WO2014083866A1 - モータの絶縁検査装置およびモータの絶縁検査方法 - Google Patents

モータの絶縁検査装置およびモータの絶縁検査方法 Download PDF

Info

Publication number
WO2014083866A1
WO2014083866A1 PCT/JP2013/061388 JP2013061388W WO2014083866A1 WO 2014083866 A1 WO2014083866 A1 WO 2014083866A1 JP 2013061388 W JP2013061388 W JP 2013061388W WO 2014083866 A1 WO2014083866 A1 WO 2014083866A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
inverter
voltage
insulation inspection
insulation
Prior art date
Application number
PCT/JP2013/061388
Other languages
English (en)
French (fr)
Inventor
岡田 真一
塩田 裕基
武藤 浩隆
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to DE112013005707.7T priority Critical patent/DE112013005707B4/de
Priority to JP2014550039A priority patent/JP5995295B2/ja
Priority to US14/433,782 priority patent/US9797955B2/en
Priority to CN201380059421.5A priority patent/CN104797949A/zh
Publication of WO2014083866A1 publication Critical patent/WO2014083866A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • G01R31/343Testing dynamo-electric machines in operation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • G01R31/1263Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation
    • G01R31/1272Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation of cable, line or wire insulation, e.g. using partial discharge measurements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/0241Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the fault being an overvoltage

Definitions

  • the present invention relates to an insulation inspection device and an insulation inspection method for an inverter drive motor.
  • the present invention has been made to solve the above-described problems, and does not require a dedicated inspection device, and a voltage higher than the drive voltage of the motor is applied to easily and quickly detect deterioration of the motor insulation.
  • An object of the present invention is to provide a motor insulation inspection apparatus and insulation inspection method that can be performed.
  • a motor insulation inspection apparatus includes an inverter that drives a motor, a partial discharge detection unit that detects partial discharge of the motor and determines the soundness of the motor, and a control circuit that controls the inverter.
  • the circuit controls the inverter and adjusts the switching interval of the voltage pulse to match the pulse reciprocation time between the inverter and the motor, thereby generating a surge voltage exceeding the motor drive voltage between the motor and the ground. It is.
  • a motor insulation inspection method uses a motor insulation inspection device that includes an inverter that drives a motor, a partial discharge detector that determines the soundness of the motor, and a control circuit that controls the inverter.
  • the first step of setting the value of the test voltage to be applied, and the control circuit sets the switching voltage pulse interval of the inverter in order to set the surge voltage exceeding the motor drive voltage that can be generated between the motor and the ground to the test voltage.
  • the motor insulation inspection apparatus is configured as described above, a dedicated inspection apparatus is not required, and a voltage higher than the drive voltage of the motor is applied to easily and quickly reduce deterioration of the motor insulation. It is possible to provide an insulation inspection apparatus for a motor that can be detected.
  • the motor insulation inspection method according to the present invention comprises the steps described above, a dedicated inspection device is not required, and a voltage higher than the motor drive voltage is applied to easily and quickly detect deterioration of the motor insulation. It is possible to provide a method for inspecting motor insulation.
  • Embodiment 1 includes an inverter that drives a motor, a partial discharge detector that determines the soundness of the motor, and a control circuit that controls the inverter, and the control circuit sets the switching interval of the inverter to the pulse reciprocation between the inverter and the motor.
  • the present invention relates to an insulation inspection device for a motor that performs an insulation inspection by generating a ground-to-ground voltage that exceeds the surge voltage during driving by adjusting to match the propagation time. Further, in this motor insulation test apparatus, the control circuit adjusts the switching time of each phase of the inverter to generate an interphase voltage exceeding the surge voltage at the time of driving the motor to perform the insulation test.
  • FIGS. 1 and 8 are configuration diagrams of the motor insulation inspection apparatus, FIG. 3 and 4 which are diagrams of voltage, FIG. 5 which is a diagram of surge voltage between the ground, FIG. 6 which is a principle diagram of surge voltage generation, FIG. 7 which is an explanatory diagram of surge voltage generation, and an explanatory diagram of partial discharge detection This will be described with reference to FIG.
  • FIG. 1 shows a configuration related to a motor insulation inspection apparatus 1 using an inverter according to Embodiment 1 of the present invention.
  • a motor insulation inspection system includes a motor insulation inspection apparatus 1 and a motor 2 that is an object of insulation inspection.
  • the motor insulation inspection apparatus 1 drives a motor 2 and generates a test voltage (surge voltage) for insulation inspection, which will be described in detail later, and a three-phase (U, V, W phase) drive inverter 3;
  • a control circuit 3a for controlling switching of the switching element of the inverter 3, a DC power source 4, a cable 5 for driving the motor 2 laid between the motor 2 and the inverter 3, and a motor by detecting partial discharge in an insulation test 2 is composed of a partial discharge detector 6 for determining the soundness of 2.
  • the DC power supply 4 is used as the drive power supply for the inverter 3.
  • the AC power supply can be converted into a DC voltage by a rectifier circuit.
  • V is the voltage at which the inverter 3 drives the motor 2 during normal operation.
  • FIG. 2 shows voltage pulse waveforms between the U phase voltage, the V phase voltage, and the UV phase.
  • a dotted line (A) indicates a voltage pulse waveform (inverter end voltage pulse) at the end of the inverter 3
  • a solid line (B) indicates a voltage pulse waveform (motor end voltage pulse) at the end of the motor 2.
  • the cable impedance is smaller than the impedance of the motor, and when the rise time of the voltage pulse of the inverter output is less than or equal to the pulse round-trip propagation time in the cable, the voltage pulse 2 at the end of the inverter 3 is connected to the end of the motor 2 as shown in FIG. Double surge voltage is generated.
  • FIGS. 3 and 4 a case where a surge voltage is generated between phases will be described with reference to FIGS. 3 and 4 by taking U phase and V phase as examples. 3 and 4, A represents an inverter end voltage pulse, and B represents a motor end voltage pulse.
  • the control circuit 3 a switches the U phase and V phase of the inverter 3 simultaneously. Specifically, the V phase is switched from OFF to ON at the timing when the U phase is switched from ON to OFF.
  • the U phase surge voltage and the V phase surge voltage are superimposed, and a voltage of 3 V can be generated between the UV phases.
  • FIG. 3 shows an example in which a 3V surge voltage is generated on the negative side, a 3V surge voltage can be generated on the positive side by switching on and off of switching between the U phase and the V phase.
  • FIG. 4 a case where the switching of the U phase and the V phase of the inverter 3 is shifted at the same time will be described.
  • a surge voltage of less than 3 V can be generated between the phases.
  • a surge voltage of 2.7 V is generated between the UV phases.
  • FIG. 5 shows a voltage waveform when a surge voltage of 3 V is generated between the U phase and the ground according to the generation principle described later.
  • A represents an inverter end voltage pulse
  • B represents a motor end voltage pulse
  • C represents the first adjustment of the switching interval
  • D represents the second adjustment of the switching interval.
  • the U phase is turned on from the switching-off state at the inverter end, and is switched off after the pulse reciprocating propagation time has elapsed.
  • the U phase is turned off from switching on at the inverter end, and the switching is turned on after the pulse reciprocating propagation time elapses.
  • a negative surge voltage of 2V usually 1V
  • a negative surge voltage of 3 V can generate a surge voltage of 3 V on the positive side.
  • FIG. 6 illustrates the principle of generation of the surge voltage (3 V) between the above-mentioned grounds.
  • FIG. 6 is an explanatory diagram corresponding to the second adjustment of the switching interval.
  • E represents propagation to the motor side
  • F represents a surge voltage
  • G represents a reflected wave from the motor end.
  • the impedance of the cable is larger than the impedance of the inverter end, so that the polarity of the voltage pulse is reversed and reflected toward the motor end.
  • time T2 when the inverter element is switched (off to on), the reflected wave and the inverter output voltage pulse propagate to the motor end simultaneously.
  • a surge occurs with respect to the 2 V voltage of the reflected wave and the voltage pulse, so that a voltage change of 4 V occurs.
  • a voltage of 3V is generated with reference to 0V.
  • Generation of a 3V surge voltage can be realized by matching the switching interval (time difference between time T1 and time T2) to the pulse round-trip propagation time.
  • the switching interval time difference between time T1 and time T2
  • an arbitrary surge voltage of 2 V to 3 V can be generated at the motor end.
  • FIG. 7 shows the relationship between the switching interval and the surge voltage.
  • the pulse round-trip propagation time per numerical value 1 of the switching interval (time difference between time T1 and time T2) is shown.
  • Switching interval 1 corresponds to one pulse round-trip propagation time
  • switching interval 2 corresponds to two pulse round-trip propagation times.
  • an arbitrary surge voltage can be generated by adjusting the switching interval. Since the reflected wave of the voltage pulse attenuates, the surge voltage is actually less than ⁇ 2V.
  • FIG. 7 is a diagram corresponding to the first adjustment of the switching interval in FIG. In the case of the second adjustment of the switching interval, the peak value of the surge voltage is + 3V.
  • FIG. 5 to FIG. 7 explain the surge voltage with respect to the ground of each phase, but switching of switching elements is performed simultaneously in two phases, for example, U phase and V phase, and the switching interval is set as the pulse round-trip propagation time in the cable. By doing so, a higher surge voltage can be generated between the UV phases. For example, when a voltage pulse for the first adjustment of the switching interval is generated in the U phase and a voltage pulse for the second adjustment of the switching interval is generated in the V phase, a surge voltage of 5 V is generated between the UV phases. Can do.
  • the voltage pulse switching interval is adjusted to match the pulse reciprocal propagation time, and the polarity of the voltage pulse is reversed between the two phases to maximize the surge voltage during motor driving between the phases.
  • a surge voltage of 5 times can be generated.
  • H represents the current flowing through the test object
  • I represents the partial discharge current.
  • the soundness of the motor 2 is determined by detecting a partial discharge when a surge voltage is applied.
  • FIG. 8 is obtained by adding a current sensor 7 and an antenna 8 as a detector for detecting a partial discharge signal of the motor 2 to the configuration diagram of FIG. Signals are input from the current sensor 7 and the antenna 8 to the partial discharge detection unit 6 and signal processing is performed to detect partial discharge.
  • the soundness of the insulation in the motor 2 can be inspected by checking the presence or absence of partial discharge of the motor 2.
  • the presence / absence of partial discharge can be examined by measuring the current with the current sensor 7 or the like, or measuring the electromagnetic wave radiated when the partial discharge is generated with the antenna 8.
  • the surge voltage of the insulation test has a fast rise time, the charging current flows through the motor 2 and the partial discharge signal measured by the current sensor 7 is superimposed on the charging current. In addition, the electromagnetic wave radiated by the charging current to the antenna 8 is superimposed on the partial discharge signal. For this reason, the partial discharge detection unit 6 performs high-pass filter processing to detect only high-frequency partial discharge signals.
  • the motor insulation inspection apparatus 1 includes the inverter that drives the motor, the partial discharge detection unit that determines the soundness of the motor, and the control circuit that controls the inverter. Adjusts the switching interval of the inverter to match the pulse reciprocation propagation time between the inverter and the motor to generate a voltage to ground of up to 3 times exceeding the surge voltage during driving, and also adjusts the switching time of each phase of the inverter Thus, the insulation test is performed by generating the inter-phase voltage of up to 3 times exceeding the surge voltage when the motor is driven. For this reason, the motor insulation inspection apparatus 1 does not require a dedicated inspection apparatus, and can easily detect the deterioration of the motor insulation early by applying a voltage higher than the motor drive voltage.
  • the motor insulation inspection apparatus 1 adjusts the switching interval of the voltage pulse so as to match the pulse round-trip propagation time for the two phases of the inverter, and reverses the positive / negative of the voltage pulse between the two phases.
  • a surge voltage of up to 5 times exceeding the surge voltage at the time of driving the motor can be generated between the two phases.
  • FIG. 10 which is a main configuration diagram of the motor insulation inspection device 20
  • FIG. 11 which is a diagram of surge voltage
  • FIG. 11 which is a diagram illustrating the surge voltage The difference will be mainly described based on 12.
  • FIG. 10 shows only components necessary for the description.
  • A represents an inverter end voltage pulse
  • B represents a motor end voltage pulse.
  • the difference from the motor insulation inspection apparatus 1 according to the first embodiment is that a gate resistance adjusting circuit 21 is added.
  • the first embodiment has been described on the assumption that the rise time of the voltage pulse of the inverter is early, that is, the pulse round-trip propagation time between the inverter 3 and the motor 2 is earlier. A surge voltage generated when the rise time of the inverter voltage pulse is slow will be described with reference to FIGS. 11 and 12.
  • FIG. 11 A surge voltage generated when the rise time of the inverter voltage pulse is slow will be described with reference to FIGS. 11 and 12.
  • FIG. 11 shows the surge voltage at the end of the motor 2 when the rise time of the voltage pulse of the inverter 3 is slow, taking the U phase as an example.
  • the rise time of the voltage pulse is longer than the cable propagation round-trip time of the voltage pulse, from the principle of surge generation in FIG. 6, the polarity reflected from the inverter 3 is inverted before the surge reaches the double at the motor 2 end.
  • the surge voltage becomes less than 2V in order for the voltage pulse to reach the end of the motor 2.
  • FIG. 11 shows a surge voltage of 1.2V.
  • FIG. 12 shows the relationship between the generated surge voltage and the pulse round-trip propagation time / pulse rise time.
  • the surge voltage is determined by the ratio between the pulse round-trip propagation time and the pulse rise time, and varies from 1V to 2V.
  • the gate resistance adjustment circuit 21 is provided to accelerate the rise of the inverter pulse. Specifically, by providing a terminal for connecting a resistor in parallel to the gate resistance of the switching element of the inverter 3 and adjusting the rise time of the voltage pulse to be equal to or less than the pulse round-trip propagation time during the insulation test, the motor 2 A surge voltage of 2V can be generated at the end.
  • the rise time of the voltage pulse can be made shorter than or equal to the pulse round-trip propagation time by adding the gate resistance adjusting circuit 21 of the second embodiment. For this reason, the insulation test described in Embodiment 1 can be performed.
  • the rise time of the voltage pulse of the inverter 3 cannot be less than or equal to the pulse reciprocation propagation time, the length of the cable 5 between the inverter 3 and the motor 2 is lengthened to make the pulse reciprocation propagation time the voltage pulse rise time. It can be longer.
  • the motor insulation inspection apparatus 20 adds the gate resistance adjustment circuit 21 so that the rise time of the voltage pulse is propagated in a round-trip manner. Can be less than an hour. Therefore, the motor insulation test apparatus 20 can perform the insulation test described in the first embodiment. Therefore, a dedicated inspection device is not required, and a voltage higher than the drive voltage of the motor can be applied to easily and quickly detect the deterioration of the motor insulation.
  • Embodiment 3 FIG.
  • the motor insulation inspection apparatus according to the third embodiment is provided with a new insulation inspection setting unit for storing insulation inspection data and executing an insulation inspection in the motor insulation inspection apparatus 1 according to the first embodiment.
  • FIG. 13 is a configuration diagram of the motor insulation inspection apparatus 30.
  • the same or corresponding parts as those in FIGS. 1 and 8 are denoted by the same reference numerals.
  • the difference between the motor insulation inspection apparatus 30 according to the third embodiment and the motor insulation inspection apparatus 1 according to the first embodiment is that an insulation inspection setting unit 31 is newly provided. Since the insulation inspection setting unit 31 is provided, the motor insulation inspection device 30 can store the motor drive voltage, the pulse round-trip propagation time between the inverter and the motor, and the inspection procedure data. The motor insulation inspection device 30 can automatically read out the data stored during the insulation inspection and perform an insulation inspection at a designated test voltage (surge voltage).
  • the motor insulation inspection device 30 sets the value of the surge voltage to be applied, the mode to be applied (between phases and ground), and the test procedure from the outside in accordance with the operation status and results of the motor 2, so that the maintenance staff It is possible to reduce the burden and to perform a more appropriate insulation test.
  • the inspection data of the insulation inspection can be stored in the insulation inspection setting unit 31. By appropriately taking out and analyzing this inspection data, it can be effectively used for daily and periodic inspections of motors and life prediction.
  • the motor insulation inspection apparatus of the third embodiment is provided with a new insulation inspection setting unit in the motor insulation inspection apparatus of the embodiment. For this reason, in addition to the effects of the first embodiment, the motor insulation inspection apparatus of the third embodiment can automate the insulation inspection and can easily perform a more appropriate insulation inspection. In addition, the life of the motor is extended, and there is an effect of energy saving and labor saving of inspection work.
  • Embodiment 4 uses a motor insulation inspection device that includes an inverter that drives a motor, a partial discharge detector that determines the soundness of the motor, and a control circuit that controls the inverter, and the control circuit is a surge during driving.
  • the present invention relates to a motor insulation inspection method in which an insulation inspection is performed by adjusting the switching interval of the inverter so as to match the pulse reciprocation propagation time between the inverter and the motor in order to generate a voltage to ground that exceeds the voltage by a maximum of three times.
  • this motor insulation inspection method performs an insulation inspection by adjusting the switching time of each phase of the inverter in order to generate an interphase voltage that exceeds the surge voltage at the time of driving the motor.
  • Embodiment 4 of the present invention will be described below with reference to FIG. 14 which is a flowchart relating to a motor insulation inspection method. In addition, it demonstrates with reference to FIG. 8 which is a block diagram of the insulation inspection apparatus 1 of the motor of Embodiment 1.
  • FIG. 14 is a flowchart relating to a motor insulation inspection method.
  • FIG. 8 is a block diagram of the insulation inspection apparatus 1 of the motor of Embodiment 1.
  • step 1 a test voltage value to be applied between phases and ground is determined by an insulation test (test voltage setting step).
  • the test voltage applied between the phases and between the ground is determined by the specifications of the motor to be tested and the operation results.
  • step 2 the control circuit 3a sets the surge voltage exceeding the surge voltage at the time of driving of the motor 2 that can be generated between the motor 2 and the ground to the test voltage determined in step 1.
  • the voltage pulse switching interval is adjusted to match the pulse reciprocation propagation time between the inverter 3 and the motor 2 (ground test voltage adjustment step).
  • step 3 the inverter 3 applies the test voltage (surge voltage) determined in step 1 between the ground for each of the U phase, the V phase, and the W phase (application of the ground test voltage).
  • step 4 the partial discharge detection unit 6 takes in a signal from the current sensor 7 and / or the antenna 8, detects the partial discharge signal, and determines the soundness between the motor and the ground (ground-to-ground soundness). Sex determination step).
  • step 5 the control circuit 3a sets the surge voltage exceeding the surge voltage at the time of driving of the motor 2 that can be generated between the phases of the motor 2 to the test voltage determined in step 1. Adjust the switching time of each phase (inter-phase test voltage adjustment step).
  • step 6 the inverter 3 applies the test voltage (surge voltage) determined in step 1 between the phases UV, UW, and VW (interphase test voltage application step).
  • step 7 the partial discharge detector 6 takes in a signal from the current sensor 7 and / or the antenna 8, detects the partial discharge signal, and determines the soundness between the motor phases (phase soundness). Judgment step).
  • step 8 the test condition and inspection result data are stored (data storage step), and the process ends.
  • the motor insulation inspection method includes a test voltage setting step, a ground-to-ground test voltage adjustment step, a ground-to-ground test voltage application step, a ground-to-ground soundness determination step, and an inter-phase test voltage adjustment step. And an interphase test voltage application step, an interphase soundness determination step, and a data storage step.
  • the control circuit adjusts the switching interval of the inverter to match the pulse reciprocation time between the inverter and the motor to generate a voltage to ground that exceeds the surge voltage at the time of driving. Insulation inspection can be performed by adjusting the switching time of the motor and generating an interphase voltage exceeding the surge voltage when the motor is driven. For this reason, a dedicated inspection device is not required, and a voltage equal to or higher than the driving voltage of the motor can be applied to easily and easily detect deterioration of the motor insulation.
  • Embodiment 5 FIG.
  • an inverter dedicated to a motor insulation test is used as the inverter.
  • the configuration and operation of the motor insulation inspection apparatus 40 according to the fifth embodiment are different from the motor insulation inspection apparatus 30 according to the third embodiment on the basis of FIG. 15, which is a configuration diagram of the motor insulation inspection apparatus 40. The explanation will be focused on.
  • FIG. 15 the same or corresponding parts as in FIG.
  • the difference between the motor insulation inspection device 40 of the fifth embodiment and the motor insulation inspection device 30 of the third embodiment is that, in the third embodiment, an insulation inspection is performed using an inverter for driving the motor.
  • an inverter dedicated to motor insulation inspection is used.
  • the motor insulation inspection system includes a motor insulation inspection device 40 and a motor 2 that is an object of insulation inspection.
  • the motor insulation inspection device 40 includes an inverter 41 dedicated to motor insulation inspection, a control circuit 41 a that controls the inverter 41, an inspection cable 42 that connects between the inverter 41 dedicated to motor insulation inspection and the motor 2, and the motor 2.
  • the partial discharge detection unit 6 for determining the soundness of the insulation and the insulation inspection setting unit 31 for automatically performing the insulation inspection.
  • the control circuit 41a drives the motor 2 by the inverter 41 dedicated to the motor insulation test and generates a test voltage (surge voltage) for the insulation test.
  • a connection terminal 43 for connection to the motor 2 at the time of insulation inspection is provided at the end of the inspection cable 42 on the motor 2 side.
  • a plurality of motors subject to insulation inspection are tested one by one using one inverter 41 dedicated to motor insulation inspection.
  • the motor insulation inspection device 40 and the motor to be inspected can be automatically connected, and the insulation inspection can be efficiently performed.
  • the adjustment of the motor test voltage uses the method described in the first, second, and third embodiments. That is, the control circuit 41a adjusts the switching interval of the inverter 41 dedicated for the motor insulation test so as to match the pulse reciprocation propagation time between the inverter and the motor, and generates a voltage to ground of up to three times exceeding the surge voltage at the time of driving. Insulation inspection can be performed. In addition, the control circuit 41a can perform the insulation test by adjusting the switching time of each phase of the inverter to generate a voltage between the phases that exceeds the surge voltage at the time of driving the motor by a maximum of three times.
  • the insulation inspection device 40 of the scissors motor includes the insulation inspection setting unit 31, the insulation inspection can be automatically performed as described in the third embodiment. That is, the motor insulation inspection device 40 can store the motor drive voltage, the pulse reciprocation propagation time between the inverter and the motor, and the inspection procedure data, read the data stored during the insulation inspection, and specify the specified test voltage (surge Insulation inspection at voltage) can be performed automatically. In particular, there is a track record of insulation inspection, and it is possible to efficiently carry out insulation inspection of motors with specifications that store inspection data.
  • the specifications of the inverter 41 dedicated to the motor insulation test need not be the same as the specifications of the inverter that drives the motor under test.
  • the configuration in which the inverter dedicated to the motor insulation test is used as the inverter of the motor insulation test apparatus according to the third embodiment, but the motor is used as the inverter of the motor insulation test apparatus according to the first and second embodiments.
  • An inverter dedicated to insulation inspection can also be used.
  • an inverter dedicated to motor insulation inspection can be used in the motor insulation inspection method described in the fourth embodiment.
  • the control circuit 41a adjusts the switching interval of the inverter to match the pulse round-trip propagation time between the inverter and the motor in order to generate a ground voltage exceeding the surge voltage at the time of driving. Insulation inspection can be performed.
  • the control circuit 41a can perform an insulation test by adjusting the switching time of each phase of the inverter in order to generate an interphase voltage exceeding the surge voltage when the motor is driven.
  • the motor insulation inspection apparatus is configured to use an inverter dedicated for motor insulation inspection as an inverter. For this reason, the motor insulation inspection apparatus according to the fifth embodiment can efficiently test a plurality of motors subject to insulation inspection one by one using an inverter dedicated to motor insulation inspection. By automating the insulation inspection, a more efficient insulation inspection can be performed.
  • This invention can be widely applied to inverter-driven motors because it can detect a motor insulation deterioration early and simply by applying a voltage higher than the motor drive voltage without using a dedicated inspection device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

モータの絶縁検査装置は、モータ(2)を駆動するインバータ(3)とモータの健全性を判定する部分放電検出部(6)とインバータ(3)の制御を行う制御回路(3a)とを備え、制御回路(3a)はインバータ(3)の電圧パルスのスイッチング間隔をインバータ(3)とモータ(2)間のパルス往復伝播時間に合わせるように調整することで、モータ(2)と対地間にモータ(2)の駆動電圧を越えるサージ電圧を発生させ、またインバータ各相のスイッチング時間を調整して相間にモータ(2)の駆動電圧を超えるサージ電圧を発生させて絶縁検査を行う。

Description

モータの絶縁検査装置およびモータの絶縁検査方法
 この発明は、インバータ駆動モータの絶縁検査装置および絶縁検査方法に関するものである。
 モータにおいて絶縁材料の経年劣化等により絶縁特性が低下すると部分放電が発生し、絶縁材料の劣化が促進され、最終的には絶縁破壊に至る。モータの駆動電圧に対して、部分放電開始電圧が高いことが必要である。このため、絶縁性能の低下を早期に検出するには、駆動電圧以上の過電圧を印加して絶縁検査を行う必要がある。専用の検査装置を使用せず、モータ駆動用のインバータを使用して、モータの部分放電試験を行う方法および装置が開示されている(例えば、特許文献1)。
特開2005-137127号公報(段落[0014]~[0017]、図1)
 特許文献1の開示発明では、モータの駆動電圧で部分放電発生を測定するため、絶縁材料の劣化が進行し、部分放電開始電圧がモータの駆動電圧まで低下したとき(低圧モータ)、あるいは部分放電電荷量が規定値以上に達したとき(高圧モータ)に、絶縁材料の劣化を検知する。このため、劣化検知後モータの故障までの時間が短く、モータの修理、交換ができず、モータを停止せざるをえないという問題がある。
 この発明は、上記のような問題を解決するためになされたものであり、専用の検査装置を必要とせず、モータの駆動電圧以上の電圧を印加しモータの絶縁劣化を早期に簡易的に検出することができるモータの絶縁検査装置および絶縁検査方法を提供することを目的とする。
 この発明に係るモータの絶縁検査装置は、モータを駆動するインバータと、モータの部分放電を検出しモータの健全性を判定する部分放電検出部と、インバータの制御を行う制御回路とを備え、制御回路はインバータを制御し電圧パルスのスイッチング間隔をインバータとモータ間のパルス往復伝播時間に合わせるように調整することで、モータと対地間にモータの駆動電圧を越えるサージ電圧を発生させる構成としたものである。
 この発明に係るモータの絶縁検査方法は、モータを駆動するインバータとモータの健全性を判定する部分放電検出部とインバータの制御を行う制御回路とを備えたモータの絶縁検査装置を用い、モータに印加する試験電圧の値を設定する第1ステップと、制御回路は、モータと対地間に発生しうるモータの駆動電圧を越えるサージ電圧を試験電圧に設定するために、インバータの電圧パルスのスイッチング間隔をインバータとモータ間のパルス往復伝播時間に合わせるよう調整する第2ステップと、インバータは各相の対地間に試験電圧を印加する第3ステップと、部分放電検出部は部分放電信号を検出し、モータの対地間の健全性を判定する第4ステップとから成るものである。
 この発明に係るモータの絶縁検査装置は、上記のように構成されているため、専用の検査装置を必要とせず、モータの駆動電圧以上の電圧を印加しモータの絶縁劣化を早期に簡易的に検出することができるモータの絶縁検査装置を提供することができる。
 この発明に係るモータの絶縁検査方法は、上記の各ステップから成るため、専用の検査装置を必要とせず、モータの駆動電圧以上の電圧を印加しモータの絶縁劣化を早期に簡易的に検出することができるモータの絶縁検査方法を提供することができる。
この発明の実施の形態1のモータの絶縁検査装置に係る構成図である。 この発明の実施の形態1のモータの絶縁検査装置に係るサージ電圧の図である。 この発明の実施の形態1のモータの絶縁検査装置に係る相間のサージ電圧の図である。 この発明の実施の形態1のモータの絶縁検査装置に係る相間のサージ電圧の図である。 この発明の実施の形態1のモータの絶縁検査装置に係る対地間のサージ電圧図である。 この発明の実施の形態1のモータの絶縁検査装置に係るサージ電圧発生の原理図である。 この発明の実施の形態1のモータの絶縁検査装置に係るサージ電圧発生の説明図である。 この発明の実施の形態1のモータの絶縁検査装置に係る構成図である。 この発明の実施の形態1のモータの絶縁検査装置に係る部分放電検出の説明図である。 この発明の実施の形態2のモータの絶縁検査装置に係る主要部構成図である。 この発明の実施の形態2のモータの絶縁検査装置に係るサージ電圧の図である。 この発明の実施の形態2のモータの絶縁検査装置に係るサージ電圧の説明図である。 この発明の実施の形態3のモータの絶縁検査装置に係る構成図である。 この発明の実施の形態4のモータの絶縁検査方法のフローチャートである。 この発明の実施の形態5のモータの絶縁検査装置に係る構成図である。
実施の形態1.
 実施の形態1は、モータを駆動するインバータとモータの健全性を判定する部分放電検出部とインバータの制御を行う制御回路とを備え、制御回路はインバータのスイッチング間隔をインバータとモータ間のパルス往復伝播時間に合わせるように調整して駆動時のサージ電圧を超える対地間電圧を発生させて絶縁検査を行うモータの絶縁検査装置に関するものである。また、このモータの絶縁検査装置は、制御回路はインバータ各相のスイッチング時間を調整してモータの駆動時のサージ電圧を超える相間電圧を発生させて絶縁検査を行う。
 以下、本願発明の実施の形態1に係るモータの絶縁検査装置1の構成、動作について、モータの絶縁検査装置の構成図である図1および8、サージ電圧の図である図2、相間のサージ電圧の図である図3および4、対地間のサージ電圧の図である図5、サージ電圧発生の原理図である図6、サージ電圧発生の説明図である図7、部分放電検出の説明図である図9に基づいて説明する。
 図1は、本発明の実施の形態1のインバータを用いたモータの絶縁検査装置1に関する構成を示す。
 図1において、モータの絶縁検査システムは、モータの絶縁検査装置1および絶縁検査対象であるモータ2から構成されている。モータの絶縁検査装置1は、モータ2を駆動するすると共に後で詳細を説明する絶縁検査用の試験電圧(サージ電圧)を発生する3相(U、V、W相)駆動のインバータ3と、インバータ3のスイッチング素子のスイッチングを制御する制御回路3aと、直流電源4と、モータ2とインバータ3間に敷設されているモータ2駆動用のケーブル5と、絶縁検査において部分放電を検出してモータ2の健全性を判定する部分放電検出部6から構成されている。
 図1において、インバータ3の駆動電源として直流電源4を使用しているが、交流電源を整流器回路で直流電圧に変換する構成とすることができる。
 まず、制御回路3aはインバータ3の制御を行い、インバータ3でモータ2を駆動した場合のインバータ3端の電圧パルスとモータ2端の電圧パルスについて、図2に基づいて説明する。
 なお、以下の説明では、通常運転中にインバータ3がモータ2を駆動する電圧をVとしている。
 図2は、U相電圧、V相電圧、およびUV相間の電圧パルス波形を表したものである。図2において、点線(A)はインバータ3端の電圧パルス波形(インバータ端電圧パルス)を示し、実線(B)はモータ2端の電圧パルス波形(モータ端電圧パルス)を示している。
 一般に、ケーブルインピーダンスはモータのインピーダンスに比べて小さく、インバータ出力の電圧パルスの立上り時間がケーブル中のパルス往復伝播時間以下となると、図2のようにモータ2端にインバータ3端の電圧パルスの2倍のサージ電圧が発生する。
 次に、相間にサージ電圧を発生させる場合について、U相、V相を例に図3および図4に基づいて説明する。図3、図4において、Aはインバータ端電圧パルスを表し、Bはモータ端電圧パルスを表している。
 図3において、制御回路3aはインバータ3のU相とV相を同時にスイッチングしている。具体的には、U相をオンからオフにするタイミングで、V相をオフからオンにしている。
 このように、U相とV相を同時にスイッチングすることで、U相のサージ電圧とV相のサージ電圧が重畳し、UV相間に3Vの電圧を発生させることができる。図3では負側に3Vのサージ電圧を発生させる例を示したが、U相とV相のスイッチングのオン、オフを入れ替えれば、正側に3Vのサージ電圧を発生させることができる。
 次に、図4で、インバータ3のU相とV相のスイッチングを同時ではなく、ずらした場合を説明する。
 図4のようにU相とV相のスイッチング時間をずらすことで、3V未満のサージ電圧を相間に発生させることができる。図4の例では、UV相間に2.7Vのサージ電圧を発生している。
 このようにスイッチングの時間をずらすことで、駆動時のサージ電圧越える2V~3Vのサージ電圧を任意に発生させることができる。
 次に、対地間にサージ電圧を発生させる場合について、U相を例に図5から図6に基づいて説明する。
 図5は、後で説明する発生原理により、U相と対地間に3Vのサージ電圧を発生させたときの電圧波形を示す。図5において、Aはインバータ端電圧パルスを表し、Bはモータ端電圧パルスを表している。また、Cはスイッチング間隔の第1の調整を表し、Dはスイッチング間隔の第2の調整を表している。

 スイッチング間隔の第1の調整では、インバータ端において、U相をスイッチングオフからオンし、パルス往復伝播時間経過後、スイッチングオフにしている。また、スイッチング間隔の第2の調整では、インバータ端において、U相をスイッチングオンからオフし、パルス往復伝播時間経過後、スイッチングオンしている。
 インバータのスイッチング素子のスイッチング間隔をケーブル内のパルス往復伝播時間とすることで、スイッチング間隔の第1の調整においては負側に2Vのサージ電圧(通常は1V)、スイッチング間隔の第2の調整においては、正側に3Vのサージ電圧を発生させることができる。
 図6に、上記対地間のサージ電圧(3V)の発生原理の説明を示す。なお、図6はスイッチング間隔の第2の調整に対応した説明図である。図6において、Eはモータ側へ伝搬を表し、Fはサージ電圧を表し、Gはモータ端からの反射波を表している。
 時刻T1でスイッチング(オンからオフ)すると電圧パルスがモータ端へ伝播する。電圧パルスがモータ端に達したとき、モータのインピーダンスはケーブルのインピーダンスより大きいため、サージが発生し、電圧パルスがインバータ端へ向かって反射する。インバータ端に電圧パルスが達するとケーブルのインピーダンスはインバータ端のインピーダンスより大きいため、電圧パルスの極性が反転しモータ端へ向かって反射する。このとき(時刻T2)にインバータ素子をスイッチング(オフからオン)すると、反射波とインバータ出力の電圧パルスが同時にモータ端へと伝播する。
 反射波と電圧パルスがモータ端に達すると、反射波と電圧パルスの2Vの電圧に対してサージが発生するため4Vの電圧変化が発生する。このとき0Vを基準にすると3Vの電圧が発生する。
 3Vのサージ電圧を発生させるためには、スイッチング間隔(時刻T1と時刻T2の時間差)をパルス往復伝播時間に合わせることで実現できる。また、スイッチング間隔をパルス往復伝播時間以下にすることで、任意の2Vから3Vのサージ電圧をモータ端に発生させることができる。
 図7に、スイッチング間隔とサージ電圧の関係を示す。図7において、スイッチング間隔(時刻T1と時刻T2の時間差)の数値1あたりパルス往復伝播時間を示している。スイッチング間隔1はパルス往復伝播時間1回分に相当し、スイッチング間隔2はパルス往復伝播時間2回分に相当する。このようにスイッチング間隔を調整することで任意のサージ電圧を発生させることができる。なお、電圧パルスの反射波は減衰するため、実際には-2V未満のサージ電圧となる。
 なお、図7は、図5におけるスイッチング間隔の第1の調整に対応した図である。スイッチング間隔の第2の調整の場合は、サージ電圧のピーク値は+3Vとなる。
 図5から図7は、各相の対地間に対するサージ電圧の説明であったが、2相、例えばU相とV相にスイッチング素子のスイッチングを同時に行い、スイッチング間隔をケーブル内のパルス往復伝播時間とすることで、UV相間により高いサージ電圧を発生させることができる。
 例えば、U相にスイッチング間隔の第1の調整の電圧パルスを発生させると同時に、V相にスイッチング間隔の第2の調整の電圧パルスを発生させると、UV相間に5Vのサージ電圧を発生させることができる。
 すなわち、インバータの2相について、電圧パルスのスイッチング間隔をパルス往復伝播時間に合わせるように調整し、2相間で電圧パルスの正負を逆転することで、相間にモータの駆動時のサージ電圧を越える最大5倍のサージ電圧を発生させることができる。
 次に、上記に説明した相間、対地間のサージ電圧をモータ2に印加した場合のモータ2の絶縁検査方法を図8、9に基づいて説明する。図9において、Hは試験物に流れる電流を表し、Iは部分放電電流を表している。
 本実施の形態では、モータ2の絶縁検査方法の例として、サージ電圧印加時の部分放電を検出して、モータ2の健全性を判定している。
 図8は、図1の構成図にモータ2の部分放電の信号を検出するための検出器として、電流センサ7とアンテナ8を追加したものである。
 電流センサ7およびアンテナ8から信号が、部分放電検出部6に入力されて、信号処理が行われて、部分放電が検出される。
 対地間では2Vから3Vのサージ電圧、また相間では2Vから5Vのサージ電圧を印加時に、モータ2の部分放電の有無を調べることで、モータ2内の絶縁の健全性を検査することができる。電流センサ7などによる電流測定や、アンテナ8による部分放電発生時に放射される電磁波の測定で部分放電発生の有無を調べることができる。
 絶縁検査のサージ電圧は立上り時間が早く、モータ2に充電電流が流れ電流センサ7で測定する部分放電信号と充電電流が重畳する。また、アンテナ8に対しても充電電流によって放射される電磁波が、部分放電信号に重畳する。このため、部分放電検出部6では、ハイパスフィルタ処理を行い、高周波の部分放電信号のみを検出する。
 具体的には、図9に示すように、サージ電圧下での部分放電信号の検出の場合、サージが試験物に印加されたとき電流が流れ、その電流により電磁波が放射される。立ち上がりが早いので、比較的大きな電流が流れる。
 電流センサ7で検出する微弱な部分放電電流は、立ち上がりで流れる電流と重畳する。また、アンテナ8で検出する電磁波は、立ち上がりで流れる電流によって放射される電磁波と重畳する。このために、ハイパスフィルタで高周波の部分放電成分のみを取り出す。
 実施の形態1のモータの絶縁検査装置1では、部分放電の検出に電流センサ7とアンテナ8の両方を使用しているが、いずれか一方のみを使用してもよい。
 以上説明したように、実施の形態1のモータの絶縁検査装置1は、モータを駆動するインバータとモータの健全性を判定する部分放電検出部とインバータの制御を行う制御回路とを備え、制御回路はインバータのスイッチング間隔をインバータとモータ間のパルス往復伝播時間に合わせるように調整して駆動時のサージ電圧を越える最大3倍の対地間電圧を発生させ、またインバータ各相のスイッチング時間を調整してモータの駆動時のサージ電圧を越える最大3倍の相間電圧を発生させて絶縁検査を行う構成とした。このため、モータの絶縁検査装置1は、専用の検査装置を必要とせず、モータの駆動電圧以上の電圧を印加しモータの絶縁劣化を早期に簡易的に検出することができる。
 また、実施の形態1のモータの絶縁検査装置1は、インバータの2相について、電圧パルスのスイッチング間隔をパルス往復伝播時間に合わせるように調整し、2相間で電圧パルスの正負を逆転することで、2相間にモータの駆動時のサージ電圧を越える最大5倍のサージ電圧を発生させることができる。
実施の形態2.
 実施の形態2のモータの絶縁検査装置は、インバータの電圧パルスの立上り時間が遅い場合、立上り時間を早くするための回路を追加したものである。
 以下、実施の形態2のモータの絶縁検査装置の構成、動作について、モータの絶縁検査装置20の主要構成図である図10、サージ電圧の図である図11、サージ電圧の説明図である図12に基づいて差異を中心に説明する。
 まず、実施の形態2のモータの絶縁検査装置20の構成について、図10に基づいて説明する。なお、図10は説明に必要な構成機器のみを記載しており、図10において、図1および図8と同一あるいは相当部分には、同一の符号を付している。図11において、Aはインバータ端電圧パルスを表し、Bはモータ端電圧パルスを表している。
 実施の形態1のモータの絶縁検査装置1との違いは、ゲート抵抗調整回路21を追加したことである。
 実施の形態1では、インバータの電圧パルスの立上り時間が早い、すなわち、インバータ3とモータ2間のパルス往復伝搬時間より早い場合を前提に説明した。
 インバータの電圧パルスの立上り時間が遅い場合に発生するサージ電圧について、図11および図12を用いて説明する。
 図11は、U相を例として、インバータ3の電圧パルスの立上り時間が遅いときのモータ2端でのサージ電圧を示す。電圧パルスの立上り時間が、電圧パルスのケーブル伝播往復時間よりも長い場合、図6のサージ発生の原理から、モータ2端でサージが2倍に達する前に、インバータ3から反射された極性の反転した電圧パルスがモータ2端へ到達するためにサージ電圧は2V未満となる。図11は、1.2Vのサージ電圧となっている。
 図12は、発生するサージ電圧と、パルス往復伝播時間/パルスの立上り時間の関係を示す。サージ電圧はパルス往復伝播時間とパルスの立上り時間の比率で決まり、1Vから2Vまで変化する。
 したがって、モータの絶縁検査装置のインバータのパルスの立ち上がりが遅い場合は、絶縁検査に必要なサージ電圧を発生できない。このため、実施の形態2のモータの絶縁検査装置20では、ゲート抵抗調整回路21を設けて、インバータのパルスの立ち上がりを早めている。
 具体的には、インバータ3のスイッチング素子のゲート抵抗に並列に抵抗を接続する端子を設けて、絶縁検査のときに、電圧パルスの立上り時間をパルス往復伝播時間以下に調整することで、モータ2端に2Vのサージ電圧を発生させることができる。
 電圧パルスの立ち上がりが遅いインバータの場合は、実施の形態2のゲート抵抗調整回路21を追加することで、電圧パルスの立上り時間をパルス往復伝播時間以下とすることができる。このため、実施の形態1で説明した絶縁検査を行うことができる。
 なお、インバータ3の電圧パルスの立上り時間をパルス往復伝播時間以下とすることができない場合は、インバータ3とモータ2間のケーブル5の長さを長くしてパルス往復伝播時間を電圧パルスの立上り時間より長くすることもできる。
 以上説明したように、実施の形態2のモータの絶縁検査装置20は、電圧パルスの立ち上がりが遅いインバータの場合は、ゲート抵抗調整回路21を追加することで、電圧パルスの立上り時間をパルス往復伝播時間以下することができる。このため、モータの絶縁検査装置20は、実施の形態1で説明した絶縁検査を行うことができる。
 したがって、専用の検査装置を必要とせず、モータの駆動電圧以上の電圧を印加しモータの絶縁劣化を早期に簡易的に検出することができる。
実施の形態3.
 実施の形態3のモータの絶縁検査装置は、実施の形態1のモータの絶縁検査装置1に絶縁検査データを保存し、絶縁検査を実行する絶縁検査設定部を新たに設けたものである。
 以下、実施の形態3のモータの絶縁検査装置30の構成、動作について、モータの絶縁検査装置30の構成図である図13に基づいて差異を中心に説明する。
 図13において、図1および図8と同一あるいは相当部分には、同一の符号を付している。
 実施の形態3のモータの絶縁検査装置30と実施の形態1のモータの絶縁検査装置1との違いは、絶縁検査設定部31を新たに設けたことである。
 絶縁検査設定部31を設けたことで、モータの絶縁検査装置30は、モータの駆動電圧、インバータとモータ間のパルス往復伝播時間および検査手順のデータを保存できる。モータの絶縁検査装置30は、絶縁検査時に保存したデータを読み出して、指定された試験電圧(サージ電圧)での絶縁検査を自動的に行うことができる。
 また、モータの絶縁検査装置30は、モータ2の運転状況、実績に合わせて、印加するサージ電圧の値、印加するモード(相間、対地間)および試験手順を外部から設定することで、保守員の負担を軽減し、より適切な絶縁検査を行うことができる。
 さらに、絶縁検査の検査データを絶縁検査設定部31に保存することができる。この検査データを適宜、外部に取り出し、分析することで、モータの日常・定期検査や寿命予測に有効活用することができる。
 以上説明したように、実施の形態3のモータの絶縁検査装置は、実施の形態のモータの絶縁検査装置に絶縁検査設定部を新たに設けた。このため、実施の形態3のモータの絶縁検査装置は、実施の形態1の効果に加えて、絶縁検査を自動化でき、より適切な絶縁検査を容易に行うことができる。さらに、モータの長寿命化が図られ、省エネルギー、検査作業の省力化の効果がある。
実施の形態4.
 実施の形態4は、モータを駆動するインバータとモータの健全性を判定する部分放電検出部とインバータの制御を行う制御回路とを備えたモータの絶縁検査装置を用い、制御回路は駆動時のサージ電圧を超える最大3倍の対地間電圧を発生させるためインバータのスイッチング間隔をインバータとモータ間のパルス往復伝播時間に合わせるように調整して絶縁検査を行うモータの絶縁検査方法に関するものである。また、このモータの絶縁検査方法は、モータの駆動時のサージ電圧を超える最大3倍の相間電圧を発生させるためインバータ各相のスイッチング時間を調整して絶縁検査を行う。
 以下、本願発明の実施の形態4について、モータの絶縁検査方法に係るフローチャートである図14に基づいて説明する。
 なお、実施の形態1のモータの絶縁検査装置1の構成図である図8を参照して説明する。
 処理が開始されると、ステップ1(S1)において、絶縁検査で相間、対地間に印加する試験電圧値を定める(試験電圧設定ステップ)。相間、対地間に印加する試験電圧は、試験対象モータの仕様、運転実績により定められる。
 次にステップ2(S2)において、制御回路3aはモータ2と対地間に発生しうるモータ2の駆動時のサージ電圧を超えるサージ電圧をステップ1で定めた試験電圧に設定するために、インバータ3の電圧パルスのスイッチング間隔をインバータ3とモータ2間のパルス往復伝播時間に合わせるように調整する(対地間試験電圧調整ステップ)。
 次にステップ3(S3)において、インバータ3はU相、V相、W相の各相に対して、対地間にステップ1で定めた試験電圧(サージ電圧)を印加する(対地間試験電圧印加ステップ)。
 次にステップ4(S4)において、部分放電検出部6は電流センサ7または/およびアンテナ8からの信号を取り込み、部分放電信号を検出し、モータの対地間の健全性を判定する(対地間健全性判定ステップ)。
 次にステップ5(S5)において、制御回路3aはモータ2の相間に発生しうるモータ2の駆動時のサージ電圧を超えるサージ電圧をステップ1で定めた試験電圧に設定するために、インバータ3の各相のスイッチング時間を調整する(相間試験電圧調整ステップ)。
 次にステップ6(S6)において、インバータ3はU-V、U-W、V-Wの各相間にステップ1で定めた試験電圧(サージ電圧)を印加する(相間試験電圧印加ステップ)。
 次にステップ7(S7)において、部分放電検出部6は電流センサ7または/およびアンテナ8からの信号を取り込み、部分放電信号を検出し、モータの各相間の健全性を判定する(相間健全性判定ステップ)。
 次にステップ8(S8)において、試験条件および検査結果のデータを保存して(データ保存ステップ)、処理を終了する。
 以上説明したように、実施の形態4に係るモータの絶縁検査方法は、試験電圧設定ステップ、対地間試験電圧調整ステップ、対地間試験電圧印加ステップ、対地間健全性判定ステップ、相間試験電圧調整ステップ、相間試験電圧印加ステップ、相間健全性判定ステップおよびデータ保存ステップを備える。このモータの絶縁検査方法は、制御回路はインバータのスイッチング間隔をインバータとモータ間のパルス往復伝播時間に合わせるように調整して駆動時のサージ電圧を超える対地間電圧を発生させ、またインバータ各相のスイッチング時間を調整してモータの駆動時のサージ電圧を超える相間電圧を発生させて絶縁検査を行うことができる。このため、専用の検査装置を必要とせず、モータの駆動電圧以上の電圧を印加しモータの絶縁劣化を早期に簡易的に検出することができる。
実施の形態5.
 実施の形態5は、インバータにモータ絶縁検査専用のインバータを用いる構成としたものである。以下、実施の形態5のモータの絶縁検査装置40の構成、動作について、モータの絶縁検査装置40の構成図である図15に基づいて、実施の形態3のモータの絶縁検査装置30との差異を中心に説明する。
 図15において、図13と同一あるいは相当部分には、同一の符号を付している。
  実施の形態5のモータの絶縁検査装置40と、実施の形態3のモータの絶縁検査装置30との違いは、実施の形態3では、モータを駆動するためのインバータを用いて絶縁検査を実施するが、実施の形態5ではモータ絶縁検査専用のインバータを用いることである。
 図15において、モータの絶縁検査システムは、モータの絶縁検査装置40および絶縁検査対象であるモータ2から構成されている。モータの絶縁検査装置40は、モータ絶縁検査専用のインバータ41と、インバータ41の制御を行う制御回路41aと、モータ絶縁検査専用のインバータ41とモータ2間を接続する検査用ケーブル42と、モータ2の健全性を判定する部分放電検出部6と、絶縁検査を自動的に行うための絶縁検査設定部31から構成されている。
  ここで、制御回路41aはモータ絶縁検査専用のインバータ41によりモータ2を駆動すると共に絶縁検査用の試験電圧(サージ電圧)を発生する。また、検査用ケーブル42のモータ2側の端部には、絶縁検査時にモータ2に接続するための接続端子43が設けられている。
 実施の形態5のモータの絶縁検査装置40では、1台のモータ絶縁検査専用のインバータ41を用いて、絶縁検査対象の複数台のモータを1台ずつ試験していく。
 例えば、検査用ケーブル42の接続端子43を可動とすることで、モータの絶縁検査装置40と検査対象のモータを自動で接続し、絶縁検査を効率的に行うことができる。
 モータの試験電圧の調整は、実施の形態1、2、および3で説明した方法を用いる。すなわち、制御回路41aはモータ絶縁検査専用のインバータ41のスイッチング間隔をインバータとモータ間のパルス往復伝播時間に合わせるように調整して駆動時のサージ電圧を超える最大3倍の対地間電圧を発生させて絶縁検査を行うことができる。また、制御回路41aはインバータ各相のスイッチング時間を調整してモータの駆動時のサージ電圧を超える最大3倍の相間電圧を発生させて絶縁検査を行うことができる。
  モータの絶縁検査装置40は、絶縁検査設定部31を備えているため、実施の形態3で説明したように、絶縁検査を自動的に行うことができる。すなわち、モータの絶縁検査装置40は、モータの駆動電圧、インバータとモータ間のパルス往復伝播時間および検査手順のデータを保存でき、絶縁検査時に保存したデータを読み出して、指定された試験電圧(サージ電圧)での絶縁検査を自動的に行うことができる。特に、絶縁検査の実績があり、検査データが保存されている仕様のモータの絶縁検査を効率良く実施できる。
 なお、モータ絶縁検査専用のインバータ41の仕様は、試験対象モータを駆動するインバータの仕様と同一にする必要はない。また、サージの大きさを変えるために、モータ設置時と異なるケーブル長で試験することも可能である。
  実施の形態5では、実施の形態3のモータの絶縁検査装置のインバータにモータ絶縁検査専用のインバータを使用する構成を説明したが、実施の形態1、2のモータの絶縁検査装置のインバータにモータ絶縁検査専用のインバータを使用することもできる。
  また、実施の形態4で説明したモータの絶縁検査方法にもこのモータ絶縁検査専用のインバータを使用することができる。
  この場合、モータの絶縁検査方法は、制御回路41aは駆動時のサージ電圧を超える対地間電圧を発生させるためにインバータのスイッチング間隔をインバータとモータ間のパルス往復伝播時間に合わせるように調整して絶縁検査を行うことができる。また、制御回路41aはモータの駆動時のサージ電圧を超える相間電圧を発生させるためにインバータ各相のスイッチング時間を調整して絶縁検査を行うことができる。
 以上説明したように、実施の形態5のモータの絶縁検査装置は、インバータにモータ絶縁検査専用のインバータを用いる構成としたものである。このため、実施の形態5のモータの絶縁検査装置は、1台のモータ絶縁検査専用のインバータを用いて、絶縁検査対象の複数台のモータを1台ずつ効率良く試験していくことができる。絶縁検査を自動化することで、さらに効率の良い絶縁検査を実施できる。
 なお、本発明は、その発明の範囲内において、実施の形態を適宜、変形、省略することが可能である。
 この発明は、専用の検査装置をせずモータの駆動電圧以上の電圧を印加しモータの絶縁劣化を早期に簡易的に検出することができるため、インバータ駆動モータに広く適用できる。

Claims (11)

  1. モータを駆動するインバータと、前記モータの部分放電を検出し前記モータの健全性を判定する部分放電検出部と、前記インバータの制御を行う制御回路とを備え、前記制御回路は前記インバータを制御し電圧パルスのスイッチング間隔を前記インバータと前記モータ間のパルス往復伝播時間に合わせるように調整することで、前記モータと対地間に前記モータの駆動電圧を越えるサージ電圧を発生させる構成のモータの絶縁検査装置。
  2. さらに前記制御回路は前記インバータ各相のスイッチング時間を調整することで、前記モータの相間に前記モータの駆動電圧を越えるサージ電圧を発生させる構成とした請求項1に記載のモータの絶縁検査装置。
  3. 前記制御回路に前記インバータ出力の前記電圧パルスの立上り時間を調整する回路を設けて、前記電圧パルスの立上り時間を調整することで、前記モータの駆動電圧を越えるサージ電圧を発生させる構成とした請求項1または請求項2に記載のモータの絶縁検査装置。
  4. 前記制御回路は、前記インバータ各相について、前記電圧パルスのスイッチング間隔を前記パルス往復伝播時間に合わせるように調整し、相間で前記電圧パルスの正負を逆転することで、前記モータの相間に前記モータの駆動電圧を越えるサージ電圧を発生させる構成とした請求項1に記載のモータの絶縁検査装置。
  5. さらに前記モータの駆動電圧、前記インバータと前記モータ間のパルス往復伝播時間および検査手順のデータを保存して、絶縁検査時に保存した前記データを読み出して、指定された試験電圧での絶縁検査を行う絶縁検査設定部を設ける構成の請求項1または請求項2に記載のモータの絶縁検査装置。
  6. 前記部分放電検出部は、前記モータから放射される電磁波から部分放電信号を検出するアンテナを備えた構成の請求項1または請求項2に記載のモータの絶縁検査装置。
  7. 前記部分放電検出部は、前記モータの部分放電電流から部分放電信号を検出する電流センサを備えた構成の請求項1または請求項2に記載のモータの絶縁検査装置。
  8. 前記インバータは、モータ絶縁検査専用のインバータである構成の請求項1または請求項2に記載のモータの絶縁検査装置。
  9. モータを駆動するインバータと、前記モータの健全性を判定する部分放電検出部と、前記インバータの制御を行う制御回路とを備えたモータの絶縁検査装置を用い、
    前記モータに印加する試験電圧の値を設定する第1ステップと、
    前記制御回路は、前記モータと対地間に発生しうる前記モータの駆動電圧を越えるサージ電圧を前記試験電圧に設定するために、前記インバータの電圧パルスのスイッチング間隔を前記インバータと前記モータ間のパルス往復伝播時間に合わせるよう調整する第2ステップと、
    前記インバータは各相の対地間に前記試験電圧を印加する第3ステップと、
    前記部分放電検出部は部分放電信号を検出し、前記モータの対地間の健全性を判定する第4ステップと、
    を備えたモータの絶縁検査方法。
  10. さらに、前記制御回路は、前記モータの相間に発生しうる前記モータの駆動電圧を越えるサージ電圧を前記試験電圧に設定するために、前記インバータ各相のスイッチング時間を調整する第5ステップと、
    前記インバータは各相間に前記試験電圧を印加する第6ステップと、
    前記部分放電検出部は部分放電信号を検出し、前記モータの対相間の健全性を判定する第7ステップと、
    を追加した請求項9に記載のモータの絶縁検査方法。
  11. 前記インバータはモータ絶縁検査専用のインバータであるモータの絶縁検査装置を用いる請求項9または請求項10に記載のモータの絶縁検査方法。
PCT/JP2013/061388 2012-11-29 2013-04-17 モータの絶縁検査装置およびモータの絶縁検査方法 WO2014083866A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112013005707.7T DE112013005707B4 (de) 2012-11-29 2013-04-17 Isolationsinspektionsvorrichtung für Motoren und Isolationsinspektionsverfahren für Motoren
JP2014550039A JP5995295B2 (ja) 2012-11-29 2013-04-17 モータの絶縁検査装置およびモータの絶縁検査方法
US14/433,782 US9797955B2 (en) 2012-11-29 2013-04-17 Insulation inspection device for motors and insulation inspection method for motors
CN201380059421.5A CN104797949A (zh) 2012-11-29 2013-04-17 电机的绝缘检查装置以及电机的绝缘检查方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-260580 2012-11-29
JP2012260580 2012-11-29

Publications (1)

Publication Number Publication Date
WO2014083866A1 true WO2014083866A1 (ja) 2014-06-05

Family

ID=50827523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061388 WO2014083866A1 (ja) 2012-11-29 2013-04-17 モータの絶縁検査装置およびモータの絶縁検査方法

Country Status (5)

Country Link
US (1) US9797955B2 (ja)
JP (1) JP5995295B2 (ja)
CN (1) CN104797949A (ja)
DE (1) DE112013005707B4 (ja)
WO (1) WO2014083866A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018042588A1 (ja) * 2016-09-01 2018-03-08 株式会社 東芝 部分放電監視システム
JP2021132480A (ja) * 2020-02-20 2021-09-09 株式会社日立製作所 電動機システム及び放電検出方法
WO2023100324A1 (ja) * 2021-12-02 2023-06-08 三菱電機株式会社 劣化判別装置および劣化判別方法
WO2024057418A1 (ja) * 2022-09-13 2024-03-21 日新パルス電子株式会社 インバータパルス絶縁試験装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2537113B (en) * 2015-04-01 2018-05-23 High Voltage Partial Discharge Ltd Apparatus and method for monitoring partial discharge
US20170030957A1 (en) * 2015-07-31 2017-02-02 Aktiebolaget Skf Partial discharge detection relay matrix for multiple lead analysis
IT201600079425A1 (it) * 2016-07-28 2018-01-28 Pietro Fiorentini Spa Dispositivo di taratura per un regolatore di pressione per gas, in particolare per un pilota, e sistema di regolazione della pressione di un gas comprendente tale dispositivo di taratura
CN106772044A (zh) * 2016-12-29 2017-05-31 国网辽宁省电力有限公司电力科学研究院 一种发电机绕组线圈劣化点诊断系统
US11821933B2 (en) * 2019-04-03 2023-11-21 Denso Corporation Insulation testing apparatus and method of the same
CN110389288B (zh) * 2019-07-29 2022-05-17 浙江浙能技术研究院有限公司 一种大型发电机局部放电在线监测抗干扰方法
JP2022106469A (ja) * 2021-01-07 2022-07-20 トヨタ自動車株式会社 モータ制御装置
DE102021124670B3 (de) 2021-09-23 2023-01-26 Audi Aktiengesellschaft Prüfvorrichtung zum Lokalisieren einer Teilentladung in oder an einer elektrischen Komponente sowie Verfahren zum Lokalisieren der Teilentladung
DE102022100747B3 (de) 2022-01-13 2023-04-20 Vem Motors Gmbh Prüfungsanordnung zur Bestimmung der Teilentladungseinsatzspannung an elektrischen Maschinen

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002062330A (ja) * 2000-08-18 2002-02-28 Hitachi Ltd コイルターン間絶縁健全性評価装置及び方法
JP2008306833A (ja) * 2007-06-07 2008-12-18 Toshiba Mitsubishi-Electric Industrial System Corp Pwm用電気機器

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001141795A (ja) 1999-11-18 2001-05-25 Matsushita Refrig Co Ltd 空気調和装置における圧縮機の絶縁劣化検出装置
JP4557616B2 (ja) * 2004-07-02 2010-10-06 株式会社日立産機システム 電力変換装置
JP2005016958A (ja) * 2003-06-23 2005-01-20 Fanuc Ltd モータ駆動装置
JP2005137127A (ja) 2003-10-30 2005-05-26 Nissan Motor Co Ltd モータの絶縁材料劣化検出方法およびこの方法を実施可能なモータ駆動制御装置
CN101521474B (zh) * 2004-02-19 2011-08-31 三菱电机株式会社 逆变器装置的驱动方法
WO2005081389A1 (ja) * 2004-02-19 2005-09-01 Mitsubishi Denki Kabushiki Kaisha 多相同時スイッチング防止回路、pwmインバータ装置及びその駆動方法
JP4418320B2 (ja) * 2004-07-28 2010-02-17 株式会社日立産機システム モータ巻線ターン間部分放電計測方法
JP4565036B2 (ja) 2009-01-05 2010-10-20 ファナック株式会社 モータの絶縁劣化検出装置
JP5134602B2 (ja) 2009-09-01 2013-01-30 株式会社日立産機システム インバータ駆動モータの絶縁設計方法及び製造方法
JP5433392B2 (ja) * 2009-12-16 2014-03-05 日立オートモティブシステムズ株式会社 電動車両用回転電機、駆動制御装置および絶縁診断方法
WO2012147163A1 (ja) 2011-04-26 2012-11-01 日立オートモティブシステムズ株式会社 インバータ駆動回転電機、相間絶縁部分放電検査方法および相間絶縁部分放電検査装置
WO2012147162A1 (ja) * 2011-04-26 2012-11-01 日立オートモティブシステムズ株式会社 インバータ駆動回転電機、絶縁検査方法および絶縁検査装置
US20140006525A1 (en) 2012-06-29 2014-01-02 Google Inc. Sharing of messaging information

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002062330A (ja) * 2000-08-18 2002-02-28 Hitachi Ltd コイルターン間絶縁健全性評価装置及び方法
JP2008306833A (ja) * 2007-06-07 2008-12-18 Toshiba Mitsubishi-Electric Industrial System Corp Pwm用電気機器

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018042588A1 (ja) * 2016-09-01 2018-03-08 株式会社 東芝 部分放電監視システム
JP2021132480A (ja) * 2020-02-20 2021-09-09 株式会社日立製作所 電動機システム及び放電検出方法
JP7358271B2 (ja) 2020-02-20 2023-10-10 株式会社日立製作所 電動機システム及び放電検出方法
WO2023100324A1 (ja) * 2021-12-02 2023-06-08 三菱電機株式会社 劣化判別装置および劣化判別方法
JP7471537B2 (ja) 2021-12-02 2024-04-19 三菱電機株式会社 劣化判別装置および劣化判別方法
WO2024057418A1 (ja) * 2022-09-13 2024-03-21 日新パルス電子株式会社 インバータパルス絶縁試験装置

Also Published As

Publication number Publication date
US9797955B2 (en) 2017-10-24
JPWO2014083866A1 (ja) 2017-01-05
JP5995295B2 (ja) 2016-09-21
US20150247901A1 (en) 2015-09-03
CN104797949A (zh) 2015-07-22
DE112013005707B4 (de) 2018-12-27
DE112013005707T5 (de) 2015-09-10

Similar Documents

Publication Publication Date Title
JP5995295B2 (ja) モータの絶縁検査装置およびモータの絶縁検査方法
TWI596873B (zh) Capacitor discharge method and discharge circuit
JP4726654B2 (ja) インバータ駆動モータの絶縁評価方法及びその方法を利用した設計方法、検査方法、診断方法並びにそれらの装置
RU2014107933A (ru) Способ и устройство для выявления в онлайн-режиме ухудшения состояния изоляции электродвигателя
US20140347070A1 (en) Measuring Method Using a Measuring Apparatus for Cable Diagnosis and/or Cable Testing
EP2402775B1 (en) Insulation inspection/diagnosis device and method of dynamo-electric machine
JP2015114195A (ja) 巻線試験装置
CN108051720A (zh) 并联mosfet逆变模块的测试电路及测试方法
Nussbaumer et al. Transient distribution of voltages in induction machine stator windings resulting from switching of power electronics
TWI511437B (zh) 功率元件驅動器失效檢測裝置及其檢測方法
CN103492889A (zh) 逆变器驱动旋转电机、相间绝缘部分放电检查方法和相间绝缘部分放电检查装置
JP4668813B2 (ja) 部分放電計測装置
CN110672995A (zh) 一种电力电缆振荡波局部放电检测电路及其检测方法
Zoeller et al. Inverter-fed drive stator insulation monitoring based on reflection phenomena stimulated by voltage step excitation
CN110161395B (zh) 逆变器驱动电机的绝缘状态在线监测方法及其监测系统
CN111433619B (zh) 待充电设备的适配器老化检测方法和装置
JP5113919B2 (ja) インバータ駆動モータの検査診断方法
JP2013124913A (ja) 部分放電測定方法および回転電機の製造方法
CN102474173B (zh) 用于功率因数校正的方法和电路
CN113358990B (zh) 一种振荡波测试系统
JP6110783B2 (ja) 電動機巻線の繰り返しインパルス部分放電試験方法およびそのための装置
JP2017219352A (ja) 絶縁検査用電源装置
Zoeller et al. Detection and localization of insulation deterioration in traction drives based on specific high frequency current response evaluation
RU2250474C1 (ru) Способ диагностирования состояния изоляции трансформаторов с трехстержневой конструкцией сердечника
Meadors et al. Partial discharge testing platform for PWM voltage source converters in electric aircraft

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13858648

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014550039

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14433782

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120130057077

Country of ref document: DE

Ref document number: 112013005707

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13858648

Country of ref document: EP

Kind code of ref document: A1