介して発電機52に入力され、この発電機52で発電した電力を変圧器53で変圧し系統連系部60を介して電力系統61に供給するようになっている。
しかし風力発電装置51においては、出力は風速の変動に伴い変動するためこれに対応して電力系統61の需給バランスや周波数に影響を及ぼす可能性がある。電力系統61へ供給される電力はその電圧及び周波数が許容範囲内に維持されることが求められるため、従来は系統側で要求される有効電力及び無効電力に対して風力発電装置51の供給能力から不足する電力を蓄電装置55で補償する構成としていた。ここで蓄電装置55は、蓄電池56からの直流出力を直流−交流変換器57を介して交流出力に変換した後、変圧器58で変圧し系統連系部60を介して電力系統61に供給するようになっている。このように、従来風力発電装置51に併設される蓄電装置55は主に風力発電装置51による出力変動を平滑化するために用いられていた。
一方、落雷等の系統事故により系統側の電圧や周波数に擾乱が発生することがある。従来は系統事故が発生したときに風力発電設備を解列して対処することがあったが、近年は風力発電設備を電力系統から解列せずに運転を継続し、系統の事故復帰後にすぐさま定常運転を再開することが求められている。さらにこれに加えて、系統事故が発生したときに発電設備の有効電力と無効電力を同時出力制御することにより系統の安定化を図る技術が検討され始めている。
例えば特許文献1(特許第3352662号公報)には、系統擾乱時に電力系統を安定化させる装置が開示されており、この装置は、風力発電機や太陽光発電機等の電力系統に電力を出力する第1の設備と、定格値より大きい電力で充放電する過充放電運転を考慮した電池を含む二次電池システムとを有する。さらに、電力系統における有効電力の事前の設定値、無効電力の事前の設定値、基準周波数及び基準電圧とそれぞれの現状の値との差を検出し、この検出結果に応じて蓄電装置の過負荷出力と出力継続時間特性に基づいて蓄電装置から出力される有効電力量及び無効電力量を制御する構成となっている。
特許第3352662号公報
上記したように風力発電設備においては、系統擾乱時に電力系統の電圧変動及び周波数変動を抑制することが求められている。ここで、風力発電設備から供給される無効電力を制御することによって系統電圧の変動を抑制することが可能であり、また有効電力を制御することによって系統周波数の変動を抑制することが可能であることが知られている。その場合、上記したように風力発電装置の出力は風速に依存するため、有効電力を制御することは難しかった。そこで特許文献1に開示されるように、風力発電装置で制御不可能な有効電力を蓄電装置で補償することが考えられる。蓄電装置は直流−交流変換器により自動周波数制御機能を有しているため、電力系統の周波数変動を抑制するために必要な有効電力を供給することができるものである。
しかし特許文献1に記載される二次電池システムは、定格値より大きい電力で充放電する過充放電運転を考慮した電池を含むものであり、一般に蓄電装置に具備される蓄電池は予め設定された容量を超過すると過負荷運転となり、耐用期間が短くなるおそれがある。蓄電池は高価である上に設置費用も嵩むため、過負荷運転とならない適切な運転制御が求められている。
したがって、本発明はかかる従来技術の問題に鑑み、系統擾乱時に電力系統の電圧変動及び周波数変動を抑制可能で、且つ蓄電装置の過負荷を防止し、風力発電装置と蓄電装置との最適な統括出力制御を可能とした風力発電設備の出力制御方法及び出力制御装置を提供することを目的とする。
上記の課題を解決するために、本発明に係る風力発電設備の出力制御方法は、風力発電装置と蓄電装置とが系統連系部を介して電力系統に並列に接続された風力発電設備の出力制御方法において、前記風力発電設備の系統接続端で検出される電圧情報及び電流情報に基づいて、前記風力発電設備から前記電力系統に供給する全体有効電力及び全体無効電力を算出し、前記全体有効電力及び前記全体無効電力のそれぞれの範囲内にて、前記風力発電装置で出力可能な上限に適合した風力要求有効電力及び風力要求無効電力を前記風力発電装置に出力させるとともに、前記全体有効電力と前記風力要求有効電力との差分、及び、前記全体無効電力と前記風力要求無効電力との差分にそれぞれ対応する蓄電要求有効電力及び蓄電要求無効電力を前記蓄電装置に出力させる第1運転モードと、前記第1運転モードにて前記蓄電要求有効電力及び前記蓄電要求無効電力に基づく皮相電力が前記蓄電装置の設定皮相電力を超過するときに、前記蓄電要求有効電力を維持しながら前記蓄電要求無効電力を低減させ、前記蓄電要求無効電力の低減量を前記風力要求無効電力に付加させる第2運転モードとを選択的に切り替えることを特徴とする。
ここで、全体有効電力及び全体無効電力とは、電力系統の周波数と電圧を許容範囲内に維持するために風力発電設備全体に要求される有効電力及び無効電力である。この全体有効電力及び全体無効電力は、風力発電装置と蓄電装置とにそれぞれ所定の出力配分で割り当てられる。
風力要求有効電力及び風力要求無効電力は、全体有効電力及び全体無効電力から割り当てられた、風力発電装置に要求される有効電力及び無効電力である。
蓄電要求有効電力及び蓄電要求無効電力は、全体有効電力及び全体無効電力から割り当てられた、蓄電装置に要求される有効電力及び無効電力である。
本発明において、第1運転モードは主に電力系統の定常状態時に設定される。第1運転モードでは、風力発電装置に割り当てられる風力要求有効電力と風力要求無効電力とを、風力発電装置で出力可能な上限に適合するように最大限に設定しているため、再生エネルギーである風力エネルギーを有効に活用できる。なお、定常状態とは、上記した風力発電装置と蓄電装置の出力配分において蓄電要求有効電力及び蓄電要求無効電力に基づく皮相電力が蓄電装置の設定皮相電力を超過しない状態であり、すなわち電力系統の電圧変動又は周波数変動が系統擾乱時よりも小さいときである。
一方、第2運転モードは主に系統擾乱時に第1運転モードから切り替えられて設定される。系統擾乱時には、系統周波数及び系統電圧の少なくとも一方が電力系統の許容範囲から外れて変動することがあり、系統周波数の変動抑制のために風力発電設備から供給する全体有効電力を制御し、系統電圧の変動抑制のために全体無効電力を制御する。この制御量に応じて蓄電装置に割り当てられる蓄電要求有効電力及び蓄電要求無効電力に基づく皮相電力が蓄電装置の設定皮相電力を超過する場合に第2運転モードに切り替えられる。この第2運転モードでは、系統擾乱時において全体有効電力と全体無効電力とが大幅に変動した場合であっても蓄電装置が過負荷になることを防止できる。また、有効電力を自在に調整できる蓄電装置で有効電力を優先的に出力し、有効電力を調整できないが無効電力を調整可能な風力発電装置で無効電力を優先的に出力するため、擾乱抑制に必要とされる要求皮相電力を適切な電力配分で出力することができる。
なお、蓄電装置が過負荷にならない程度の微小な擾乱に対する変動抑制は第1運転モードで対応可能である。
このように本発明によれば、再生エネルギーを最大限に有効活用できるとともに蓄電装置の過負荷を防止できる有効電力及び無効電力の最適な出力配分制御が可能となる。
また、前記第1運転モードから前記第2運転モードへの切り替えは、前記蓄電装置の出力から導出される要求皮相電力が、予め設定された前記蓄電装置の設定皮相電力を超過したときに行い、前記第2運転モードでは、前記蓄電要求有効電力と前記低減させた蓄電要求無効電力とから導出される要求皮相電力が前記設定皮相電力以下となるまで前記蓄電要求無効電力を低減させることが好ましい。
このように、蓄電装置に割り当てられた蓄電要求有効電力と蓄電要求無効電力とから蓄電装置への要求皮相電力を導出し、要求皮相電力が設定皮相電力を超過したときに蓄電装置が設備容量を超過したものと判断することにより、蓄電要求有効電力及び蓄電要求無効電力から簡単に蓄電装置の容量超過を判断することが可能となる。なお、設定皮相電力は蓄電装置の能力と充電量とにより決定するものである。
さらに、前記蓄電装置の残容量を検出し、前記残容量に応じて前記設定皮相電力を変更することが好ましく、これにより系統擾乱時のみでなく、蓄電装置の残容量に応じて第2運転モードで要求有効電力と要求無効電力を蓄電装置と風力発電装置のそれぞれに適切に出力配分することが可能となる。
さらにまた、前記第2運転モードでは、前記第1運転モードでの前記風力発電装置と前記蓄電装置との出力配分における前記蓄電装置の前記要求皮相電力を監視し、前記要求皮相電力が前記設定皮相電力を下回ったときに、前記第2運転モードから前記第1運転モードに切り替えることが好ましい。
本構成は、第2運転モードで運転中に、第1運転モードでの出力配分における要求皮相電力を監視しておき、要求皮相電力が設定皮相電力を下回ったとき、すなわち蓄電装置が第1運転モードにおいても過負荷とならなくなったときに、第2運転モードから第1運転モードに切り替える構成としている。これにより蓄電装置が過負荷にならないときは常に第1運転モードで運転することが可能となり、風力エネルギーを最大限活用することが可能となる。
また、本発明に係る風力発電設備の出力制御装置は、風力発電装置と蓄電装置とが系統連系部を介して電力系統に並列に接続された風力発電設備の出力制御装置において、前記風力発電装置の系統接続端の電圧情報及び電流情報が入力される統括制御手段と、前記統括制御手段からの出力指令に基づいて、前記風力発電装置の出力を制御する風力発電制御手段及び前記蓄電装置の出力を制御する蓄電制御手段とを備え、前記統括制御手段は、前記電圧情報及び前記電流情報に基づいて前記風力発電設備から前記電力系統に供給する全体有効電力及び全体無効電力を算出する電力算出部と、前記全体有効電力及び前記全体無効電力のそれぞれの範囲内にて、前記風力発電装置で出力可能な上限に適合した風力要求有効電力及び風力要求無効電力を前記風力発電装置に出力させるとともに、前記全体有効電力と前記風力要求有効電力との差分、及び、前記全体無効電力と前記風力要求無効電力との差分にそれぞれ対応する蓄電要求有効電力及び蓄電要求無効電力を前記蓄電装置に出力させる第1運転モードと、前記第1運転モードにて前記蓄電装置の出力から導出される要求皮相電力が、予め設定された前記蓄電装置の設定皮相電力を超過するときに、前記蓄電要求有効電力を維持しながら前記蓄電要求無効電力を低減させ、前記蓄電要求無効電力の低減量を前記風力要求無効電力に付加させる第2運転モードとを選択的に切り替える運転モード切替部とを有することを特徴とする。
さらに、前記蓄電装置の残容量を検出する残容量検出手段をさらに備え、前記統括制御手段は、前記残容量検出手段で検出された前記残容量に応じて前記設定皮相電力を変更することが好ましい。
以上記載のように本発明によれば、主に電力系統の定常状態時に設定される第1運転モードと、主に系統擾乱時に設定される第2運転モードとを選択的に切り替える構成としたため、再生エネルギーである風力エネルギーを最大限に有効活用できるとともに蓄電装置の過負荷を防止できる有効電力及び無効電力の最適な出力配分制御が可能となる。
本発明の実施形態に係る風力発電設備の出力制御装置を含む全体構成図である。 本発明の実施形態における統括制御手段の制御ブロック図である。 本発明の実施形態における蓄電装置の設定皮相電力曲線を示す図である。 本発明の実施形態に係る風力発電設備の出力制御方法を示すフローチャートである。 従来の風力発電装置の全体構成図である。
以下、図面を参照して本発明の好適な実施形態を例示的に詳しく説明する。但しこの実施形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。
まず最初に、図1を参照して風力発電設備の全体構成を説明する。
この風力発電設備は、風力発電装置1と蓄電装置2とを有し、これらの風力発電装置1及び蓄電装置2は系統連系部4に並列に接続されている。
風力発電装置1は一又は複数設けられる。風力発電装置1が複数設けられる場合はそれぞれが系統連系部4に並列に接続されている。風力発電装置1の構成は、複数の風車ブレードが取り付けられたロータを有し、ロータは増速機を介して発電機11に接続されている。発電機11の出力端子に接続された母線は、変圧器12を経由して系統連系部4の系統接続端6に接続されている。この風力発電装置1では、風車ブレードの回転が増速機を介して発電機11に入力され、この発電機11で発電した電力を変圧器12で変圧した後系統連系部4を介して電力系統7に供給するようになっている。
蓄電装置2は一又は複数設けられる。蓄電装置2が複数設けられる場合はそれぞれが系統連系部4に並列に接続される。蓄電装置2の構成は、一又は直列に接続された複数の蓄電池21,直流出力を交流出力に変換する直流−交流変換器22、変圧器23を有し、蓄電池21の出力端子に接続された母線は、変圧器23を経由して系統連系部4の系統接続端6に接続されている。この蓄電装置2では、放電した直流出力を直流−交流変換器22で交流出力に変換し、交流出力を変圧器23で所定電圧に変圧した後系統連系部4を介して電力系統7に供給するようになっている。なお、蓄電装置2は必要に応じて電力系統7から充電される。このとき、後述する蓄電制御手段20に電力系統7の電圧情報及び電流情報が入力され、これらに基づいて充放電制御されることが好ましい。
ここで、系統連系部4は、風力発電設備を電力系統7に連系するための設備であり、電力系統7との間で定められた系統連系の条件に基づいて供給電力の各種調整を行う。例えば系統連系の条件として、連系点における電圧の変動や出力値を許容範囲内とする条件が設定されている。なお、系統連系部4には変圧器5を含んでいてもよい。
また、電力系統7とは、発電設備で発電した出力を送電線、変電所を介して需要家へ送る設備機器群であり、ここでは一般需要家が供給を受けている商用電力系統をいう。
上記した構成を有する発電設備の出力制御装置は、風力発電装置1の出力を制御する風力発電制御手段(WTG CONTROLLER)10と、蓄電装置2の出力を制御する蓄電制御手段(POWER CONTROLLER)20と、風力発電制御手段10と蓄電制御手段20とにそれぞれ有効電力指令と無効電力指令とを与える統括制御手段(MASTER CONTROLLER)30とを有する。
図2を参照して、統括制御手段30の制御動作を説明する。なお図2は本発明の実施形態における統括制御手段の制御ブロック図である。
統括制御手段30は、風力発電設備から電力系統7に供給する全体有効電力及び全体無効電力を、風力発電制御手段10と蓄電制御手段20のそれぞれへ割り当て、風力発電装置1への風力要求有効電力及び風力要求無効電力と、蓄電装置2への蓄電要求有効電力及び蓄電要求無効電力とを設定することにより、有効電力及び無効電力の出力配分制御を行うものである。
ここで、全体有効電力及び全体無効電力とは、電力系統7の周波数と電圧を許容範囲内に維持するために風力発電設備全体に要求される有効電力及び無効電力である。この全体有効電力及び全体無効電力は、風力発電装置1と蓄電装置2とにそれぞれ所定の出力配分で割り当てられる。
風力要求有効電力及び風力要求無効電力は、全体有効電力及び全体無効電力から割り当てられた、風力発電装置1に要求される有効電力及び無効電力である。
蓄電要求有効電力及び蓄電要求無効電力は、全体有効電力及び全体無効電力から割り当てられた、蓄電装置2に要求される有効電力及び無効電力である。
具体的に統括制御手段30は、電力算出部34と運転モード切替部35とを含み、系統接続端6の電圧情報及び電流情報が入力される。
電力算出部34は、入力された電圧情報及び電流情報に基づいて電力系統7に供給する全体有効電力と全体無効電力とをそれぞれ算出する。例えば、電力算出部34はまずPLL(Phase
Locked Loop)31で系統接続端6の電圧情報から周波数を検出し、この周波数に基づいて周波数−有効電力変換回路32で全体有効電力を導出する。ここで周波数−有効電力変換回路32は、周波数に対応した有効電力をマップとして格納しておき、このマップに基づいて周波数から全体有効電力を求めてもよい。また電圧情報とは電圧の経時変化、すなわち電圧波形を含む情報で、電流情報とは電流の経時変化、すなわち電流波形を含む情報である。
一方電力算出部34では入力された電圧情報から電圧−無効電流変換回路33で無効電流を導出し、電圧情報と合わせて電力系統が必要とする全体無効電力を算出する。
運転モード切替部35は、風力発電装置1と蓄電装置2とにそれぞれ割り当てられる有効電力及び無効電力の出力配分を変更することにより、風力発電設備の運転モードを第1運転モードと第2運転モードとに選択的に切り替える。
運転モード切替部35は第1運転モードにて、電力算出部34で算出された全体有効電力と全体無効電力のそれぞれの範囲内にて、風力発電装置1で出力可能な上限に適合した風力要求有効電力と風力要求無効電力を風力発電装置1に出力させる制御を行う。この制御は、運転モード切替部35で、風力発電装置1に上記した風力要求有効電力を出力させるための制御信号である有効電力指令と、上記した風力要求無効電力を出力させるための制御信号である無効電力指令とを生成し、これらの有効電力指令及び無効電力指令を風力発電制御手段10に送信することにより実行される。
また、運転モード切替部35は第1運転モードにて、全体有効電力と風力要求有効電力との差分、及び、全体無効電力と風力要求無効電力との差分にそれぞれ対応する蓄電要求有効電力及び蓄電要求無効電力を蓄電装置2に出力させる制御を行う。この制御は、運転モード切替部35で、蓄電装置2に上記した蓄電要求有効電力を出力させるための制御信号である有効電力指令と、上記した蓄電要求無効電力を出力させるための制御信号である無効電力指令とを生成し、これらの有効電力指令及び無効電力指令を蓄電制御手段20に送信することにより実行される。
上記した第1運転モードは、主に、電力系統7の定常状態時において設定される。なお、定常状態とは、第1運転モードの風力発電装置と蓄電装置の出力配分において蓄電要求有効電力及び蓄電要求無効電力に基づく皮相電力が蓄電装置の設定皮相電力を超過しない状態であり、すなわち電力系統の電圧変動又は周波数変動が系統擾乱時よりも小さいときである。
さらに、運転モード切替部35は、第1運転モードにて蓄電要求有効電力及び蓄電要求無効電力に基づく皮相電力が蓄電装置2の設定皮相電力を超過するときに、第1運転モードから第2運転モードに切り替える。
運転モード切替部35は第2運転モードにて、蓄電装置2への蓄電要求有効電力を維持しながら蓄電要求無効電力を低減させ、この蓄電要求無効電力の低減量を風力発電装置1の風力要求無効電力に付加させる制御を行う。この制御は、運転モード切替部35で、蓄電装置2に第1運転モードと同一の蓄電要求有効電力を出力させるための制御信号である有効電力指令と、第1運転モードより低減させた蓄電要求無効電力を出力させるための制御信号である無効電力指令とを生成し、これらの有効電力指令及び無効電力指令を蓄電制御手段20に送信することにより実行される。さらにまた、運転モード切替部35で、風力発電装置1に第1運転モードと同一の風力要求有効電力を出力させるための制御信号である有効電力指令と、蓄電要求無効電力の低減量を付加した風力要求無効電力を出力させるための制御信号である無効電力指令とを生成し、これらの有効電力指令及び無効電力指令を蓄電制御手段20に送信することにより実行される。
上記した第2運転モードは主に、系統擾乱時に第1運転モードから切り替えられて設定される。
さらに好ましくは、第1運転モードから第2運転モードへの切り替えは、蓄電装置2への出力から導出される要求皮相電力が、予め設定された蓄電装置の設定皮相電力を超過したときに行う。このとき、第2運転モードでは、蓄電要求有効電力と蓄電要求無効電力とから導出される要求皮相電力が設定皮相電力以下となるまで蓄電要求無効電力を低減させる。
図3を用いて第1運転モードから第2運転モードへの切り替えと、第2運転モードにおける出力指令とについて説明する。なお、図3は本発明の実施形態における蓄電装置2の設定皮相電力曲線を示す図である。同図において、Pは蓄電要求有効電力、Qは蓄電要求無効電力であり、図中の半円曲線は設定皮相電力曲線である。この図において、蓄電装置2の運転ポイントが設定皮相電力曲線内である場合は蓄電装置2の運転可能範囲内の状態であり、設定皮相電力曲線の外側に位置する場合は蓄電装置2が過負荷の状態である。
第1運転モードにおける蓄電装置2の運転ポイントをS1(P1、Q1)とする。S1は蓄電装置2の能力と充電量とにより決定する設定皮相電力曲線上に存在するため、蓄電装置2の負荷内で運転されていることとなる。
ここで、系統周波数が低減した場合、若しくは周波数制御運転状態において風力発電装置1の出力が低下した場合、蓄電要求有効電力がP2となり運転ポイントがS1’(P2,Q1)へ移行しようとしたとき、移行後の運転ポイントでは蓄電要求有効電力P2と蓄電要求無効電力Q1から導出される要求皮相電力が設定皮相電力を超過してしまう。すなわち、運転ポイントS1’は設定皮相電力曲線の外側に位置し、蓄電装置2が過負荷の状態となる。
そこで、第2運転モードに切り替えて、蓄電装置2が過負荷とならないように運転ポイントS1’の蓄電要求有効電力P2は維持した状態で蓄電要求無効電力をQ2に低減した運転ポイントS2(P2、Q2)へ自動的に移行させる。さらに、低減前の蓄電要求無効電力と低減させた蓄電要求無効電力の差分である低減量ΔQ(=Q1−Q2)を統括制御手段30の運転モード切替部35に送信する。運転モード切替部35では、蓄電要求無効電力の低減量ΔQを風力発電装置1の風力要求無効電力に付加した無効電力指令を風力発電制御手段10へ送信する。
本実施形態において、第1運転モードは主として定常状態時に適用され、風力発電装置に割り当てられる風力要求有効電力と風力要求無効電力とを、風力発電装置で出力可能な上限に適合するように最大限に設定しているため、再生エネルギーである風力エネルギーを有効に活用できる。
一方、第2運転モードは主として系統擾乱時に適用され、系統擾乱時に全体有効電力と全体無効電力とが大幅に変動した場合であっても蓄電装置2が過負荷になることを防止できる。また、有効電力を自在に調整できる蓄電装置2で有効電力を優先的に出力し、有効電力を調整できないが無効電力を調整可能な風力発電装置1で無効電力を優先的に出力するため、擾乱抑制に必要とされる要求皮相電力を適切な電力配分で出力することができる。なお、蓄電装置2が過負荷にならない程度の微小な擾乱に対する変動抑制は第1運転モードで対応可能である。
このように本実施形態によれば、再生エネルギーを最大限に有効活用できるとともに蓄電装置2の過負荷を防止できる有効電力及び無効電力の最適な出力配分制御が可能となる。
また、蓄電装置2に割り当てられた蓄電要求有効電力と蓄電要求無効電力とから要求皮相電力を導出し、要求皮相電力が設定皮相電力を超過した場合に蓄電装置2が設備容量を超過したものと判断することにより、蓄電要求有効電力及び蓄電要求無効電力から簡単に蓄電装置2の容量超過を判断することが可能となる。
さらに、図1に示すように本実施形態において蓄電装置2は、残容量を検出する残容量検出手段25を有していてもよい。残容量検出手段25の構成は特に限定されないが、例えば、蓄電池21の出力ライン(充放電ライン)中に流れる充放電電流に基づいて残容量を検出する構成が用いられる。この残容量検出手段25で検出された蓄電装置2の残容量は統括制御手段30に入力される。統括制御手段30では、残容量検出手段25で検出された蓄電装置2の残容量に応じて設定皮相電力を変更することが好ましい。
これにより系統擾乱時のみでなく、蓄電装置2の残容量に応じても第2運転モードで有効電力と無効電力を蓄電装置2と風力発電装置1のそれぞれに適切に出力配分制御することが可能となる。
さらにまた、運転モード切替部35は第2運転モードにて、第1運転モードでの風力発電装置1と蓄電装置2との出力配分における蓄電装置2の要求皮相電力を監視し、要求皮相電力が設定皮相電力を下回ったときに、第2運転モードから第1運転モードに切り替えることが好ましい。具体的には、第2運転モードで運転中に、第1運転モードでの出力配分における要求皮相電力を監視しておき、要求皮相電力が設定皮相電力を下回ったとき、すなわち蓄電装置2が第1運転モードにおいても過負荷とならなくなったときに、第2運転モードから第1運転モードに切り替える構成としている。これにより蓄電装置2が過負荷にならないときは常に第1運転モードで運転することが可能となり、風力エネルギーを最大限活用することが可能となる。
次に、図4により本実施形態に係る風力発電設備の出力制御方法を説明する。なお図4は、本実施形態に係る風力発電設備の出力制御方法を示すフローチャートである。説明中に示す符号は図1及び図2に対応している。
まず、統括制御手段30に、系統接続端6の電圧情報と電流情報とが入力される(S1)。図2で説明したように統括制御手段30では、電力算出部34にて系統接続端6の電圧情報及び電流情報に基づいて電力系統7で必要とされる全体有効電力と全体無効電力とを算出する(S2)。
そして、電力系統7が主として定常状態においては、統括制御手段30の運転モード切替部35は、第1運転モードで風力発電装置1と蓄電装置2への出力配分制御を行う(S3)。すなわちこの第1運転モードでは、電力算出部34で算出された全体有効電力と全体無効電力の範囲内にて、風力発電装置1で出力可能な上限に適合した風力要求有効電力及び風力要求無効電力を風力発電装置1に出力させる指令を風力発電制御手段10に送信するとともに、全体有効電力と風力要求有効電力との差分、及び、全体無効電力と風力要求無効電力との差分にそれぞれ対応する蓄電要求有効電力及び蓄電要求無効電力を蓄電装置2に出力させる指令を蓄電制御手段20に送信する。風力発電制御手段10は統括制御手段30から送信された風力要求有効電力の指令と風力要求無効電力の指令に応じて風力発電装置1を出力制御する。同様に蓄電制御手段20はこの統括制御手段30から送信された蓄電要求有効電力の指令と蓄電要求無効電力の指令に応じて蓄電装置2を出力制御する。
ここで、残容量検出手段25により蓄電池21の残容量を検出する(S4)。蓄電池21の残容量が前回検出時から変化しているか否かを判定し(S5)、蓄電池21の残容量が変化している場合には、設定皮相電力を残容量に対応した値に変更する(S6)。設定皮相電力は上記で説明した通りである。蓄電池21の残容量が変化していない場合は設定皮相電力は変更しないものとする。
次いで、運転モード切替部35で、第1運転モードで蓄電装置2に割り当てられた要求皮相電力と、設定皮相電力とを比較し(S7)、要求皮相電力が設定皮相電力内であれば第1運転モードの出力制御を続行する(S8)。一方、例えば系統擾乱により要求皮相電力が設定皮相電力を超過している場合、第1運転モードから第2運転モードへ切り替え、第2運転モードで風力発電装置1と蓄電装置2への出力配分制御を行う(S9)。第2運転モードは、蓄電装置2の蓄電要求有効電力を維持しながら蓄電要求無効電力を低減させ、この低減させた蓄電要求無効電力の低減量を風力発電装置の風力要求無効電力に付加させる。風力発電制御手段10は統括制御手段30から送信された風力要求有効電力の指令と風力要求無効電力の指令に応じて風力発電装置1を出力制御する。同様に蓄電制御手段20はこの統括制御手段30から送信された蓄電要求有効電力の指令と蓄電要求無効電力の指令に応じて蓄電装置2を出力制御する。
さらに、第2運転モードで運転中に、第1運転モードでの出力配分における要求皮相電力を監視しておき、要求皮相電力と設定皮相電力とを比較する(S10)。そして、要求皮相電力が設定皮相電力を下回ったとき、すなわち蓄電装置2が第1運転モードにおいても過負荷とならなくなったときに、第2運転モードから第1運転モードに切り替える(S8)。なお、要求皮相電力が設定皮相電力を下回らないうちは第2運転モードを続行する(S9)。
このように本実施形態によれば、主に電力系統の定常状態時に設定される第1運転モードと、主に系統擾乱時に設定される第2運転モードとを選択的に切り替える構成としたため、再生エネルギーを最大限に有効活用できるとともに蓄電装置2の過負荷を防止できる有効電力及び無効電力の最適な出力配分制御が可能となる。
1 風力発電装置
2 蓄電装置
4 系統連系部
5、12、23 変圧器
6 系統接続端
7 電力系統
10 風力発電制御手段(WTG CONTROLLER)
11 発電機
20 蓄電制御手段(POWER CONTROLLER)
21 蓄電池
22 直流−交流変換器
25 残容量検出手段
30 統括制御手段(MASTER CONTROLLER)

Claims (6)

  1. 風力発電装置と蓄電装置とが系統連系部を介して電力系統に並列に接続された風力発電設備の出力制御方法において、
    前記風力発電設備の系統接続端で検出される電圧情報及び電流情報に基づいて、前記風力発電設備から前記電力系統に供給する全体有効電力及び全体無効電力を算出し、
    前記全体有効電力及び前記全体無効電力のそれぞれの範囲内にて、前記風力発電装置で出力可能な上限に適合した風力要求有効電力及び風力要求無効電力を前記風力発電装置に出力させるとともに、前記全体有効電力と前記風力要求有効電力との差分、及び、前記全体無効電力と前記風力要求無効電力との差分にそれぞれ対応する蓄電要求有効電力及び蓄電要求無効電力を前記蓄電装置に出力させる第1運転モードと、前記第1運転モードにて前記蓄電要求有効電力及び前記蓄電要求無効電力に基づく皮相電力が前記蓄電装置の設定皮相電力を超過するときに、前記蓄電要求有効電力を維持しながら前記蓄電要求無効電力を低減させ、前記蓄電要求無効電力の低減量を前記風力要求無効電力に付加させる第2運転モードとを選択的に切り替えることを特徴とする風力発電設備の出力制御方法。
  2. 前記第1運転モードから前記第2運転モードへの切り替えは、前記蓄電装置の出力から導出される要求皮相電力が、予め設定された前記蓄電装置の設定皮相電力を超過したときに行い、前記第2運転モードでは、前記蓄電要求有効電力と前記低減させた蓄電要求無効電力とから導出される要求皮相電力が前記設定皮相電力以下となるまで前記蓄電要求無効電力を低減させることを特徴とする請求項1に記載の風力発電設備の出力制御方法。
  3. 前記蓄電装置の残容量を検出し、前記残容量に応じて前記設定皮相電力を変更することを特徴とする請求項1に記載の風力発電設備の出力制御方法。
  4. 前記第2運転モードでは、前記第1運転モードでの前記風力発電装置と前記蓄電装置との出力配分における前記蓄電装置の前記要求皮相電力を監視し、前記要求皮相電力が前記設定皮相電力を下回ったときに、前記第2運転モードから前記第1運転モードに切り替えることを特徴とする請求項1に記載の風力発電設備の出力制御方法。
  5. 風力発電装置と蓄電装置とが系統連系部を介して電力系統に並列に接続された風力発電設備の出力制御装置において、
    前記風力発電装置の系統接続端の電圧情報及び電流情報が入力される統括制御手段と、前記統括制御手段からの出力指令に基づいて、前記風力発電装置の出力を制御する風力発電制御手段及び前記蓄電装置の出力を制御する蓄電制御手段とを備え、
    前記統括制御手段は、前記電圧情報及び前記電流情報に基づいて前記風力発電設備から前記電力系統に供給する全体有効電力及び全体無効電力を算出する電力算出部と、
    前記全体有効電力及び前記全体無効電力のそれぞれの範囲内にて、前記風力発電装置で出力可能な上限に適合した風力要求有効電力及び風力要求無効電力を前記風力発電装置に出力させるとともに、前記全体有効電力と前記風力要求有効電力との差分、及び、前記全体無効電力と前記風力要求無効電力との差分にそれぞれ対応する蓄電要求有効電力及び蓄電要求無効電力を前記蓄電装置に出力させる第1運転モードと、前記第1運転モードにて前記蓄電装置の出力から導出される要求皮相電力が、予め設定された前記蓄電装置の設定皮相電力を超過するときに、前記蓄電要求有効電力を維持しながら前記蓄電要求無効電力を低減させ、前記蓄電要求無効電力の低減量を前記風力要求無効電力に付加させる第2運転モードとを選択的に切り替える運転モード切替部とを有することを特徴とする風力発電設備の出力制御装置。
  6. 前記蓄電装置の残容量を検出する残容量検出手段をさらに備え、
    前記統括制御手段は、前記残容量検出手段で検出された前記残容量に応じて前記設定皮相電力を変更することを特徴とする請求項5に記載の風力発電設備の出力制御装置。
JP2011502967A 2010-11-25 2010-11-25 風力発電設備の出力制御方法及び出力制御装置 Active JP5308511B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/071061 WO2012070141A1 (ja) 2010-11-25 2010-11-25 風力発電設備の出力制御方法及び出力制御装置

Publications (2)

Publication Number Publication Date
JP5308511B2 JP5308511B2 (ja) 2013-10-09
JPWO2012070141A1 true JPWO2012070141A1 (ja) 2014-05-19

Family

ID=45805914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011502967A Active JP5308511B2 (ja) 2010-11-25 2010-11-25 風力発電設備の出力制御方法及び出力制御装置

Country Status (9)

Country Link
US (1) US8247917B2 (ja)
EP (1) EP2481923A1 (ja)
JP (1) JP5308511B2 (ja)
KR (1) KR20120083848A (ja)
CN (1) CN102667144A (ja)
AU (1) AU2010271485A1 (ja)
BR (1) BRPI1007488A2 (ja)
CA (1) CA2729776A1 (ja)
WO (1) WO2012070141A1 (ja)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012120595A1 (ja) * 2011-03-04 2012-09-13 三菱重工業株式会社 風力発電システムおよび風力発電装置
JP4848478B1 (ja) * 2011-04-14 2011-12-28 三菱重工業株式会社 風力発電設備の出力平準化方法及び風力発電設備の出力平準化装置
ES2448794T3 (es) * 2011-09-20 2014-03-17 Siemens Aktiengesellschaft Método para hacer funcionar una granja eólica, controlador de granja eólica y granja eólica
DE102011055225A1 (de) * 2011-11-10 2013-05-16 Evonik Degussa Gmbh Verfahren zur Bereitstellung von Regelleistung
EP2645530B1 (en) * 2012-03-27 2018-08-15 Siemens Aktiengesellschaft Method for controlling a wind farm, wind farm controller, wind farm, computer-readable medium and program element
CN103515972A (zh) * 2012-06-28 2014-01-15 华锐风电科技(集团)股份有限公司 应用储能系统的风电机场系统及其控制方法
CN102832634B (zh) * 2012-08-28 2015-07-15 华北电力大学 基于超级电容和大容量储能装置的组合式功率平抑系统
EP2896099B1 (en) 2012-09-17 2016-11-30 Vestas Wind Systems A/S A method of determining individual set points in a power plant controller, and a power plant controller
KR101455265B1 (ko) * 2012-12-31 2014-11-13 한국전기연구원 풍력 발전 단지 유효 전력 제어 방법 및 장치
CN103296690B (zh) * 2013-05-13 2015-03-18 龙源电力集团股份有限公司 风电场上网电量控制方法
JP6173773B2 (ja) * 2013-05-24 2017-08-02 株式会社東芝 可変速制御装置及び運転方法
DE102013210812A1 (de) * 2013-06-10 2014-12-11 Wobben Properties Gmbh Verfahren zum Einspeisen elektrischer Leistung in ein elektrisches Versorgungsnetz
KR102130093B1 (ko) * 2013-07-15 2020-07-03 두산중공업 주식회사 풍력단지 제어기 및 이의 무효 전력 지령 분배 방법, 그리고 이를 이용하는 시스템
US9393637B2 (en) * 2013-09-12 2016-07-19 Lincoln Global, Inc. Brush maintenance system for engine driven welder
DE102013222452A1 (de) * 2013-11-05 2015-05-07 Wobben Properties Gmbh Verfahren zum Betreiben einer Windenergieanlage
CN103715714B (zh) * 2013-12-11 2016-04-20 国家电网公司 一种双馈型风电场自适应无功补偿运行方法
CN103701152B (zh) * 2014-01-15 2015-11-18 国家电网公司 一种光伏发电站并网的闪变传递系数获取的方法及系统
JP5766322B1 (ja) * 2014-03-14 2015-08-19 通研電気工業株式会社 分散電源系統連系時の系統制御システム、装置、及び方法
CN104500335B (zh) * 2014-11-28 2017-10-13 广东瑞德智能科技股份有限公司 一种风力发电机软制动电路
EP3037297B1 (en) 2014-12-22 2019-03-06 Sandvik Mining and Construction Oy Mining vehicle and method for its energy supply
CN105790298B (zh) * 2014-12-23 2019-03-12 台达电子工业股份有限公司 风力发电控制装置及风力发电系统
WO2016182115A1 (ko) * 2015-05-13 2016-11-17 삼성중공업 주식회사 선박 및 그 전력 운용 방법
US10361604B1 (en) * 2015-06-17 2019-07-23 Jim Skerlan Electromagnetic gravity driven generator
KR101707013B1 (ko) * 2015-09-25 2017-02-16 고려대학교 산학협력단 복합발전 무효전력 제어장치 및 방법
JP6611622B2 (ja) * 2016-01-19 2019-11-27 三菱電機株式会社 発電システム
DE102016105662A1 (de) 2016-03-29 2017-10-05 Wobben Properties Gmbh Verfahren zum Einspeisen elektrischer Leistung in ein elektrisches Versorgungsnetz mit einem Windpark sowie Windpark
DE102016106215A1 (de) * 2016-04-05 2017-10-05 Wobben Properties Gmbh Verfahren sowie Windenergieanlage zum Einspeisen elektrischer Leistung
CN107591816A (zh) * 2016-07-07 2018-01-16 中兴通讯股份有限公司 光伏并网逆变器的无功补偿方法、装置及光伏并网逆变器
US10288041B2 (en) * 2017-01-09 2019-05-14 Kevin R. Williams Renewable energy system having a distributed energy storage systems and photovoltaic cogeneration
ES2899867T3 (es) * 2017-08-18 2022-03-15 Ge Energy Power Conversion Technology Ltd Sistema y procedimiento para operar una central hidroeléctrica de acumulación por bombeo con una máquina asíncrona de doble alimentación
JP6972143B2 (ja) * 2017-09-12 2021-11-24 三菱電機株式会社 分散電源システム
ES2886224T3 (es) 2017-10-10 2021-12-16 Vestas Wind Sys As Método para aumentar la potencia en una instalación de energía
US10570882B2 (en) 2017-11-13 2020-02-25 General Electric Company Dynamic active and reactive power capability for wind farms
US11025083B2 (en) * 2018-04-24 2021-06-01 General Electric Company Energy storage system
US20210399549A1 (en) * 2018-09-27 2021-12-23 General Electric Renovables España, S.L. Apparent Power Management in Hybrid Power Stations
EP3829017A1 (de) * 2019-11-27 2021-06-02 Wobben Properties GmbH Verfahren zum bereitstellen einer angeforderten wirkleistung
EP3832128A1 (de) * 2019-12-03 2021-06-09 Wobben Properties GmbH Verfahren zum steuern eines windparks
US11387652B2 (en) * 2020-03-19 2022-07-12 General Electric Company Systems and methods for enhanced reactive power management in a hybrid environment
EP3937331A1 (en) 2020-07-10 2022-01-12 Vestas Wind Systems A/S Voltage control on a wind turbine transformer with multiple windings

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3755075B2 (ja) * 1999-01-22 2006-03-15 株式会社日立製作所 電力変動補償装置
ATE305664T1 (de) * 1999-09-13 2005-10-15 Aloys Wobben Verfahren zur blindleistungsregelung sowie vorrichtung zur erzeugung elektrischer energie in einem elektrischen netz
JP3352662B2 (ja) 2000-02-03 2002-12-03 関西電力株式会社 二次電池システムを用いた電力系統安定化装置および電力系統安定化方法
US20020084655A1 (en) * 2000-12-29 2002-07-04 Abb Research Ltd. System, method and computer program product for enhancing commercial value of electrical power produced from a renewable energy power production facility
DE10136974A1 (de) * 2001-04-24 2002-11-21 Aloys Wobben Verfahren zum Betreiben einer Windenergieanlage
JP2003158825A (ja) * 2001-09-04 2003-05-30 Hitachi Ltd 自然エネルギー利用発電装置と電力貯蔵用二次電池とのハイブリッドシステム及びその利用方法
US7265456B2 (en) * 2004-01-15 2007-09-04 Vrb Bower Systems Inc. Power generation system incorporating a vanadium redox battery and a direct current wind turbine generator
US7353083B2 (en) * 2004-01-15 2008-04-01 Vrb Power Systems Inc. Vanadium redox battery energy storage and power generation system incorporating and optimizing diesel engine generators
ES2245608B1 (es) 2004-06-30 2007-03-01 Gamesa Eolica S.A. Procedimiento y dispositivo para evitar la desconexion de un parque de generacion de energia electrica de la red.
JP4493460B2 (ja) * 2004-10-06 2010-06-30 三菱電機株式会社 電力変換装置
JP4949902B2 (ja) 2007-03-16 2012-06-13 日本碍子株式会社 二次電池の電力制御方法
US8227929B2 (en) * 2009-09-25 2012-07-24 General Electric Company Multi-use energy storage for renewable sources

Also Published As

Publication number Publication date
US20120061959A1 (en) 2012-03-15
BRPI1007488A2 (pt) 2016-02-16
AU2010271485A1 (en) 2012-06-07
US8247917B2 (en) 2012-08-21
JP5308511B2 (ja) 2013-10-09
WO2012070141A1 (ja) 2012-05-31
CN102667144A (zh) 2012-09-12
KR20120083848A (ko) 2012-07-26
EP2481923A1 (en) 2012-08-01
CA2729776A1 (en) 2012-05-25

Similar Documents

Publication Publication Date Title
JP5308511B2 (ja) 風力発電設備の出力制御方法及び出力制御装置
AU2012213941B2 (en) Method for operating a wind farm, wind farm controller and wind farm
CN108604795B (zh) 风力涡轮机故障穿越能力
KR101454299B1 (ko) 다수의 에너지저장장치용 인버터를 이용한 독립형 마이크로그리드의 제어방법
WO2017216575A1 (en) An energy management system and method for grid-connected and islanded micro-energy generation
JP5508796B2 (ja) 電源システム制御方法及び電源システム制御装置
US20110320052A1 (en) Utility grid stabilization apparatus and method,as well as wind power generating system
KR101225198B1 (ko) 계통 연계형 전력 변환 시스템
WO2011114422A1 (ja) 電力供給システム、電力供給方法、プログラム、記録媒体及び電力供給制御装置
MX2015000531A (es) Metodo para controlar un generador electrico.
US20120265356A1 (en) Power output leveling method and apparatus for wind turbine generating facility
JP2006226189A (ja) 発電システム
CN108092577B (zh) 风力发电系统及其适用的控制方法
AU2010284447A1 (en) AC connected modules with line frequency or voltage variation pattern for energy control
JP2011193685A (ja) パワーコンディショナ
WO2012098769A1 (ja) 太陽光発電システムおよび給電システム
KR101566296B1 (ko) 전력계통에서의 주파수 제어 시스템
CN113131462A (zh) 交流负荷供电系统和方法
JP2016039685A (ja) 制御装置、それを備えた蓄電システム、及びその制御方法並びに制御プログラム
JP2019187107A (ja) 電源システム
CN107681649B (zh) 一种控制直流微电网母线电压稳定的方法
WO2021205700A1 (ja) 電力変換装置
US11735927B2 (en) System and method for supplying electric power to a grid and for supporting the grid
KR20210033671A (ko) 풍력발전과 연계된 hvdc 시스템의 송전제한값 제어를 통한 전력계통 안정화 장치
KR20140078229A (ko) 계통 저전압시 해상 풍력발전기의 무효전력 보상방법

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130628

R151 Written notification of patent or utility model registration

Ref document number: 5308511

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250