WO2014087994A1 - ディスカバリ方法、光通信方法、及び光通信システム - Google Patents

ディスカバリ方法、光通信方法、及び光通信システム Download PDF

Info

Publication number
WO2014087994A1
WO2014087994A1 PCT/JP2013/082460 JP2013082460W WO2014087994A1 WO 2014087994 A1 WO2014087994 A1 WO 2014087994A1 JP 2013082460 W JP2013082460 W JP 2013082460W WO 2014087994 A1 WO2014087994 A1 WO 2014087994A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
optical
downstream
wavelengths
upstream
Prior art date
Application number
PCT/JP2013/082460
Other languages
English (en)
French (fr)
Inventor
慎 金子
木村 俊二
真也 玉置
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2014551101A priority Critical patent/JP5894298B2/ja
Priority to CN201380063902.3A priority patent/CN104937883B/zh
Priority to US14/648,878 priority patent/US9479284B2/en
Publication of WO2014087994A1 publication Critical patent/WO2014087994A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0245Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • H04B10/272Star-type networks or tree-type networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0245Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU
    • H04J14/0246Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU using one wavelength per ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0249Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for upstream transmission, e.g. ONU-to-OLT or ONU-to-ONU
    • H04J14/025Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for upstream transmission, e.g. ONU-to-OLT or ONU-to-ONU using one wavelength per ONU, e.g. for transmissions from-ONU-to-OLT or from-ONU-to-ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/08Time-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0682Clock or time synchronisation in a network by delay compensation, e.g. by compensation of propagation delay or variations thereof, by ranging
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J2014/0253Allocation of downstream wavelengths for upstream transmission

Definitions

  • the present invention relates to a discovery method, an optical communication method, and an optical communication system in a wavelength tunable WDM / TDM-PON.
  • FTTH Fiber To The Home
  • ONU Optical Network Unit
  • TDM Time Division Multiplexing
  • OSU Optical Subscriber Unit
  • PON Passive Optical Network
  • the burst transmitter in each ONU 200 transmits signal light within the allowable transmission time notified based on the dynamic bandwidth allocation calculation in the OSU 51, and the intensity from each ONU 200
  • the burst receiver in the OSU 51 receives the signal light obtained by multiplexing the signal lights having different phases on the time axis.
  • the current main systems are GE-PON (Gigabit Ethernet (registered trademark) PON) and G-PON (Gigabit-capable PON), which have a transmission speed of gigabit. Due to the appearance of applications for uploading / downloading, etc., there is a demand for further increasing the capacity of the PON system.
  • FIG. 2 is an example of WDM / TDM-PON in which WDM technology is combined with TDM-PON.
  • Each ONU 200a is assigned with a downstream wavelength and an upstream wavelength, and the time overlap of signals between the ONUs 200a is allowed up to the number M of OSUs 51 in the parent node 100a (M is an integer of 2 or more). Therefore, the system bandwidth can be expanded without increasing the line rate per wavelength by adding the OSU 51.
  • Each ONU 200a assigned the same upstream wavelength is logically connected to the same OSU 51 and shares a band.
  • the wavelength allocated to each ONU 200a is fixed, the logical connection between each ONU 200a and the OSU 51 is unchanged, and the bandwidth cannot be shared between the ONUs 200a connected to different OSUs 51, and the bandwidth fairness is not ensured. .
  • Non-Patent Document 1 proposes a wavelength tunable WDM / TDM-PON in which an ONU has a wavelength tunable function as shown in FIG.
  • the OSU that is logically connected in units of ONUs can be changed by changing the wavelength allocated to the ONU, and the system band can be shared among all the ONUs. Therefore, the wavelength variable burst transmitter in each ONU transmits the signal light within the notified transmission allowable time at the transmission wavelength notified based on the dynamic allocation calculation in the OSU, so that all the ONUs Bandwidth fairness can be ensured.
  • each ONU uses an identifier such as LLID (Logical Link ID) to determine whether the received frame is addressed to itself. The frame is selected.
  • LLID Logical Link ID
  • the ONU transmits a transmission frame in which an identifier assigned to itself is embedded, and the OSU determines which ONU the frame is transmitted from, based on the identifier in the reception frame.
  • the OSU manages the identifiers of all ONUs under its control, and assigns identifiers to newly connected ONUs so that duplication with existing ONUs does not occur through the discovery process.
  • the frame round trip time (RTT) between the OSU and the ONU is also measured, and the OSU stores the RTT information with all the ONUs under its control.
  • the OSU determines the allowable transmission time of the upstream signal light from each ONU in consideration of the RTT, thereby avoiding the collision of the upstream signal light (see, for example, Non-Patent Document 2).
  • the wavelength variable WDM / TDM-PON similarly to the TDM-PON, it is necessary for each OSU to grasp the identifiers and RTT information of all ONUs logically connected to itself. Further, the ONU needs to recognize the identifier assigned to itself.
  • the OSU that is logically connected in units of ONUs is changed by changing the wavelength assigned to the ONU. It is necessary to redo the discovery process every time. However, since the transmission of the data signal is not permitted during the discovery process, the bandwidth utilization efficiency decreases.
  • an identifier assigned through the discovery process is fixedly assigned even after the assigned wavelength is changed, and a management table as shown in FIG. 16 describing information for all ONUs together with the measured RTT is provided between OSUs.
  • a management table as shown in FIG. 16 describing information for all ONUs together with the measured RTT is provided between OSUs.
  • the transmission timing of the upstream signal light is determined in consideration of the RTT, there is a possibility that the upstream signal light collides due to an RTT error.
  • it is possible to prevent collision of signal light by providing a guard interval having a sufficient time between the upstream signal lights, but there is a problem that band utilization efficiency is lowered.
  • the present invention reduces the error of RTT when the identifier is fixed even after the change of the assigned wavelength in the wavelength tunable WDM / TDM-PON, and prevents a decrease in bandwidth utilization efficiency. It is an object to provide a discovery method, an optical communication method, and an optical communication system.
  • the present invention provides a table in which the RTT of the frame between each identifier is recorded for all combinations of assigned wavelengths. It was decided to create it through the discovery process.
  • the discovery method according to the present invention is a wavelength-variable WDM / TDM-PON (WDM: Wavelength Division Multiplexing, TDM: Time Division Multiplexing) in which a parent node and a plurality of child nodes are connected by an optical fiber transmission line.
  • PON Passive Optical Network
  • Ranging is performed to calculate RTTs for all combinations of the downstream wavelength of the downstream signal and the upstream wavelength of the upstream signal from the child node to the parent node, and RTTs for all the combinations calculated by the ranging are stored. It is characterized by.
  • the discovery method Based on the wavelength dependence of the search signal wavelength, the response signal wavelength, the RTT obtained by the discovery process, and the refractive index of the known optical fiber transmission line, the discovery method The combination RTT is calculated and stored in the table. For this reason, when the wavelength allocated to the child node is changed, an accurate transmission timing can be determined by referring to the corresponding RTT in the table. For this reason, the time of the guard interval between upstream signal lights can be reduced, and band utilization efficiency can be improved.
  • the present invention provides a discovery method capable of reducing an RTT error and preventing a decrease in bandwidth utilization efficiency when an identifier is fixed even after an assigned wavelength is changed in a wavelength tunable WDM / TDM-PON. Can do.
  • An optical communication method is an optical communication method in a wavelength tunable WDM / TDM-PON in which a parent node and a plurality of child nodes are connected by an optical fiber transmission line,
  • the identifier assigned to the child node is unchanged when the wavelength is changed
  • the table stores RTTs for all combinations of the downstream wavelength of the downstream signal from the parent node to the child node and the upstream wavelength of the upstream signal from the child node to the parent node; Referring to the table, RTT corresponding to a combination of a downstream wavelength and an upstream wavelength assigned to the child node is detected, an allowable transmission time of an upstream signal is determined in consideration of the RTT, and notified to the child node It is characterized by doing.
  • This optical communication method uses a table storing RTTs of all combinations of downstream wavelengths and upstream wavelengths.
  • RTTs of all combinations of downstream wavelengths and upstream wavelengths.
  • the present invention provides an optical communication method capable of reducing an RTT error and preventing a decrease in bandwidth utilization efficiency when an identifier is fixed even after an assigned wavelength is changed in a wavelength tunable WDM / TDM-PON. be able to.
  • the optical communication method according to the present invention is characterized in that RTTs in all the combinations are calculated by the ranging performed by the discovery method.
  • the optical communication system transmits a downstream signal having wavelengths ⁇ D1 to ⁇ DM (M is an integer of 2 or more), and an upstream having wavelengths ⁇ U1 to ⁇ UN (N is an integer of 2 or more).
  • M is an integer of 2 or more
  • N is an integer of 2 or more
  • a plurality of child nodes that receive a downstream signal having a downstream wavelength and send an upstream signal at the allocated upstream wavelength;
  • An optical communication system comprising:
  • the parent node is A table storing RTTs for all combinations of downstream wavelengths and upstream wavelengths for each identifier; Referring to the table, RTT corresponding to a combination of a downstream wavelength and an upstream wavelength assigned to the child node is detected, an allowable transmission time of an upstream signal is determined in consideration of the RTT, and notified to the child node A controller to It is characterized by having.
  • This optical communication system includes a table that stores RTTs of all combinations of downstream wavelengths and upstream wavelengths.
  • a table that stores RTTs of all combinations of downstream wavelengths and upstream wavelengths.
  • the present invention provides an optical communication system capable of reducing RTT error and preventing reduction in bandwidth utilization efficiency when an identifier is fixed even after a change in allocated wavelength in a wavelength tunable WDM / TDM-PON. be able to.
  • This optical communication system has the following configuration.
  • the parent node is: A plurality of optical transceivers each set with a unique downstream wavelength and a unique upstream wavelength; Connected to each of the optical transceivers, wavelength-multiplexed downstream signals having different wavelengths from the optical transceiver and output to the optical fiber transmission line, branching the upstream signal from the optical fiber transmission line, Optical multiplexing / demultiplexing means coupled to the optical transceiver; Have The controller is At the time of discovery, the one optical transmitter / receiver transmits one downstream wavelength search signal, and the discovery method is performed using a response signal transmitted by any unregistered child node received by any of the optical transmitter / receivers. It is characterized by performing.
  • the parent node is A plurality of optical transceivers capable of setting downstream wavelengths of wavelengths ⁇ D1 to ⁇ DM ;
  • Each of the optical transceivers is connected via an optical transceiver side terminal, and the downstream signal from the optical transceiver is output from a different optical fiber transmission line side terminal according to the downstream wavelength and coupled to the optical fiber transmission line
  • Have The controller is At the time of discovery, a plurality of the optical transceivers transmit a search signal of one downstream wavelength, and the discovery method is performed using a response signal transmitted by the unregistered child node received by any of the optical transceivers. It is characterized by performing.
  • the parent node is A plurality of optical transceivers capable of setting at least one of the downstream wavelengths of wavelengths ⁇ D1 to ⁇ DM ; Connected to each of the optical transceivers, wavelength-multiplexed downstream signals having different wavelengths from the optical transceiver and output to the optical fiber transmission line, branching the upstream signal from the optical fiber transmission line, Optical multiplexing / demultiplexing means coupled to the optical transceiver; Have The controller is At the time of discovery, the search signal of a plurality of downstream wavelengths is transmitted using at least one of the optical transceivers, and the response signal transmitted by the unregistered child node received by any of the optical transceivers is used. A discovery method is executed.
  • the parent node is: A plurality of optical transceivers capable of setting downstream wavelengths of wavelengths ⁇ D1 to ⁇ DM ; Each of the optical transceivers is connected via an optical transceiver side terminal, and the downstream signal from the optical transceiver is output from a different optical fiber transmission line side terminal according to the downstream wavelength and coupled to the optical fiber transmission line A wavelength routing means for outputting an upstream signal from the optical fiber transmission line input to the optical fiber transmission line side terminal from the optical transceiver side terminal different according to an upstream wavelength and coupling to the optical transceiver; Have The controller is At the time of discovery, one optical transceiver transmits a plurality of downstream wavelength search signals, and the discovery method is performed using a response signal transmitted by an unregistered child node received by any of the optical transceivers. It is characterized by performing.
  • the present invention relates to a discovery method, an optical communication method, and an optical communication method capable of reducing an RTT error and preventing a decrease in bandwidth utilization efficiency when an identifier is fixed even after changing an allocated wavelength in a wavelength tunable WDM / TDM-PON, and An optical communication system can be provided.
  • TDM-PON It is a figure explaining the structure of TDM-PON. It is a figure explaining the structure of WDM / TDM-PON. It is a figure explaining the structure of wavelength variable type WDM / TDM-PON. It is a figure explaining the structure of wavelength variable type WDM / TDM-PON. It is a figure explaining the structure of a wavelength variable transmitter. It is a figure explaining the structure of wavelength variable type WDM / TDM-PON. It is a figure explaining the discovery method which concerns on this invention. It is a figure explaining the structure of wavelength variable type WDM / TDM-PON. It is a figure explaining the discovery method which concerns on this invention. It is a figure explaining the structure of wavelength variable type WDM / TDM-PON. It is a figure explaining the discovery method which concerns on this invention. It is a figure explaining the structure of wavelength variable type WDM / TDM-PON.
  • the optical communication system 301 transmits a downstream signal having wavelengths ⁇ D1 to ⁇ DM (M is an integer of 2 or more) and has wavelengths ⁇ U1 to ⁇ UN (N is an integer of 2 or more).
  • a plurality of child nodes 200a that receive a downstream signal of a downstream wavelength and transmit an upstream signal at an allocated upstream wavelength;
  • An optical fiber transmission line 250 connecting the parent node 100a and the plurality of child nodes 200a;
  • An optical communication system comprising: The parent node 100a A table (not shown) for storing RTTs in all combinations of downstream wavelengths and upstream wavelengths for each identifier; The RTT corresponding to the combination of the downlink wavelength and the uplink wavelength assigned to the child node 200a is detected with reference to the table, and the allowable transmission time of the uplink signal is determined in consideration of the RTT and notified to the child node.
  • a controller (not shown), Have
  • the parent node 100a A plurality of optical transceivers 51 each having a unique downstream wavelength and a unique upstream wavelength set; Each of the optical transceivers 51 is connected to each of the optical transceivers 51.
  • the downstream signals having different wavelengths from the optical transceivers 51 are wavelength-multiplexed and output to the optical fiber transmission line 250.
  • the configuration of the optical communication system 301 is the same as that of the wavelength tunable WDM / TDM-PON in FIG.
  • a parent node 100a that transmits downstream signal light having wavelengths ⁇ D1 to ⁇ DM (M is an integer of 2 or more) and receives upstream signal light having wavelengths ⁇ U1 to ⁇ UM is connected to ⁇ D1 to ⁇ DM , ⁇
  • a plurality of child nodes (ONUs) 200a assigned from the parent node 100a with the respective wavelengths from U1 to ⁇ UM as the downstream wavelength and the upstream wavelength are connected via the optical fiber transmission line 250.
  • each child node 200a When each child node 200a is newly registered in the parent node 100a, such as when it is first connected to the network, the child node 200a overlaps with the registered child node 200a as a unique identifier for each child node 200a through the discovery process.
  • An identifier such as LLID is assigned so as not to occur.
  • the identifier once assigned is fixedly assigned regardless of the change of the wavelength assigned to the child node 200a.
  • the parent node 100a records the RTT of the frame between each child node 200a for all combinations of assigned wavelengths (see FIG. 17). (Not shown in FIG. 3) is created through the discovery process.
  • LLID is used as an identifier.
  • the parent node 100a has a plurality of OSUs 51.
  • the OSU 51 includes an optical transmitter 11, wavelength multiplexing / demultiplexing means 12, and an optical receiver 15.
  • the optical receiver 15 includes a wavelength filter 13 and a light receiver 14.
  • the parent node 100a includes optical transmitters 11 # 1 to #M that transmit downlink signal lights of different wavelengths for downlink communication. Downstream signal light from each optical transmitter 11 is wavelength-multiplexed by the optical multiplexing / demultiplexing means 151 and then output to the optical fiber transmission line 250.
  • Examples of the optical multiplexing / demultiplexing means 151 include an optical fiber and an optical coupler created by PLC (Planar Lightwave Circuit).
  • FIG. 3 shows a configuration in which the optical multiplexing / demultiplexing means 151 has a plurality of terminals on the optical fiber transmission line 250 side, but a configuration having only a single terminal as shown in FIG. 4 is also possible.
  • the child node 200a selectively receives the downlink signal light, which is the downlink wavelength assigned from the parent node 100a, from the input wavelength multiplexed signal light.
  • the child node 200 a has an optical receiver 23.
  • the optical receiver 23 includes a wavelength tunable filter 22 disposed in front of a light receiver 21 such as a PIN-PD (Photo-Diode) or APD (Avalanche Photo-Diode).
  • a light receiver 21 such as a PIN-PD (Photo-Diode) or APD (Avalanche Photo-Diode).
  • the child node 200a includes a tunable optical transmitter 24 capable of transmitting upstream signal light with wavelengths ⁇ U1 to ⁇ UM for upstream communication, and has an upstream wavelength assigned by the parent node 100a.
  • Uplink signal light is transmitted within the allowable transmission time notified from 100a.
  • the allowable transmission time notified from the parent node 100a is determined in consideration of the RTT described in the management table so that the signal lights from different child nodes 200a to which the same uplink wavelength is assigned do not collide with each other.
  • a configuration in which the output light wavelength of a direct modulation laser such as a distributed feedback (DFB) laser is changed by temperature control, or a direct modulation laser having a different output light wavelength is arranged in an array.
  • This corresponds to a configuration capable of high-speed wavelength switching for switching between lasers that emit light in response to an external control signal.
  • the output light from the wavelength tunable light source is converted into a Mach-Zehnder modulator, an electroabsorption (EA) modulator, or a semiconductor optical amplifier (SOA) using a semiconductor or lithium diobate (LiNbO 3 ) as a material.
  • EA electroabsorption
  • SOA semiconductor optical amplifier
  • a configuration for external modulation using a modulator or the like is also possible.
  • variable wavelength light source a configuration in which continuous light (CW: Continuous Wave) lasers having different output light wavelengths are arranged in an array and the output light wavelength is switched by an external control signal corresponds to this.
  • CW Continuous Wave
  • DBR laser an external resonator type laser, or the like can be used as the wavelength tunable light source.
  • the upstream signal light transmitted to the parent node 100a is branched by the optical multiplexing / demultiplexing means 151, and then input to the optical receivers 15 # 1 to #M that selectively receive upstream signal lights of different wavelengths.
  • the wavelength filters 13 having different transmission wavelengths in the front stage of the light receiver 14 such as PIN-PD or APD, the upstream signal light having different wavelengths is received by each optical receiver 15. It can be received selectively.
  • each child node 200a transmits the upstream signal light in which the identifier given to itself is embedded in the transmission frame, so that the parent node 100a can transmit the frame transmitted from which child node 200a by the identifier in the reception frame. It can be determined whether there is.
  • 3 and 4 show a configuration in which only the wavelength of the desired signal light is transmitted by disposing the wavelength filter 13 or the wavelength tunable filter 22 before the light receiver (14, 21) at the child node 200a and the parent node 100a.
  • coherent receivers (16, 27) may be used as the optical receivers in the child node 200b and the parent node 100b.
  • the output light wavelength of the local light source 28 in the child node 200b is set near the wavelength of the assigned downstream signal light.
  • the output light wavelength of the local light source 17 in the parent node 100b is set in the vicinity of one of the wavelengths ⁇ U1 to ⁇ UM so as to be different in each coherent receiver 16.
  • the allowable loss in the optical fiber transmission line 250 or in the parent node 100b can be increased.
  • the transmission distance can be extended and the number of child nodes 200b accommodated can be increased.
  • the number of optical transceivers can be increased by increasing the branching loss allowed in the parent node 100b, the total system bandwidth can be expanded.
  • the wavelength filter (13, 22) is not required by the application of coherent reception, it is possible to narrow the adjacent wavelength interval without being limited by the characteristics of the wavelength filter.
  • FIG. 7 shows a procedure for assigning an identifier through the discovery process.
  • the discovery method is a discovery method in a wavelength tunable WDM / TDM-PON in which a parent node 100a and a plurality of child nodes 200a are connected by an optical fiber transmission line 250.
  • An identifier that is invariant when changing the wavelength is given to an unregistered child node 200a that has responded to the search signal transmitted by the parent node 100a with a response signal, Using the RTT between the parent node 100a and the child node 200a and the wavelength dependency of the refractive index of the optical fiber transmission line 250, the downstream wavelength and child node of the downlink signal from the parent node 100a to the child node 200a for each identifier.
  • Ranging is performed for calculating RTTs in all combinations with upstream wavelengths of upstream signals from 200a to the parent node 100a, and RTTs in all the combinations calculated in the ranging are stored.
  • a search signal if the received child node (200a, 200b) is not registered to the parent node (100a, 100b) and is not given an identifier, a response signal as a registration request is transmitted at a predetermined time. Instructions are listed.
  • the transmission wavelength of the wavelength tunable filter 22 in the child nodes (200a, 200b) or the output light wavelength of the local light source 28 is ⁇ Dm .
  • the wavelength control circuit in the child nodes (200a, 200b) may be set in advance so that the output optical wavelength of the wavelength tunable optical transmitter 24 is set to ⁇ Un .
  • the response signal transmitted to the parent node (100a, 100b) is branched by the optical multiplexing / demultiplexing means 151 and then received by the optical receiver #n.
  • LLID is used as an identifier.
  • RTT is performed for all combinations of the downstream wavelength and the upstream wavelength allocated after registration to the child node (200a, 200b) #k. calculate. A method for calculating the RTT will be described below.
  • the distance between the child node (200a, 200b) #k and the parent node (100a, 100b) is L k [km]
  • the speed of light in vacuum is c [km / s]
  • the wavelengths ⁇ Dm , ⁇ in the optical fiber transmission line 250 When the refractive index of Un is n Dm and n Un , It can be expressed as Therefore, the round-trip propagation time T k (when the wavelengths having the refractive indexes n Dm ′ and n Un ′ in the optical fiber transmission line 250 are assigned to the child nodes (200a, 200b) #k as the downstream wavelengths and the upstream wavelengths.
  • ⁇ Dm ′ , ⁇ Un ′ Can be obtained as follows.
  • the management table of FIG. 17 can be created by calculating this for all combinations of downstream wavelengths and upstream wavelengths that are assigned after registration to the child nodes (200a, 200b).
  • the optical communication method of the optical communication system 301 is an optical communication method in a wavelength tunable WDM / TDM-PON in which a parent node 100a and a plurality of child nodes 200a are connected by an optical fiber transmission line 250.
  • the identifier assigned to the child node 200a is unchanged when the wavelength is changed, Storing RTTs in all combinations of the downstream wavelength of the downstream signal from the parent node 100a to the child node 200a and the upstream wavelength of the upstream signal from the child node 200a to the parent node 100a for each identifier;
  • the RTT corresponding to the combination of the downstream wavelength and the upstream wavelength assigned to the child node 200a is detected with reference to the table, and the allowable transmission time of the upstream signal is determined in consideration of the RTT and notified to the child node 200a. To do. Then, RTTs for all the combinations are calculated by the ranging performed by the discovery method.
  • the identifier given through the discovery process at the time of new registration of the child nodes (200a, 200b) is fixedly given even after the assigned wavelength is changed, and information for all the child nodes (200a, 200b) combined with the RTT. 17 is provided in the parent node (100a, 100b) as shown in FIG. 17, it is not necessary to redo the discovery process when the allocated wavelength is changed. Furthermore, since RTT is described for all combinations of downstream wavelengths and upstream wavelengths assigned to the child nodes (200a, 200b) in FIG. 17, the parent node (100a, 100b) is assigned to each child node (200a, 200b). When determining the transmission timing of the upstream signal light, highly accurate RTT information can be used regardless of the assigned wavelength. Therefore, it is possible to reduce the guard interval between the upstream signal lights from different child nodes (200a, 200b) and improve the band utilization efficiency.
  • FIG. 8 shows a configuration of a wavelength tunable WDM / TDM-PON which is the optical communication system 302 in the second embodiment.
  • the optical communication system 302 includes a parent node 100c, a child node 200c, and an optical fiber transmission line 250.
  • the parent node 100c of the optical communication system 302 A plurality of optical transceivers 51 capable of setting downstream wavelengths of wavelengths ⁇ D1 to ⁇ DM ;
  • Each optical transmitter / receiver 51 is connected via an optical transmitter / receiver side terminal, and the downstream signal from the optical transmitter / receiver 51 is output from a different optical fiber transmission line side terminal according to the downstream wavelength and coupled to the optical fiber transmission line 250.
  • a wavelength routing unit 152 that outputs an upstream signal from the optical fiber transmission line 250 input to the optical fiber transmission line side terminal from the optical transceiver side terminal that differs according to an upstream wavelength and couples to the optical transceiver 51; , Have The controller is At the time of discovery, a plurality of optical transceivers 51 are caused to transmit a search signal of one downstream wavelength, and the discovery method is performed using a response signal transmitted by an unregistered child node 200c received by any one of the optical transceivers 51. Execute.
  • the parent node 100c is configured to use wavelength routing means 152 that distributes input light according to the wavelength and outputs it from different terminals, instead of the optical multiplexing / demultiplexing means 151 in the parent node in the first embodiment.
  • each child node 200c is fixedly assigned an identifier such as LLID given through the discovery process regardless of the change of the assigned wavelength, and the parent node 100c is assigned to each child node.
  • a management table as shown in FIG. 17 is provided in which RTTs of frames between the child nodes 200c are recorded for all combinations of assigned wavelengths.
  • LLID is used as an identifier.
  • the parent node 100c includes variable wavelength optical transmitters 18 # 1 to #M that can transmit downlink signal light having wavelengths ⁇ D1 to ⁇ DM .
  • Downstream signal light from each of the wavelength tunable optical transmitters 18 is input to the wavelength routing unit 152 through separate optical transmitter / receiver side terminals, and is output to the optical fiber transmission line 250 from different optical fiber transmission line side terminals depending on the wavelength. Is done.
  • the wavelength tunable optical transmitter 18 changes the transmission wavelength of the downstream signal light in accordance with which optical fiber transmission line side terminal is connected to the child node 200c that is the destination of the frame through the optical fiber transmission line 250.
  • the number H of optical fiber transmission line side terminals (H is an integer of 1 or more) is equal to or less than the number M of optical transceiver side terminals, and the wavelengths ⁇ D1 to ⁇ input from the respective optical transceiver side terminals.
  • an AWG Arrayed Waveguide Grating
  • the like that distributes the DM light to optical fiber transmission line side terminals # 1 to #H according to the wavelength is used.
  • the child node 200c is connected to one of the optical fiber transmission line side terminals of the wavelength routing means 152 in the parent node 100c via the optical fiber transmission line 250, and receives the downstream signal light output from the terminal to be connected.
  • Each child node 200c uses the identifier to determine whether the received frame is addressed to itself, and selects a received frame.
  • the child node 200c includes a tunable optical transmitter 24 that can transmit uplink signal light having wavelengths ⁇ U1 to ⁇ UM , and has an upstream wavelength assigned by the parent node 100c.
  • Uplink signal light is transmitted within the allowable transmission time notified from 100c.
  • the allowable transmission time notified from the parent node 100c is the RTT described in the management table (not shown in FIG. 8) so that upstream signal lights destined for the same optical receiver 19 in the parent node 100c do not collide with each other. Decided in consideration.
  • the configuration of the wavelength tunable optical transmitter 24 is the same as that described in the first embodiment.
  • the upstream signal light transmitted to the parent node 100c is distributed according to the wavelength by the wavelength routing means 152, and is input to the optical receiver 19 through a different optical transceiver side terminal.
  • each child node 200c transmits the upstream signal light in which the identifier given to itself is embedded in the transmission frame, so that the parent node 100c can transmit the frame transmitted from which child node 200c by the identifier in the reception frame. It can be determined whether there is.
  • the wavelength routing means 152 the light of the wavelengths ⁇ U1 to ⁇ UM inputted from the respective optical fiber transmission line side terminals # 1 to #H is changed according to the wavelength as shown in FIG. An AWG that distributes to #M is used.
  • the coherent receiver described in FIG. 6 may be used as the optical receivers (19, 29) in the child node 200c and the parent node 100c.
  • the output light wavelength of the local light source in the child node 200c is set near the wavelength of the assigned downstream signal light.
  • the output light wavelength of the local light source in the parent node 100c is changed according to which child node 200c the upstream signal light arriving at the optical receiver is transmitted.
  • coherent reception characterized by high reception sensitivity the allowable loss in the optical fiber transmission line 250 can be increased.
  • the transmission distance can be extended and the number of child nodes 200c accommodated can be increased.
  • FIG. 9 shows a procedure for assigning an identifier through the discovery process.
  • All or a plurality of the tunable optical transmitters 18 in the parent node 100c transmit a search signal at a wavelength ⁇ Dm at a predetermined time.
  • all the wavelength variable transmitters 18 transmit search signals so that the optical fiber is transmitted through all the optical fiber transmission line terminals.
  • a search signal can be output to the transmission line 250.
  • the H wavelength variable transmitters 18 transmit the search signals, so that the optical fiber transmission lines 250 pass through all the optical fiber transmission line terminals.
  • a search signal can be output.
  • the search signal describes an instruction to transmit a response signal as a registration request when the received child node 200c is not registered with the parent node 100c and is not given an identifier.
  • the child node 200c is set so that the output light wavelength of the local light source in the unregistered child node 200c is in the vicinity of ⁇ Dm. By setting the internal wavelength control circuit in advance, the unregistered child node 200c can reliably receive the search signal.
  • the unregistered child node can also search for the search signal by a method of periodically sweeping the output light wavelength of the local light source in the child node in the range of l D — 1 to l D — M. It can be received reliably.
  • the wavelength designation of the response signal may include a command to set the wavelength of the response signal to ⁇ Un in the search signal.
  • the output optical wavelength of the tunable optical transmitter is set.
  • wavelength control circuit Yoko node 200c is set to lambda Un may be set in advance.
  • the response signal transmitted to the parent node 100 c is distributed according to the wavelength by the wavelength routing unit 152 and then received by the optical receiver 19.
  • FIG. 9 shows a configuration in which a response signal is output to the optical receiver from the same terminal as the optical transmitter / receiver side terminal in which the search signal is input to the wavelength routing unit 152, the search signal may be output from a different terminal.
  • LLID is used as an identifier.
  • the parent node 100c When the parent node 100c receives a response signal that is a registration request from the unregistered child node 200c # k, as in the first embodiment, the parent node 100c does not overlap with the registered child node 200c. An identifier is assigned to the child node 200c # k of the transmission source. At the same time, from the time T k ( ⁇ Dm , ⁇ Un ) required for transmission / reception of the search signal and the response signal, the RTT is calculated for all combinations of the downstream wavelength and the upstream wavelength assigned after registration to the child node 200c # k. 17 management tables are created.
  • the identifier given through the discovery process at the time of new registration of the child node 200c is fixedly given after the change of the assigned wavelength, and information for all the child nodes 200c combined with the RTT is described as shown in FIG. Since the management table is provided in the parent node 100c, it is not necessary to redo the discovery process associated with the change of the assigned wavelength. Further, since RTT is described for all combinations of downstream wavelengths and upstream wavelengths to be assigned to the child node 200c in FIG. 17, when the parent node 100c determines the transmission timing of the upstream signal light of each child node 200c, RTT information with high accuracy can be used regardless of the assigned wavelength. Therefore, it is possible to reduce the guard interval between the upstream signal lights from different child nodes 200c and improve the band utilization efficiency.
  • FIG. 10 shows the configuration of a wavelength tunable WDM / TDM-PON which is an optical communication system 302a in the third embodiment.
  • the optical communication system 302a is obtained by replacing the child node 200c of the second embodiment with the child node 200a of the first embodiment. That is, the child node 200a arranges the wavelength tunable filter 22 in front of the light receiver 21, and changes the transmission wavelength of the wavelength tunable filter 22 in accordance with the assigned downstream wavelength, thereby allowing the downstream signal light having a desired wavelength to be transmitted. It is the structure which receives selectively.
  • downstream signal light having different wavelengths can be wavelength-multiplexed and transmitted in the optical fiber transmission line 250. Therefore, different child nodes in the child node group connected via the optical fiber transmission line 250 with the same optical fiber transmission line side terminal of the wavelength routing unit 152 can simultaneously receive the downlink signal light.
  • the coherent receiver described in FIG. 6 may be used as the optical receivers (23, 19) in the child node 200a and the parent node 100c.
  • the output light wavelength of the local light source in the child node is set near the wavelength of the assigned downstream signal light.
  • the output light wavelength of the local light source in the parent node is changed according to which child node the upstream signal light arriving at the optical receiver is transmitted.
  • each child node 200a is fixedly assigned an identifier such as LLID given through the discovery process regardless of the change of the assigned wavelength, and the parent node 100c is assigned to each child node.
  • a management table as shown in FIG. 17 is provided in which RTTs of frames between the child nodes 200a are recorded for all combinations of assigned wavelengths.
  • LLID is used as an identifier.
  • the management table as shown in FIG. 17 is created in the same manner as in the second embodiment through the discovery process.
  • the transmission wavelength of the wavelength tunable filter 22 in the child node 200a or the output light wavelength of the local light source becomes ⁇ Dm .
  • the unregistered child node 200a can reliably receive the search signal.
  • the transmission wavelength of the tunable filter 22 in the child node or the output light wavelength of the local light source is periodically not swept within a range of l D_1 to l D_M. The registered child node can reliably receive the search signal.
  • the identifier given through the discovery process at the time of new registration of the child node 200a is fixedly given even after the change of the assigned wavelength, and the information for all the child nodes 200a together with the RTT is described as shown in FIG. Since the management table is provided in the parent node 100c, it is not necessary to redo the discovery process associated with the change of the assigned wavelength. Further, since RTT is described for all combinations of downstream wavelengths and upstream wavelengths assigned to the child node 200a in FIG. 17, when the parent node 100c determines the transmission timing of the upstream signal light of each child node 200a, RTT information with high accuracy can be used regardless of the assigned wavelength. Therefore, it is possible to reduce the guard interval between the upstream signal lights from different child nodes 200a and improve the band utilization efficiency.
  • the optical communication system of the present embodiment is the same as the configuration of the optical communication system (FIGS. 3 to 4 and FIG. 6) described in the first embodiment, but the parent nodes are all ⁇ D1 to ⁇ DM during discovery.
  • a search signal is transmitted at a wavelength. That is, the parent node 100a
  • a plurality of optical transceivers 51 capable of setting at least one of the downstream wavelengths of wavelengths ⁇ D1 to ⁇ DM ;
  • Each of the optical transceivers 51 is connected to each of the optical transceivers 51.
  • the downstream signals having different wavelengths from the optical transceivers 51 are wavelength-multiplexed and output to the optical fiber transmission line 250.
  • Optical multiplexing / demultiplexing means 151 coupled to the transceiver 51; Have The controller is At the time of discovery, the search signal of a plurality of downstream wavelengths is transmitted using at least one optical transceiver 51, and the response signal transmitted by the unregistered child node 200a received by any one of the optical transceivers 51 is used. Run the discovery method.
  • each child node (200a, 200b) is fixedly assigned an identifier such as LLID given through the discovery process regardless of the change of the assigned wavelength, and the parent node (100a, 200b, 100b) records the RTT of the frame between each child node (200a, 200b) and all the combinations of the assigned wavelengths in addition to the correspondence between each child node (200a, 200b) and the identifier.
  • the management table is provided. In FIG. 17, LLID is used as an identifier.
  • FIG. 11 shows a procedure for assigning an identifier through the discovery process.
  • All the optical transmitters 11 in the parent nodes (100a, 100b) transmit search signals at different wavelengths at a predetermined time.
  • the search signal includes an instruction to transmit a response signal as a registration request when the received child node (200a, 200b) is not registered with the parent node (100a, 100b) and is not assigned an identifier. ing.
  • the transmission wavelength of the tunable filter 22 in the child nodes (200a, 200b) or the output light wavelength of the local light source 28 is any of ⁇ D1 to ⁇ DM .
  • the unregistered child nodes (200a, 200b) can reliably receive the search signal.
  • the transmission wavelength of the tunable filter 22 in the child node or the output light wavelength of the local light source is periodically not swept within a range of l D_1 to l D_M.
  • the registered child node can reliably receive the search signal.
  • a command to set the wavelength of the response signal to any one of ⁇ U1 to ⁇ UM may be included in the search signal.
  • the response signal transmitted to the parent node (100a, 100b) is branched by the optical multiplexing / demultiplexing means 151 and then received by the optical receiver 15 # n or the coherent receiver 16 # n.
  • LLID is used as an identifier.
  • search signals of wavelengths ⁇ D1 to ⁇ DM are transmitted using all the optical transmitters 11 in the parent nodes (100a, 100b). However, as shown in FIG. 12, any one optical transmitter 11 is used. However, the search signals of wavelengths ⁇ D1 to ⁇ DM may be time-multiplexed and transmitted. In this case, at least the optical transmitter 11 that transmits the search signal is a variable wavelength optical transmitter that can transmit the downstream signal light having the wavelengths ⁇ D1 to ⁇ DM .
  • the parent node (100a, 100b) receives a response signal that is a registration request from an unregistered child node (200a, 200b) #k, as in the first embodiment, the registered child node ( 200a and 200b), an identifier is assigned to the child node #k of the transmission source so as not to overlap.
  • RTT is performed for all combinations of the downstream wavelength and the upstream wavelength allocated after registration to the child node (200a, 200b) #k.
  • the management table shown in FIG. 17 is created by calculation.
  • the identifier given through the discovery process at the time of new registration of the child nodes (200a, 200b) is fixedly given even after the assigned wavelength is changed, and information for all the child nodes (200a, 200b) combined with the RTT. 17 is provided in the parent node (100a, 100b) as shown in FIG. 17, it is not necessary to redo the discovery process when the allocated wavelength is changed. Furthermore, since RTT is described for all combinations of downstream wavelengths and upstream wavelengths assigned to the child nodes (200a, 200b) in FIG. 17, the parent node (100a, 100b) is assigned to each child node (200a, 200b). When determining the transmission timing of the upstream signal light, highly accurate RTT information can be used regardless of the assigned wavelength. Therefore, it is possible to reduce the guard interval between the upstream signal lights from different child nodes (200a, 200b) and improve the band utilization efficiency.
  • the optical communication system of the present embodiment has the same configuration as that of the optical communication system (FIG. 8) described in the second embodiment or the optical communication system (FIG. 10) described in the third embodiment. Transmits a search signal at all or a plurality of wavelengths of ⁇ D1 to ⁇ DM . That is, the parent node 100c A plurality of optical transceivers 51 capable of setting downstream wavelengths of wavelengths ⁇ D1 to ⁇ DM ; Each optical transmitter / receiver 51 is connected via an optical transmitter / receiver side terminal, and the downstream signal from the optical transmitter / receiver 51 is output from a different optical fiber transmission line side terminal according to the downstream wavelength and coupled to the optical fiber transmission line 250.
  • a wavelength routing unit 152 that outputs an upstream signal from the optical fiber transmission line 250 input to the optical fiber transmission line side terminal from the optical transceiver side terminal that differs according to an upstream wavelength and couples to the optical transceiver 51; , Have The controller is At the time of discovery, one optical transceiver 51 transmits a plurality of downstream wavelength search signals, and the discovery method is performed using a response signal transmitted by an unregistered child node 200c received by any one of the optical transceivers 51. Execute.
  • each child node 200c is fixedly assigned an identifier such as an LLID given through the discovery process regardless of the change of the assigned wavelength, and the parent node 100c is assigned to each child node.
  • an identifier such as an LLID given through the discovery process regardless of the change of the assigned wavelength
  • the parent node 100c is assigned to each child node.
  • a management table as shown in FIG. 17 is provided in which RTTs of frames between the child nodes 200c are recorded for all combinations of assigned wavelengths.
  • LLID is used as an identifier.
  • FIG. 13 shows a procedure for assigning an identifier through the discovery process.
  • any one optical transmitter 18 in the parent node 100c time-multiplexes and transmits the search signal at all or a plurality of wavelengths of ⁇ D1 to ⁇ DM .
  • the search signal is transmitted at all wavelengths of ⁇ D1 to ⁇ DM , so that all optical fiber transmission line sides
  • a search signal can be output to the optical fiber transmission line 250 through the terminal.
  • the search signal is transmitted at H wavelengths from ⁇ D1 to ⁇ DM , so that the light is transmitted through all the optical fiber transmission line side terminals.
  • a search signal can be output to the fiber transmission line 250.
  • the search signal describes an instruction to transmit a response signal as a registration request when the received child node 200c is not registered with the parent node 100c and is not given an identifier.
  • the unregistered child node 200c performs a method of periodically sweeping the transmission wavelength of the wavelength tunable filter 22 or the output light wavelength of the local light source in the range of l D_1 to l D_M . Unregistered child nodes can reliably receive the search signal.
  • the wavelength designation of the response signal may include an instruction to set the wavelength of the response signal to ⁇ Un in the search signal, or when the search signal of ⁇ Dm is received, the output optical wavelength of the wavelength tunable optical transmitter 24
  • the wavelength control circuit in the child node 200c may be set in advance so as to set ⁇ Un to ⁇ Un .
  • the response signal transmitted to the parent node 100 c is distributed according to the wavelength by the wavelength routing unit 152 and then received by the optical receiver 19.
  • FIG. 13 shows a configuration in which the response signal is output to the optical receiver 19 from the same terminal as the optical transmitter / receiver side terminal in which the search signal is input to the wavelength routing unit 152, but may be output from a different terminal.
  • LLID is used as an identifier.
  • the parent node 100c When the parent node 100c receives a response signal that is a registration request from the unregistered child node 200c # k, as in the second embodiment, the parent node 100c does not overlap with the registered child node 200c. An identifier is assigned to the child node 200c # k of the transmission source. At the same time, from the time T k ( ⁇ Dm , ⁇ Un ) required for transmission / reception of the search signal and the response signal, the RTT is calculated for all combinations of the downstream wavelength and the upstream wavelength assigned after registration to the child node 200c # k. 17 management tables are created.
  • the identifier given through the discovery process at the time of new registration of the child node 200c is fixedly given after the change of the assigned wavelength, and information for all the child nodes 200c combined with the RTT is described as shown in FIG. Since the management table is provided in the parent node 100c, it is not necessary to redo the discovery process associated with the change of the assigned wavelength. Further, since RTT is described for all combinations of downstream wavelengths and upstream wavelengths to be assigned to the child node 200c in FIG. 17, when the parent node 100c determines the transmission timing of the upstream signal light of each child node 200c, RTT information with high accuracy can be used regardless of the assigned wavelength. Therefore, it is possible to reduce the guard interval between the upstream signal lights from different child nodes 200c and improve the band utilization efficiency.
  • FIG. 14 shows the configuration of a wavelength tunable WDM / TDM-PON that is an optical communication system according to the sixth embodiment.
  • the difference from the wavelength tunable WDM / TDM-PON configuration in the fifth embodiment is that the number M of optical fiber transmission line side terminals of the wavelength routing means 152 in the parent node is larger than the number H of optical transceiver side terminals. That is.
  • the input / output relationship of downstream signal light and upstream signal light in the wavelength routing means 152 is shown in FIGS. 20 and 21, respectively.
  • each child node 200c is fixedly assigned an identifier such as LLID given through the discovery process regardless of the change of the assigned wavelength, and the parent node 100c is assigned to each child node.
  • an identifier such as LLID given through the discovery process regardless of the change of the assigned wavelength
  • the parent node 100c is assigned to each child node.
  • a management table as shown in FIG. 17 is provided in which RTTs of frames between the child nodes 200c are recorded for all combinations of assigned wavelengths.
  • LLID is used as an identifier.
  • FIG. 15 shows a procedure for assigning an identifier through the discovery process.
  • Any one optical transmitter in the parent node 100c time-multiplexes and transmits a search signal of wavelengths ⁇ D1 to ⁇ DM . Thereby, a search signal can be output to the optical fiber transmission line 250 through all the optical fiber transmission line side terminals.
  • the search signal describes an instruction to transmit a response signal as a registration request when the received child node 200c is not registered with the parent node 100c and is not given an identifier.
  • the unregistered child node 200c periodically sweeps the transmission wavelength of the wavelength tunable filter 22 or the output light wavelength of the local light source in the range of l D — 1 to l D — M. Unregistered child nodes can reliably receive the search signal.
  • the wavelength designation of the response signal may include a command for setting the wavelength of the response signal to ⁇ Un in the search signal.
  • the output optical wavelength of the tunable optical transmitter 24 The wavelength control circuit in the child node 200c may be set in advance so as to set ⁇ Un to ⁇ Un .
  • the response signal transmitted to the parent node 100 c is distributed according to the wavelength by the wavelength routing unit 152 and then received by the optical receiver 19.
  • FIG. 15 shows a configuration in which the response signal is output to the optical receiver from the same terminal as the optical transmitter / receiver side terminal in which the search signal is input to the wavelength routing unit 152, but may be output from a different terminal.
  • LLID is used as an identifier.
  • the parent node 100c When the parent node 100c receives a response signal that is a registration request from the unregistered child node 200c # k, as in the second embodiment, the parent node 100c does not overlap with the registered child node 200c. An identifier is assigned to the child node 200c # k of the transmission source. At the same time, from the time T k ( ⁇ Dm , ⁇ Un ) required for transmission / reception of the search signal and the response signal, the RTT is calculated for all combinations of the downstream wavelength and the upstream wavelength assigned after registration to the child node 200c # k. 17 management tables are created.
  • the identifier given through the discovery process at the time of new registration of the child node 200c is fixedly given after the change of the assigned wavelength, and information for all the child nodes 200c combined with the RTT is described as shown in FIG. Since the management table is provided in the parent node 100c, it is not necessary to redo the discovery process associated with the change of the assigned wavelength. Further, since RTT is described for all combinations of downstream wavelengths and upstream wavelengths to be assigned to the child node 200c in FIG. 17, when the parent node 100c determines the transmission timing of the upstream signal light of each child node 200c, RTT information with high accuracy can be used regardless of the assigned wavelength. Therefore, it is possible to reduce the guard interval between the upstream signal lights from different child nodes 200c and improve the band utilization efficiency.
  • the following describes the discovery method, optical communication method, and optical communication system of the present embodiment.
  • one parent node and a plurality of child nodes are connected via an optical fiber transmission line 250;
  • the parent node transmits downstream signal light having wavelengths ⁇ D1 to ⁇ DM (M is an integer of 2 or more), and upstream signal light having wavelengths ⁇ U1 to ⁇ UN (N is an integer of 2 or more) is input.
  • the child nodes registered in the parent node are assigned with wavelengths of ⁇ D1 to ⁇ DM and ⁇ U1 to ⁇ UN by the parent node as a downstream wavelength and an upstream wavelength, respectively.
  • a discovery method for registering the child node The parent node transmits a search signal to all the child nodes, The child node that is unregistered with the parent node among the child nodes transmits a response signal toward the parent node when receiving the search signal, The parent node, when receiving the response signal, registers the child node of the transmission source corresponding to a unique identifier for each child node, and from the time required for transmission and reception of the search signal and the response signal, A discovery method characterized by storing a round-trip propagation time of a frame with the child node for all combinations of the downstream wavelength and the upstream wavelength assigned after registration to the child node.
  • the parent node transmits the search signal at a single wavelength;
  • the parent node includes a plurality of optical transceivers and optical multiplexing / demultiplexing means 151,
  • the plurality of optical transceivers transmit and receive signal light having a unique wavelength for each optical transceiver
  • the optical multiplexing / demultiplexing means 151 is connected to each of the optical transceivers, and a master node that wavelength-multiplexes the downstream signal lights having different wavelengths from the plurality of optical transceivers and outputs them to the optical fiber transmission line 250.
  • One of the optical transceivers transmits the search signal at the single wavelength;
  • the discovery method according to (3) wherein the response signal transmitted by the child node is branched by the optical multiplexing / demultiplexing means 151 and then received by any one of the optical transceivers. .
  • the parent node includes a plurality of optical transceivers and wavelength routing means 152,
  • the plurality of optical transceivers can transmit / receive signal light having wavelengths ⁇ D1 to ⁇ DM / ⁇ U1 to ⁇ UN ,
  • the wavelength routing means 152 is connected to each optical transceiver via a separate optical transceiver side terminal, and the downstream signal light from the plurality of optical transceivers is different depending on the wavelength.
  • the optical communication system which is a parent node that outputs to the optical fiber transmission line 250 from All or a plurality of the optical transceivers transmit the search signal having the single wavelength;
  • the response signal transmitted by the child node is received by any one of the optical transceivers via the different optical transceiver side terminals by the wavelength routing means 152.
  • the parent node transmits the search signal at all or a plurality of wavelengths of ⁇ D1 to ⁇ DM ,
  • the child node that is unregistered with the parent node can receive the search signal that is at least one of a plurality of wavelengths of ⁇ D1 to ⁇ DM or a plurality of wavelengths.
  • the discovery method according to (1) or (2).
  • the parent node includes a plurality of optical transceivers and optical multiplexing / demultiplexing means 151,
  • the plurality of optical transceivers transmit and receive signal light having a unique wavelength for each optical transceiver
  • the optical multiplexing / demultiplexing means 151 is connected to each of the optical transceivers, and a master node that wavelength-multiplexes the downstream signal lights having different wavelengths from the plurality of optical transceivers and outputs them to the optical fiber transmission line 250.
  • the optical transceiver that transmits the search signal if there is the optical transceiver that transmits the search signal of a plurality of wavelengths, at least the optical transceiver can change the transmission optical wavelength, Transmit the search signals of a plurality of wavelengths in a time-multiplexed manner,
  • the parent node includes a plurality of optical transceivers and wavelength routing means 152,
  • the plurality of optical transceivers can transmit / receive signal light having wavelengths ⁇ D1 to ⁇ DM / ⁇ U1 to ⁇ UN ,
  • the wavelength routing means 152 is connected to each optical transceiver via a separate optical transceiver side terminal, and the downstream signal light from the plurality of optical transceivers is different depending on the wavelength.
  • the optical communication system which is a parent node that outputs to the optical fiber transmission line 250 from The optical transceiver transmits the search signal in a time-multiplexed manner with all or a plurality of wavelengths of ⁇ D1 to ⁇ DM ;
  • the response signal transmitted by the child node is received by any one of the optical transceivers via the optical transceiver side terminal that differs depending on the wavelength by the wavelength routing unit 152.
  • One parent node and a plurality of child nodes are connected via an optical fiber transmission line 250;
  • the parent node transmits downstream signal light having wavelengths ⁇ D1 to ⁇ DM (M is an integer of 2 or more), and upstream signal light having wavelengths ⁇ U1 to ⁇ UN (N is an integer of 2 or more) is input.
  • Each of the child nodes is assigned the wavelength from ⁇ D1 to ⁇ DM and ⁇ U1 to ⁇ UN as a downstream wavelength and an upstream wavelength from the parent node, and has the same wavelength as the allocated downstream wavelength.
  • An optical communication method of an optical communication system that receives downlink signal light and transmits the signal light at the assigned upstream wavelength, In the parent node, all the combinations of the downstream wavelength and the upstream wavelength assigned to each of the child nodes are stored so that the signal lights transmitted from different child nodes to which the same upstream wavelength is assigned do not collide with each other.
  • one parent node and a plurality of child nodes are connected via an optical fiber transmission line 250;
  • the parent node transmits downstream signal light having wavelengths ⁇ D1 to ⁇ DM (M is an integer of 2 or more), and upstream signal light having wavelengths ⁇ U1 to ⁇ UN (N is an integer of 2 or more) is input.
  • Each of the child nodes is assigned the wavelength from ⁇ D1 to ⁇ DM and ⁇ U1 to ⁇ UN as a downstream wavelength and an upstream wavelength from the parent node, and has the same wavelength as the allocated downstream wavelength.
  • An optical communication system that receives downstream signal light and transmits the upstream signal light at the allocated upstream wavelength;
  • Each child node is given a unique identifier for each child node,
  • the parent node is configured to transmit a frame between each of the child nodes with respect to all combinations of the downstream wavelength and the upstream wavelength assigned to each of the child nodes.
  • An optical communication system comprising a management table that records a round-trip propagation time.
  • the child node transmits the uplink signal light having a frame length notified from the parent node at a transmission time notified from the parent node,
  • the notification from the parent node takes into account the round-trip propagation time described in the management table so that the upstream signal lights from different child nodes to which the same upstream wavelength is assigned do not collide,
  • the parent node includes a plurality of optical transceivers and optical multiplexing / demultiplexing means 151,
  • the plurality of optical transceivers transmit and receive the downstream signal light having a unique wavelength for each optical transceiver
  • the optical multiplexing / demultiplexing means 151 is connected to each of the optical transceivers, wavelength-multiplexes the downstream signal lights having different wavelengths from the plurality of optical transceivers, and outputs the multiplexed signals to the optical fiber transmission line 250.
  • the upstream signal light transmitted by the child node is branched by the optical multiplexing / demultiplexing means 151 and then received by any of the optical transceivers (10) or (11)
  • the parent node includes a plurality of optical transceivers and wavelength routing means 152,
  • the plurality of optical transceivers can transmit / receive signal light having wavelengths ⁇ D1 to ⁇ DM / ⁇ U1 to ⁇ UN
  • the wavelength routing means 152 is connected to each optical transceiver via a separate optical transceiver side terminal, and the downstream signal light from the plurality of optical transceivers is different depending on the wavelength.
  • the optical communication system which is a parent node that outputs to the optical fiber transmission line 250 from The upstream signal light transmitted by the child node is received by any one of the optical transceivers through the optical transceiver side terminal that differs depending on the wavelength by the wavelength routing means 152.
  • the optical communication system according to (10) or (11) above.
  • Optical transmitter 12 Wavelength multiplexing / demultiplexing means 13: Wavelength filter 14: Light receiver 15: Optical receiver 16: Coherent receiver 17: Local light source 18: Wavelength variable optical transmitter 19: Optical receiver 21: Light reception Unit 22: wavelength tunable filter 23: optical receiver 24: wavelength tunable optical transmitter 26: wavelength multiplexing / demultiplexing means 27: coherent receiver 28: local light source 51: OSU 100a, 100b, 100c: parent node 151: optical multiplexing / demultiplexing means 152: wavelength routing means 200, 200a, 200b, 200c: child node 250: optical fiber transmission line 300, 300a, 301, 301a, 301b, 302, 302a, 302b : Optical communication system

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)
  • Small-Scale Networks (AREA)

Abstract

本発明は、波長可変型WDM/TDM-PONにおいて割当波長の変更後も識別子を固定する場合にRTTの誤差を低減し、帯域利用効率の低下を防ぐことができるディスカバリ方法、光通信方法、及び光通信システムを提供することを目的とする。本発明は、各々の子ノードと固定的な識別子との対応に加えて、各々の識別子との間でのフレームのRTTを割当波長の組み合わせ全てについて記録したテーブルをディスカバリプロセスを通じて作成する。

Description

ディスカバリ方法、光通信方法、及び光通信システム
 本発明は、波長可変型WDM/TDM-PONにおけるディスカバリ方法、光通信方法および光通信システムに関する。
 アクセスサービスの高速化に対するニーズの高まりにより、FTTH(Fiber To The Home)の普及が世界的に進んでいる。FTTHサービスの大部分は、1個の収容局側装置(OSU:Optical Subscriber Unit)が時分割多重(TDM:Time Division Multiplexing)により複数の加入者側装置(ONU:Optical Network Unit)を収容し、経済性に優れたPON(Passive Optical Network)システムにより提供されている。TDM-PONでは、図1に示すように、OSU51における動的帯域割当計算に基づいて通知された送信許容時間内に、各ONU200内のバースト送信器が信号光を送信し、各ONU200からの強度および位相の異なる信号光を時間軸上に多重した信号光をOSU51内のバースト受信器が受信する。現在の主力システムは伝送速度がギガビット級であるGE-PON(Gigabit Ethernet(登録商標) PON)、G-PON(Gigabit-capable PON)であるが、映像配信サービスの進展に加え、大容量ファイルをアップロード/ダウンロードするアプリケーションの登場などにより、PONシステムの更なる大容量化が求められている。しかしながら、TDM-PONでは、ラインレートの高速化によりシステム帯域を拡張するため、高速化や波長分散の影響により受信特性が大幅に劣化することに加え、バースト送受信器の経済性が課題となるため、10ギガを超える大容量化は難しい。
 10ギガ超の大容量化に向けて、波長分割多重(WDM:Wavelength Division Multiplexing)技術の適用が検討されている。図2は、TDM-PONにWDM技術を組み合わせたWDM/TDM-PONの一例である。各々のONU200aには下り波長および上り波長が割り当てられ、ONU200a間で信号の時間的重なりが、親ノード100a内のOSU51の数M(Mは2以上の整数)まで許される。そのため、OSU51の増設により、1波長あたりのラインレートを高速化することなく、システム帯域を拡張できる。
 同じ上り波長を割り当てられた各ONU200aは、同一のOSU51と論理的に接続し、帯域を共有する。各ONU200aへの割当波長が固定されている場合、各ONU200aとOSU51との論理接続は不変であり、異なるOSU51と接続されているONU200a間で帯域を共有することはできず帯域公平性は確保されない。
 これに対して、非特許文献1では、図3のようにONUに波長可変機能を具備した波長可変型WDM/TDM-PONが提案されている。この方式では、ONUへの割当波長の変更によりONU単位で論理接続するOSUを変更し、全てのONU間でシステム帯域を共有することができる。よって、OSUにおける動的割当計算に基づいて通知された送信波長で、各ONU内の波長可変バースト送信器が同じく通知された送信許容時間内に信号光を送信することで、全てのONU間での帯域公平性を確保することができる。
S.Kimura,"10-Gbit/s TDM-PON and over-40-Gbit/s WDM/TDM-PON systems with OPEX-effective burst-mode technologies", OFC2009, OWH6, 2009 技術基礎講座GE-PON技術,NTT技術ジャーナル,pp91-pp94,2005.9
 TDM-PONでは、下り方向通信において信号光が全ONUにブロードキャストされるため、各ONUはLLID(Logical Link ID)等の識別子を用いて、受信したフレームが自分宛であるかを判断し、受信フレームの取捨選択を行っている。また、上り方向通信においては、ONUは自分に付与された識別子を埋め込んだ送信フレームを送出し、OSUは受信フレーム内の識別子によりどのONUから送信されたフレームであるかを判別している。OSUは自分の配下の全ONUの識別子を管理しており、新規に接続されたONUにはディスカバリプロセスを通じて既接続のONUと重複が起こらないように識別子を付与する。ディスカバリプロセスでは、OSUとONUとの間のフレーム往復時間(RTT:Round Trip Time)の測定も行われ、OSUは自分の配下の全ONUとの間のRTT情報を記憶している。OSUがRTTを考慮して各ONUからの上り信号光の送信許容時間を決定することで、上り信号光の衝突を回避している(例えば、非特許文献2を参照。)。
 波長可変型WDM/TDM-PONにおいても、TDM-PONと同様に、各OSUが自分と論理的に接続する全ONUの識別子およびRTT情報を把握する必要がある。また、ONUは自分に付与されている識別子を認識している必要がある。ここで、波長可変型WDM/TDM-PONでは、ONUへの割当波長の変更によりONU単位で論理接続するOSUが変更されるため、OSUごとに識別子およびRTT情報を管理する場合、割当波長の変更の度にディスカバリプロセスをやり直す必要がある。しかしながら、ディスカバリプロセス中はデータ信号の送信が不許可となるため、帯域利用効率が低下してしまう。
 ONUの新規登録時にディスカバリプロセスを通じて付与した識別子を割当波長の変更後も固定的に付与するとし、測定したRTTと併せた全ONU分の情報を記載した図16のような管理テーブルをOSU間で共有することにより、割当波長の変更に伴うディスカバリプロセスのやり直しが不要となる。しかしながら、光ファイバ伝送路における屈折率の波長依存性により光ファイバ伝送中の伝搬速度は波長によって異なるため、RTTを測定した際に用いた下り/上り波長と異なる波長がONUに割り当てられている場合、実際のRTTと管理テーブルに記載されたRTTとの間に誤差が生じる。上り信号光の送信タイミングはRTTを考慮して決定されているため、RTTの誤差により上り信号光が衝突する可能性が生じる。これに対して、上り信号光間に十分な時間のガードインターバルを設けることで信号光の衝突を防ぐことができるが、帯域利用効率が低下してしまうという課題がある。
 そこで、本発明は、上記課題を解決すべく、波長可変型WDM/TDM-PONにおいて割当波長の変更後も識別子を固定する場合にRTTの誤差を低減し、帯域利用効率の低下を防ぐことができるディスカバリ方法、光通信方法、及び光通信システムを提供することを目的とする。
 上記目的を達成するために、本発明は、各々の子ノードと固定的な識別子との対応に加えて、各々の識別子との間でのフレームのRTTを割当波長の組み合わせ全てについて記録したテーブルをディスカバリプロセスを通じて作成することとした。
 具体的には、本発明に係るディスカバリ方法は、親ノードと複数の子ノードとが光ファイバ伝送路で接続される波長可変型WDM/TDM-PON(WDM:Wavelength Division Multiplexing、TDM:Time Division Multiplexing、PON:Passive Optical Network)でのディスカバリ方法であって、
 前記親ノードが送信した探索信号に応答信号で応答した未登録の前記子ノードに波長変更時に不変である識別子を付与するとともに、
 前記親ノードと前記子ノードとの間の往復伝搬時間(RTT:Round Trip Time)及び前記光ファイバ伝送路の屈折率の波長依存性を用いて、前記識別子毎に前記親ノードから前記子ノードへの下り信号の下り波長と前記子ノードから前記親ノードへの上り信号の上り波長との全ての組み合わせにおけるRTTを算出するレンジングを行い、前記レンジングで算出した前記全ての組み合わせにおけるRTTを記憶することを特徴とする。
 本ディスカバリ方法は、探索信号の波長、応答信号の波長、ディスカバリプロセスで取得したRTT、及び既知である光ファイバ伝送路の屈折率の波長依存性に基づいて、下り波長と上り波長との全ての組み合わせのRTTを算出してテーブルに記憶する。このため、子ノードへの割当波長を変更した際に、テーブルの該当RTTを参照することで正確な送信タイミングを決定できる。このため、上り信号光間のガードインターバルの時間を縮小することができ、帯域利用効率を改善することができる。
 従って、本発明は、波長可変型WDM/TDM-PONにおいて割当波長の変更後も識別子を固定する場合にRTTの誤差を低減し、帯域利用効率の低下を防ぐことができるディスカバリ方法を提供することができる。
 また、本発明に係る光通信方法は、親ノードと複数の子ノードとが光ファイバ伝送路で接続される波長可変型WDM/TDM-PONでの光通信方法であって、
 前記子ノードに付与した識別子を波長変更時に不変とし、
 前記識別子毎に前記親ノードから前記子ノードへの下り信号の下り波長と前記子ノードから前記親ノードへの上り信号の上り波長との全ての組み合わせにおけるRTTをテーブルに記憶し、
 前記テーブルを参照して前記子ノードに割り当てられている下り波長と上り波長の組み合わせに対応するRTTを検出し、前記RTTを考慮して上り信号の送信許容時間を決定して前記子ノードに通知することを特徴とする。
 本光通信方法は、下り波長と上り波長との全ての組み合わせのRTTを記憶したテーブルを利用する。すなわち、子ノードへの割当波長を変更した際に、テーブルの該当RTTを参照することで正確な送信タイミングを決定できる。このため、上り信号光間のガードインターバルの時間を縮小することができ、帯域利用効率を改善することができる。
 従って、本発明は、波長可変型WDM/TDM-PONにおいて割当波長の変更後も識別子を固定する場合にRTTの誤差を低減し、帯域利用効率の低下を防ぐことができる光通信方法を提供することができる。
 本発明に係る光通信方法は、前記全ての組み合わせにおけるRTTを前記ディスカバリ方法で行う前記レンジングで算出することを特徴とする。
 また、本発明に係る光通信システムは、波長λD1~λDM(Mは2以上の整数)である下り信号を送出し、波長λU1~λUN(Nは2以上の整数)である上り信号が入力される親ノードと、
 それぞれに波長変更時に不変である識別子が付与され、下り波長として波長λD1~λDMのいずれか一つ、上り波長として波長λU1~λUNのいずれか一つが前記親ノードから割り当てられ、割り当てられている下り波長の下り信号を受信し、割り当てられている上り波長で上り信号を送出する複数の子ノードと、
 前記親ノードと複数の前記子ノードとを接続する光ファイバ伝送路と、
を備える光通信システムであって、
 前記親ノードは、
 前記識別子毎に下り波長と上り波長との全ての組み合わせにおけるRTTを記憶するテーブルと、
 前記テーブルを参照して前記子ノードに割り当てられている下り波長と上り波長の組み合わせに対応するRTTを検出し、前記RTTを考慮して上り信号の送信許容時間を決定して前記子ノードに通知する制御器と、
を有することを特徴とする。
 本光通信システムは、下り波長と上り波長との全ての組み合わせのRTTを記憶したテーブルを備える。すなわち、子ノードへの割当波長を変更した際に、テーブルの該当RTTを参照することで正確な送信タイミングを決定できる。このため、上り信号光間のガードインターバルの時間を縮小することができ、帯域利用効率を改善することができる。
 従って、本発明は、波長可変型WDM/TDM-PONにおいて割当波長の変更後も識別子を固定する場合にRTTの誤差を低減し、帯域利用効率の低下を防ぐことができる光通信システムを提供することができる。
 本光通信システムは、以下のような構成がある。
 第一の構成として、前記親ノードは、
 それぞれ固有の下り波長と固有の上り波長が設定される複数の光送受信器と、
 各々の前記光送受信器と接続され、前記光送受信器からの波長の相異なる下り信号を波長多重して前記光ファイバ伝送路に出力し、前記光ファイバ伝送路からの上り信号を分岐して前記光送受信器に結合する光合分波手段と、
を有しており、
 前記制御器は、
 ディスカバリ時に、1の前記光送受信器に1の下り波長の探索信号を送信させるとともに、いずれかの前記光送受信器で受信した未登録の前記子ノードが送信する応答信号を用いて前記ディスカバリ方法を実行することを特徴とする。
 第二の構成として、前記親ノードは、
 波長λD1~λDMの下り波長が設定可能な複数の光送受信器と、
 各々の前記光送受信器が光送受信器側端子を介して接続され、前記光送受信器からの前記下り信号を下り波長に応じて異なる光ファイバ伝送路側端子から出力して前記光ファイバ伝送路に結合し、前記光ファイバ伝送路側端子に入力された前記光ファイバ伝送路からの上り信号を上り波長に応じて異なる前記光送受信器側端子から出力して前記光送受信器に結合する波長ルーティング手段と、
を有しており、
 前記制御器は、
 ディスカバリ時に、複数の前記光送受信器に1の下り波長の探索信号を送信させるとともに、いずれかの前記光送受信器で受信した未登録の前記子ノードが送信する応答信号を用いて前記ディスカバリ方法を実行することを特徴とする。
 第三の構成として、前記親ノードは、
 波長λD1~λDMの下り波長のうちの少なくとも1波長が設定可能な複数の光送受信器と、
 各々の前記光送受信器と接続され、前記光送受信器からの波長の相異なる下り信号を波長多重して前記光ファイバ伝送路に出力し、前記光ファイバ伝送路からの上り信号を分岐して前記光送受信器に結合する光合分波手段と、
を有しており、
 前記制御器は、
 ディスカバリ時に、少なくとも1の前記光送受信器を用いて複数の下り波長の探索信号を送信させるとともに、いずれかの前記光送受信器で受信した未登録の前記子ノードが送信する応答信号を用いて前記ディスカバリ方法を実行することを特徴とする。
 第四の構成として、前記親ノードは、
 波長λD1~λDMの下り波長が設定可能な複数の光送受信器と、
 各々の前記光送受信器が光送受信器側端子を介して接続され、前記光送受信器からの前記下り信号を下り波長に応じて異なる光ファイバ伝送路側端子から出力して前記光ファイバ伝送路に結合し、前記光ファイバ伝送路側端子に入力された前記光ファイバ伝送路からの上り信号を上り波長に応じて異なる前記光送受信器側端子から出力して前記光送受信器に結合する波長ルーティング手段と、
を有しており、
 前記制御器は、
 ディスカバリ時に、1の前記光送受信器に複数の下り波長の探索信号を送信させるとともに、いずれかの前記光送受信器で受信した未登録の前記子ノードが送信する応答信号を用いて前記ディスカバリ方法を実行することを特徴とする。
 本発明は、波長可変型WDM/TDM-PONにおいて割当波長の変更後も識別子を固定する場合にRTTの誤差を低減し、帯域利用効率の低下を防ぐことができるディスカバリ方法、光通信方法、及び光通信システムを提供することができる。
TDM-PONの構成を説明する図である。 WDM/TDM-PONの構成を説明する図である。 波長可変型WDM/TDM-PONの構成を説明する図である。 波長可変型WDM/TDM-PONの構成を説明する図である。 波長可変送信器の構成を説明する図である。 波長可変型WDM/TDM-PONの構成を説明する図である。 本発明に係るディスカバリ方法を説明する図である。 波長可変型WDM/TDM-PONの構成を説明する図である。 本発明に係るディスカバリ方法を説明する図である。 波長可変型WDM/TDM-PONの構成を説明する図である。 本発明に係るディスカバリ方法を説明する図である。 本発明に係るディスカバリ方法を説明する図である。 本発明に係るディスカバリ方法を説明する図である。 波長可変型WDM/TDM-PONの構成を説明する図である。 本発明に係るディスカバリ方法を説明する図である。 全ONU分の情報を記載した管理テーブルを説明する図である。 本発明に係る光通信システムが備える管理テーブルを説明する図である。 波長ルーティング手段における下り信号光の入出力関係の例(M≧H)である。 波長ルーティング手段における上り信号光の入出力関係の例(M≧H)である。 波長ルーティング手段における下り信号光の入出力関係の例(M>H)である。 波長ルーティング手段における上り信号光の入出力関係の例(M>H)である。
 添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施例であり、本発明は、以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。
[第1の実施形態]
 第1の実施形態の光通信システム301は、波長λD1~λDM(Mは2以上の整数)である下り信号を送出し、波長λU1~λUN(Nは2以上の整数)である上り信号が入力される親ノード100aと、
 それぞれに波長変更時に不変である識別子が付与され、下り波長として波長λD1~λDMのいずれか一つ、上り波長として波長λU1~λUNのいずれか一つが前記親ノードから割り当てられ、割り当てられている下り波長の下り信号を受信し、割り当てられている上り波長で上り信号を送出する複数の子ノード200aと、
 親ノード100aと複数の子ノード200aとを接続する光ファイバ伝送路250と、
を備える光通信システムであって、
 親ノード100aは、
 前記識別子毎に下り波長と上り波長との全ての組み合わせにおけるRTTを記憶するテーブル(不図示)と、
 前記テーブルを参照して子ノード200aに割り当てられている下り波長と上り波長の組み合わせに対応するRTTを検出し、前記RTTを考慮して上り信号の送信許容時間を決定して前記子ノードに通知する制御器(不図示)と、
を有する。
 また、親ノード100aは、
 それぞれ固有の下り波長と固有の上り波長が設定される複数の光送受信器51と、
 各々の光送受信器51と接続され、光送受信器51からの波長の相異なる下り信号を波長多重して光ファイバ伝送路250に出力し、光ファイバ伝送路250からの上り信号を分岐して光送受信器51に結合する光合分波手段151と、
を有しており、
 前記制御器は、
 ディスカバリ時に、1の光送受信器51に1の下り波長の探索信号を送信させるとともに、いずれかの光送受信器51で受信した未登録の子ノード200aが送信する応答信号を用いてディスカバリを実行する。
 光通信システム301の構成は、図3の波長可変型WDM/TDM-PONの構成と同じである。波長λD1~λDM(Mは2以上の整数)である下り信号光を送出し、波長λU1~λUMである上り信号光が入力される親ノード100aが、λD1~λDM、λU1~λUMから1つずつの波長をそれぞれ下り波長と上り波長として親ノード100aから割り当てられる複数の子ノード(ONU)200aと、光ファイバ伝送路250を介して接続されている。各々の子ノード200aには、ネットワークへ最初に接続された時など親ノード100aに新規登録される際に、ディスカバリプロセスを通じて子ノード200aごとに固有の識別子として、既登録の子ノード200aと重複が起こらないようにLLID等の識別子が付与される。ここで、一度付与された識別子は子ノード200aへの割当波長の変更によらず固定的に付与される。親ノード100aは、各々の子ノード200aと識別子との対応に加えて、各々の子ノード200aとの間でのフレームのRTTを割当波長の組み合わせ全てについて記録した図17のような管理テーブル(図3において不図示)を、ディスカバリプロセスを通じて作成する。図17では、識別子としてLLIDを用いている。
 親ノード100aは、複数のOSU51を有する。OSU51は、光送信器11、波長合分波手段12、及び光受信器15を持つ。また、光受信器15は、波長フィルタ13及び受光器14を含む。
 親ノード100aは、下り方向通信用に、各々異なる波長の下り信号光を送出する光送信器11#1~#Mを備える。各光送信器11からの下り信号光は、光合分波手段151により波長多重された後、光ファイバ伝送路250へ出力される。光合分波手段151としては、光ファイバやPLC(Planar Lightwave Circuit)により作成された光カプラなどがこれにあたる。図3は光合分波手段151が光ファイバ伝送路250側に複数の端子を有する構成であるが、図4のように単一の端子のみを有する構成も可能である。
 子ノード200aは、入力される波長多重信号光の中から、親ノード100aから割り当てられている下り波長である下り信号光を選択的に受信する。子ノード200aは、光受信器23を有している。光受信器23は、図3及び図4のように、PIN-PD(Photo-Diode)やAPD(Avalanche Photo-Diode)などの受光器21の前段に波長可変フィルタ22を配置し、波長可変フィルタ22の透過波長を割り当てられた下り波長に応じて変化させることにより、所望の波長の下り信号光を選択的に受信することができる。各子ノード200aは、識別子を用いて、受信したフレームが自分宛であるかを判断し、受信フレームの取捨選択を行う。
 一方、子ノード200aは、上り方向通信用に、波長λU1~λUMの上り信号光を送信可能な波長可変光送信器24を備え、親ノード100aから割り当てられている上り波長で、親ノード100aから通知された送信許容時間内に上り信号光を送信する。親ノード100aから通知される送信許容時間は、同じ上り波長を割り当てられている異なる子ノード200aからの信号光同士が衝突しないように、管理テーブルに記載のRTTを考慮して決定される。波長可変光送信器24として、分布帰還型(DFB: Distributed Feedback)レーザなどの直接変調レーザの出力光波長を温度制御により変化させる構成や、出力光波長が異なる直接変調レーザをアレイ状に配置し、外部からの制御信号により発光するレーザを切り替える高速波長切替が可能な構成がこれにあたる。波長可変光源からの出力光を、半導体や二オブ酸リチウム(LiNbO)を材料とするマッハツェンダー型変調器、電界吸収型(EA: Electroabsorption)変調器、半導体光増幅器(SOA: Semiconductor Optical Amplifier)変調器などを用いて外部変調する構成も可能である。波長可変光源としては、出力光波長が異なる連続光(CW: Continuous Wave)レーザをアレイ状に配置し、外部からの制御信号により出力光波長を切り替える構成がこれにあたる。また、DBRレーザや外部共振器型レーザなどを波長可変光源として用いることも可能である。
 親ノード100aに伝送された上り信号光は、光合分波手段151で分岐された後、各々異なる波長の上り信号光を選択的に受信する光受信器15#1~#Mへ入力される。図3及び図4のように、PIN-PDやAPDなどの受光器14の前段に透過波長が各々異なる波長フィルタ13を配置することにより、各光受信器15で相異なる波長の上り信号光を選択的に受信することができる。ここで、各子ノード200aが自分に付与された識別子を送信フレーム内に埋め込んだ上り信号光を送出することで、親ノード100aは受信フレーム内の識別子によりどの子ノード200aから送信されたフレームであるかを判別することができる。
 図3及び図4は、子ノード200aおよび親ノード100aにて受光器(14、21)の前段に波長フィルタ13又は波長可変フィルタ22を配置して所望の信号光の波長のみを透過させる構成であるが、図6のように、子ノード200b内および親ノード100b内の光受信器として、コヒーレント受信器(16、27)を用いることも可能である。この場合、子ノード200b内の局発光源28の出力光波長は、割り当てられている下り信号光の波長近傍に設定される。一方、親ノード100b内の局発光源17の出力光波長は、各コヒーレント受信器16にて相異なるように、λU1~λUMのいずれか1つの波長の近傍に設定される。高受信感度を特徴とするコヒーレント受信を適用することで、光ファイバ伝送路250中や親ノード100b内での許容損失を増大できる。光ファイバ伝送路250中で許容される伝送損失や分岐損失の増大により、伝送距離の長延化や収容する子ノード200b数の拡大を図れる。また、親ノード100b内で許容される分岐損失の増大により光送受信器数(OSU51の数)を拡大できるため、システム総帯域を拡張できる。また、コヒーレント受信の適用により波長フィルタ(13、22)が不要となるため、波長フィルタの特性に制限されずに隣接波長間隔を狭窄化することも可能である。
 図7に、ディスカバリプロセスを通じて識別子が付与される手順を示す。当該ディスカバリ方法は、親ノード100aと複数の子ノード200aとが光ファイバ伝送路250で接続される波長可変型WDM/TDM-PONでのディスカバリ方法であって、
 親ノード100aが送信した探索信号に応答信号で応答した未登録の子ノード200aに波長変更時に不変である識別子を付与するとともに、
 親ノード100aと子ノード200aとの間のRTT及び光ファイバ伝送路250の屈折率の波長依存性を用いて、前記識別子毎に親ノード100aから子ノード200aへの下り信号の下り波長と子ノード200aから親ノード100aへの上り信号の上り波長との全ての組み合わせにおけるRTTを算出するレンジングを行い、前記レンジングで算出した前記全ての組み合わせにおけるRTTを記憶する。
 親ノード(100a、100b)内の光送信器11のうちの1個が、所定時に波長λDm(m=1、2、・・・、M)で探索信号を送信する。探索信号には、受信した子ノード(200a、200b)が親ノード(100a、100b)に未登録であり識別子を付与されていない場合、登録要求である応答信号を所定の時間に送信する旨の命令が記載されている。ここで、子ノード(200a、200b)が未登録である場合、子ノード(200a、200b)内の波長可変フィルタ22の透過波長または局発光源28の出力光波長がλDmとなるように、子ノード(200a、200b)内の波長制御回路を予め設定しておくことで、未登録の子ノード(200a、200b)が探索信号を確実に受信することができる。また、子ノードが未登録である場合、子ノード内の波長可変フィルタ22の透過波長または局発光源の出力光波長をlD_1~lD_Mの範囲で周期的に掃引する方法などによっても、未登録の子ノードが探索信号を確実に受信することができる。応答信号の波長指定は、応答信号の波長をλUn(n=1、2、・・・、M)とする旨の命令を探索信号に含めてもよいし、λDmの探索信号を受信した際には波長可変光送信器24の出力光波長をλUnに設定するよう子ノード(200a、200b)内の波長制御回路を予め設定しておいてもよい。親ノード(100a、100b)へ伝送された応答信号は、光合分波手段151で分岐された後、光受信器#nで受信される。図7は、m=n=1の場合であるが、m≠nであってもよい。図7では、識別子としてLLIDを用いている。
 親ノード(100a、100b)は、未登録である子ノード(200a、200b)#k(k=1、2、・・・、K, Kは1以上の整数)からの登録要求である応答信号を受信した場合、既登録の子ノード(200a、200b)と重複が起こらないように、送信元の子ノード(200a、200b)#kへ識別子を付与する。同時に、探索信号および応答信号の送受信に要した時間T(λDm、λUn)から、当該の子ノード(200a、200b)#kに登録後に割り当てる下り波長と上り波長の組み合わせ全てについてRTTを算出する。RTTの算出方法を以下に述べる。子ノード(200a、200b)#kと親ノード(100a、100b)との距離をL[km]、真空中の光速をc[km/s]、光ファイバ伝送路250における波長λDm、λUnの屈折率をnDm、nUnとすると、
Figure JPOXMLDOC01-appb-M000001
と表わせる。よって、光ファイバ伝送路250における屈折率がnDm’、nUn’である波長を下り波長、上り波長として当該の子ノード(200a、200b)#kへ割り当てた際の往復伝搬時間T(λDm’、λUn’)は、 
Figure JPOXMLDOC01-appb-M000002
のように求めることができる。これを子ノード(200a、200b)に登録後に割り当てる下り波長と上り波長の組み合わせ全てについて計算することにより、図17の管理テーブルを作成することができる。
 光通信システム301の光通信方法は、親ノード100aと複数の子ノード200aとが光ファイバ伝送路250で接続される波長可変型WDM/TDM-PONでの光通信方法であって、
 子ノード200aに付与した識別子を波長変更時に不変とし、
 前記識別子毎に親ノード100aから子ノード200aへの下り信号の下り波長と子ノード200aから親ノード100aへの上り信号の上り波長との全ての組み合わせにおけるRTTをテーブルに記憶し、
 前記テーブルを参照して子ノード200aに割り当てられている下り波長と上り波長の組み合わせに対応するRTTを検出し、前記RTTを考慮して上り信号の送信許容時間を決定して子ノード200aに通知する。
 そして、前記全ての組み合わせにおけるRTTを前記ディスカバリ方法で行う前記レンジングで算出する。
 本実施形態では、子ノード(200a、200b)の新規登録時にディスカバリプロセスを通じて付与した識別子が割当波長の変更後も固定的に付与され、RTTと併せた全子ノード(200a、200b)分の情報を記載した図17のような管理テーブルを親ノード(100a、100b)内に備えるため、割当波長の変更に伴うディスカバリプロセスのやり直しが不要である。更に、図17には子ノード(200a、200b)に割り当てる下り波長と上り波長の組み合わせ全てについてRTTが記載されているため、親ノード(100a、100b)は、各子ノード(200a、200b)の上り信号光の送信タイミングを決定する際に、割当波長によらず高精度のRTT情報を用いることができる。よって、異なる子ノード(200a、200b)からの上り信号光間のガードインターバルを小さくして帯域利用効率を向上することができる。
[第2の実施形態]
 図8は、第2の実施形態における光通信システム302である波長可変型WDM/TDM-PONの構成である。光通信システム302は、親ノード100c、子ノード200c、及び光ファイバ伝送路250を備える。
 光通信システム302の親ノード100cは、
 波長λD1~λDMの下り波長が設定可能な複数の光送受信器51と、
 各々の光送受信器51が光送受信器側端子を介して接続され、光送受信器51からの前記下り信号を下り波長に応じて異なる光ファイバ伝送路側端子から出力して光ファイバ伝送路250に結合し、前記光ファイバ伝送路側端子に入力された光ファイバ伝送路250からの上り信号を上り波長に応じて異なる前記光送受信器側端子から出力して光送受信器51に結合する波長ルーティング手段152と、
を有しており、
 前記制御器は、
 ディスカバリ時に、複数の光送受信器51に1の下り波長の探索信号を送信させるとともに、いずれかの光送受信器51で受信した未登録の子ノード200cが送信する応答信号を用いて前記ディスカバリ方法を実行する。
 親ノード100cは、第1の実施形態における親ノード内の光合分波手段151の代わりに、入力光を波長に応じて振り分けて異なる端子から出力する波長ルーティング手段152を用いる構成である。第1の実施形態と同様に、各々の子ノード200cには、ディスカバリプロセスを通じて付与されたLLID等の識別子が割当波長の変更によらず固定的に付与され、親ノード100cは、各々の子ノード200cと識別子との対応に加えて、各々の子ノード200cとの間でのフレームのRTTを割当波長の組み合わせ全てについて記録した図17のような管理テーブルを備える。図17では、識別子としてLLIDを用いている。
 下り方向通信用に、親ノード100cは、波長λD1~λDMの下り信号光を送信可能な波長可変光送信器18#1~#Mを備える。各々の波長可変光送信器18からの下り信号光は、波長ルーティング手段152へ、別々の光送受信器側端子を通じて入力され、波長に応じて異なる光ファイバ伝送路側端子から光ファイバ伝送路250へ出力される。波長可変光送信器18は、フレームの宛先である子ノード200cが光ファイバ伝送路250を通じていずれの光ファイバ伝送路側端子と接続するかに応じて下り信号光の送信波長を変化させる。波長ルーティング手段152は、光ファイバ伝送路側端子の数H(Hは1以上の整数)が光送受信器側端子の数M以下であり、各光送受信器側端子から入力された波長λD1~λDMの光を図18で表わされるように波長に応じて光ファイバ伝送路側端子#1~#Hへ振り分けるAWG(Arrayed Waveguide Grating)などが用いられる。
 子ノード200cは、親ノード100c内の波長ルーティング手段152の光ファイバ伝送路側端子のうちの1つと光ファイバ伝送路250を介して接続し、接続する端子から出力される下り信号光を受信する。各子ノード200cは、識別子を用いて、受信したフレームが自分宛であるかを判断し、受信フレームの取捨選択を行う。
 一方、上り方向通信用に、子ノード200cは、波長λU1~λUMの上り信号光を送信可能な波長可変光送信器24を備え、親ノード100cから割り当てられている上り波長で、親ノード100cから通知された送信許容時間内に上り信号光を送信する。親ノード100cから通知される送信許容時間は、親ノード100c内の同じ光受信器19を宛先とする上り信号光同士が衝突しないように、管理テーブル(図8において不図示)に記載のRTTを考慮して決定される。波長可変光送信器24の構成は第1の実施形態の説明と同じである。
 親ノード100cに伝送された上り信号光は、波長ルーティング手段152にて波長に応じて振り分けられ、異なる光送受信器側端子を通じて光受信器19へ入力される。ここで、各子ノード200cが自分に付与された識別子を送信フレーム内に埋め込んだ上り信号光を送出することで、親ノード100cが受信フレーム内の識別子によりどの子ノード200cから送信されたフレームであるかを判別することができる。波長ルーティング手段152としては、各光ファイバ伝送路側端子#1~#Hから入力された波長λU1~λUMの光を図19で表わされるように波長に応じて光送受信器側端子#1~#Mへ振り分けるAWGなどが用いられる。
 子ノード200c内および親ノード100c内の光受信器(19、29)として、図6で説明したコヒーレント受信器を用いることも可能である。この場合、子ノード200c内の局発光源の出力光波長は、割り当てられている下り信号光の波長近傍に設定される。一方、親ノード100c内の局発光源の出力光波長は、光受信器に到着する上り信号光がいずれの子ノード200cから送信されてくるか応じて変更される。高受信感度を特徴とするコヒーレント受信を適用することで、光ファイバ伝送路250中での許容損失を増大できる。光ファイバ伝送路250中で許容される伝送損失や分岐損失の増大により、伝送距離の長延化や収容する子ノード200c数の拡大を図れる。
 図9に、ディスカバリプロセスを通じて識別子が付与される手順を示す。
 親ノード100c内の波長可変光送信器18のうちの全部または複数個が、所定時に波長λDmで探索信号を送信する。波長ルーティング手段152の光送受信器側端子数Mと光ファイバ伝送路側端子数Hが等しい場合、全ての波長可変送信器18が探索信号を送信することで、全ての光ファイバ伝送路側端子を通じて光ファイバ伝送路250に探索信号を出力できる。光送受信器側端子数Mが光ファイバ伝送路側端子数Hよりも大きい場合、H個の波長可変送信器18が探索信号を送信することで、全ての光ファイバ伝送路側端子を通じて光ファイバ伝送路250に探索信号を出力できる。
 探索信号には、受信した子ノード200cが親ノード100cに未登録であり識別子を付与されていない場合、登録要求である応答信号を送信する旨の命令が記載されている。ここで、子ノード200c内の光受信器29としてコヒーレント受信器を用いる場合は、未登録である子ノード200c内の局発光源の出力光波長がλDmの近傍となるように、子ノード200c内の波長制御回路を予め設定しておくことで、未登録の子ノード200cが探索信号を確実に受信することができる。また、子ノードが未登録である場合、子ノード内の局発光源の出力光波長をlD_1~lD_Mの範囲で周期的に掃引する方法などによっても、未登録の子ノードが探索信号を確実に受信することができる。応答信号の波長指定は、探索信号に応答信号の波長をλUnとする旨の命令を含めてもよいし、λDmの探索信号を受信した際には波長可変光送信器の出力光波長をλUnに設定するよう子ノード200c内の波長制御回路を予め設定しておいてもよい。親ノード100cへ伝送された応答信号は、波長ルーティング手段152にて波長に応じて振り分けられた後、光受信器19で受信される。図9は、探索信号が波長ルーティング手段152に入力された光送受信器側端子と同一の端子から、応答信号が光受信器へ出力される構成であるが、異なる端子から出力されてもよい。図9では、識別子としてLLIDを用いている。
 親ノード100cは、未登録である子ノード200c#kからの登録要求である応答信号を受信した場合、第1の実施形態と同様に、既登録の子ノード200cと重複が起こらないように、送信元の子ノード200c#kへ識別子を付与する。同時に、探索信号および応答信号の送受信に要した時間T(λDm、λUn)から、当該の子ノード200c#kに登録後に割り当てる下り波長と上り波長の組み合わせ全てについてRTTを算出し、図17の管理テーブルを作成する。
 本実施形態では、子ノード200cの新規登録時にディスカバリプロセスを通じて付与した識別子が割当波長の変更後も固定的に付与され、RTTと併せた全子ノード200c分の情報を記載した図17のような管理テーブルを親ノード100c内に備えるため、割当波長の変更に伴うディスカバリプロセスのやり直しが不要である。更に、図17には子ノード200cに割り当てる下り波長と上り波長の組み合わせ全てについてRTTが記載されているため、親ノード100cは、各子ノード200cの上り信号光の送信タイミングを決定する際に、割当波長によらず高精度のRTT情報を用いることができる。よって、異なる子ノード200cからの上り信号光間のガードインターバルを小さくして帯域利用効率を向上することができる。
[第3の実施形態] 
 図10は、第3の実施形態における光通信システム302aである波長可変型WDM/TDM-PONの構成である。光通信システム302aは、第2の実施形態の子ノード200cを第1の実施形態の子ノード200aに置換したものである。すなわち、子ノード200aは、受光器21の前段に波長可変フィルタ22を配置し、波長可変フィルタ22の透過波長を割り当てられた下り波長に応じて変化させることにより、所望の波長の下り信号光を選択的に受信する構成である。波長可変フィルタ22を配置することにより、光ファイバ伝送路250中に波長の異なる下り信号光を波長多重して伝送できる。よって、波長ルーティング手段152の同一の光ファイバ伝送路側端子と光ファイバ伝送路250を介して接続された子ノード群の内の異なる子ノードが同時に下り信号光を受信することが可能となる。
 子ノード200a内および親ノード100c内の光受信器(23、19)として、図6で説明したコヒーレント受信器を用いることも可能である。この場合、子ノード内の局発光源の出力光波長は、割り当てられている下り信号光の波長近傍に設定される。一方、親ノード内の局発光源の出力光波長は、光受信器に到着する上り信号光がいずれの子ノードから送信されてくるかに応じて変更される。高受信感度を特徴とするコヒーレント受信を適用することで、光ファイバ伝送路250中での許容損失を増大できる。光ファイバ伝送路250中で許容される伝送損失や分岐損失の増大により、伝送距離の長延化や収容する子ノード数の拡大を図れる。
 各々の子ノード200aには、第2の実施形態と同様に、ディスカバリプロセスを通じて付与されたLLID等の識別子が割当波長の変更によらず固定的に付与され、親ノード100cは、各々の子ノード200aと識別子との対応に加えて、各々の子ノード200aとの間でのフレームのRTTを割当波長の組み合わせ全てについて記録した図17のような管理テーブルを備える。図17では、識別子としてLLIDを用いている。
 図17のような管理テーブルは、ディスカバリプロセスを通じて、第2の実施形態と同様に作成される。ここで、子ノード200aが未登録である場合、子ノード200a内の波長可変フィルタ22の透過波長または局発光源(不図示)の出力光波長がλDmとなるように、子ノード200a内の波長制御回路を予め設定しておくことで、未登録の子ノード200aが探索信号を確実に受信することができる。また、子ノードが未登録である場合、子ノード内の波長可変フィルタ22の透過波長または局発光源の出力光波長をlD_1~lD_Mの範囲で周期的に掃引する方法などによっても、未登録の子ノードが探索信号を確実に受信することができる。
 本実施形態では、子ノード200aの新規登録時にディスカバリプロセスを通じて付与した識別子が割当波長の変更後も固定的に付与され、RTTと併せた全子ノード200a分の情報を記載した図17のような管理テーブルを親ノード100c内に備えるため、割当波長の変更に伴うディスカバリプロセスのやり直しが不要である。更に、図17には子ノード200aに割り当てる下り波長と上り波長の組み合わせ全てについてRTTが記載されているため、親ノード100cは、各子ノード200aの上り信号光の送信タイミングを決定する際に、割当波長によらず高精度のRTT情報を用いることができる。よって、異なる子ノード200aからの上り信号光間のガードインターバルを小さくして帯域利用効率を向上することができる。
[第4の実施形態]
 本実施形態の光通信システムは、実施形態1で説明した光通信システム(図3~図4、図6)の構成と同じであるが、ディスカバリの際に親ノードがλD1~λDMの全波長で探索信号を送信する。すなわち、親ノード100aは、
 波長λD1~λDMの下り波長のうちの少なくとも1波長が設定可能な複数の光送受信器51と、
 各々の光送受信器51と接続され、光送受信器51からの波長の相異なる下り信号を波長多重して光ファイバ伝送路250に出力し、光ファイバ伝送路250からの上り信号を分岐して光送受信器51に結合する光合分波手段151と、
を有しており、
 前記制御器は、
 ディスカバリ時に、少なくとも1の光送受信器51を用いて複数の下り波長の探索信号を送信させるとともに、いずれかの光送受信器51で受信した未登録の子ノード200aが送信する応答信号を用いて前記ディスカバリ方法を実行する。
 各々の子ノード(200a、200b)には、第1の実施形態と同様に、ディスカバリプロセスを通じて付与されたLLID等の識別子が割当波長の変更によらず固定的に付与され、親ノード(100a、100b)は、各々の子ノード(200a、200b)と識別子との対応に加えて、各々の子ノード(200a、200b)との間でのフレームのRTTを割当波長の組み合わせ全てについて記録した図17のような管理テーブルを備える。図17では、識別子としてLLIDを用いている。
 図11に、ディスカバリプロセスを通じて識別子が付与される手順を示す。
 親ノード(100a、100b)内の全ての光送信器11が、所定時に各々異なる波長で探索信号を送信する。探索信号には、受信した子ノード(200a、200b)が親ノード(100a、100b)に未登録であり識別子を付与されていない場合、登録要求である応答信号を送信する旨の命令が記載されている。ここで、子ノード(200a、200b)が未登録である場合、子ノード(200a、200b)内の波長可変フィルタ22の透過波長または局発光源28の出力光波長がλD1~λDMのいずれかとなるように、子ノード(200a、200b)内の波長制御回路を予め設定しておくことで、未登録の子ノード(200a、200b)が探索信号を確実に受信することができる。また、子ノードが未登録である場合、子ノード内の波長可変フィルタ22の透過波長または局発光源の出力光波長をlD_1~lD_Mの範囲で周期的に掃引する方法などによっても、未登録の子ノードが探索信号を確実に受信することができる。応答信号の波長指定は、応答信号の波長をλU1~λUMのいずれかとする旨の命令を探索信号に含めてもよいし、λDmの探索信号を受信した際には波長可変光送信器24の出力光波長をλUn(n=1、2、・・・、M)に設定するよう子ノード内の波長制御回路を予め設定しておいてもよい。親ノード(100a、100b)へ伝送された応答信号は、光合分波手段151で分岐された後、光受信器15#n又はコヒーレント受信器16#nで受信される。図11は、m=nの場合であるが、m≠nであってもよい。図11では、識別子としてLLIDを用いている。
 図11では、親ノード(100a、100b)内の全ての光送信器11を用いて波長λD1~λDMの探索信号を送信するが、図12のように、任意の1つの光送信器11が波長λD1~λDMの探索信号を時間多重して送信してもよい。この場合、少なくとも探索信号を送信する光送信器11は、波長λD1~λDMの下り信号光を送信可能な波長可変光送信器である。
 親ノード(100a、100b)は、未登録である子ノード(200a、200b)#kからの登録要求である応答信号を受信した場合、第1の実施形態と同様に、既登録の子ノード(200a、200b)と重複が起こらないように、送信元の子ノード#kへ識別子を付与する。同時に、探索信号および応答信号の送受信に要した時間T(λDm、λUn)から、当該の子ノード(200a、200b)#kに登録後に割り当てる下り波長と上り波長の組み合わせ全てについてRTTを算出し、図17の管理テーブルを作成する。
 本実施形態では、子ノード(200a、200b)の新規登録時にディスカバリプロセスを通じて付与した識別子が割当波長の変更後も固定的に付与され、RTTと併せた全子ノード(200a、200b)分の情報を記載した図17のような管理テーブルを親ノード(100a、100b)内に備えるため、割当波長の変更に伴うディスカバリプロセスのやり直しが不要である。更に、図17には子ノード(200a、200b)に割り当てる下り波長と上り波長の組み合わせ全てについてRTTが記載されているため、親ノード(100a、100b)は、各子ノード(200a、200b)の上り信号光の送信タイミングを決定する際に、割当波長によらず高精度のRTT情報を用いることができる。よって、異なる子ノード(200a、200b)からの上り信号光間のガードインターバルを小さくして帯域利用効率を向上することができる。
[第5の実施形態]
 本実施形態の光通信システムは、実施形態2で説明した光通信システム(図8)または実施形態3で説明した光通信システム(図10)の構成と同じであるが、ディスカバリの際に親ノードがλD1~λDMのうちの全部または複数の波長で探索信号を送信する。すなわち、親ノード100cは、
 波長λD1~λDMの下り波長が設定可能な複数の光送受信器51と、
 各々の光送受信器51が光送受信器側端子を介して接続され、光送受信器51からの前記下り信号を下り波長に応じて異なる光ファイバ伝送路側端子から出力して光ファイバ伝送路250に結合し、前記光ファイバ伝送路側端子に入力された光ファイバ伝送路250からの上り信号を上り波長に応じて異なる前記光送受信器側端子から出力して光送受信器51に結合する波長ルーティング手段152と、
を有しており、
 前記制御器は、
 ディスカバリ時に、1の光送受信器51に複数の下り波長の探索信号を送信させるとともに、いずれかの光送受信器51で受信した未登録の子ノード200cが送信する応答信号を用いて前記ディスカバリ方法を実行する。
 各々の子ノード200cには、第2の実施形態と同様に、ディスカバリプロセスを通じて付与されたLLID等の識別子が割当波長の変更によらず固定的に付与され、親ノード100cは、各々の子ノード200cと識別子との対応に加えて、各々の子ノード200cとの間でのフレームのRTTを割当波長の組み合わせ全てについて記録した図17のような管理テーブルを備える。図17では、識別子としてLLIDを用いている。
 図13に、ディスカバリプロセスを通じて識別子が付与される手順を示す。
 親ノード100c内の任意の1つの光送信器18がλD1~λDMのうちの全部または複数の波長で探索信号を時間多重して送信する。波長ルーティング手段152の光送受信器側端子数Mと光ファイバ伝送路側端子数Hが等しい場合、λD1~λDMのうちの全部の波長で探索信号を送信することで、全ての光ファイバ伝送路側端子を通じて光ファイバ伝送路250に探索信号を出力できる。光送受信器側端子数Mが光ファイバ伝送路側端子数Hよりも大きい場合、λD1~λDMのうちのH個の波長で探索信号を送信することで、全ての光ファイバ伝送路側端子を通じて光ファイバ伝送路250に探索信号を出力できる。
 探索信号には、受信した子ノード200cが親ノード100cに未登録であり識別子を付与されていない場合、登録要求である応答信号を送信する旨の命令が記載されている。図10の光通信システムでは、未登録である子ノード200cは、波長可変フィルタ22の透過波長または局発光源の出力光波長をlD_1~lD_Mの範囲で周期的に掃引する方法などにより、未登録の子ノードが探索信号を確実に受信することができる。応答信号の波長指定は、探索信号に応答信号の波長をλUnとする旨の命令を含めてもよいし、λDmの探索信号を受信した際には波長可変光送信器24の出力光波長をλUnに設定するよう子ノード200c内の波長制御回路を予め設定しておいてもよい。親ノード100cへ伝送された応答信号は、波長ルーティング手段152にて波長に応じて振り分けられた後、光受信器19で受信される。図13は、探索信号が波長ルーティング手段152に入力された光送受信器側端子と同一の端子から、応答信号が光受信器19へ出力される構成であるが、異なる端子から出力されてもよい。図13では、識別子としてLLIDを用いている。
 親ノード100cは、未登録である子ノード200c#kからの登録要求である応答信号を受信した場合、第2の実施形態と同様に、既登録の子ノード200cと重複が起こらないように、送信元の子ノード200c#kへ識別子を付与する。同時に、探索信号および応答信号の送受信に要した時間T(λDm、λUn)から、当該の子ノード200c#kに登録後に割り当てる下り波長と上り波長の組み合わせ全てについてRTTを算出し、図17の管理テーブルを作成する。
 本実施形態では、子ノード200cの新規登録時にディスカバリプロセスを通じて付与した識別子が割当波長の変更後も固定的に付与され、RTTと併せた全子ノード200c分の情報を記載した図17のような管理テーブルを親ノード100c内に備えるため、割当波長の変更に伴うディスカバリプロセスのやり直しが不要である。更に、図17には子ノード200cに割り当てる下り波長と上り波長の組み合わせ全てについてRTTが記載されているため、親ノード100cは、各子ノード200cの上り信号光の送信タイミングを決定する際に、割当波長によらず高精度のRTT情報を用いることができる。よって、異なる子ノード200cからの上り信号光間のガードインターバルを小さくして帯域利用効率を向上することができる。
[第6の実施形態]
 図14は、第6の実施形態における光通信システムである波長可変型WDM/TDM-PONの構成である。第5の実施形態における波長可変型WDM/TDM-PONの構成との違いは、親ノード内の波長ルーティング手段152の光ファイバ伝送路側端子の数Mが光送受信器側端子の数Hより大きいであることである。波長ルーティング手段152における下り信号光および上り信号光の入出力関係を、それぞれ図20及び図21に示す。第5の実施形態と同様に、各々の子ノード200cには、ディスカバリプロセスを通じて付与されたLLID等の識別子が割当波長の変更によらず固定的に付与され、親ノード100cは、各々の子ノード200cと識別子との対応に加えて、各々の子ノード200cとの間でのフレームのRTTを割当波長の組み合わせ全てについて記録した図17のような管理テーブルを備える。図17では、識別子としてLLIDを用いている。
 図15に、ディスカバリプロセスを通じて識別子が付与される手順を示す。
 親ノード100c内の任意の1つの光送信器が波長λD1~λDMの探索信号を時間多重して送信する。これにより、全ての光ファイバ伝送路側端子を通じて光ファイバ伝送路250に探索信号を出力できる。
 探索信号には、受信した子ノード200cが親ノード100cに未登録であり識別子を付与されていない場合、登録要求である応答信号を送信する旨の命令が記載されている。図10の光通信システムでは、未登録である子ノード200cは、波長可変フィルタ22の透過波長または局発光源の出力光波長をlD_1~lD_Mの範囲で周期的に掃引する方法などにより、未登録の子ノードが探索信号を確実に受信することができる。応答信号の波長指定は、探索信号に応答信号の波長をλUnとする旨の命令を含めてもよいし、λDmの探索信号を受信した際には波長可変光送信器24の出力光波長をλUnに設定するよう子ノード200c内の波長制御回路を予め設定しておいてもよい。親ノード100cへ伝送された応答信号は、波長ルーティング手段152にて波長に応じて振り分けられた後、光受信器19で受信される。図15は、探索信号が波長ルーティング手段152に入力された光送受信器側端子と同一の端子から、応答信号が光受信器へ出力される構成であるが、異なる端子から出力されてもよい。図15では、識別子としてLLIDを用いている。
 親ノード100cは、未登録である子ノード200c#kからの登録要求である応答信号を受信した場合、第2の実施形態と同様に、既登録の子ノード200cと重複が起こらないように、送信元の子ノード200c#kへ識別子を付与する。同時に、探索信号および応答信号の送受信に要した時間T(λDm、λUn)から、当該の子ノード200c#kに登録後に割り当てる下り波長と上り波長の組み合わせ全てについてRTTを算出し、図17の管理テーブルを作成する。
 本実施形態では、子ノード200cの新規登録時にディスカバリプロセスを通じて付与した識別子が割当波長の変更後も固定的に付与され、RTTと併せた全子ノード200c分の情報を記載した図17のような管理テーブルを親ノード100c内に備えるため、割当波長の変更に伴うディスカバリプロセスのやり直しが不要である。更に、図17には子ノード200cに割り当てる下り波長と上り波長の組み合わせ全てについてRTTが記載されているため、親ノード100cは、各子ノード200cの上り信号光の送信タイミングを決定する際に、割当波長によらず高精度のRTT情報を用いることができる。よって、異なる子ノード200cからの上り信号光間のガードインターバルを小さくして帯域利用効率を向上することができる。
 以下は、本実施形態のディスカバリ方法、光通信方法、及び光通信システムを説明したものである。
(1):1個の親ノードと複数の子ノードが光ファイバ伝送路250を介して接続され、
前記親ノードは、波長λD1~λDM(Mは2以上の整数)である下り信号光を送出し、波長λU1~λUN(Nは2以上の整数)である上り信号光が入力され、
前記子ノードのうち前記親ノードに登録済みの前記子ノードは、λD1~λDM、λU1~λUNから1つずつの波長がそれぞれ下り波長と上り波長として前記親ノードから割り当てられ、割り当てられている前記下り波長と同じ波長である前記下り信号光を受信し、割り当てられている前記上り波長で前記上り信号光を送出する光通信システムにおいて、前記子ノードのうち前記親ノードに未登録である前記子ノードを登録するディスカバリ方法であり、
前記親ノードは、全ての前記子ノードに向けて探索信号を送信し、
前記子ノードのうち前記親ノードに未登録である前記子ノードは、前記探索信号を受信した時に、前記親ノードに向けて応答信号を送信し、
前記親ノードは、前記応答信号を受信した時に、送信元の前記子ノードを子ノードごとに固有の識別子に対応させて登録するとともに、前記探索信号および前記応答信号の送受信に要した時間から、当該の前記子ノードに登録後に割り当てる前記下り波長と前記上り波長の組み合わせ全てについて、当該の前記子ノードとの間でのフレームの往復伝搬時間を記憶することを特徴とするディスカバリ方法。
(2):前記光ファイバ伝送路250における屈折率の波長依存性を用いて、前記探索信号および前記応答信号の送受信に要した時間から、前記子ノードに割り当てる前記下り波長と前記上り波長の全組み合わせにおける前記往復伝搬時間を算出することを特徴とする上記(1)に記載のディスカバリ方法。
(3):前記親ノードは、単一の波長で前記探索信号を送信し、
前記親ノードに未登録である前記子ノードは、前記探索信号を受信可能であることを特徴とする上記(1)または(2)に記載のディスカバリ方法。
(4):前記親ノードは、複数の光送受信器と、光合分波手段151を備え、
前記複数の光送受信器が、光送受信器ごとに固有の波長の信号光を送受信し、
前記光合分波手段151が、各々の前記光送受信器と接続され、前記複数の光送受信器からの波長の相異なる前記下り信号光を波長多重して前記光ファイバ伝送路250に出力する親ノードである前記光通信システムにおいて、
前記光送受信器のうちの1個が前記単一の波長である前記探索信号を送信し、
前記子ノードが送信する前記応答信号は、前記光合分波手段151により分岐された後、前記光送受信器のうちのいずれかで受信されることを特徴とする上記(3)に記載のディスカバリ方法。
(5):前記親ノードは、複数の光送受信器と、波長ルーティング手段152を備え、
前記複数の光送受信器が、波長λD1~λDM/λU1~λUNである信号光を送信/受信可能であり、
前記波長ルーティング手段152が、各々の前記光送受信器と別々の光送受信器側端子を介して接続され、前記複数の光送受信器からの前記下り信号光を波長に応じて異なる光ファイバ伝送路側端子から前記光ファイバ伝送路250に出力する親ノードである前記光通信システムにおいて、
前記光送受信器のうちの全部または複数個が前記単一の波長である前記探索信号を送信し、
前記子ノードが送信する前記応答信号は、前記波長ルーティング手段152により異なる前記光送受信器側端子を介して前記光送受信器のうちのいずれかで受信されることを特徴とする上記(3)に記載のディスカバリ方法。
(6):前記親ノードは、λD1~λDMのうちの全部または複数の波長で前記探索信号を送信し、
前記親ノードに未登録である前記子ノードは、前記λD1~λDMのうちの全部または複数の波長のうちの少なくとも1つの波長である前記探索信号を受信可能であることを特徴とする上記(1)または(2)に記載のディスカバリ方法。
(7):前記親ノードは、複数の光送受信器と、光合分波手段151を備え、
前記複数の光送受信器が、光送受信器ごとに固有の波長の信号光を送受信し、
前記光合分波手段151が、各々の前記光送受信器と接続され、前記複数の光送受信器からの波長の相異なる前記下り信号光を波長多重して前記光ファイバ伝送路250に出力する親ノードである前記光通信システムにおいて、
前記光送受信器のうちの少なくとも1個の光送受信器を用いて、波長λD1~λDMの前記探索信号を送信し、
前記探索信号を送信する前記光送受信器の中に、複数波長の前記探索信号を送信する前記光送受信器がある場合には、少なくとも当該光送受信器は送信光波長の変更が可能であり、前記複数波長の前記探索信号を時間多重して送信し、
前記子ノードが送信する前記応答信号は、前記光合分波手段151により分岐された後、前記光送受信器のうちのいずれかで受信されることを特徴とする上記(6)に記載のディスカバリ方法。
(8):前記親ノードは、複数の光送受信器と、波長ルーティング手段152を備え、
前記複数の光送受信器が、波長λD1~λDM/λU1~λUNである信号光を送信/受信可能であり、
前記波長ルーティング手段152が、各々の前記光送受信器と別々の光送受信器側端子を介して接続され、前記複数の光送受信器からの前記下り信号光を波長に応じて異なる光ファイバ伝送路側端子から前記光ファイバ伝送路250に出力する親ノードである前記光通信システムにおいて、
前記光送受信器は、λD1~λDMのうちの全部または複数の波長で前記探索信号を時間多重して送信し、
前記子ノードが送信する前記応答信号は、前記波長ルーティング手段152により波長に応じて異なる前記光送受信器側端子を介して前記光送受信器のうちのいずれかで受信されることを特徴とする上記(6)に記載のディスカバリ方法。
(9):1個の親ノードと複数の子ノードが光ファイバ伝送路250を介して接続され、
前記親ノードは、波長λD1~λDM(Mは2以上の整数)である下り信号光を送出し、波長λU1~λUN(Nは2以上の整数)である上り信号光が入力され、
前記子ノードは、λD1~λDM、λU1~λUNから1つずつの波長がそれぞれ下り波長と上り波長として前記親ノードから割り当てられ、割り当てられている前記下り波長と同じ波長である前記下り信号光を受信し、割り当てられている前記上り波長で信号光を送出する光通信システムの光通信方法であり、
前記親ノードで、同じ前記上り波長を割り当てられている異なる前記子ノードが送出する前記信号光同士が衝突しないように、各々の前記子ノードに割り当てる前記下り波長と前記上り波長の組み合わせ全てについて記憶している各々の前記子ノードとの間でのフレームの往復伝搬時間を考慮して、前記上り信号光のフレーム長および送信時刻を決定する手順と、
前記親ノードが、前記上り信号光のフレーム長および送信時刻を、前記子ノードに通知する手順と、
前記子ノードで、前記親ノードから通知された前記フレーム長である前記上り信号光を、前記親ノードから通知された前記送信時刻に送出する手順とを行うことを特徴とする光通信方法。
(10):1個の親ノードと複数の子ノードが光ファイバ伝送路250を介して接続され、
前記親ノードは、波長λD1~λDM(Mは2以上の整数)である下り信号光を送出し、波長λU1~λUN(Nは2以上の整数)である上り信号光が入力され、
前記子ノードは、λD1~λDM、λU1~λUNから1つずつの波長がそれぞれ下り波長と上り波長として前記親ノードから割り当てられ、割り当てられている前記下り波長と同じ波長である前記下り信号光を受信し、割り当てられている前記上り波長で前記上り信号光を送出する光通信システムであり、
各々の前記子ノードには、子ノードごとに固有の識別子が固定的に付与され、
前記親ノードは、各々の前記子ノードと前記識別子との対応に加えて、各々の前記子ノードに割り当てる前記下り波長と前記上り波長の組み合わせ全てについて各々の前記子ノードとの間でのフレームの往復伝搬時間を記録した管理テーブルを備えることを特徴とする光通信システム。
(11):前記子ノードは、前記親ノードから通知されたフレーム長である前記上り信号光を、前記親ノードから通知された送信時刻に送出し、
前記親ノードからの通知は、同じ前記上り波長を割り当てられている異なる前記子ノードからの前記上り信号光同士が衝突しないように、前記管理テーブルに記載の前記往復伝搬時間を考慮して、前記親ノードにて決定されることを特徴とする上記(10)に記載の光通信システム。
(12):前記親ノードは、複数の光送受信器と、光合分波手段151を備え、
前記複数の光送受信器が、光送受信器ごとに固有の波長の前記下り信号光を送受信し、
前記光合分波手段151が、各々の前記光送受信器と接続され、前記複数の光送受信器からの波長の相異なる前記下り信号光を波長多重して前記光ファイバ伝送路250に出力し、
前記子ノードが送信する前記上り信号光は、前記光合分波手段151により分岐された後、前記光送受信器のうちのいずれかで受信されることを特徴とする上記(10)または(11)に記載の光通信システム。
(13):前記親ノードは、複数の光送受信器と、波長ルーティング手段152を備え、
前記複数の光送受信器が、波長λD1~λDM/λU1~λUNである信号光を送信/受信可能であり、
前記波長ルーティング手段152が、各々の前記光送受信器と別々の光送受信器側端子を介して接続され、前記複数の光送受信器からの前記下り信号光を波長に応じて異なる光ファイバ伝送路側端子から前記光ファイバ伝送路250に出力する親ノードである前記光通信システムにおいて、
前記子ノードが送信する前記上り信号光は、前記波長ルーティング手段152により波長に応じて異なる前記光送受信器側端子を介して前記光送受信器のうちのいずれかで受信されることを特徴とする上記(10)または(11)に記載の光通信システム。
11:光送信器
12:波長合分波手段
13:波長フィルタ
14:受光器
15:光受信器
16:コヒーレント受信器
17:局発光源
18:波長可変光送信器
19:光受信器
21:受光器
22:波長可変フィルタ
23:光受信器
24:波長可変光送信器
26:波長合分波手段
27:コヒーレント受信器
28:局発光源
51:OSU
100a、100b、100c:親ノード
151:光合分波手段
152:波長ルーティング手段
200、200a、200b、200c:子ノード
250:光ファイバ伝送路
300、300a、301、301a、301b、302、302a、302b:光通信システム

Claims (8)

  1.  親ノードと複数の子ノードとが光ファイバ伝送路で接続される波長可変型WDM/TDM-PON(WDM:Wavelength Division Multiplexing、TDM:Time Division Multiplexing、PON:Passive Optical Network)でのディスカバリ方法であって、
     前記親ノードが送信した探索信号に応答信号で応答した未登録の前記子ノードに波長変更時に不変である識別子を付与するとともに、
     前記親ノードと前記子ノードとの間の往復伝搬時間(RTT:Round Trip Time)及び前記光ファイバ伝送路の屈折率の波長依存性を用いて、前記識別子毎に前記親ノードから前記子ノードへの下り信号の下り波長と前記子ノードから前記親ノードへの上り信号の上り波長との全ての組み合わせにおけるRTTを算出するレンジングを行い、前記レンジングで算出した前記全ての組み合わせにおけるRTTを記憶することを特徴とするディスカバリ方法。
  2.  親ノードと複数の子ノードとが光ファイバ伝送路で接続される波長可変型WDM/TDM-PONでの光通信方法であって、
     前記子ノードに付与した識別子を波長変更時に不変とし、
     前記識別子毎に前記親ノードから前記子ノードへの下り信号の下り波長と前記子ノードから前記親ノードへの上り信号の上り波長との全ての組み合わせにおけるRTTをテーブルに記憶し、
     前記テーブルを参照して前記子ノードに割り当てられている下り波長と上り波長の組み合わせに対応するRTTを検出し、前記RTTを考慮して上り信号の送信許容時間を決定して前記子ノードに通知することを特徴とする光通信方法。
  3.  前記全ての組み合わせにおけるRTTを請求項1に記載のディスカバリ方法で行う前記レンジングで算出することを特徴とする請求項2に記載の光通信方法。
  4.  波長λD1~λDM(Mは2以上の整数)である下り信号を送出し、波長λU1~λUN(Nは2以上の整数)である上り信号が入力される親ノードと、
     それぞれに波長変更時に不変である識別子が付与され、下り波長として波長λD1~λDMのいずれか一つ、上り波長として波長λU1~λUNのいずれか一つが前記親ノードから割り当てられ、割り当てられている下り波長の下り信号を受信し、割り当てられている上り波長で上り信号を送出する複数の子ノードと、
     前記親ノードと複数の前記子ノードとを接続する光ファイバ伝送路と、
    を備える光通信システムであって、
     前記親ノードは、
     前記識別子毎に下り波長と上り波長との全ての組み合わせにおけるRTTを記憶するテーブルと、
     前記テーブルを参照して前記子ノードに割り当てられている下り波長と上り波長の組み合わせに対応するRTTを検出し、前記RTTを考慮して上り信号の送信許容時間を決定して前記子ノードに通知する制御器と、
    を有することを特徴とする光通信システム。
  5.  前記親ノードは、
     それぞれ固有の下り波長と固有の上り波長が設定される複数の光送受信器と、
     各々の前記光送受信器と接続され、前記光送受信器からの波長の相異なる下り信号を波長多重して前記光ファイバ伝送路に出力し、前記光ファイバ伝送路からの上り信号を分岐して前記光送受信器に結合する光合分波手段と、
    を有しており、
     前記制御器は、
     ディスカバリ時に、1の前記光送受信器に1の下り波長の探索信号を送信させるとともに、いずれかの前記光送受信器で受信した未登録の前記子ノードが送信する応答信号を用いて請求項1に記載のディスカバリ方法を実行することを特徴とする請求項4に記載の光通信システム。
  6.  前記親ノードは、
     波長λD1~λDMの下り波長が設定可能な複数の光送受信器と、
     各々の前記光送受信器が光送受信器側端子を介して接続され、前記光送受信器からの前記下り信号を下り波長に応じて異なる光ファイバ伝送路側端子から出力して前記光ファイバ伝送路に結合し、前記光ファイバ伝送路側端子に入力された前記光ファイバ伝送路から 上り信号を上り波長に応じて異なる前記光送受信器側端子から出力して前記光送受信器に結合する波長ルーティング手段と、
    を有しており、
     前記制御器は、
     ディスカバリ時に、複数の前記光送受信器に1の下り波長の探索信号を送信させるとともに、いずれかの前記光送受信器で受信した未登録の前記子ノードが送信する応答信号を用いて請求項1に記載のディスカバリ方法を実行することを特徴とする請求項4に記載の光通信システム。
  7.  前記親ノードは、
     波長λD1~λDMの下り波長のうちの少なくとも1波長が設定可能な複数の光送受信器と、
     各々の前記光送受信器と接続され、前記光送受信器からの波長の相異なる下り信号を波長多重して前記光ファイバ伝送路に出力し、前記光ファイバ伝送路からの上り信号を分岐して前記光送受信器に結合する光合分波手段と、
    を有しており、
     前記制御器は、
     ディスカバリ時に、少なくとも1の前記光送受信器を用いて複数の下り波長の探索信号を送信させるとともに、いずれかの前記光送受信器で受信した未登録の前記子ノードが送信する応答信号を用いて請求項1に記載のディスカバリ方法を実行することを特徴とする請求項4に記載の光通信システム。
  8.  前記親ノードは、
     波長λD1~λDMの下り波長が設定可能な複数の光送受信器と、
     各々の前記光送受信器が光送受信器側端子を介して接続され、前記光送受信器からの前記下り信号を下り波長に応じて異なる光ファイバ伝送路側端子から出力して前記光ファイバ伝送路に結合し、前記光ファイバ伝送路側端子に入力された前記光ファイバ伝送路からの上り信号を上り波長に応じて異なる前記光送受信器側端子から出力して前記光送受信器に結合する波長ルーティング手段と、
    を有しており、
     前記制御器は、
     ディスカバリ時に、1の前記光送受信器に複数の下り波長の探索信号を送信させるとともに、いずれかの前記光送受信器で受信した未登録の前記子ノードが送信する応答信号を用いて請求項1に記載のディスカバリ方法を実行することを特徴とする請求項4に記載の光通信システム。
PCT/JP2013/082460 2012-12-05 2013-12-03 ディスカバリ方法、光通信方法、及び光通信システム WO2014087994A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014551101A JP5894298B2 (ja) 2012-12-05 2013-12-03 ディスカバリ方法、光通信方法、及び光通信システム
CN201380063902.3A CN104937883B (zh) 2012-12-05 2013-12-03 发现方法、光通信方法和光通信系统
US14/648,878 US9479284B2 (en) 2012-12-05 2013-12-03 Discovery method, optical communication method, and optical communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-266406 2012-12-05
JP2012266406 2012-12-05

Publications (1)

Publication Number Publication Date
WO2014087994A1 true WO2014087994A1 (ja) 2014-06-12

Family

ID=50883412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082460 WO2014087994A1 (ja) 2012-12-05 2013-12-03 ディスカバリ方法、光通信方法、及び光通信システム

Country Status (4)

Country Link
US (1) US9479284B2 (ja)
JP (1) JP5894298B2 (ja)
CN (1) CN104937883B (ja)
WO (1) WO2014087994A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016114199A1 (ja) * 2015-01-16 2016-07-21 日本電信電話株式会社 局側装置及び波長制御方法
JP2016143901A (ja) * 2015-01-29 2016-08-08 Kddi株式会社 Olt、ponシステムおよびプログラム
JP2016163069A (ja) * 2015-02-26 2016-09-05 日本電信電話株式会社 局側装置及びマルチキャスト配信方法
JP2017143378A (ja) * 2016-02-09 2017-08-17 日本電信電話株式会社 通信装置及び波長割当方法
KR20190114137A (ko) * 2018-03-29 2019-10-10 엘에스산전 주식회사 Hvdc 시스템의 밸브 제어기 및 밸브 모듈
WO2024069807A1 (ja) * 2022-09-28 2024-04-04 日本電信電話株式会社 光通信装置及び光通信経路開通方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014131352A1 (en) * 2013-02-26 2014-09-04 Zte Corporation Channel map for optical network unit activation and rogue behavior prevention
WO2015134407A1 (en) * 2014-03-03 2015-09-11 Adc Telecommunications, Inc. Passive optical network distribution systems and components thereof
US9780878B2 (en) 2014-03-21 2017-10-03 The Boeing Company Bandwidth optimization and hitless transport in dynamic free space optical communications networks
JP6152225B2 (ja) * 2014-07-22 2017-06-21 日本電信電話株式会社 Wdm/tdm−ponシステム及びその送信開始時刻補正方法
US9820022B2 (en) * 2014-12-11 2017-11-14 Adtran, Inc. Managing network access based on ranging information
EP3446418B1 (en) * 2016-05-04 2022-02-23 Adtran, Inc. Systems and methods for performing optical line terminal (olt) failover switches in optical networks
US10630413B2 (en) * 2016-05-25 2020-04-21 Huawei Technologies Co., Ltd. Optical communications system with centralized wavelength source
US10594431B2 (en) * 2016-06-20 2020-03-17 Nippon Telegraph And Telephone Corporation Optical transceiver and control method
CN108633325A (zh) * 2017-01-24 2018-10-09 华为技术有限公司 一种无源光网络pon的通信方法、装置和系统
CN109257243B (zh) * 2017-07-14 2020-11-17 深圳市中兴微电子技术有限公司 一种往返时延确定方法、装置及计算机可读存储介质
JP2019097108A (ja) * 2017-11-27 2019-06-20 富士通株式会社 光伝送装置、光伝送システムおよび光伝送方法
US10659184B2 (en) * 2018-01-31 2020-05-19 Fujitsu Limited Optical transmission device, optical transmission method and optical transmission system
CN111224736B (zh) * 2018-11-27 2022-05-24 中国电信股份有限公司 工作波长分配方法和系统、光线路终端和光网络单元
FR3091085A1 (fr) * 2018-12-21 2020-06-26 Orange Procédé d’allocation d’un canal point-à-point à un module utilisateur d’un réseau de communication optique, produit programme d'ordinateur, médium de stockage et dispositif correspondant

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011223407A (ja) * 2010-04-12 2011-11-04 Nippon Telegr & Teleph Corp <Ntt> 光通信システム及び光通信方法
JP2011228800A (ja) * 2010-04-15 2011-11-10 Nippon Telegr & Teleph Corp <Ntt> 加入者側装置、光通信システム及び光通信方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100703349B1 (ko) * 2004-11-29 2007-04-03 삼성전자주식회사 파장분할다중 방식의 수동형 광가입자망의 동작 방법
JP4704842B2 (ja) * 2005-08-01 2011-06-22 株式会社日立製作所 Wdm型ponシステム
JP4839266B2 (ja) * 2007-06-07 2011-12-21 株式会社日立製作所 光通信システム
US9025949B2 (en) * 2011-12-09 2015-05-05 Zte Corporation Equalization delay agnostic protection switching in protected passive optical networks

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011223407A (ja) * 2010-04-12 2011-11-04 Nippon Telegr & Teleph Corp <Ntt> 光通信システム及び光通信方法
JP2011228800A (ja) * 2010-04-15 2011-11-10 Nippon Telegr & Teleph Corp <Ntt> 加入者側装置、光通信システム及び光通信方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016114199A1 (ja) * 2015-01-16 2016-07-21 日本電信電話株式会社 局側装置及び波長制御方法
JPWO2016114199A1 (ja) * 2015-01-16 2017-06-01 日本電信電話株式会社 局側装置及び波長制御方法
US10361807B2 (en) 2015-01-16 2019-07-23 Nippon Telegraph And Telephone Corporation Station-side device and wavelength control method
JP2016143901A (ja) * 2015-01-29 2016-08-08 Kddi株式会社 Olt、ponシステムおよびプログラム
JP2016163069A (ja) * 2015-02-26 2016-09-05 日本電信電話株式会社 局側装置及びマルチキャスト配信方法
JP2017143378A (ja) * 2016-02-09 2017-08-17 日本電信電話株式会社 通信装置及び波長割当方法
KR20190114137A (ko) * 2018-03-29 2019-10-10 엘에스산전 주식회사 Hvdc 시스템의 밸브 제어기 및 밸브 모듈
KR102577518B1 (ko) * 2018-03-29 2023-09-13 엘에스일렉트릭(주) Hvdc 시스템의 밸브 제어기 및 밸브 모듈
WO2024069807A1 (ja) * 2022-09-28 2024-04-04 日本電信電話株式会社 光通信装置及び光通信経路開通方法

Also Published As

Publication number Publication date
CN104937883B (zh) 2018-04-03
US20150341137A1 (en) 2015-11-26
JPWO2014087994A1 (ja) 2017-01-05
JP5894298B2 (ja) 2016-03-23
US9479284B2 (en) 2016-10-25
CN104937883A (zh) 2015-09-23

Similar Documents

Publication Publication Date Title
JP5894298B2 (ja) ディスカバリ方法、光通信方法、及び光通信システム
Grobe et al. PON in adolescence: from TDMA to WDM-PON
US7706688B2 (en) Wavelength reconfigurable optical network
JP6078163B2 (ja) プロテクション方法及び光通信システム
EP2989737B1 (en) Reconfigurable optical access network architectures
CN102106103A (zh) 光网络
JP5990434B2 (ja) 波長可変光源、波長可変送信器及び光伝送システム
JP5932725B2 (ja) 動的波長帯域割当方法
JP5639240B1 (ja) 光通信装置及び動的波長帯域割当方法
Chen et al. Novel architecture of WDM-PON based on single-fiber ring topology featuring protection and dynamic wavelength assignment
JP5364857B1 (ja) レンジング方法
JP5563689B1 (ja) 動的波長帯域割当方法及び動的波長帯域割当装置
JP6189800B2 (ja) Wdm/tdm−ponシステム及びその動的波長帯域割当方法
JP5466319B1 (ja) ディスカバリ方法
JP5492323B1 (ja) ディスカバリ方法
CA2593891C (en) Wavelength reconfigurable optical network
JP6043255B2 (ja) 光通信装置及びその省電力方法
JP6096624B2 (ja) 波長可変光送信器、波長可変光受信器、光通信システム、波長可変光送信方法、波長可変光受信方法
JP6043254B2 (ja) 光通信装置及びその省電力方法
Feng et al. Flexible, low-latency peer-to-peer networking over long-reach WDM/TDM PON systems
JP6013997B2 (ja) 動的波長帯域割当方法、親ノード及び子ノード
JP5469762B1 (ja) 送信タイミング制御方法
JP5748372B1 (ja) 波長監視方法、波長監視システム、親ノード及び子ノード
Zhao Internetworking Architectures for Optical Network Units in a Wavelength Division Multiplexed Passive Optical Network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13861136

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014551101

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14648878

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13861136

Country of ref document: EP

Kind code of ref document: A1