WO2014091718A1 - 微細藻類の培養方法及び培養システム - Google Patents

微細藻類の培養方法及び培養システム Download PDF

Info

Publication number
WO2014091718A1
WO2014091718A1 PCT/JP2013/007118 JP2013007118W WO2014091718A1 WO 2014091718 A1 WO2014091718 A1 WO 2014091718A1 JP 2013007118 W JP2013007118 W JP 2013007118W WO 2014091718 A1 WO2014091718 A1 WO 2014091718A1
Authority
WO
WIPO (PCT)
Prior art keywords
culture
microalgae
culture solution
concentration
open
Prior art date
Application number
PCT/JP2013/007118
Other languages
English (en)
French (fr)
Inventor
倉田 稔
福田 裕章
憲秀 藏野
英明 宮下
原山 重明
Original Assignee
株式会社デンソー
国立大学法人京都大学
学校法人中央大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー, 国立大学法人京都大学, 学校法人中央大学 filed Critical 株式会社デンソー
Priority to US14/651,164 priority Critical patent/US9790461B2/en
Priority to AU2013358448A priority patent/AU2013358448B2/en
Publication of WO2014091718A1 publication Critical patent/WO2014091718A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/26Means for regulation, monitoring, measurement or control, e.g. flow regulation of pH
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/18Open ponds; Greenhouse type or underground installations
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/34Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of gas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/36Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of biomass, e.g. colony counters or by turbidity measurements
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats

Definitions

  • This disclosure relates to a microalgae culture method and system.
  • Non-Patent Document 1 a method using a neutral or alkaline culture solution has been exclusively used.
  • the present disclosure has been made in view of the above points, and an object thereof is to provide a culture method and a culture system for microalgae in an open system outdoors.
  • the method for culturing microalgae according to the first aspect of the present disclosure uses a culture solution having a culture solution having a pH of 4 or less, and uses the culture solution of Coccomyxa and related organisms, or the unicellular green algae belonging to the Watanabea clade. Are cultured in an outdoor open culture system. According to this culture method, since the pH of the culture solution is 4 or less, the growth of other microalgae and protists can be suppressed. Even if CO2 is introduced into the culture solution, bicarbonate ions are not generated, so that the pH of the culture solution can be prevented from changing.
  • the culture solution has a pH of 4 or less, and a culture solution containing ammonia nitrogen is used to produce the microalgae of the genus Coccomyxa and related organisms, Pseudococcomyxa.
  • a culture solution containing ammonia nitrogen is used to produce the microalgae of the genus Coccomyxa and related organisms, Pseudococcomyxa.
  • the culture solution contains ammonia nitrogen (for example, urea), the growth of other microalgae and protists can be suppressed.
  • the culture solution contains ammonia nitrogen (for example, urea)
  • the culture solution contains ammonia nitrogen (for example, urea)
  • the growth of other microalgae and protists can be suppressed.
  • FIG. 1 is a graph showing the transition of algal body concentration and pH in Example 1.
  • FIG. 2 is a graph showing the transition of algal body concentration and pH in Example 8.
  • FIG. 3 is an explanatory diagram showing the configuration of the culture system 1.
  • FIG. 4 is a diagram showing the nitrogen concentration and fat content in algal cells after completion of the culture.
  • FIG. 5 is a diagram showing the fat and oil content in the alga bodies after the second culture and the third culture.
  • microalgae other than microalgae to be cultured (hereinafter referred to as other microalgae) and protists that prey on microalgae may proliferate.
  • CO2 When cultivating microalgae, CO2 may be continuously introduced into the culture solution, but if the culture solution is neutral or alkaline, bicarbonate ions are generated from CO2 and the pH of the culture solution may fluctuate. There is sex. Then, it is necessary to input a pH adjusting agent to the culture solution, and there is a possibility that the salt concentration in the culture solution increases.
  • microalgae to be cultured in the culture method of the present disclosure examples include the unicellular green algae belonging to the genus Coccomyxa and related organisms, the genus Pseudococcomyxa, or the Watanabea clade.
  • microalgae that is, the above-mentioned simple algae
  • isolation conditions for example, pH 3 and temperature within a range of 15 to 35 ° C.
  • microalgae selected from the samples collected in the hot spring environment include, for example, Pseudochoricystis ellipsoidea N1 strain (MBIC11204: closely related to Pseudococcomyxa genus), Pseudochoricystis ellipsoidea Obi strain (MBIC11220: closely related to Pseudococcomyxa genus C), There are simplex (UTEX274: Coccomyxa genus) and Coccomyxa chodatiiati (UTEXB266: Coccomyxa genus).
  • the above screening is performed to select microalgae of unicellular green algae belonging to the genus Coccomyxa and related organisms, the genus Pseudococcomyxa, or the Watanabea clade, and the culture of the present disclosure. It may be used in the method.
  • it can be confirmed by the homology of DNA that the microalgae are unicellular green algae belonging to the genus Coccomyxa and its related organism group, Pseudococcomyxa genus, or Watanabea clade, and the identity with 18S rRNA is 97% or more . Identity with 18S rRNA is confirmed using well-known DNA databases.
  • a culture solution having a known composition can be used as the culture solution in the culture method of the present disclosure.
  • the pH of the culture solution is 4 or less, preferably pH 3-4.
  • CO2 CO2-containing gas
  • the culture rate of microalgae is maintained at a high level.
  • the pH of the culture solution is 4 or less, bicarbonate is hardly generated even when CO2 is introduced, and the pH of the culture solution is not easily changed.
  • the culture medium may contain ammonia nitrogen.
  • ammonia nitrogen is not specifically limited, For example, it is urea.
  • all or part of the microalgae is recovered from the culture solution used for culturing the microalgae, and the recovered culture solution is used, for example, by adding a deficient medium component.
  • New microalgae can be cultured. In this case, since the culture solution can be reused, the culture cost of microalgae can be reduced.
  • the culturing method of the present disclosure includes, for example, detection means for detecting one or more parameters selected from a parameter group consisting of pH, CO2 concentration, and algal body concentration in a culture solution, and controls the parameters within a predetermined range.
  • detection means for detecting one or more parameters selected from a parameter group consisting of pH, CO2 concentration, and algal body concentration in a culture solution, and controls the parameters within a predetermined range.
  • a culture system with control means is used. If this culture system is used, it becomes easy to maintain the parameters in an appropriate range.
  • the detection means corresponds to a detection unit.
  • the control means corresponds to a control unit.
  • the culture system When pH is included in the parameter, the culture system detects the pH by the detection means and maintains the pH within the range of 4 or less (preferably pH 3 to 4) by the control means. Further, when the CO2 concentration is included in the parameter, the culture system detects the CO2 concentration by the detection means, and maintains the CO2 concentration in a predetermined range by the control means.
  • the predetermined range is, for example, 7.45 to 74.5 mg / L.
  • the detecting means include sensors that can measure the parameters (for example, a pH measurement sensor, a CO2 concentration measurement sensor, and an algal body concentration measurement sensor).
  • the control means for example, adjusting means for adjusting the parameters (for example, a valve mechanism for adjusting the introduction amount of the pH adjusting agent into the culture solution, a valve mechanism for adjusting the introduction amount of the CO2-containing gas into the culture solution) And a valve mechanism for adjusting the amount of microalgae introduced into the culture solution) and a computer for controlling the adjusting means in accordance with the measurement result of the sensor.
  • adjusting means for adjusting the parameters for example, a valve mechanism for adjusting the introduction amount of the pH adjusting agent into the culture solution, a valve mechanism for adjusting the introduction amount of the CO2-containing gas into the culture solution
  • a valve mechanism for adjusting the amount of microalgae introduced into the culture solution for example, a computer for controlling the adjusting means in accordance with the measurement result of the sensor.
  • Ion exchange water 500kg Ammonia nitrogen (urea): 9.8 g Phosphorus: 560mg Potassium: 560mg Calcium: 150mg Magnesium: 170mg Chelate metal salt: 85mg
  • the pH of the culture solution was adjusted to 3.5 using hydrochloric acid before planting the microalgae and not adjusted thereafter.
  • a Pseudochoricystis ellipsoidea N1 strain (MBIC11204), a microalga closely related to the genus Pseudococcomyxa, was planted in this culture solution at a concentration of 0.02 g / l.
  • OD720 indicates the algal body concentration in the culture solution
  • pH indicates the pH of the culture solution.
  • nitrogen concentration and fat content in the algal bodies after completion of the culture were measured. The result is shown in FIG.
  • Example 2 As the microalgae, instead of the Pseudochoricystis ellipsoidea N1 strain (MBIC11204), which is a microalga closely related to the genus Pseudococcomyxa, the Pseudochoricystis ellipsoidea Obi strain (MBIC11220), a microalga closely related to the genus Pseudococcomyxa, was used as in Example 1 above. The culture was performed.
  • MBIC11204 Pseudochoricystis ellipsoidea N1 strain
  • MBIC11220 a microalga closely related to the genus Pseudococcomyxa
  • Example 3 As microalgae, Coccomyxa simplex (UTEX274) was used instead of Pseudochoricystis ellipsoidea N1 strain (MBIC11204), and culture was performed in the same manner as in Example 1. The nitrogen concentration in the algal bodies after the completion of the culture was measured. The result is shown in FIG. As shown in FIG. 4, the growth of microalgae was good.
  • Example 4 As microalgae, Coccomyxa chodatii (UTEXB266) was used instead of Pseudochoricystis ellipsoidea N1 strain (MBIC11204), and culture was performed in the same manner as in Example 1.
  • Example 5 A culture solution having the following composition was accommodated in an outdoor open culture system (500 L).
  • Ion exchange water 500kg Nitrate-form nitrogen (sodium nitrate): 27.3 g Phosphorus: 560mg Potassium: 560mg Calcium: 150mg Magnesium: 170g Chelate metal salt: 85mg
  • the pH of the culture solution was adjusted to 3 using hydrochloric acid before planting the microalgae, and was not adjusted thereafter.
  • Single-cell green algae belonging to Watanabea clade was planted in this culture solution so as to be 0.02 g / l.
  • This microalgae is a microalgae that was screened from a sample collected in a hot spring environment or the like under a condition that the pH is 3 and the temperature is in the range of 15 to 35 ° C.
  • the microalgae were confirmed to be unicellular green algae belonging to the Watanabea clade by DNA homology.
  • the DNA sequence of this microalgae is shown in SEQ ID NOs: 4 to 6 in the sequence listing
  • Example 6 Using the same microalgae as in Example 1, the culture was performed in the same manner as in Example 1. This is the first culture. From the culture medium after the first culture, the microalgae are recovered, and in the culture medium after the recovery (the culture liquid substantially free of microalgae), new microalgae (the same microalgae as in Example 1) are obtained. The cells were cultured in the same manner as in Example 1. This is the second culture. Regarding the culture medium composition, the same amount as in Example 1 was added.
  • microalgae are recovered from the culture solution after the second culture, and in the culture solution after the recovery (culture solution substantially free of microalgae), new microalgae (the same fineness as in Example 1 above) is obtained.
  • Algae were cultured in the same manner as in Example 1. This is the third culture.
  • the culture medium composition the same amount as in Example 1 was added.
  • Algae concentration after first culture OD720
  • pH after first culture alga body concentration after second culture (OD720)
  • pH after second culture alga bodies after third culture
  • the concentration (OD720) and the pH after the third culture are shown in FIG.
  • the fats and oils content in the algal body after the 2nd culture and the 3rd culture are shown in FIG.
  • the pH after the n-th culture is expressed as n-th_pH.
  • Example 7 When a mixture of various microorganisms collected from a hot spring is used and cultured in the same manner as in Example 5, only the microalgae of unicellular green algae belonging to the genus Coccomyxa and related organisms, the genus Pseudococcomyxa, or the Watanabea clade Proliferation was observed.
  • the DNA sequences of the microalgae of the genus Coccomyxa and related organisms, Pseudococcomyxa are shown in SEQ ID NOs: 1 to 3 in the sequence listing.
  • Example 8 The DNA sequences of microalgae of unicellular green algae belonging to the Watanabea clade are shown in SEQ ID NOs: 4 to 6 in the sequence listing.
  • Example 8 When a mixture of various microorganisms collected from a hot spring was used and cultured in the same manner as in Example 1, only Cocccomyxa genus and related organisms, Pseudococcomyxa microalgae grew.
  • the DNA sequences of the microalgae of the genus Coccomyxa and related organisms, Pseudococcomyxa are shown in SEQ ID NOs: 1 to 3 in the sequence listing.
  • FIG. 3 shows the configuration of the culture system 1.
  • the culture system 1 includes a raceway type culture tank 3, a stirring paddle 5 for stirring the culture solution in the culture tank 3, a pH measurement sensor 7 for detecting the pH of the culture solution, and the CO2 concentration in the culture solution.
  • a CO2 concentration measuring sensor 9 to be detected a control unit 11 comprising a well-known computer, a pH adjusting agent introducing unit 13 for introducing a pH adjusting agent into a culture solution, and a CO2 for introducing a CO2-containing gas into the culture solution.
  • the pH adjuster charging unit 13 has a well-known valve mechanism, and can adjust the input amount of the pH adjuster to the culture solution.
  • the CO2 gas introduction unit 15 has a well-known valve mechanism, and can adjust the amount of CO2-containing gas introduced into the culture solution.
  • the control unit 11 acquires the measurement result of the pH measurement sensor 7, controls the pH adjuster charging unit 13 so that the pH in the culture solution is maintained in the range of 3 to 4, and adjusts the pH as necessary. Add the agent to the culture.
  • the control unit 11 acquires the measurement result of the CO2 concentration measurement sensor 9, and controls the CO2 gas introduction unit 15 so that the CO2 concentration in the culture solution is maintained in the range of 7.45 to 74.5 mg / L. Adjust the amount of CO2-containing gas introduced into the culture solution.
  • the pH measurement sensor 7 and the CO2 concentration measurement sensor 9 are an embodiment of the detection means, and the control unit 11, the pH adjuster charging unit 13, and the CO2 gas introduction unit 15 are an embodiment of the control means.
  • the culture system 1 of this example can be used for culturing microalgae in Examples 1 to 6.
  • the culture system 1 may include a sensor for measuring the concentration of algal bodies in the culture solution and means for adjusting the algal body concentration to a predetermined range according to the measurement result of the sensors.
  • the control part 11 can maintain algal body concentration in a preferable range by adjusting algal body concentration according to the measurement result of algal body concentration.
  • the method for culturing microalgae according to the first aspect of the present disclosure uses a culture solution having a culture solution having a pH of 4 or less, and uses the culture solution of Coccomyxa and related organisms, or the unicellular green algae belonging to the Watanabea clade. Are cultured in an outdoor open culture system. According to this culture method, since the pH of the culture solution is 4 or less, the growth of other microalgae and protists can be suppressed. Even if CO2 is introduced into the culture solution, bicarbonate ions are not generated, so that the pH of the culture solution can be prevented from changing.
  • the culture solution has a pH of 4 or less, and a culture solution containing ammonia nitrogen is used to produce the microalgae of the genus Coccomyxa and related organisms, Pseudococcomyxa.
  • a culture solution containing ammonia nitrogen is used to produce the microalgae of the genus Coccomyxa and related organisms, Pseudococcomyxa.
  • the culture solution contains ammonia nitrogen (for example, urea), the growth of other microalgae and protists can be suppressed.
  • the culture solution contains ammonia nitrogen (for example, urea)
  • the culture solution contains ammonia nitrogen (for example, urea)
  • the growth of other microalgae and protists can be suppressed.
  • CO2 is introduced into the culture solution, bicarbonate ions are not generated, so that the pH of the culture solution can be prevented from changing.
  • this indication is not limited to the said embodiment at all, and it cannot be overemphasized that it can implement in a various aspect in the range which does not deviate from this indication.
  • substantially the same effect can be obtained by using other ammonia nitrogen instead of urea.
  • the cultivation method and culture system of the micro algae concerning this indication were illustrated, the embodiment and composition concerning this indication are not limited to each embodiment and each composition mentioned above. Embodiments and configurations obtained by appropriately combining technical elements disclosed in different embodiments and configurations are also included in the scope of the embodiments and configurations according to the present disclosure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Sustainable Development (AREA)
  • Analytical Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Clinical Laboratory Science (AREA)
  • Botany (AREA)
  • Cell Biology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

 pHが4以下である培養液を用いて、Coccomyxa属およびその近縁生物群、又はWatanabeaクレードに帰属する単細胞緑藻類の微細藻類を屋外の開放系培養システムにおいて培養する微細藻類の培養方法。pHが4以下であり、アンモニア態窒素を含む培養液を用いて、Coccomyxaおよびその近縁生物群属、又はPseudococcomyxa属の微細藻類を屋外の開放系培養システムにおいて培養する微細藻類の培養方法。

Description

微細藻類の培養方法及び培養システム 関連出願の相互参照
 本出願は、2012年12月14日に出願された日本特許出願2012-273633に基づいており、ここにその記載内容を参照により援用する。
 本開示は微細藻類の培養方法及び培養システムに関するものである。
 近年、微細藻類が生産する脂質や糖等の有用物質の利用と活用が注目されている。有用物質の生産性を高めるためには、微細藻類を効率よく培養する必要がある。従来、微細藻類の培養方法としては、中性やアルカリ性の培養液を用いる方法が専ら用いられてきた(非特許文献1参照)。
AquaFUELs-D1.4 Rev7-30November 2010 Page28-36
 本開示は以上の点に鑑みなされたものであり、屋外での開放系における微細藻類の培養方法及び培養システムを提供することを目的とする。
 本開示の第1局面に係る微細藻類の培養方法は、培養液のpHが4以下である培養液を用いて、Coccomyxa属およびその近縁生物群、又はWatanabeaクレードに帰属する単細胞緑藻類の微細藻類を屋外の開放系の培養システムにて培養する。この培養方法によれば、培養液のpHが4以下であるので、他の微細藻類や原生生物の増殖を抑制することができる。培養液中にCO2を導入しても、重炭酸イオンが生じないので、培養液のpHが変動を抑制することができる。
 本開示の第2局面に係る微細藻類の培養方法は、培養液のpHが4以下であり、アンモニア態窒素を含む培養液を用いて、Coccomyxa属およびその近縁生物群、Pseudococcomyxa属の微細藻類を屋外の開放系の培養システムにて培養する。この培養方法によれば、培養液のpHが4以下であるので、他の微細藻類や原生生物の増殖を抑制することができる。特に、培養液がアンモニア態窒素(例えば尿素)を含むことから、他の微細藻類や原生生物の増殖を抑制することができる。培養液中にCO2を導入しても、重炭酸イオンが生じないので、培養液のpHが変動することを抑制できる。
 本開示についての上記および他の目的、特徴や利点は、添付図面を参照した下記詳細な説明から、より明確になる。添付図面において
図1は、実施例1における藻体濃度とpHの推移を表すグラフである。 図2は、実施例8における藻体濃度とpHの推移を表すグラフである。 図3は、培養システム1の構成を表す説明図である。 図4は、培養終了後における藻体中の窒素濃度及び油脂含量を表す図である。 図5は、2回目の培養後及び3回目の培養後における藻体中の油脂含量を表す図である。
 培養液が中性又はアルカリ性である場合、培養の対象である微細藻類以外の微細藻類(以下、他の微細藻類とする)や、微細藻類を捕食する原生生物が増殖する可能性がある。微細藻類を培養する場合、培養液中にCO2を連続的に導入することがあるが、培養液が中性又はアルカリ性であると、CO2から重炭酸イオンが生じ、培養液のpHが変動する可能性がある。すると、培養液へのpH調整剤の投入が必要となり、培養液中の塩濃度が増加する虞がある。
 本開示の実施形態を説明する。本開示の培養方法において培養の対象となる微細藻類としては、Coccomyxa属およびその近縁生物群、Pseudococcomyxa属、又はWatanabeaクレードに帰属する単細胞緑藻類がある。特に、温泉湧出環境等において採取したサンプルから、所定の単離条件(例えば、pH3であり、温度が15~35℃の範囲内にある条件)にてスクリーニングされた微細藻類(つまり、上記の単離条件で生育可能な微細藻類)がある。
 温泉湧出環境等において採取したサンプルから、上記のスクリーニングで選択される微細藻類として、例えば、Pseudochoricystis ellipsoidea N1株(MBIC11204:Pseudococcomyxa属近縁)、Pseudochoricystis ellipsoidea Obi株(MBIC11220:Pseudococcomyxa属近縁)、Coccomyxa simplex (UTEX274:Coccomyxa属)、Coccomyxa chodatii (UTEXB266:Coccomyxa属)がある。
 また、温泉湧出環境等において採取したサンプルから、上記のスクリーニングにより、Coccomyxa属およびその近縁生物群、Pseudococcomyxa属、又はWatanabeaクレードに帰属する単細胞緑藻類の微細藻類を選択し、それを本開示の培養方法に用いてもよい。なお、微細藻類がCoccomyxa属およびその近縁生物群、Pseudococcomyxa属、又はWatanabeaクレードに帰属する単細胞緑藻類であることは、DNAの相同性により確認でき、18S rRNAでの同一性が97%以上である。18S rRNAでの同一性は、周知のDNAデータベースを使用して確認される。
 本開示の培養方法における培養液としては、周知の組成を有する培養液を用いることができる。培養液のpHは4以下であり、好ましくはpH3~4である。本開示の培養方法において、例えば、培養液にCO2(CO2含有ガス)を連続的に導入することができる。この場合、微細藻類の培養速度が高水準に維持される。なお、培養液のpHが4以下であることにより、CO2を導入しても重炭酸は生じにくく、培養液のpHは変動しにくい。
 本開示の培養方法において、培養液中にアンモニア態窒素を含むことができる。この場合、他の微細藻類や原生生物の増殖が一層生じにくくなる。アンモニア態窒素は特に限定されないが、例えば尿素である。
 本開示の培養方法では、例えば、微細藻類の培養に用いた培養液から微細藻類の全部又は一部を回収し、回収後の培養液を用い、例えば、不足分の培地成分を追加することで新たな微細藻類を培養することができる。この場合、培養液を再利用できるので、微細藻類の培養コストを低減することができる。
 本開示の培養方法は、例えば、培養液における、pH、CO2濃度、及び藻体濃度から成るパラメータ群から選ばれる1以上のパラメータを検知する検知手段と、そのパラメータを所定の範囲内に制御する制御手段を備える培養システムを用いる。この培養システムを用いれば、前記パラメータを適切な範囲に維持することが容易になる。なお、検知手段は検知部に相当する。制御手段は制御部に相当する。
 前記パラメータにpHが含まれる場合、培養システムは、検知手段によってpHを検知し、制御手段によってpHを4以下(好ましくはpH3~4)の範囲に維持する。また、前記パラメータにCO2濃度が含まれる場合、培養システムは、検知手段によってCO2濃度を検知し、制御手段によってCO2濃度を、所定の範囲に維持する。所定の範囲は、例えば、7.45~74.5mg/Lである。
 検知手段としては、例えば、前記パラメータを測定可能なセンサ(例えばpH測定センサ、CO2濃度測定センサ、藻体濃度測定センサ)がある。また、制御手段としては、例えば、前記パラメータを調整する調整手段(例えば、培養液へのpH調整剤の導入量を調整するバルブ機構、培養液へのCO2含有ガスの導入量を調整するバルブ機構、培養液への微細藻類の導入量を調整するバルブ機構)と、上記のセンサの測定結果に応じて上記の調整手段を制御するコンピュータと、から成るものがある。
(実施例1)
 屋外の開放系培養システム(500L)に、以下の組成を有する培養液を収容した。
  イオン交換水:500kg
  アンモニア態窒素(尿素):9.8g
  リン:560mg
  カリウム:560mg
  カルシウム:150mg
  マグネシウム:170mg
  キレート金属塩:85mg
 培養液のpHは微細藻類の植株前に塩酸を用いて3.5に調整し、その後は調整しなかった。この培養液に、Pseudococcomyxa属近縁の微細藻類であるPseudochoricystis ellipsoidea N1株(MBIC11204)を、0.02g/lとなるように植株した。
 培養中は、光源に太陽による日射を用い、二酸化炭素濃度1vol%のガスを連続的に培養液に通気させた。培養中、培養液における藻体濃度とpHとを継続的に測定した。その測定結果を図1に示す。図1においてOD720は培養液中の藻体濃度を示し、pHは培養液のpHを示す。また、培養終了後における藻体中の窒素濃度及び油脂含量を測定した。その結果を図4に示す。
 図1及び図4から明らかなように、培養中、培養液のpHはほとんど変動せず、微細藻類の生育は良好であった。また、他の微細藻類や原生生物の増殖は見られなかった。
(実施例2)
 微細藻類として、Pseudococcomyxa属近縁の微細藻類であるPseudochoricystis ellipsoidea N1株(MBIC11204)の代わりに、Pseudococcomyxa属近縁の微細藻類であるPseudochoricystis ellipsoidea Obi株(MBIC11220)を用いて、前記実施例1と同様に培養を行った。
 培養終了後における藻体中の窒素濃度及び油脂含量を測定した。その結果を図4に示す。図4で示されるように、微細藻類の生育は良好であった。また、培養中、培養液のpHはほとんど変動せず、他の微細藻類や原生生物の増殖は見られなかった。
(実施例3)
 微細藻類として、Pseudochoricystis ellipsoidea N1株(MBIC11204)の代わりに、Coccomyxa simplex (UTEX274)を用いて、前記実施例1と同様に培養を行った。
 培養終了後における藻体中の窒素濃度を測定した。その結果を図4に示す。図4で示されるように、微細藻類の生育は良好であった。また、培養中、培養液のpHはほとんど変動せず、他の微細藻類や原生生物の増殖は見られなかった。
(実施例4)
 微細藻類として、Pseudochoricystis ellipsoidea N1株(MBIC11204)の代わりに、Coccomyxa chodatii (UTEXB266)を用いて、前記実施例1と同様に培養を行った。
 培養終了後における藻体中の窒素濃度及び油脂含量を測定したところ、微細藻類の生育が良好であることを裏付けていた。また、培養中、培養液のpHはほとんど変動せず、他の微細藻類や原生生物の増殖は見られなかった。
(実施例5)
 屋外の開放系培養システム(500L)に、以下の組成を有する培養液を収容した。
  イオン交換水:500kg
  硝酸体態窒素(硝酸ナトリウム):27.3g
  リン:560mg
  カリウム:560mg
  カルシウム:150mg
  マグネシウム:170g
  キレート金属塩:85mg
 培養液のpHは微細藻類の植株前に塩酸を用いて3に調整し、その後は調整しなかった。この培養液に、Watanabeaクレードに帰属する単細胞緑藻類を、0.02g/lとなるように植株した。この微細藻類は、温泉湧出環境等において採取したサンプルから、pHが3であり、温度が15~35℃の範囲内にある条件にてスクリーニングされた微細藻類である。この微細藻類がWatanabeaクレードに帰属する単細胞緑藻類であることはDNAの相同性により確認した。この微細藻類のDNA配列を、配列表の配列番号4~6に示す。
 培養中は、光源に太陽による日射を用い、二酸化炭素濃度1vol%のガスを連続的に通気させた。培養中、培養液のpHはほとんど変動せず、微細藻類の生育は良好であった。また、他の微細藻類や原生生物の増殖は見られなかった。
(実施例6)
 前記実施例1と同じ微細藻類を用い、前記実施例1と同様に培養を行った。これを1回目の培養とする。1回目の培養後の培養液から、微細藻類を回収し、回収後の培養液(微細藻類を実質的に含まない培養液)において、新たな微細藻類(前記実施例1と同じ微細藻類)を、前記実施例1と同様の方法で培養した。これを2回目の培養とする。培養液の培地組成に関しては、前記実施例1と同量添加した。
 次に、2回目の培養後の培養液から、微細藻類を回収し、回収後の培養液(微細藻類を実質的に含まない培養液)において、新たな微細藻類(前記実施例1と同じ微細藻類)を、前記実施例1と同様の方法で培養した。これを3回目の培養とする。培養液の培地組成に関しては、前記実施例1と同量添加した。
 1回目の培養後における藻体濃度(OD720)、1回目の培養後におけるpH、2回目の培養後における藻体濃度(OD720)、2回目の培養後におけるpH、3回目の培養後における藻体濃度(OD720)、及び3回目の培養後におけるpHを図2に示す。また、2回目の培養後及び3回目の培養後における藻体中の油脂含量を図5に示す。なお、図2において、n回目(n=1、2、3)の培養後における藻体濃度は、n回目_ODと表記し、n回目の培養後におけるpHは、n回目_pHと表記する。
 図2及び図5に示されるように、1~3回目の培養のいずれにおいても、微細藻類の生育は良好であり、pHは殆ど変動しなかった。
(実施例7)
 温泉より採取したいろいろな微生物が混ざったものを用いて、実施例5と同様な方法で培養すると、Coccomyxa属およびその近縁生物群、Pseudococcomyxa属、又はWatanabeaクレードに帰属する単細胞緑藻類の微細藻類のみに増殖が見られた。Coccomyxa属およびその近縁生物群、Pseudococcomyxa属の微細藻類のDNA配列を、配列表の配列番号1~3に示す。Watanabeaクレードに帰属する単細胞緑藻類の微細藻類のDNA配列を、配列表の配列番号4~6に示す。
(実施例8)
 温泉より採取したいろいろな微生物が混ざったものを用いて、実施例1と同様な方法で培養すると、Coccomyxa属およびその近縁生物群、Pseudococcomyxa属の微細藻類のみに増殖が見られた。Coccomyxa属およびその近縁生物群、Pseudococcomyxa属の微細藻類のDNA配列を、配列表の配列番号1~3に示す。
(実施例9)
 図3に、培養システム1の構成を表す。培養システム1は、レースウェイ型の培養槽3と、培養槽3中の培養液を攪拌する攪拌用パドル5と、培養液のpHを検知するpH測定センサ7と、培養液中のCO2濃度を検知するCO2濃度測定センサ9と、周知のコンピュータから成る制御部11と、培養液へのpH調整剤の投入を行うpH調整剤投入部13と、培養液へのCO2含有ガスの導入を行うCO2ガス導入部15と、を備える。
 pH調整剤投入部13は周知のバルブ機構を有しており、培養液へのpH調整剤の投入量を調整できる。また、CO2ガス導入部15は周知のバルブ機構を有しており、培養液へのCO2含有ガスの導入量を調整できる。
 制御部11は、pH測定センサ7の測定結果を取得し、培養液中のpHが3~4の範囲に維持されるように、pH調整剤投入部13を制御し、必要に応じてpH調整剤を培養液に投入する。
 制御部11は、CO2濃度測定センサ9の測定結果を取得し、培養液中のCO2濃度が7.45~74.5mg/Lの範囲に維持されるように、CO2ガス導入部15を制御し、培養液中へのCO2含有ガスの導入量を調整する。なお、pH測定センサ7及びCO2濃度測定センサ9は検知手段の一実施形態であり、制御部11、pH調整剤投入部13、及びCO2ガス導入部15は制御手段の一実施形態である。
 本実施例の培養システム1は、前記実施例1~6における微細藻類の培養に用いることができる。本実施例の培養システム1を用いれば、培養液のpH及びCO2濃度を好適な範囲に維持することが容易になる。
 培養システム1は、培養液中の藻体濃度を測定するセンサと、そのセンサの測定結果に応じて藻体濃度を所定の範囲に調整する手段を備えていてもよい。この場合、制御部11は、藻体濃度の測定結果に応じて藻体濃度を調整することで、藻体濃度を好ましい範囲に維持することができる。
 本開示の第1局面に係る微細藻類の培養方法は、培養液のpHが4以下である培養液を用いて、Coccomyxa属およびその近縁生物群、又はWatanabeaクレードに帰属する単細胞緑藻類の微細藻類を屋外の開放系の培養システムにて培養する。この培養方法によれば、培養液のpHが4以下であるので、他の微細藻類や原生生物の増殖を抑制することができる。培養液中にCO2を導入しても、重炭酸イオンが生じないので、培養液のpHが変動を抑制することができる。
 本開示の第2局面に係る微細藻類の培養方法は、培養液のpHが4以下であり、アンモニア態窒素を含む培養液を用いて、Coccomyxa属およびその近縁生物群、Pseudococcomyxa属の微細藻類を屋外の開放系の培養システムにて培養する。この培養方法によれば、培養液のpHが4以下であるので、他の微細藻類や原生生物の増殖を抑制することができる。特に、培養液がアンモニア態窒素(例えば尿素)を含むことから、他の微細藻類や原生生物の増殖を抑制することができる。培養液中にCO2を導入しても、重炭酸イオンが生じないので、培養液のpHが変動を抑制することができる。
 尚、本開示は前記実施形態になんら限定されるものではなく、本開示を逸脱しない範囲において種々の態様で実施しうることはいうまでもない。例えば、前記実施例1~4、6、8において、尿素の代わりに、他のアンモニア態窒素を用いても略同様の効果を得ることができる。
 以上、本開示に係る微細藻類の培養方法および培養システムを例示したが、本開示に係る実施の形態および構成は、上述した各実施の形態および各構成に限定されるものではない。異なる実施の形態および構成にそれぞれ開示された技術的要素を適宜組み合わせて得られる実施の形態および構成についても本開示に係る実施の形態および構成の範囲に含まれる。
 
配列番号:1
配列の長さ:1677
配列の型:DNA
生物名:Coccomyxa and its allied species, A
配列:1
agtcatatgc ttgtctcaaa gattaagcca tgcatgtcta agtataaact gctttatact 
gtgaaactgc gaatggctca ttaaatcagt tatagtttat ttgatggtac cttactactc 
ggataaccgt agtaattcta gagctaatac gtgcgtaaat cccgacttct ggaagggacg 
tatttattag ataaaaggcc gaccggactc tgtccgactc gcggtgaatc atgataactc 
cacggatcgc atggcctcga gccggcgacg tttcattcaa atttctgccc tatcaacttt 
cgacggtaag gtattggctt accgtggtgg taacgggtga cggaggatta gggttcgatt 
ccggagaggg agcctgagaa acggctacca catccaagga aggcagcagg cgcgcaaatt 
acccaatctt gacacaagga ggtagtgaca ataaataaca ataccggggt ttttcaactc 
tggtaattgg aatgagtaca atctaaaccc cttaacgagg atcaattgga gggcaagtct 
ggtgccagca gccgcggtaa ttccagctcc aatagcgtat atttaagttg ttgcagttaa 
aaagctcgta gttggatttc gggcgggctc ggctggtccg cctatcggtg tgcactgacc 
gagcccgtct tgttgccggg gacgggctcc tgggcttaac tgtccgggac tcggagtcgg 
cgaggttact ttgagtaaat tagagtgttc aaagcaggcc tacgctctga atacattagc 
atggaataac acgataggac tctggcctat cttgttggtc tgtgggaccg gagtaatgat 
taagagggac agtcgggggc attcgtattt cattgtcaga ggtgaaattc ttggatttat 
gaaagacgaa ctactgcgaa agcatttgcc aaggatgttt tcattaatca agaacgaaag 
ttgggggctc gaagacgatt agataccgtc ctagtctcaa ccataaacga tgccgactag 
ggattggcgg gcgttctttt gatgacctcg ccagcacctt atgagaaatc aaagtttttg 
ggttccgggg ggagtatggt cgcaaggctg aaacttaaag gaattgacgg aagggcacca 
ccaggcgtgg agcctgcggc ttaatttgac tcaacacggg aaaacttacc aggtccagac 
atagtgagga ttgacagatt gagagctctt tcttgattct atgggtggtg gtgcatggcc 
gttcttagtt ggtgggttgc cttgtcaggt tgattccggt aacgaacgag acctcagcct 
gctaactagt cacggttggt tttaccagcc ggccgacttc ttagagggac tattggcgac 
tagccaatgg aagtgtgagg caataacagg tctgtgatgc ccttagatgt tctgggccgc 
acgcgcgcta cactgatgca atcaacgagc ctagccttgg ccgagaggtc cgggtaatct 
ttgaaactgc atcgtgatgg ggatagatta ttgcaattat taatcttcaa cgaggaatgc 
ctagtaagcg cgagtcatca gctcgcgttg attacgtccc tgccctttgt acacaccgcc 
cgtcgctcct accgattggg tgtgctggtg aagcgttcgg attggcggct tcagggc
 
配列番号:2
配列の長さ:1709
配列の型:DNA
生物名:Coccomyxa and its allied species, B
配列:2
agtcatatgc ttgtctcaaa gattaagcca tgcatgtcta agtataaact gctttatact 
gtgaaactgc gaatggctca ttaaatcagt tatagtttat ttgatggtac cttactactc 
ggataaccgt agtaattcta gagctaatac gtgcggaaat cccgacttct ggaagggacg 
tatttattag ataaaaggcc gaccgggctt gcccgaaacg cggtgaatca tgataactcc 
acgaatcgca tggcctcagc gccggcgatg tttcattcaa atttctgccc tatcaacttt 
cgacggtaag gtattggctt accgtggtgg taacgggtga cggaggatta gggttcgatt 
ccggagaggg agcctgagaa acggctacca catccaagga aggcagcagg cgcgcaaatt 
acccaatctt gacacaagga ggtagtgaca ataaataaca ataccggggt ttttcaactc 
tggtaattgg aatgagtaca atctaaaccc cttaacgagg atcaattgga gggcaagtct 
ggtgccagca gccgcggtaa ttccagctcc aatagcgtat atttaagttg ttgcagttaa 
aaagctcgta gttggatttc gggcgggccc ggccggtccg cctttgggtg tgcactgacc 
gggcccgtct tgttgccggg gacgggctcc tgggcttaac tgtccgggac tcggagtcgg 
cgaggttact ttgagtaaat tagagtgttc aaagcaggcc tacgctctga atacattagc 
atggaataac acgataggac tctggcctat cttgttggtc tgtgggaccg gagtaatgat 
taagagggac agtcgggggc attcgtattt cattgtcaga ggtgaaattc ttggatttat 
gaaagacgaa ctactgcgaa agcatttgcc aaggatgttt tcattaatca agaacgaaag 
ttgggggctc gaagacgatt agataccgtc ctagtctcaa ccataaacga tgccgactag 
ggattggcgg gcgttctttt gatgaccccg ccagcacctt atgagaaatc aaagtttttg 
ggttccgggg ggagtatggt cgcaaggctg aaacttaaag gaattgacgg aagggcacca 
ccaggcgtgg agcctgcggc ttaatttgac tcaacacggg aaaacttacc aggtccagac 
atagtgagga ttgacagatt gagagctctt tcttgattct atgggtggtg gtgcatggcc 
gttcttagtt ggtgggttgc cttgtcaggt tgattccggt aacgaacgag acctcagcct 
gctaactagt cacgattggt tcttccagtc ggccgacttc ttagagggac tattggcgac 
tagccaatgg aagtgtgagg caataacagg tctgtgatgc ccttagatgt tctgggccgc 
acgcgcgcta cactgatgca atcaacgagc ctagccttgg ccgacaggtc cgggtaatct 
ttgaaactgc atcgtgatgg ggatagatga ttgcaattat tcatcttcaa cgaggaatgc 
ctagtaagcg cgagtcatca gctcgcgttg attacgtccc tgccctttgt acacaccgcc 
cgtcgctcct accgattggg tgtgctggtg aagcgttcgg attggcggca gtgcgcggtt 
cgccgctcgc tgcagccgag aagttcgtt
 
配列番号:3
配列の長さ:1714
配列の型:DNA
生物名:Coccomyxa and its allied species, C
配列:3
agtcatatgc ttgtctcaaa gattaagcca tgcatgtcta agtataaact gctttatact 
gtgaaactgc gaatggctca ttaaatcagt tatagtttat ttgatggtac cttactactc 
ggataaccgt agtaattcta gagctaatac gtgcggaaat cccgacttct ggaagggacg 
tatttattag ataaaaggcc gaccgggctt gcccgaaacg cggtgaatca tgataactcc 
acgaatcgca tggcctcagt gccggcgatg tttcattcaa atttctgccc tatcaacttt 
cgacggtaag gtattggctt accgtggtgg taacgggtga cggaggatta gggttcgatt 
ccggagaggg agcctgagaa acggctacca catccaagga aggcagcagg cgcgcaaatt 
acccaatctt gacacaagga ggtagtgaca ataaataaca ataccggggt ttttcaactc 
tggtaattgg aatgagtaca atctaaaccc cttaacgagg atcaattgga gggcaagtct 
ggtgccagca gccgcggtaa ttccagctcc aatagcgtat atttaagttg ttgcagttaa 
aaagctcgta gttggatttc gggcgggccc ggccggtccg ccttctggtg tgcactgacc 
gggcccgtct tgttgccggg gacgggctcc tgggcttaac tgtccgggac tcggagtcgg 
cgaggttact ttgagtaaat tagagtgttc aaagcaggcc tacgctctga atacattagc 
atggaataac acgataggac tctggcctat cttgttggtc tgtgggaccg gagtaatgat 
taagagggac agtcgggggc attcgtattt cattgtcaga ggtgaaattc ttggatttat 
gaaagacgaa ctactgcgaa agcatttgcc aaggatgttt tcattaatca agaacgaaag 
ttgggggctc gaagacgatt agataccgtc ctagtctcaa ccataaacga tgccgactag 
ggattggcgg gcgttctttt gatgaccccg ccagcacctt atgagaaatc aaagtttttg 
ggttccgggg ggagtatggt cgcaaggctg aaacttaaag gaattgacgg aagggcacca 
ccaggcgtgg agcctgcggc ttaatttgac tcaacacggg aaaacttacc aggtccagac 
atagtgagga ttgacagatt gagagctctt tcttgattct atgggtggtg gtgcatggcc 
gttcttagtt ggtgggttgc cttgtcaggt tgattccggt aacgaacgag acctcagcct 
gctaactagt cacgattggt tcttccagtc ggccgacttc ttagagggac tattggcgac 
tagccaatgg aagtgtgagg caataacagg tctgtgatgc ccttagatgt tctgggccgc 
acgcgcgcta cactgatgca atcaacgagc ctagccttgg ccgacaggtc cgggtaatct 
ttgaaactgc atcgtgatgg ggatagatga ttgcaattat tcatcttcaa cgaggaatgc 
ctagtaagcg cgagtcatca gctcgcgttg attacgtccc tgccctttgt acacaccgcc 
cgtcgctcct accgattggg tgtgctggtg aagcgttcgg attggcggca gtgcgcggtt 
cgccgctcgc tgcagccgag aagttcgtta aacc
 
配列番号:4
配列の長さ:1753
配列の型:DNA
生物名:Watanabea
clade and its allied species, D
配列:4
gtcctgccag tagtcatatg cttgtctcaa agattaagcc atgcatgtcc aagtatgaac 
tgcttatact gtgaaactgc gaatggctca ttaaatcagt tatagtttat ttgatggtac 
ctggctactc ggatacccgt agtaattcta gagctaatac gtgcgcacat cccgactctg 
tggaagggac gtatttatta gataaaaggc cgaccgggct tgcccgactc gcggcgaatc 
atgataactc cacgaatcgc acggcctccg cgccggcgat gtttcattca aatttctgcc 
ctatcaactt tcgatggtag gatagaggcc taccatggtt ttgacgggtg acggggaatt 
agggttctat gccggagagg gagcctgaga aacggctacc acatccaagg aaggcagcag 
gcgcgcaaat tacccaatcc cgacacgggg aggtagtgac aataaataac aataccgggc 
tcttacgagt ctggtgattg gaatgagaac aatctaaatc ccttaacgag gatcgattgg 
agggcaagtc tggtgccagc agccgcggta attccagctc caatagcgta tatttaagtt 
gttgcagtta aaaagctcgt agtcggatgt cgggcggcct ccgtcggtcc gccgatcggc 
gtgcaccggc ggggcgccgc ctcgctgccg gggacgggcg cctgggcttc actgtcccgg 
gccccggagt cggcgaggtc actttgagta aattagagtg ttcaaagcag gcagccgctc 
tgaatacgcc agcatggaat gacgcgatag gactctgggc ctattccgtc ggtctgtggg 
accggagtaa tgatgaacag ggacggtcgg gggcattcgt atttcgctgt cagaggtgaa 
attcttggat ttgcgaaaga cggacttctg cgaaagcatt tgccaaggat gttttcattg 
atcaagaacg aaagtcgggg gctcgaagac gattagatac cgtcctagtc tcgaccataa 
acgatgccga ctagggatcg gcgggcgttt cttcgacgac cccgccggca cctcacgaga 
aatcaaagtg ttcgggttcc ggggggagta tggtcgcaag gctgaaactt aaaggaattg 
acggaagggc accaccaggc gtggagcctg cggcttaatt tgactcaaca cgggaaaact 
taccaggtcc agacatagcg aggattgaca gattgacagc tctttcttga ttctatgggt 
ggtggtgcat ggccgttctt agttggtggg ttgccttgtc aggttgattc cggtaacgaa 
cgagacctcg gcctgctaaa tagccccggg cggcgttcgc gccggccggc cgagcttctt 
agagggactc tcggcgacta gccgatggaa gtgcgaggca ataacaggtc tgtgatgccc 
ttagatgttc tgggccgcac gcgcgctaca ctgacgcagc caacgggcgc agccttggcc 
gagaggcccg ggtaatccgg cagcctgcgt cgtgacgggg ctagactctt gcaattatca 
gtcttcaacg aggaatgcct agtaggcgcg agtcatcagc tcgcgtcgat tacgtccctg 
ccctttgtac acaccgcccg tcgctcctac cgattggatg tgctggtgaa gcgctcggac 
cggccgcgtc gcgcggttcg ccgcgcctcg cagccgggaa gtccgttgaa ccctcccacc 
taggggaagg aga
 
配列番号:5
配列の長さ:1764
配列の型:DNA
生物名:Watanabea
clade and its allied species, E
配列:5
tttatcctgc cagtagtcat atgcttgtct caaagactaa gccatgcatg tgtaagtatg 
aatcgctcat acggtgaaac tgcgaatggc tcattaaatc agttatcgtt tatttgatgg 
tactgcccta ctcggataac cgttggaaat cattggctaa tacgtgcgca catcccgact 
ctcggaaggg acgtatttat tagatagaag accgaccggg cctcggcccg agctgcggtg 
aatcatgata acttcacgaa tcgcatggcc ccgcgccggc gatgtttcat tcaaatttct 
gccctatcaa ctttcgatgg taggatagag gcctaccatg gttttgacgg gtgacggagt 
tttcgggaac ggctccggag aggccgcctg aggaacagcg accatttcca aggaaagcag 
caggcgcgca aattacccaa tcccgacacg gggaggtagt gacaataaat aacaataccg 
ggctttttca agtctggtga ttggaatgag tacaatctaa atcccttaac gaggatcaat 
tggagggcaa gtctggtgcc agcagccgcg gtaattccag ctccaatagc gtatatttaa 
gttgttgcag ttaaaaagct cgtagttgga tctagacgag gccccgccgg tccgccgtca 
ggtgtgcact ggcgtgggcc cgccttgctg tcggggacgg gctcctgggc ttcgctgtcc 
gggacccgga gtcgacgagg ttactttgag taaattagag tgttcaaagc aggcctacgc 
tctgaatacg ttagcatgga ataacacgat aggactctgg cctatcctgt tggtctgtgg 
gaccggagta atgattaaga gggacggtcg ggggcattcg tatttcgttg tcagaggtga 
aattcttgga ttttacaaaa agacggactt ctgcgaaagc atttgccaag gatgttttca 
ttaatcaaga acgaaatttg gggggctcga gacgattaga taccgtccta gtctcaaccc 
ataaacgatg ccgactaggg atcggcgggt gttgaatcga tgaccccgcc ggcacctcac 
gagaaatcaa agtctttggg ttccgggggg agtatggttg caaggctgaa acttaaagga 
attgacggaa gggcaccacc aggcgtggag cctgcggctt aatttgactc aacacgggaa 
aacttaccag gtccagacat agtgaggatt gacagattga cagctctttc ttgattctgt 
gggtggtggt gcatggccgt tcttagttgg tgggttgcct tgtctgccta atcgcgataa 
acggacgaga ccccggcctg ctaaatagcc acggtcggcg tcccgccggc cggcgggctt 
cttagaggga ctatcggcat ttagccggag gaagtgcggg gcaataacag gtctgtgatg 
cccttagatg ttctgggcgg cacgcgcgct acactggtgc gatcagcgag cctagcctcg 
gccgagaggt ccgggtaatc ttgcaaaccg caccgtgatg gggctagact cttgcaatta 
tcagtcttca acgaggaatg cctagtaagc gcgagtcatc agctcgtgct gattacgtcc 
ctgccctttg tacacaccgc ccgtcgctcc taccgattgg atgtgctggt gaagcgttcg 
gactggcggc gcgggcggct cgttcgcctg gcgccgccgg gaagttcgtt gaaccctccc 
acctaaagga aggagaagtc gtaa
  
配列番号:6
配列の長さ:2205
配列の型:DNA
生物名:Watanabea
clade and its allied species, F
配列:6
gtcatatgct gtctcaaaga ttaagccatg catgtccaag tatgaactgc ttatactgtg 
aaactgcgaa tggctcatta aatcagttat agtttatttg atggtacctg gctactcgga 
tacccgtagt aattctagag ctaatacgtg cgcacatccc gactctgtgg aagggacgta 
tttattagat aaaaggccga ccgggcttgc ccgactcgcg gcgaatcatg ataactccac 
gaatcgcacg gcctccgcgc cggcgatgtt tcattcaaat ttctgcccta tcaactttcg 
atggtaggat agaggcctac catggttttg acgggtgacg gggaattagg gttctatgcc 
ggagagggag cctgagaaac ggctaccaca tccaaggaag gcagcaggcg cgcaaattac 
ccaatcccga cacggggagg tagtgacaat aaataacaat accgggctct tacgagtctg 
gtgattggaa tgagaacaat ctaaatccct taacgaggat cgattggagg gcaagtctgg 
tgccagcagc cgcggtaatt ccagctccaa tagcgtatat ttaagttgtt gcagttaaaa 
agctcgtagt cggatgtcgg gcggcctccg tcggtccgcc gatcggcgtg caccggcggg 
gcgccgcctc gctgccgggg acgggcgcct gggcttcact gtcccgggcc ccggagtcgg 
cgaggtcact ttgagtaaat tagagtgttc aaagcaggca gccgctctga atacgccagc 
atggaatgac gcgataggac tctggcctat tccgtcggtc tgtgggaccg gagtaatgat 
gaacagggac ggtcgggggc attcgtattt cgctgtcaga ggtgaaattc ttggatttgc 
gaaagacgga cttctgcgaa agcatttgcc aaggatgttt tcattgatca agaacgaaag 
tcgggggctc gaagacgatt agataccgtc ctagtctcga ccataaacga tgccgactag 
ggatcggcgg gcgtttcttc gacgaccccg ccggcacctc acgagaaatc aaagtgttcg 
ggttccgggg ggagtatggt cgcaaggctg aaacttaaag gaattgacgg aagggcacca 
ccaggcgttt gaccggctct ggcgcctcag agtggcggcc gcgaggccgc cgctagtggc 
cccgccctcg ggcgggaccg cgacactgtc aaattgcggg gacctcctaa agcttcgggt 
gccaagccca gcccggaaac gggcgggtgg ccggggagag agcccccggg tacggcgaca 
agcccggaga tgcgacaatg gacgacccgc agccaagtcc tgaggggcgc cgcacgccgg 
cgcccacgga tgcagttcac agactaaatg gcagtgggcc cgtcgcctgc gggtggaacc 
ggtcgatggc ggtctgcgtc atccgactga tccgccggcg acgcggctta agatatagtc 
ggccctcagc cgagaggctg acccgtcgga ggaaggctgc cctgagcggc gcctgagagc 
cgggcgggag ggccctcccc acgcgaggag ggccccggac cagcgggagc ctgcggctta 
atttgactca acacgggaaa acttaccagg tccagacata gcgaggattg acagattgac 
agctctttct tgattctatg ggtggtggtg catggccgtt cttagttggt gggttgcctt 
gtcaggttga ttccggtaac gaacgagacc tcggcctgct aaatagcccc gggcggcgtt 
cgcgccggcc ggccgagctt cttagaggga ctctcggcga ctagccgatg gaagtgcgag 
gcaataacag gtctgtgatg cccttagatg ttctgggccg cacgcgcgct acactgacgc 
agccaacggg cgcagccttg gccgagaggc ccgggtaatc cggcagcctg cgtcgtgacg 
gggctagact cttgcaatta tcagtctttc aacgaggaat gcctagtagg cgcgagtcat 
cagctcgcgt cgattacgtc cctgcccttt gtacacaccg cccgtcgctc ctaccgattg 
gatgtgctgg tgaagcgctc ggaccggccg cgtcgcgcgg ttcgccgcgc ctcgcagccg 
ggaagtccgt tgaaccctcc cacctagggg aaggagaagt cgtaa
 

Claims (6)

  1.  pHが4以下である培養液を用いて、Coccomyxa属およびその近縁生物群、又はWatanabeaクレードに帰属する単細胞緑藻類の微細藻類を屋外の開放系培養システムにおいて培養する微細藻類の培養方法。
  2.  pHが4以下であり、アンモニア態窒素を含む培養液を用いて、Coccomyxa属およびその近縁生物群、又はPseudococcomyxa属の微細藻類を屋外の開放系培養システムにおいて培養する微細藻類の培養方法。
  3.  前記微細藻類の培養に用いた前記培養液から前記微細藻類を回収し、回収後の前記培養液を用いて新たな前記微細藻類を屋外の開放系培養システムにおいて培養する請求項1又は2記載の微細藻類の培養方法。
  4.  請求項1~3のいずれか1項に記載の微細藻類の屋外の開放系での培養方法に使用する開放系培養システム(1)であって、
     前記培養液における、pH、CO2濃度、及び藻体濃度から成るパラメータ群から選ばれる1以上のパラメータを検知する検知部(7、9)と、
     前記パラメータを所定の範囲内に制御する制御部(11、13、15)と、
     を備える開放系培養システム。
  5.  前記1以上のパラメータにpHが含まれ、
     pHにおける前記所定の範囲が、4以下である請求項4に記載の開放系培養システム。
  6.  前記1以上のパラメータにCO2濃度が含まれ、
     CO2濃度における前記所定の範囲が、7.45~74.5mg/Lである請求項4又は5に記載の開放系培養システム。
PCT/JP2013/007118 2012-12-14 2013-12-04 微細藻類の培養方法及び培養システム WO2014091718A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/651,164 US9790461B2 (en) 2012-12-14 2013-12-04 Culture method and culture system for microalgae
AU2013358448A AU2013358448B2 (en) 2012-12-14 2013-12-04 Culture method and culture system for microalgae

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012273633A JP6235210B2 (ja) 2012-12-14 2012-12-14 微細藻類の培養方法
JP2012-273633 2012-12-14

Publications (1)

Publication Number Publication Date
WO2014091718A1 true WO2014091718A1 (ja) 2014-06-19

Family

ID=50934026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/007118 WO2014091718A1 (ja) 2012-12-14 2013-12-04 微細藻類の培養方法及び培養システム

Country Status (4)

Country Link
US (1) US9790461B2 (ja)
JP (1) JP6235210B2 (ja)
AU (1) AU2013358448B2 (ja)
WO (1) WO2014091718A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6446774B2 (ja) 2013-11-19 2019-01-09 株式会社デンソー 緑藻の脂質蓄積変異体およびその利用
JP6613731B2 (ja) 2015-09-02 2019-12-04 株式会社デンソー トリグリセリド生産性が改良された真核微細藻類遺伝子改変株及びその利用
JP6589605B2 (ja) 2015-12-01 2019-10-16 株式会社デンソー 強光に耐性を示す緑藻突然変異体及びその利用
JP6897370B2 (ja) * 2017-06-30 2021-06-30 株式会社デンソー 低pHのKJ株培養水の処理方法
JP6911582B2 (ja) * 2017-06-30 2021-07-28 栗田工業株式会社 低pH微細藻類培養水の処理方法
US11780756B2 (en) 2018-10-16 2023-10-10 Nutech Ventures Integrated unicellular/filamentous algal production, harvesting and remediation system
CN111115827B (zh) * 2018-10-30 2022-06-28 中国石油化工股份有限公司 利用微藻脱除分子筛废水中氨氮的方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3336439B2 (ja) 1991-10-31 2002-10-21 財団法人電力中央研究所 高濃度co2 を固定するクロレラ属の微細藻
JPH05284962A (ja) 1992-04-08 1993-11-02 Tohoku Electric Power Co Inc 微細藻類の培養方法
JP3459275B2 (ja) 1993-03-02 2003-10-20 財団法人地球環境産業技術研究機構 新規微細藻類株及びそれを用いて二酸化炭素を固定する方法
JPH0759557A (ja) 1993-08-26 1995-03-07 Kaiyo Bio Technol Kenkyusho:Kk 新規微細藻類
JP2798882B2 (ja) 1994-02-24 1998-09-17 株式会社バイオポリマー・リサーチ 繊維−バクテリアセルロース複合体の製造方法及び該方法によって得られ得る複合体
JP3035153B2 (ja) 1994-04-27 2000-04-17 石川島播磨重工業株式会社 光合成生物の培養方法
JPH0856648A (ja) 1994-08-22 1996-03-05 Tokyo Electric Power Co Inc:The 新規微細藻類株及びそれを用いてco2を固定する方法
JPH09227602A (ja) 1996-02-21 1997-09-02 Kaiyo Bio Technol Kenkyusho:Kk 新規微細藻類およびそれを用いた粘性物質生産方法並びに新規粘性物質
JP3181237B2 (ja) 1997-03-17 2001-07-03 財団法人地球環境産業技術研究機構 微細藻クロレラ及び微細藻クロレラを用いたco2固定化法
JP4748154B2 (ja) * 2005-04-12 2011-08-17 株式会社デンソー 新規微細藻類及び炭化水素の生産方法
WO2010006228A2 (en) * 2008-07-11 2010-01-14 Eudes De Crecy A method of producing fatty acids for biofuel, biodiesel, and other valuable chemicals
US20110020914A1 (en) * 2009-07-24 2011-01-27 Novus International Inc Methods for enhancing growth of organisms in an aqueous growth medium
WO2011099016A2 (en) * 2010-02-15 2011-08-18 Univerve Ltd. System and plant for cultivation of aquatic organisms

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CO-HOSTED BY AGRICULTURE ET AL.: "International Symposium on Algel Biofuels", 17 November 2011 (2011-11-17), Retrieved from the Internet <URL:http://www.bio.chuo-u.ac.jp/harayama/u> *
HIROAKI FUKUDA ET AL.: "Biofuel Production from a Green Alga Pseudochoricystis ellipsoidea", JOURNAL OF THE JAPAN INSTITUTE OF ENERGY, vol. 91, no. 11, 20 November 2012 (2012-11-20), pages 1166 - 1171 *
WANG H. ET AL.: "The contamination and control of biological pollutants in mass cultivation of microalgae", BIORESOUR. TECHNOL., vol. 128, pages 745 - 750 *

Also Published As

Publication number Publication date
JP6235210B2 (ja) 2017-11-22
AU2013358448A1 (en) 2015-07-02
US9790461B2 (en) 2017-10-17
AU2013358448A2 (en) 2015-07-16
JP2014117202A (ja) 2014-06-30
US20150337255A1 (en) 2015-11-26
AU2013358448B2 (en) 2017-10-19

Similar Documents

Publication Publication Date Title
WO2014091718A1 (ja) 微細藻類の培養方法及び培養システム
Patel et al. A perspective on biotechnological applications of thermophilic microalgae and cyanobacteria
Loera‐Quezada et al. A novel genetic engineering platform for the effective management of biological contaminants for the production of microalgae
Mondal et al. Mixotrophic cultivation of Chlorella sp. BTA 9031 and Chlamydomonas sp. BTA 9032 isolated from coal field using various carbon sources for biodiesel production
Takouridis et al. The selective breeding of the freshwater microalga Chlamydomonas reinhardtii for growth in salinity
Shen et al. Assessment upon heterotrophic microalgae screened from wastewater microbiota for concurrent pollutants removal and biofuel production
Osundeko et al. Implications of sludge liquor addition for wastewater-based open pond cultivation of microalgae for biofuel generation and pollutant remediation
Su et al. Improvement of outdoor culture efficiency of cyanobacteria by over-expression of stress tolerance genes and its implication as bio-refinery feedstock
CN102839133A (zh) 一种长链二元酸生产菌株及其应用
Hopkins et al. Effects of salinity and nitrogen source on growth and lipid production for a wild algal polyculture in produced water media
Suyal et al. Cold adapted microorganisms: survival mechanisms and applications
González-Morales et al. Metabolic engineering of phosphite metabolism in Synechococcus elongatus PCC 7942 as an effective measure to control biological contaminants in outdoor raceway ponds
Saini et al. Thermophilic algae: a new prospect towards environmental sustainability
CN103068966A (zh) 光合作用产物的生产性得以提高的藻类、及其利用
CN104212757A (zh) 利用大肠杆菌产γ-谷氨酰甲胺合成酶高效生产L-茶氨酸的方法
CN102517303A (zh) 一种产乳酸的重组蓝藻及其制备方法与应用
JP6036526B2 (ja) 新規微細藻類及びその利用
Phankhamla et al. Biohydrogen production by a novel thermotolerant photosynthetic bacterium Rhodopseudomonas pentothenatexigens strain KKU-SN1/1
Mehetre et al. Thermophilic and thermotolerant cyanobacteria: Environmental and biotechnological perspectives
Bhatt et al. Isolation and characterization of a halophilic cyanobacterium Euhalothece SLVH01 from Sambhar salt lake, India
CN109517778B (zh) 一种枯草芽孢杆菌全细胞转化苯丙氨酸生产苯乳酸的方法
CN107400673B (zh) 一种集胞藻pcc6803的突变株及其应用
WO2016103140A1 (en) Process for the production of malate
JP6778870B2 (ja) 藍藻変異株及びそれを用いたコハク酸及びd−乳酸産生方法
CN111440737A (zh) 一种交替单胞菌属菌株

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13863137

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14651164

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013358448

Country of ref document: AU

Date of ref document: 20131204

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13863137

Country of ref document: EP

Kind code of ref document: A1