WO2014097369A1 - 窒化物半導体を用いたトランジスタおよびその製造方法 - Google Patents

窒化物半導体を用いたトランジスタおよびその製造方法 Download PDF

Info

Publication number
WO2014097369A1
WO2014097369A1 PCT/JP2012/082660 JP2012082660W WO2014097369A1 WO 2014097369 A1 WO2014097369 A1 WO 2014097369A1 JP 2012082660 W JP2012082660 W JP 2012082660W WO 2014097369 A1 WO2014097369 A1 WO 2014097369A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
gate electrode
spacer layer
insulating film
transistor
Prior art date
Application number
PCT/JP2012/082660
Other languages
English (en)
French (fr)
Inventor
裕太郎 山口
大石 敏之
大塚 浩志
山中 宏治
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP12890237.6A priority Critical patent/EP2933827B1/en
Priority to PCT/JP2012/082660 priority patent/WO2014097369A1/ja
Priority to US14/427,960 priority patent/US9570599B2/en
Priority to JP2014552768A priority patent/JP5744346B2/ja
Publication of WO2014097369A1 publication Critical patent/WO2014097369A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/42376Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the length or the sectional shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7782Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7788Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13064High Electron Mobility Transistor [HEMT, HFET [heterostructure FET], MODFET]

Definitions

  • the present invention relates to a nitride semiconductor high electron mobility transistor (HEMT) typified by GaN (gallium nitride) and a method for manufacturing the transistor.
  • HEMT nitride semiconductor high electron mobility transistor
  • FIG. 1 of Non-Patent Document 1 shows a structural cross-sectional view of a GaN HEMT having an AlN spacer.
  • AlN spacer layer AlN
  • AlGaN barrier layer
  • Si3N4 nitride film
  • GaN HEMTs are used for high-power high-frequency amplifiers and power switch circuits.
  • it is necessary to reduce the access resistance existing in series between the source electrode and the drain electrode.
  • an AlN spacer is inserted between AlGaN (aluminum gallium nitride) and GaN. Since AlN has a polarization greater than that of AlGaN, the insertion of an AlN spacer increases the two-dimensional electron gas concentration and reduces the access resistance.
  • FIG. 1 is a schematic cross-sectional view showing an example of the structure of a conventional high electron mobility transistor (GaN HEMT) using a nitride semiconductor.
  • this conventional GaN HEMT has an AlN spacer inserted therein, and includes a substrate 1, a buffer layer 2, a channel layer 3, a spacer layer 4, a barrier layer 5, an insulating film layer 6, a source electrode 7, A drain electrode 8 and a gate electrode 9 are provided.
  • This conventional structure has a structure in which the AlN spacer layer 4 is present on the entire surface including immediately below the gate electrode 9.
  • the present invention has been made to solve the above-described problems, and it is an object of the present invention to provide a highly reliable transistor using a nitride semiconductor and a method of manufacturing the same while suppressing an increase in access resistance.
  • the present invention provides a channel layer in which electrons travel and one of indium, aluminum, and gallium provided above the channel layer for forming a two-dimensional electron gas in the channel layer.
  • a transistor using a nitride semiconductor including a barrier layer containing one or more and nitrogen, and a gate electrode, a source electrode, and a drain electrode above the barrier layer, the transistor is inserted between the barrier layer and the channel layer And a spacer layer having a polarization greater than that of the barrier layer, wherein the spacer layer does not exist only near the gate electrode.
  • the AlN spacer layer does not exist only in the vicinity immediately under the gate electrode, the gate electrode end electric field is reduced and the gate leakage current is reduced and the reliability is ensured as compared with the conventional transistor.
  • the length of the portion where the AlN spacer layer does not exist is sufficiently smaller than the distance between the source electrode and the drain electrode, the access resistance reduction by the AlN spacer layer can be maintained at the same level as the conventional structure. The increase in access resistance can be suppressed.
  • FIG. 3 is a schematic cross section which shows an example of the structure of the high electron mobility transistor (GaN HEMT) using the conventional nitride semiconductor.
  • 3 is a schematic cross-sectional view showing an example of a structure of a high electron mobility transistor (GaN HEMT) using the nitride semiconductor according to Embodiment 1.
  • FIG. 3 is a block diagram illustrating an example of a configuration of a sound processing unit according to Embodiment 1.
  • FIG. It is a figure which shows the W / Lg dependence of the access resistance Ron and the reverse direction gate current -Igd of the structure by the conventional structure and this Embodiment 1.
  • FIG. 6 is a schematic cross-sectional view showing an example of a structure of a high electron mobility transistor (GaN HEMT) using a nitride semiconductor according to Embodiment 2.
  • FIG. 6 is a schematic cross-sectional view showing an example of a structure of a high electron mobility transistor (GaN HEMT) using a nitride semiconductor in Embodiment 3.
  • FIG. 3 it is a figure which shows the manufacturing method which forms a gate electrode after the manufacturing method shown in FIG.
  • FIG. FIG. 2 is a schematic cross-sectional view showing an example of the structure of a high electron mobility transistor (GaN HEMT) using a nitride semiconductor according to Embodiment 1 of the present invention.
  • GaN HEMT high electron mobility transistor
  • FIG. 1 the same code
  • symbol is attached
  • the first embodiment shown below differs from the conventional diagram (FIG. 1) in that there is a portion where the AlN spacer layer 4 does not exist.
  • Lg10 indicates the length in the left-right direction of the gate electrode 9
  • W11 indicates the length in the left-right direction of the portion where the spacer layer 4 does not exist
  • Lsd12 indicates the length in the left-right direction between the source electrode 7 and the drain electrode 8.
  • the GaN HEMT according to the first embodiment is used as a single amplifier, but can also be applied to a transistor constituting an MMIC (monolithic microwave integrated circuit).
  • the substrate sapphire, SiC (silicon carbide), Si (silicon), a GaN substrate or the like is used.
  • a semi-insulating SiC substrate having a good thermal conductivity is generally used, but a very general Si substrate as a semiconductor substrate is often used because of its low price.
  • the buffer layer 2 is a layer inserted between the substrate 1 and the channel layer 3, and is intended to improve the crystallinity of the channel layer 3 and to confine electrons in the channel, so that AlN, AlGaN, GaN / InGaN, AlN Various structures such as / AlGaN and their superlattices are used.
  • the channel layer 3 is a layer in which electrons (current) necessary for transistor operation travel.
  • a typical channel layer 3 is GaN, but InGaN (indium gallium nitride), AlGaN, or a multilayer structure thereof can also be used.
  • the spacer layer 4 is inserted between the channel layer 3 and the barrier layer 5, and in the conventional structure (FIG. 1), exists on the entire surface of the source electrode 7 and the drain electrode 8 (the entire surface including immediately below the gate electrode 9).
  • the AlN spacer layer 4 does not exist only near the gate electrode 9. It is assumed that the midpoint of Lg10 and the midpoint of W11 coincide with each other in the horizontal direction.
  • the spacer layer 4 is not limited to AlN, and may be any material such as InGaN or AlGaN that has a higher polarization than the barrier layer 5.
  • the barrier layer 5 is provided above the channel layer 3 to form a two-dimensional electron gas in the channel layer 3, and one or more of In (indium), Al (aluminum), Ga (gallium) and N ( Nitrogen).
  • the interface between the channel layer 3 and the AlN spacer layer 4 is formed by a heterojunction having a wider band gap than the channel layer 3. Any structure from the substrate 1 to the channel layer 3 can be applied to the present invention.
  • the insulating film layer 6 on the barrier layer 5 serves as a film for suppressing the number of traps on the surface of the barrier layer 5.
  • the insulating film layer 6 may be formed of an insulating film containing Si serving as a donor such as SiN (silicon nitride) or SiO (silicon oxide) as a material. If Si is contained, electrons can be supplied to the barrier layer 5 as a donor, and the number of traps on the surface of the barrier layer 5 can be reduced.
  • the source electrode 7 and the drain electrode 8 are electrodes for taking out current (electrons) in the channel layer 3 out of the HEMT. For this reason, it forms so that resistance between an electrode and two-dimensional electron gas may be reduced as much as possible.
  • FIG. 2 shows an example in which the source electrode 7 and the drain electrode 8 are formed so as to be in contact with the barrier layer 5, they may be formed so as to be in direct contact with a two-dimensional electron gas (2DEG). Further, an n + region may be formed under the source electrode 7 and the drain electrode 8.
  • the gate electrode 9 is formed so as to include a metal in Schottky contact with the barrier layer 5, and the transistor operation is realized by controlling the 2DEG concentration under the gate electrode 9.
  • the gate electrode 9 has a gate field plate structure (GFP structure) such that a part thereof protrudes onto the insulating film layer 6.
  • GFP structure has a role of relaxing the electric field concentration on the surface of the barrier layer 5.
  • the principle that the gate leakage current is reduced and the reliability is ensured as compared with the conventional structure, and the effect of reducing the access resistance is maintained at the same level as the conventional structure will be described.
  • an AlN spacer layer 4 is inserted between the source electrode 7 and the drain electrode 8 over the entire surface. Since the polarization of the AlN spacer layer 4 is larger than that of the barrier layer 5, the concentration of the two-dimensional electron gas existing in the channel layer 3 can be increased by inserting the AlN spacer layer 4 than when only the barrier layer 5 is present. .
  • the access resistance existing between the source electrode 7 and the drain electrode 8 can be reduced.
  • the electric field concentrated especially on the gate electrode end increases.
  • An increase in the electric field at the end of the gate electrode increases a tunnel current from the electrons toward the barrier layer 5 from the gate electrode 9, so that the reverse gate leakage current during the off operation increases.
  • An increase in reverse gate leakage current can be a factor that degrades the reliability of GaN HEMTs.
  • the AlN spacer layer 4 in the vicinity immediately under the gate electrode 9 that caused the increase in the electric field at the gate electrode end is eliminated, thereby The electric field can be reduced and the reverse gate leakage current can be reduced. Further, since the length W11 of the portion from which the AlN spacer layer 4 is deleted is sufficiently smaller than the length Lsd12 between the source electrode 7 and the drain electrode 8, the access resistance can be reduced even if the AlN spacer layer 4 is deleted. Is considered to be kept almost the same as the conventional structure.
  • the principle described above was verified by device simulation.
  • the GaN HEMT having the conventional structure shown in FIG. 1 and the structure according to the first embodiment of the present invention shown in FIG. 2, an electric field 0.5 nm below the surface of the barrier layer 5 when the gate voltage is ⁇ 5V and the drain voltage is 30V.
  • the channel layer 3 was GaN
  • the spacer layer 4 was AlN
  • the barrier layer 5 was AlGaN (Al composition: 0.23).
  • the thickness of the channel layer 3 was 1.2 ⁇ m
  • the thickness of the spacer layer 4 was 1 nm
  • the thickness of the barrier layer 5 was 20 nm.
  • the ratio (W / Lg) of the length W11 of the portion from which the AlN spacer layer 4 is deleted in the structure of the first embodiment of the present invention to the gate length Lg10 is set to “2”.
  • the polarization of the portion where the AlN spacer layer 4 is present is 5.27E-12 cm ⁇ 3 , which is the average value of the polarization of the AlGaN barrier layer 5 and the polarization of the AlN spacer layer 4, and the polarization of the portion where the AlN spacer layer 4 is not present is AlGaN
  • the polarization of the barrier layer 5 was set to 8.85E-12 cm ⁇ 3 .
  • FIG. 3 is a diagram showing the electric field at the gate electrode end with respect to the lateral distance (position from the lateral center) 0.5 nm below the surface of the barrier layer 5. As shown in FIG. 3, it can be seen that the electric field in the vicinity of the gate electrode can be reduced in the structure according to the first embodiment as compared with the conventional structure.
  • the reverse current ⁇ Igd is greatly reduced until W / Lg is 2, but when W / Lg is greater than 2, (W It can be seen that the reverse current ⁇ Igd gradually saturates (when the current becomes twice Lg). Further, the access resistance Ron increases as W / Lg increases. This is because when the W / Lg increases, the length of the AlN spacer layer 4 with respect to Lsd12 decreases, so that the effect of increasing the two-dimensional electron gas by the AlN spacer is reduced.
  • FIG. 5 is a view showing a manufacturing method up to forming the buffer layer 2, the channel layer 3, the spacer layer 4, the barrier layer 5, the insulating film layer 6, the source electrode 7 and the drain electrode 8 on the substrate 1. is there.
  • FIG. 6 is a view showing a manufacturing method for forming the gate electrode 9 thereafter.
  • a buffer layer 2, a channel layer 3, and a spacer layer 4 are formed on a substrate 1.
  • MOCVD Metal-Organic-Chemical-Vapor-Deposition
  • MBE Molecular-Beam Epitaxy
  • the spacer layer 4 may be made of a material having polarization larger than that of the barrier layer 5 as well as AlN.
  • the manufacturing method up to the formation of the spacer layer 4 on the channel layer 3 is the same as the conventional method.
  • a pattern having an opening in the region where the AlN spacer layer 4 near the gate electrode 9 is removed by photolithography is formed with a resist 13. That is, the resist 13 is patterned on the spacer layer 4 except for a portion where the spacer layer 4 is removed. Then, using the patterned resist 13 as a mask, the AlN spacer layer 4 in a region immediately below the gate electrode 9 is removed by etching, and then the patterned resist 13 is removed.
  • the barrier layer 5 is regrown and formed on the channel layer 3 and the AlN spacer layer 4.
  • MOCVD can be used.
  • an insulating film layer 6 is formed on the barrier layer 5 as shown in FIG.
  • the material of the insulating film layer 6 is typically SiN or SiO, but other materials may be used as long as the insulating film contains Si.
  • the source electrode 7 and the drain electrode 8 in order to form the source electrode 7 and the drain electrode 8, a portion of the insulating film corresponding to the position where the source electrode 7 and the drain electrode 8 are formed on a mask made of resist or SiO. Layer 6 is removed. Thereafter, the source electrode 7 and the drain electrode 8 can be formed by forming a metal such as Ti / Al / Ni / Au and Ti / Al and performing heat treatment. In this step, it is possible to add a heat treatment in which a dopant such as Si ions is implanted and electrically activated.
  • a pattern having an opening in a region to be a gate electrode by photolithography is formed with a resist 13. That is, the resist 13 is re-patterned on the insulating film layer 6, the source electrode 7 and the drain electrode 8 except for the portion where the gate electrode 9 is formed. Then, as shown in FIG. 6B, using the re-patterned resist 13 as a mask, the insulating film layer 6 in the region to be the gate electrode 9 is removed by etching, and then the re-patterned resist 13 is removed. remove.
  • a pattern having an opening larger than the region etched in FIG. 6B is formed so that the gate electrode 9 is also formed on the insulating film layer 6 by photolithography.
  • a resist 13 is used. That is, the resist 13 having an opening larger than the region where the insulating film layer 6 is removed by etching is finally patterned.
  • a gate electrode 9 is formed on the region where the insulating film layer 6 has been removed by etching and the insulating film layer 6, and the final patterned resist is removed.
  • a metal having a Schottky characteristic is deposited (EB (electron beam) deposition or sputtering can be used), and the resist 13 is removed (lifted off), whereby a structure as shown in FIG. Can be formed.
  • a protective film, wiring, via-hole wiring, capacitance, resistance, and the like are manufactured as necessary, but illustration and description are omitted here.
  • the AlN spacer layer does not exist only in the immediate vicinity of the gate electrode, so that the gate electrode end electric field is reduced and the gate leakage current is reduced as compared with the conventional transistor. Reliability.
  • the length of the portion where the AlN spacer layer does not exist is sufficiently smaller than the distance between the source electrode and the drain electrode, the access resistance reduction by the AlN spacer layer can be maintained at the same level as the conventional structure. The increase in access resistance can be suppressed.
  • FIG. FIG. 7 is a schematic cross-sectional view showing an example of the structure of a high electron mobility transistor (GaN HEMT) using a nitride semiconductor according to Embodiment 2 of the present invention.
  • GaN HEMT high electron mobility transistor
  • FIG. 7 the same code
  • the structure of the gate electrode 9 is different from that in the first embodiment, and the gate electrode 9 on the insulating film layer 6 has a two-stage structure.
  • the effect of dispersing the electric field concentrated on the end of the gate electrode is increased. Therefore, a larger electric field can be reduced than in the first embodiment, the reverse gate leakage current is reduced, and the reliability is further improved.
  • the buffer layer 2, the channel layer 3, the spacer layer 4, the barrier layer 5, the insulating film layer 6, the source electrode 7 and the drain electrode 8 are formed on the substrate 1.
  • the manufacturing method up to this point is the same as the method described with reference to FIG. 6 in the first embodiment.
  • a pattern having an opening in a region to be a gate electrode by photolithography is formed with the resist 13 as in the first embodiment.
  • a two-layer structure is formed with an insulating film having a slow etching rate as a lower layer and an insulating film having a fast etching rate as an upper layer.
  • a method for forming this two-layer structure there are various methods such as cat-CVD (Catalytic Chemical Vapor Deposition), plasma CVD, and sputtering.
  • the insulating film layer 6 In order to make the insulating film layer 6 have a two-layer structure with different etching rates in this way, as shown in FIG. 6B, after the insulating film layer 6 in the region to be the gate electrode is etched, before the resist 13 is removed. Only the upper layer is wet etched. Of the two layers of the insulating film layer 6, the upper layer has a high etching rate, so that the side surface of the etched portion can be formed in two steps, and the insulating film layer 6 having the two-layer structure in the second embodiment can be formed.
  • an opening larger than the region etched in FIG. 6B is formed so that the gate electrode 9 is also formed on the insulating film 6 by photolithography as shown in FIG. 6C.
  • the held pattern is formed with the resist 13.
  • a metal having Schottky characteristics is deposited (EB (electron beam) deposition or sputtering can be used), and the resist 13 is removed (lifted off), thereby forming a structure as shown in FIG. .
  • a protective film, wiring, via-hole wiring, capacitance, resistance, and the like are manufactured as necessary, but illustration and description are omitted here.
  • the gate electrode since the gate electrode has a two-stage structure, the edge is increased, and the effect of dispersing the electric field concentrated on the gate electrode end is increased.
  • the electric field can be reduced more than that of the transistor in FIG. 1, the reverse gate leakage current is reduced, and the reliability is further improved.
  • FIG. 8 is a schematic cross-sectional view showing an example of the structure of a high electron mobility transistor (GaN HEMT) using a nitride semiconductor according to Embodiment 3 of the present invention.
  • GaN HEMT high electron mobility transistor
  • FIG. 8 the same code
  • the structure of the gate electrode 9 is different from that in the first embodiment, and the side surface of the gate electrode 9 on the insulating film layer 6 has an oblique structure.
  • the electric field is averaged by making the gate electrode 9 slant, the electric field concentrated on the end of the gate electrode can be reduced. Therefore, a larger electric field can be reduced than in the first embodiment, the reverse gate leakage current is reduced, and the reliability is further improved.
  • FIG. 9 is a diagram showing a manufacturing method for forming the gate electrode 9 after the manufacturing method shown in FIG. 5 in the third embodiment.
  • a pattern having an opening in a region to be a gate electrode by photolithography is formed with a resist 13.
  • the side surface of the etched portion is inclined according to the etching conditions at this time, the insulating film layer 6 in the region to be the gate electrode is removed by etching, and then the resist 13 is removed. .
  • a pattern having an opening larger than the region etched in FIG. 9B is formed on the resist 13 so that the gate electrode 9 is also formed on the insulating film layer 6 by photolithography.
  • a metal having Schottky characteristics is deposited (EB (electron beam) deposition or sputtering can be used), and the resist 13 is removed (lifted off), whereby a structure as shown in FIG. 8 can be formed.
  • EB electron beam
  • sputtering can be used
  • a protective film, wiring, via-hole wiring, capacitance, resistance, and the like are manufactured as necessary, but illustration and description are omitted here.
  • the electric field is averaged and the electric field concentrated on the end of the gate electrode can be reduced.
  • the electric field can be reduced larger than that of the transistor, the reverse gate leakage current is reduced, and the reliability is further improved.
  • the transistor using the nitride semiconductor of the present invention and the manufacturing method thereof can be applied to amplifiers and power switch circuits.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

 この発明によれば、窒化物半導体を用いた高電子移動度トランジスタ(GaN HEMT)のAlNスペーサ層をゲート電極の直下近傍のみ除去して存在しないようにしたため、従来構造のトランジスタに比べて、ゲート電極端電界が小さくなり、ゲートリーク電流が低減されて信頼性が確保される。また、AlNスペーサ層の存在しない部分の長さは、ソース電極とドレイン電極との間の距離に比べて十分小さいため、AlNスペーサ層によるアクセス抵抗の低減は従来構造と同程度に保つことができ、アクセス抵抗の増大を抑えることができる。

Description

窒化物半導体を用いたトランジスタおよびその製造方法
 この発明は、GaN(窒化ガリウム)に代表される窒化物半導体の高電子移動度トランジスタ(High Electron Mobility Transistor:HEMT)およびこのトランジスタの製造方法に関するものである。
 AlN(窒化アルミニウム)スペーサを有するGaN HEMTの構造を非特許文献1を例に説明する。非特許文献1の図1にAlNスペーサを有するGaN HEMTの構造断面図が掲載されている。この従来構造ではチャネル層(GaN buffer)の上にAlNスペーサ層(AlN)が全面に結晶成長され、その上にバリア層(AlGaN)が結晶成長され、バリア層上に窒化膜(Si3N4)、電極(ソース電極(Source)、ゲート電極(Gate)、ドレイン電極(Drain))が形成されている。この従来構造の特徴は単純にAlNスペーサが全面に結晶成長されている点である。
 GaN HEMTは高出力高周波増幅器やパワースイッチ回路に用いられる。
 増幅器やスイッチ回路の効率を上げるためには、ソース電極とドレイン電極の間に直列に存在するアクセス抵抗を低減する必要がある。このアクセス抵抗を低減させる手法のひとつとして、AlGaN(窒化アルミニウムガリウム)とGaNの間にAlNスペーサを挿入方法がとられてきた。AlNは分極がAlGaNより大きいため、AlNスペーサを入れることで2次元電子ガス濃度が増大し、アクセス抵抗を低減することができる。
 図1は、従来の窒化物半導体を用いた高電子移動度トランジスタ(GaN HEMT)の構造の一例を示す模式断面図である。図1に示すとおり、この従来のGaN HEMTは、AlNスペーサを挿入したものであり、基板1、バッファ層2、チャネル層3、スペーサ層4、バリア層5、絶縁膜層6、ソース電極7、ドレイン電極8、ゲート電極9を備えている。この従来構造では、AlNスペーサ層4がゲート電極9の直下周辺も含めて全面に存在する構造になっている。
Balaji Padmanabhan,Dragica Vasileska and Stephen.M Goodnick,"Modeling Reliability of GaN/AlGaN/AlN/GaN HEMT",ISDRS 2011,December 7-9,2011
 しかしながら、例えば図1や非特許文献1に示すような従来構造のトランジスタでは、AlNスペーサを全面に挿入することによりアクセス抵抗は低減して効率が向上するが、信頼性が劣化するという課題があった。
 この発明は、上記のような課題を解決するためになされたものであり、アクセス抵抗の増大を抑えつつ、信頼性の高い、窒化物半導体を用いたトランジスタおよびその製造方法を提供することを目的とする。
 上記目的を達成するため、この発明は、電子が走行するチャネル層と、当該チャネル層に2次元電子ガスを形成するための前記チャネル層の上方に設けられたインジウム、アルミニウム、ガリウムのうちの1つ以上と窒素とを含むバリア層と、当該バリア層の上部にゲート電極、ソース電極およびドレイン電極を具備する、窒化物半導体を用いたトランジスタにおいて、前記バリア層と前記チャネル層との間に挿入され、前記バリア層より分極が大きいスペーサ層をさらに備え、当該スペーサ層は、前記ゲート電極の直下近傍のみ存在しないことを特徴とする。
 この発明によれば、ゲート電極の直下近傍のみAlNスペーサ層が存在しないため、従来構造のトランジスタに比べて、ゲート電極端電界が小さくなり、ゲートリーク電流が低減されて信頼性が確保される。また、AlNスペーサ層の存在しない部分の長さは、ソース電極とドレイン電極との間の距離に比べて十分小さいため、AlNスペーサ層によるアクセス抵抗の低減は従来構造と同程度に保つことができ、アクセス抵抗の増大を抑えることができる。
従来の窒化物半導体を用いた高電子移動度トランジスタ(GaN HEMT)の構造の一例を示す模式断面図である。 実施の形態1における窒化物半導体を用いた高電子移動度トランジスタ(GaN HEMT)の構造の一例を示す模式断面図である。 実施の形態1における音声処理部の構成の一例を示すブロック図である。 従来構造とこの実施の形態1による構造の、アクセス抵抗Ronと逆方向ゲート電流-IgdのW/Lg依存性を示す図である。 基板の上に、バッファ層、チャネル層、スペーサ層、バリア層、絶縁膜層、ソース電極およびドレイン電極を形成するところまでの製造方法を示す図である。 実施の形態1において、図5に示す製造方法の後に、ゲート電極を形成する製造方法を示す図である。 実施の形態2における窒化物半導体を用いた高電子移動度トランジスタ(GaN HEMT)の構造の一例を示す模式断面図である。 実施の形態3における窒化物半導体を用いた高電子移動度トランジスタ(GaN HEMT)の構造の一例を示す模式断面図である。 実施の形態3において、図5に示す製造方法の後に、ゲート電極を形成する製造方法を示す図である。
 以下、この発明の実施の形態について、図面を参照しながら詳細に説明する。
実施の形態1.
 図2は、この発明の実施の形態1における窒化物半導体を用いた高電子移動度トランジスタ(GaN HEMT)の構造の一例を示す模式断面図である。なお、従来図(図1)で説明したものと同様の構成には、同一の符号を付して重複した説明を省略する。以下に示す実施の形態1では、従来図(図1)と比べると、AlNスペーサ層4が存在しない部分がある点が異なる。
 図2において、Lg10は、ゲート電極9の左右方向の長さを示し、W11は、スペーサ層4が存在しない部分の左右方向の長さを示す。また、Lsd12は、ソース電極7とドレイン電極8の間の左右方向の長さを示している。なお、実際には、素子分離領域や配線などがあるが、この発明の動作とは関連がないため図示および説明を省略する。
 また、この実施の形態1のGaN HEMTは単体の増幅器として利用するが、MMIC(monolithic microwave integrated circuit:モノリシックマイクロ波集積回路)を構成するトランジスタにも適用可能である。
 基板1には、サファイア、SiC(炭化ケイ素)、Si(ケイ素)、GaN基板などが用いられる。特に、熱伝導率の良好な半絶縁性SiC基板が一般的に利用されるが、半導体基板として非常に一般的なSi基板も価格が安いため、よく用いられている。
 バッファ層2は、基板1とチャネル層3の間に挿入される層で、チャネル層3の結晶性を向上させること、電子をチャネルに閉じ込めることを目的に、AlN、AlGaN、GaN/InGaN、AlN/AlGaN、および、これらの超格子などの様々な構造が用いられる。
 チャネル層3は、トランジスタ動作に必要な電子(電流)が走行する層である。典型的なチャネル層3はGaNであるが、InGaN(インジウム窒化ガリウム)、AlGaNやこれらの多層構造も使うことができる。
 スペーサ層4は、チャネル層3とバリア層5の間に挿入されており、従来構造(図1)においては、ソース電極7とドレイン電極8の全面(ゲート電極9直下近傍も含む全面)に存在するが、この実施の形態1における構造では、ゲート電極9直下近傍にのみAlNスペーサ層4が存在しない構造になっている。なお、Lg10の中点とW11の中点の横方向の位置は一致しているとする。このスペーサ層4は、AlNに限られず、InGaNやAlGaNなど、バリア層5より分極が大きいものであればよい。
 バリア層5は、チャネル層3に2次元電子ガスを形成するため、チャネル層3の上方に設けられ、In(インジウム)、Al(アルミニウム)、Ga(ガリウム)のうちの1つ以上とN(窒素)とを含む層である。このバリア層5としては、AlGaN単層がよく用いられるが、これ以外に組成、層厚、不純物濃度の異なる複数のAlGaN、AlGaNとGaNやAlNとの組合せであっても、この発明の効果は得られる。
 チャネル層3とAlNスペーサ層4が接触する界面は、チャネル層3よりバンドギャップが広いヘテロ接合で形成させる。基板1からチャネル層3に至る構造のいかなるものでも、この発明に適用できる。
 バリア層5の上の絶縁膜層6は、バリア層5の表面のトラップ数を抑制するための膜としての役割を果たす。絶縁膜層6が存在する部分には材料としてSiN(窒化ケイ素)やSiO(酸化ケイ素)などドナーの役割を果たすSiを含む絶縁膜であればよい。Siを含んでいればドナーとしてバリア層5に電子を供給して、バリア層5表面上のトラップ数を減らすことができる。
 ソース電極7、ドレイン電極8は、チャネル層3中の電流(電子)をHEMTの外に取出す電極である。このため、電極と2次元電子ガス間の抵抗をできるだけ少なくするように形成される。図2では、ソース電極7、ドレイン電極8がバリア層5に接するように形成された例を示したが、2次元電子ガス(2DEG)に直接、接するように形成しても良い。また、ソース電極7とドレイン電極8の下にn+領域を形成しても良い。
 ゲート電極9は、バリア層5とショットキー接触する金属を含むように形成され、ゲート電極9下の2DEG濃度を制御することでトランジスタ動作を実現する。ゲート電極9は、その一部が絶縁膜層6上にせり出すようなゲートフィールドプレート構造(GFP構造)をしている。GFP構造はバリア層5表面の電界集中を緩和する役割がある。
 この実施の形態1におけるトランジスタの構造において、従来構造よりゲートリーク電流が低減されて信頼性が確保されるとともに、アクセス抵抗の低減効果が従来構造と同程度に保たれる原理について説明する。
 図1に示すように従来構造はソース電極7とドレイン電極8の間にAlNスペーサ層4が全面に挿入されている。AlNスペーサ層4は分極がバリア層5に比べて大きいため、バリア層5しか存在しない場合よりAlNスペーサ層4を挿入することでチャネル層3に存在する2次元電子ガス濃度を増大させることができる。
 そのため、ソース電極7とドレイン電極8の間に存在するアクセス抵抗を低減することができる。しかし、その反面分極が大きくなると、特にゲート電極端に集中する電界が大きくなる。ゲート電極端の電界増大は電子がゲート電極9からバリア層5へ向かうトンネル電流を増大させるため、オフ動作時の逆方向ゲートリーク電流が増大する。逆方向ゲートリーク電流の増大はGaN HEMTの信頼性を劣化させる要因となりうる。
 この発明の実施の形態1におけるトランジスタの構造では、図2に示すようにゲート電極端の電界増大の原因となっていたゲート電極9直下近傍のAlNスペーサ層4を削除することでゲート電極端の電界を低減し、逆方向ゲートリーク電流を低減することができる。また、AlNスペーサ層4を削除した部分の長さW11はソース電極7とドレイン電極8の間の長さLsd12に比べて十分に小さいので、AlNスペーサ層4を削除したとしてもアクセス抵抗の低減効果は従来構造とほぼ同等に保たれると考えられる。
 上記で述べた原理をデバイスシミュレーションで検証した。図1に示す従来構造と図2に示すこの発明の実施の形態1における構造のGaN HEMTで、ゲート電圧-5V、ドレイン電圧30Vとしたときのバリア層5の表面から0.5nm下の電界を計算した。チャネル層3はGaN、スペーサ層4はAlN、バリア層5はAlGaN(Al組成:0.23)とした。また、チャネル層3の厚みは1.2μm、スペーサ層4の厚みは1nm、バリア層5の厚みは20nmとした。
 また、この発明の実施の形態1の構造におけるAlNスペーサ層4を削除した部分の長さW11のゲート長Lg10に対する比(W/Lg)は「2」とした。AlNスペーサ層4が存在する部分の分極はAlGaNのバリア層5の分極とAlNスペーサ層4の分極の平均値で5.27E-12cm-3とし、AlNスペーサ層4が存在しない部分の分極はAlGaNのバリア層5の分極8.85E-12cm-3に設定した。
 図3は、バリア層5の表面から0.5nm下の、横方向距離(横方向の中心からの位置)に対するゲート電極端の電界を示す図である。この図3に示すように、この実施の形態1における構造では、従来構造に比べて、ゲート電極近傍の電界を低減できていることがわかる。
 図4は、従来構造とこの実施の形態1による構造の、アクセス抵抗Ronと逆方向ゲートリーク電流-IgdのW/Lg依存性を示す図である。従来構造においてはW=0であるので、図4における横軸W/Lg=0のときの値が、従来構造におけるアクセス抵抗Ronと-Vgd=100Vであるときの逆方向ゲートリーク電流-Igdを示している。
 そして、この発明の実施の形態1による構造では、図4に示すように、W/Lgが2までは逆方向電流-Igdは大幅に低減されるが、W/Lgが2より大きくなると(WがLgの2倍になると)、逆方向電流-Igdは徐々に飽和することがわかる。
 また、アクセス抵抗Ronは、W/Lgが増大すると増大する。これはW/Lgが増大するとLsd12に対するAlNスペーサ層4が存在する長さが減少するためAlNスペーサによる2次元電子ガス増大効果が薄れるためである。W/Lgが2のとき、すなわち、スペーサ層4が存在しない部分の左右方向の長さW11が、ゲート電極9の左右方向の長さLg10の2倍のときに、AlNスペーサ層4が削除されている部分がゲート電極9直下の近傍であるため、アクセス抵抗Ronの増大を抑えつつ、逆方向ゲートリーク電流-Igdを大幅に低減できると言える。
 ここまでは、この発明の実施の形態1における構造およびその動作について述べ、その有効性を計算にて実証した。次に、この実施の形態1におけるGaN HEMTの製造方法について、図5および図6を参照しながら具体的に説明する。
 図5は、基板1の上に、バッファ層2、チャネル層3、スペーサ層4、バリア層5、絶縁膜層6、ソース電極7およびドレイン電極8を形成するところまでの製造方法を示す図である。また図6は、その後にゲート電極9を形成する製造方法を示す図である。
 まず、図5(a)に示すように、基板1の上にバッファ層2、チャネル層3、スペーサ層4を形成する。これにはMOCVD(Metal Organic Chemical Vapor Deposition:有機金属気相成長法)、MBE(Molecular Beam Epitaxy:分子線エピタキシー法)を用いることができる。スペーサ層4はAlNだけでなくバリア層5より分極が大きい物質であればよい。この、チャネル層3の上にスペーサ層4を形成するところまでの製造方法は、従来と同じである。
 次に、図5(b)に示すように、写真製版でゲート電極9直下近傍のAlNスペーサ層4を除去する領域に開口を持ったパターンをレジスト13で形成する。すなわち、スペーサ層4の上に、当該スペーサ層4を除去する部分を除いてレジスト13をパターニングする。
 そして、パターニングされたレジスト13をマスクとして用いて、ゲート電極9の直下となる領域のAlNスペーサ層4をエッチングにより除去してから、パターニングされたレジスト13を取り除く。
 次に、図5(c)に示すように、チャネル層3およびAlNスペーサ層4の上部にバリア層5を再成長させて形成する。これにはMOCVDを用いることができる。
 さらに、図5(d)に示すように、バリア層5の上に絶縁膜層6を形成する。絶縁膜層6の材料はSiN、SiOが典型的であるがSiを含んだ絶縁膜であれば他の材料であっても良い。
 そして、図5(e)に示すように、ソース電極7、ドレイン電極8を形成するため、レジストやSiOなどのマスクにソース電極7、ドレイン電極8が形成される位置に対応する部分の絶縁膜層6を除去する。その後、Ti/Al/Ni/Au、Ti/Alなどの金属形成をし、熱処理することでソース電極7、ドレイン電極8を形成することができる。この工程で、Siイオンなどのドーパントを注入し、電気的に活性化する熱処理を追加することも可能である。
 次に、図6(a)に示すように、写真製版でゲート電極となる領域に開口を持ったパターンをレジスト13で形成する。すなわち、絶縁膜層6、ソース電極7およびドレイン電極8の上に、ゲート電極9を形成する部分を除いてレジスト13を再パターニングする。
 そして、図6(b)に示すように、再パターニングされたレジスト13をマスクとして用いて、ゲート電極9となる領域の絶縁膜層6をエッチングにより除去してから、再パターニングされたレジスト13を取り除く。
 次に、図6(c)に示すように、写真製版で絶縁膜層6上にもゲート電極9が形成されるように、図6(b)でエッチングした領域より大きい開口を持ったパターンをレジスト13で形成する。すなわち、絶縁膜層6をエッチング除去した領域より大きい開口を持ったレジスト13を最終パターニングする。
 その後、絶縁膜層6をエッチング除去した領域および絶縁膜層6の上にゲート電極9を形成し、最終パターニングされたレジストを除去する。具体的には、ショットキー特性を持つ金属を蒸着(EB(electron beam:電子ビーム)蒸着やスパッタ法が使用できる)し、レジスト13を除去(リフトオフ)することで、図2に示すような構造を形成できる。最後に、保護膜や配線、ビアホール配線、容量、抵抗等を必要に応じて作製するが、ここでは図示および説明を省略する。
 以上のように、この実施の形態1によれば、ゲート電極の直下近傍のみAlNスペーサ層が存在しないため、従来構造のトランジスタに比べて、ゲート電極端電界が小さくなり、ゲートリーク電流が低減されて信頼性が確保される。また、AlNスペーサ層の存在しない部分の長さは、ソース電極とドレイン電極との間の距離に比べて十分小さいため、AlNスペーサ層によるアクセス抵抗の低減は従来構造と同程度に保つことができ、アクセス抵抗の増大を抑えることができる。
実施の形態2.
 図7は、この発明の実施の形態2における窒化物半導体を用いた高電子移動度トランジスタ(GaN HEMT)の構造の一例を示す模式断面図である。なお、従来図(図1)および実施の形態1で説明したものと同様の構成には、同一の符号を付して重複した説明を省略する。以下に示す実施の形態2では、実施の形態1と比べると、ゲート電極9の構造が異なっており、絶縁膜層6上のゲート電極9が2段構造になっている。
 このように、ゲート電極9を2段にすることでエッジが増えるため、ゲート電極端に集中する電界を分散する効果が大きくなる。そのため、実施の形態1の場合より大きな電界低減が可能になり、逆方向ゲートリーク電流が低減し、さらに信頼性が向上する。
 また、この実施の形態2のGaN HEMTについても、基板1の上に、バッファ層2、チャネル層3、スペーサ層4、バリア層5、絶縁膜層6、ソース電極7およびドレイン電極8を形成するところまでの製造方法については、実施の形態1において図6を用いて説明した方法と同じである。
 次に、図6(a)に示すように、写真製版でゲート電極となる領域に開口を持ったパターンをレジスト13で形成するのも実施の形態1と同じである。
 ここで、図7に示す構造を形成する場合は、絶縁膜層6を形成する際にウエットエッチングのエッチングレートが異なる2種類の絶縁膜を形成する必要がある。そこで、2種類の絶縁膜のうちエッチングレートが遅い絶縁膜を下層にし、エッチングレートが早い絶縁膜を上層にして2層構造にする。この2層構造の形成方法としては、cat-CVD(Catalytic Chemical Vapor Deposition:触媒化学気相成長法)、プラズマCVD、スパッタなど、様々な方法がある。
 このように絶縁膜層6をエッチングレートが異なる2層構造にするため、図6(b)に示すように、ゲート電極となる領域の絶縁膜層6をエッチングした後、レジスト13をとる前に上層のみウエットエッチングする。絶縁膜層6の2層のうち、上層はエッチングレートが早いのでエッチング部分の側面を2段にすることができ、実施の形態2における2層構造の絶縁膜層6を形成することができる。
 その後、レジスト13を取り除いた後に、図6(c)に示すように写真製版で絶縁膜6上にもゲート電極9が形成されるように、図6(b)でエッチングした領域より大きい開口を持ったパターンをレジスト13で形成する。
 そして、ショットキー特性を持つ金属を蒸着(EB(electron beam:電子ビーム)蒸着やスパッタ法が使用できる)し、レジスト13を除去(リフトオフ)することで、図7に示すような構造を形成できる。最後に、保護膜や配線、ビアホール配線、容量、抵抗等を必要に応じて作製するが、ここでは図示および説明を省略する。
 以上のように、この実施の形態2によれば、ゲート電極が2段構造になっていることにより、エッジが増え、ゲート電極端に集中する電界を分散する効果が大きくなるため、実施の形態1におけるトランジスタよりも大きな電界低減が可能になり、逆方向ゲートリーク電流が低減し、さらに信頼性が向上する。
実施の形態3.
 図8は、この発明の実施の形態3における窒化物半導体を用いた高電子移動度トランジスタ(GaN HEMT)の構造の一例を示す模式断面図である。なお、従来図(図1)および実施の形態1,2で説明したものと同様の構成には、同一の符号を付して重複した説明を省略する。以下に示す実施の形態3では、実施の形態1と比べると、ゲート電極9の構造が異なっており、絶縁膜層6上のゲート電極9の側面が斜め構造になっている。
 このように、ゲート電極9を斜めにすることで電界が平均化されるため、ゲート電極端に集中する電界を低減できる。そのため、実施の形態1の場合より大きな電界低減が可能になり、逆方向ゲートリーク電流が低減し、さらに信頼性が向上する。
 また、この実施の形態3のGaN HEMTについても、基板1の上に、バッファ層2、チャネル層3、スペーサ層4、バリア層5、絶縁膜層6、ソース電極7およびドレイン電極8を形成するところまでの製造方法については、実施の形態1において図5を用いて説明した方法と同じである。
 図9は、実施の形態3において、図5に示す製造方法の後に、ゲート電極9を形成する製造方法を示す図である。
 図9(a)に示すように、写真製版でゲート電極となる領域に開口を持ったパターンをレジスト13で形成する。
 そして、図9(b)に示すように、この時のエッチングの条件によってエッチング部分の側面を斜めにして、エッチングによってゲート電極となる領域の絶縁膜層6を除去してから、レジスト13を取り除く。
 その後、図6(c)に示すように写真製版で絶縁膜層6上にもゲート電極9が形成されるように、図9(b)でエッチングした領域より大きい開口を持ったパターンをレジスト13で形成する。
 そして、ショットキー特性を持つ金属を蒸着(EB(electron beam:電子ビーム)蒸着やスパッタ法が使用できる)し、レジスト13を除去(リフトオフ)することで、図8に示すような構造を形成できる。最後に、保護膜や配線、ビアホール配線、容量、抵抗等を必要に応じて作製するが、ここでは図示および説明を省略する。
 以上のように、この実施の形態3によれば、ゲート電極の側面が斜めになっていることにより、電界が平均化され、ゲート電極端に集中する電界を低減できるため、実施の形態1におけるトランジスタよりも大きな電界低減が可能になり、逆方向ゲートリーク電流が低減し、さらに信頼性が向上する。
 なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
 この発明の窒化物半導体を用いたトランジスタおよびその製造方法は、増幅器やパワースイッチ回路に適用することができる。
 1 基板、2 バッファ層、3 チャネル層、4 スペーサ層、5 バリア層、6 絶縁膜層、7 ソース電極、8 ドレイン電極、9 ゲート電極、10 ゲート電極9の長さ(Lg)、11 スペーサ層4が存在しない部分の長さ(W)、12 ソース電極7とドレイン電極8の間の長さ(Lsd)、13 レジスト。

Claims (6)

  1.  電子が走行するチャネル層と、当該チャネル層に2次元電子ガスを形成するための前記チャネル層の上方に設けられたインジウム、アルミニウム、ガリウムのうちの1つ以上と窒素とを含むバリア層と、当該バリア層の上部にゲート電極、ソース電極およびドレイン電極を具備する、窒化物半導体を用いたトランジスタにおいて、
     前記バリア層と前記チャネル層との間に挿入され、前記バリア層より分極が大きいスペーサ層をさらに備え、
     当該スペーサ層は、前記ゲート電極の直下近傍のみ存在しない
     ことを特徴とする窒化物半導体を用いたドランジスタ。
  2.  前記スペーサ層が窒化アルミニウムであることを特徴とする請求項1記載のトランジスタ。
  3.  前記スペーサ層が存在しない部分の左右方向の長さが、前記ゲート電極の左右方向の長さの2倍であることを特徴とする請求項1記載のトランジスタ。
  4.  前記ゲート電極が2段構造になっていることを特徴とする請求項1記載のトランジスタ。
  5.  前記ゲート電極の側面が斜めになっていることを特徴とする請求項1記載のトランジスタ。
  6.  電子が走行するチャネル層と、当該チャネル層に2次元電子ガスを形成するための前記チャネル層の上方に設けられたインジウム、アルミニウム、ガリウムのうちの1つ以上と窒素とを含むバリア層と、当該バリア層の上部にゲート電極、ソース電極およびドレイン電極を具備する、窒化物半導体を用いたトランジスタの製造方法であって、
     前記チャネル層の上に、前記バリア層より分極が大きいスペーサ層を形成するステップと、
     前記スペーサ層の上に、当該スペーサ層を除去する部分を除いてレジストをパターニングするステップと、
     前記パターニングされたレジストをマスクとして用いて前記ゲート電極の直下となる領域の前記スペーサ層をエッチング除去するステップと、
     前記パターニングされたレジストを除去するステップと、
     前記チャネル層および前記スペーサ層の上部に前記バリア層を形成するステップと、
     前記バリア層の上に絶縁膜層を形成するステップと、
     前記ソース電極および前記ドレイン電極が形成される位置に対応する前記絶縁膜層を除去した後に、前記ソース電極および前記ドレイン電極を形成するステップと、
     前記絶縁膜層、前記ソース電極および前記ドレイン電極の上に、前記ゲート電極を形成する部分を除いてレジストを再パターニングするステップと、
     前記再パターニングされたレジストをマスクとして用いて前記ゲート電極となる領域の前記絶縁膜層をエッチング除去するステップと、
     前記再パターニングされたレジストを除去するステップと、
     前記絶縁膜層をエッチング除去した領域より大きい開口を持ったレジストを最終パターニングするステップと、
     前記絶縁膜層をエッチング除去した領域および前記絶縁膜層の上に前記ゲート電極を形成するステップと、
     前記最終パターニングされたレジストを除去するステップと
     を備えることを特徴とするトランジスタの製造方法。
PCT/JP2012/082660 2012-12-17 2012-12-17 窒化物半導体を用いたトランジスタおよびその製造方法 WO2014097369A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12890237.6A EP2933827B1 (en) 2012-12-17 2012-12-17 Transistor having nitride semiconductor used therein and method for manufacturing transistor having nitride semiconductor used therein
PCT/JP2012/082660 WO2014097369A1 (ja) 2012-12-17 2012-12-17 窒化物半導体を用いたトランジスタおよびその製造方法
US14/427,960 US9570599B2 (en) 2012-12-17 2012-12-17 Transistor having nitride semiconductor used therein and method for manufacturing transistor having nitride semiconductor used therein
JP2014552768A JP5744346B2 (ja) 2012-12-17 2012-12-17 窒化物半導体を用いたトランジスタおよびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/082660 WO2014097369A1 (ja) 2012-12-17 2012-12-17 窒化物半導体を用いたトランジスタおよびその製造方法

Publications (1)

Publication Number Publication Date
WO2014097369A1 true WO2014097369A1 (ja) 2014-06-26

Family

ID=50977758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/082660 WO2014097369A1 (ja) 2012-12-17 2012-12-17 窒化物半導体を用いたトランジスタおよびその製造方法

Country Status (4)

Country Link
US (1) US9570599B2 (ja)
EP (1) EP2933827B1 (ja)
JP (1) JP5744346B2 (ja)
WO (1) WO2014097369A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9761438B1 (en) * 2014-05-08 2017-09-12 Hrl Laboratories, Llc Method for manufacturing a semiconductor structure having a passivated III-nitride layer
US9780176B2 (en) 2015-11-05 2017-10-03 Electronics And Telecommunications Research Institute High reliability field effect power device and manufacturing method thereof
US10608102B2 (en) * 2017-09-29 2020-03-31 Electronics And Telecommunications Research Institute Semiconductor device having a drain electrode contacting an epi material inside a through-hole and method of manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008306130A (ja) * 2007-06-11 2008-12-18 Sanken Electric Co Ltd 電界効果型半導体装置及びその製造方法
JP2009099691A (ja) * 2007-10-15 2009-05-07 Sanken Electric Co Ltd 電界効果半導体装置の製造方法
JP2009152349A (ja) * 2007-12-20 2009-07-09 Mitsubishi Electric Corp ヘテロ接合電界効果型トランジスタおよびその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3372470B2 (ja) 1998-01-20 2003-02-04 シャープ株式会社 窒化物系iii−v族化合物半導体装置
US7030428B2 (en) * 2001-12-03 2006-04-18 Cree, Inc. Strain balanced nitride heterojunction transistors
JP4865189B2 (ja) * 2002-02-21 2012-02-01 古河電気工業株式会社 GaN系電界効果トランジスタ
JP2006286698A (ja) 2005-03-31 2006-10-19 Furukawa Electric Co Ltd:The 電子デバイス及び電力変換装置
JP5348364B2 (ja) * 2007-08-27 2013-11-20 サンケン電気株式会社 ヘテロ接合型電界効果半導体装置
JP4794656B2 (ja) * 2009-06-11 2011-10-19 シャープ株式会社 半導体装置
WO2010151721A1 (en) * 2009-06-25 2010-12-29 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Transistor with enhanced channel charge inducing material layer and threshold voltage control

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008306130A (ja) * 2007-06-11 2008-12-18 Sanken Electric Co Ltd 電界効果型半導体装置及びその製造方法
JP2009099691A (ja) * 2007-10-15 2009-05-07 Sanken Electric Co Ltd 電界効果半導体装置の製造方法
JP2009152349A (ja) * 2007-12-20 2009-07-09 Mitsubishi Electric Corp ヘテロ接合電界効果型トランジスタおよびその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BALAJI PADMANABHAN; DRAGICA VASILESKA; STEPHEN. M GOODNICK: "Modeling Reliability of GaN/AlGaN/AlN/GaN HEMT", ISDRS 2011, 7 December 2011 (2011-12-07)
See also references of EP2933827A4

Also Published As

Publication number Publication date
EP2933827B1 (en) 2021-09-15
JPWO2014097369A1 (ja) 2017-01-12
JP5744346B2 (ja) 2015-07-08
EP2933827A1 (en) 2015-10-21
US20150249150A1 (en) 2015-09-03
US9570599B2 (en) 2017-02-14
EP2933827A4 (en) 2016-10-26

Similar Documents

Publication Publication Date Title
JP4845872B2 (ja) Mis構造を有する半導体装置及びその製造方法
JP5217157B2 (ja) 電界効果トランジスタおよびその製造方法
US7429534B2 (en) Etching a nitride-based heterostructure
JP5348364B2 (ja) ヘテロ接合型電界効果半導体装置
US8604486B2 (en) Enhancement mode group III-V high electron mobility transistor (HEMT) and method for fabrication
TWI546864B (zh) 具有低漏電流和改善的可靠性的增強型氮化鎵金氧半場效電晶體
JP5550740B2 (ja) 半導体装置、および半導体装置の製造方法
JP5386829B2 (ja) 半導体装置
WO2007108055A1 (ja) 化合物半導体装置及びその製造方法
US20200381422A1 (en) Nitride semiconductor device
JP2008306083A (ja) Iii−v族窒化物半導体電界効果型トランジスタおよびその製造方法
JP6834546B2 (ja) 半導体装置及びその製造方法
JP2014222724A (ja) 窒化物半導体を用いたトランジスタおよびその製造方法
JP2018157100A (ja) 窒化物半導体装置
JP5744346B2 (ja) 窒化物半導体を用いたトランジスタおよびその製造方法
US10373833B2 (en) Semiconductor device and method for manufacturing the same
US10312095B1 (en) Recessed solid state apparatuses
JP2014229767A (ja) ヘテロ接合電界効果型トランジスタ及びその製造方法
JP5666992B2 (ja) 電界効果型トランジスタおよびその製造方法
KR20190112523A (ko) 이종접합 전계효과 트랜지스터 및 그 제조 방법
JP2016531420A (ja) 窒化ガリウムデバイス及び集積回路において自己整合分離を製作する方法
JP2013222939A (ja) 窒化物半導体を用いたトランジスタおよびその製造方法
JP6171441B2 (ja) 半導体装置の製造方法
KR101985897B1 (ko) Hemt 제조방법
JP2010278150A (ja) 化合物半導体装置及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12890237

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014552768

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012890237

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14427960

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE