WO2014083813A1 - 蓄電素子の性能低下検知装置、性能低下検知方法及び蓄電システム - Google Patents

蓄電素子の性能低下検知装置、性能低下検知方法及び蓄電システム Download PDF

Info

Publication number
WO2014083813A1
WO2014083813A1 PCT/JP2013/006868 JP2013006868W WO2014083813A1 WO 2014083813 A1 WO2014083813 A1 WO 2014083813A1 JP 2013006868 W JP2013006868 W JP 2013006868W WO 2014083813 A1 WO2014083813 A1 WO 2014083813A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage element
capacity
performance
performance degradation
change amount
Prior art date
Application number
PCT/JP2013/006868
Other languages
English (en)
French (fr)
Inventor
洋平 田尾
茂樹 山手
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Priority to JP2014549806A priority Critical patent/JP6252487B2/ja
Priority to DE112013005733.6T priority patent/DE112013005733T5/de
Priority to US14/648,657 priority patent/US9547046B2/en
Priority to CN201380060368.0A priority patent/CN104813534B/zh
Publication of WO2014083813A1 publication Critical patent/WO2014083813A1/ja
Priority to US15/385,418 priority patent/US9864017B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/005Detection of state of health [SOH]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/11Electric energy storages
    • B60Y2400/112Batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a performance degradation detection device, a performance degradation detection method, and a power storage system including a power storage device and a performance degradation detection device that detect a state in which a sudden performance degradation of a power storage device begins to occur.
  • Energy storage devices such as lithium ion secondary batteries have been used as power sources for mobile devices such as notebook computers and mobile phones, but in recent years they have come to be used in a wide range of fields such as power sources for electric vehicles.
  • the power storage element when used as a power source for an electric vehicle, long-term life performance is required.
  • such a storage element is expected to be used as a power source for load leveling (power load leveling) after being used as a power source for an electric vehicle.
  • the above-described conventional technique has a problem that it is impossible to accurately detect a state in which a sudden deterioration in performance of the storage element starts to occur.
  • the present invention has been made to solve the above problems, and provides a performance degradation detection device, a performance degradation detection method, and a power storage system that can accurately detect a state in which a sudden performance degradation of a power storage element starts to occur.
  • the purpose is to do.
  • a storage element performance deterioration detection device is a performance deterioration detection device that detects a state in which a sudden decrease in performance of a storage element begins to occur as a performance deterioration start state.
  • a first acquisition unit that acquires a first maximum change amount that is a maximum value of the capacitance change amount, and a first value that is the maximum value of the capacitance change amount in the capacitance voltage characteristic at a second time point after the first time point.
  • a second acquisition unit that acquires a second maximum change amount; and a change amount ratio that is a ratio of the second maximum change amount to the first maximum change amount exceeds a predetermined value, the storage element at the second time point Said performance And a and determining performance degradation determination unit is below the start state.
  • the present invention can be realized not only as a performance deterioration detection device of such a power storage element, but also a power storage element and a performance deterioration detection device that detects a state in which a sudden performance deterioration of the power storage element starts to occur. It can also be realized as an electricity storage system provided.
  • the present invention can also be realized as a performance degradation detection method including a characteristic process performed by the performance degradation detection apparatus.
  • the present invention can also be realized as an integrated circuit including a characteristic processing unit included in the performance degradation detection device.
  • the present invention is realized as a program that causes a computer to execute characteristic processing included in the performance degradation detection method, or a computer-readable CD-ROM (Compact Disc-Read Only Memory) on which the program is recorded. It can also be realized as a recording medium. Needless to say, such a program can be distributed via a recording medium such as a CD-ROM and a transmission medium such as the Internet.
  • the present invention it is possible to accurately detect a state in which a rapid performance deterioration starts in a power storage element such as a lithium ion secondary battery.
  • the predetermined value used by the performance deterioration determining unit according to the embodiment of the present invention is preferably a value within the range of 0.7 or more and 0.8 or less
  • the capacity voltage characteristic of the battery B is shown.
  • FIG. In order to explain that the predetermined value used by the performance deterioration determining unit according to the embodiment of the present invention is preferably a value within the range of 0.7 to 0.8, It is a figure which shows a determination result.
  • the predetermined value used by the performance degradation determination unit according to the embodiment of the present invention is preferably a value within the range of 0.7 to 0.8, the transition of the capacity maintenance rate of the battery B FIG.
  • the predetermined value used by the performance deterioration determination unit according to the embodiment of the present invention is a value within a range of 0.7 or more and 0.8 or less
  • a transition of resistance of battery B is shown.
  • the predetermined value used by the performance degradation determination unit according to the embodiment of the present invention is preferably a value within a range of 0.7 or more and 0.8 or less
  • a capacity voltage characteristic of the battery C is shown.
  • the predetermined value used by the performance deterioration determining unit according to the embodiment of the present invention is preferably a value within a range of 0.7 or more and 0.8 or less, It is a figure which shows a determination result.
  • Transition of capacity maintenance rate of battery C in order to explain that the predetermined value used by the performance degradation determination unit according to the embodiment of the present invention is preferably a value within the range of 0.7 to 0.8.
  • FIG. In order to explain that the predetermined value used by the performance deterioration determining unit according to the embodiment of the present invention is preferably a value within a range of 0.7 or more and 0.8 or less, a transition of resistance of the battery C is shown.
  • FIG. It is a figure which shows the capacity voltage characteristic obtained as a differential characteristic of the charge curve of the electrical storage element which concerns on embodiment of this invention.
  • lithium ion secondary batteries used in hybrid and electric vehicle applications have a battery performance that suddenly decreases at the end of their life. is important.
  • the change in the battery capacity and the internal resistance indicating the battery performance is linear, it is difficult to accurately detect an abrupt decrease in the battery performance in advance.
  • the present invention has been made to solve the above problems, and provides a performance degradation detection device, a performance degradation detection method, and a power storage system that can accurately detect a state in which a sudden performance degradation of a power storage element starts to occur.
  • the purpose is to do.
  • a storage element performance deterioration detection device is a performance deterioration detection device that detects a state in which a sudden decrease in performance of a storage element begins to occur as a performance deterioration start state.
  • a first acquisition unit that acquires a first maximum change amount that is a maximum value of the capacitance change amount, and a first value that is the maximum value of the capacitance change amount in the capacitance voltage characteristic at a second time point after the first time point.
  • a second acquisition unit that acquires a second maximum change amount; and a change amount ratio that is a ratio of the second maximum change amount to the first maximum change amount exceeds a predetermined value, the storage element at the second time point Said performance And a and determining performance degradation determination unit is below the start state.
  • the performance deterioration detection device has a relationship between a capacity change amount (dQ / dV) that is a magnitude of a change in energization capacity (Q) with respect to a change in voltage (V) of the storage element and the voltage (V).
  • dQ / dV capacity change amount
  • Q energization capacity
  • V voltage
  • V voltage
  • the inventors of the present application have found that when the change amount ratio exceeds a predetermined value, the performance of the power storage element starts to rapidly decrease at the second time point. For this reason, according to the said performance fall detection apparatus, the state which begins to produce the rapid performance fall of an electrical storage element can be detected accurately.
  • the performance deterioration determination unit when the change ratio exceeds the predetermined value, at the second time point, a state in which a sudden decrease in the chargeable or dischargeable capacity of the power storage element begins to occur, or By determining that the input / output performance indicated by the input / output characteristics of the storage element is in a state in which a sudden decrease in input / output performance begins to occur, it may be determined that the storage element is in the performance decrease start state.
  • the inventors of the present application start to rapidly decrease the capacity or input / output performance of the storage element at the second time point when the change amount ratio exceeds a predetermined value. I found. Then, the fact that the capacity or input / output performance of the power storage element begins to rapidly decrease indicates that a rapid performance deterioration of the power storage element begins to occur. For this reason, according to the performance degradation detection device, by detecting that the capacity or input / output performance of the power storage element starts to rapidly decrease, it is possible to accurately detect a state in which the rapid performance degradation of the power storage element starts to occur. be able to.
  • the performance deterioration determination unit when the change rate ratio exceeds the predetermined value set in the range of 0.7 or more and 0.8 or less, the storage element at the second time point the performance deterioration You may decide to be in a start state.
  • the inventors of the present application as a result of intensive studies and experiments, when the change amount ratio exceeds a predetermined value set within a range of 0.7 or more and 0.8 or less, the storage element at the second time point It has been found that the performance of begins to decline sharply. For this reason, according to the said performance fall detection apparatus, the state which begins to produce the rapid performance fall of an electrical storage element can be detected accurately.
  • the first acquisition unit may acquire the first maximum change amount in the capacity-voltage characteristic in an initial state of the power storage element.
  • a performance fall detection apparatus acquires the maximum value of the capacity
  • the performance degradation detection device stores the maximum value of the capacity change amount in the initial state such as the storage element manufacturing time, the factory shipment time, or the charging / discharging start time in advance in the memory. The amount of change can be easily acquired.
  • the second acquisition unit acquires a relationship between the voltage of the power storage element and a current-carrying capacity by charging or discharging the power storage element at the second time point, and obtains the current-carrying capacity from the acquired relationship.
  • the second maximum change amount may be acquired by calculating the capacitance change amount by differentiating with a voltage, and acquiring a capacitance-voltage characteristic indicating a relationship between the calculated capacitance change amount and the voltage. According to this, the performance deterioration detection device can easily acquire the second maximum change amount by acquiring the capacitance-voltage characteristic by charging or discharging the storage element at the second time point.
  • the performance degradation determination unit may limit the charging upper limit voltage of the electrical storage element when it is determined that the electrical storage element is in the performance degradation start state at the second time point. According to this, when it is determined that the power storage element is in a performance deterioration start state at the second time point, the performance deterioration detection device restricts the charge upper limit voltage of the power storage element, thereby causing a rapid performance deterioration of the power storage element. It can be controlled and life-long life-saving measures can be taken.
  • the performance degradation determination unit may limit the maximum energization current to the electrical storage element when it is determined that the electrical storage element is in the performance degradation start state at the second time point. According to this, when the performance deterioration detection device determines that the power storage element is in a performance deterioration start state at the second time point, the performance deterioration of the power storage element is suddenly reduced by limiting the maximum energization current to the power storage element. Can be suppressed, and life extension measures can be taken.
  • the power storage device is a lithium ion secondary battery including a lithium transition metal oxide having a layered structure as a positive electrode active material
  • the first acquisition unit is configured to perform the first maximum change amount of the lithium ion secondary battery.
  • the second acquisition unit may acquire the second maximum change amount of the lithium ion secondary battery.
  • the electric storage element is a lithium ion secondary battery including a lithium transition metal oxide having a layered structure as a positive electrode active material.
  • FIG. 1 is an external view of a power storage system 10 including a performance deterioration detection device 100 according to an embodiment of the present invention.
  • the power storage system 10 includes a performance deterioration detection device 100, a plurality (six in the figure) of power storage elements 200, and a storage case 300 that stores the performance deterioration detection device 100 and the plurality of power storage elements 200. And.
  • the performance deterioration detection device 100 is a circuit board on which a circuit that is disposed above the plurality of power storage elements 200 and detects a state in which a sudden decrease in battery performance of the plurality of power storage elements 200 starts to occur is detected as a performance deterioration start state. . Specifically, the performance deterioration detection device 100 is connected to the plurality of power storage elements 200, acquires information from the plurality of power storage elements 200, and detects the performance deterioration start state of the plurality of power storage elements 200.
  • the performance degradation detection device 100 is disposed above the plurality of power storage elements 200, but the performance degradation detection device 100 may be disposed anywhere. The detailed functional configuration of the performance degradation detection device 100 will be described later.
  • the electricity storage element 200 is a secondary battery such as a nonaqueous electrolyte secondary battery having a positive electrode and a negative electrode.
  • a secondary battery such as a nonaqueous electrolyte secondary battery having a positive electrode and a negative electrode.
  • six rectangular storage elements 200 are arranged in series to form an assembled battery. Note that the number of power storage elements 200 is not limited to six, but may be other plural numbers or one. Further, the shape of the electricity storage element 200 is not particularly limited.
  • the power storage element 200 includes a positive electrode in which a positive electrode active material layer is formed on a long strip-like positive electrode base foil made of aluminum or an aluminum alloy, and a long strip-like negative electrode base foil made of copper or a copper alloy.
  • the positive electrode active material used for the positive electrode active material layer or the negative electrode active material used for the negative electrode active material layer may be a known material as long as it is a positive electrode active material or a negative electrode active material capable of occluding and releasing lithium ions. Can be used.
  • the power storage element 200 is preferably a lithium ion secondary battery including a lithium transition metal oxide having a layered structure as a positive electrode active material.
  • a lithium transition metal oxide having a layered structure as a positive electrode active material.
  • Li 1 + x M 1-y O 2 M is selected from Fe, Ni, Mn, Co, etc.
  • LiNi 1/3 Co 1/3 Mn 1/3 O 2 as the positive electrode active material.
  • the positive electrode active material spinel type lithium manganese oxide such as LiMn 2 O 4 and LiMn 1.5 Ni 0.5 O 4 , olivine type positive electrode active material such as LiFePO 4 , and lithium having the above layered structure You may mix and use a transition metal oxide.
  • the negative electrode active material examples include lithium metal, lithium alloy (lithium metal such as lithium-silicon, lithium-aluminum, lithium-lead, lithium-tin, lithium-aluminum-tin, lithium-gallium, and wood alloy). Alloys), alloys capable of inserting and extracting lithium, carbon materials (eg, graphite, non-graphitizable carbon, graphitizable carbon, low-temperature calcined carbon, amorphous carbon, etc.), silicon oxide, metal oxide, lithium metal oxides (Li 4 Ti 6 O 12, etc.), and the like polyphosphoric acid compound. It should be noted that a negative electrode active material having a flat potential portion such as graphitic carbon (Graphite), soft carbon or hard carbon, Li 4 Ti 5 O 12 , LiMn 2 O 4 or the like is used. Is preferred.
  • FIG. 2 is a block diagram showing a functional configuration of the performance degradation detection apparatus 100 according to the embodiment of the present invention.
  • the performance degradation detection device 100 is a device that detects a state in which a sudden performance degradation of the storage element 200 starts to occur as a performance degradation start state.
  • the performance degradation detection apparatus 100 includes a first acquisition unit 110, a second acquisition unit 120, a performance degradation determination unit 130, and a storage unit 150.
  • the storage unit 150 stores determination data 151 for determining whether or not the power storage element 200 is in a performance deterioration start state.
  • the first acquisition unit 110 shows the relationship between the capacity change amount, which is the magnitude of the change in the energization capacity with respect to the change in the voltage of the power storage element 200 when the power storage element 200 is charged or discharged at the first time point, and the voltage.
  • the capacity change amount that is the maximum value of the capacity change amount is acquired. That is, assuming that the voltage of the storage element is V and the energization capacity is Q, the capacity change amount is expressed as dQ / dV as the magnitude of the change (dQ) in the energization capacity Q with respect to the change in voltage V (dV).
  • the first maximum change amount will be described later.
  • the first time point is a time point serving as a reference for detecting the performance deterioration start state
  • the first time point is a time point when the power storage element 200 is in the initial state. That is, the first acquisition unit 110 acquires the maximum value of the capacity change amount in the capacity-voltage characteristic in the initial state of the power storage element 200 as the first maximum change amount.
  • the maximum value of the capacity change amount in the initial state such as the production time of the power storage element 200, the factory shipment time, or the charge / discharge start time is determined in advance as the determination data 151 of the storage unit 150 as the first maximum change amount. Is written on. Then, the first acquisition unit 110 acquires the first maximum change amount by reading it from the determination data 151.
  • the storage unit 150 stores data at the first time point of the power storage element 200 such as the above-described capacitance-voltage characteristics, and the first acquisition unit 110 refers to the data to obtain the first maximum change amount. You may decide to acquire by calculating. Further, the performance degradation detection device 100 does not include the storage unit 150, and the first acquisition unit 110 may acquire the first maximum change amount from another device, or the first maximum change amount may be programmed. It may be incorporated in the first acquisition unit 110 depending on the circuit configuration or the like.
  • the first time point is not limited to the time point in the initial state, and may be any time point. For example, a predetermined period of time has elapsed since the storage element 200 started to be used with charging and discharging. It doesn't matter at the time.
  • the first acquisition unit 110 can acquire the first maximum change amount by the same method as the second acquisition unit 120 described later acquires the second maximum change amount.
  • the first time point may be expressed in any unit such as minutes, hours, days, and months.
  • the second acquisition unit 120 acquires the second maximum change amount that is the maximum value of the capacity change amount in the capacity-voltage characteristic at the second time point after the first time point. A detailed description of the second maximum change amount will be described later.
  • the second time point is a time point after the first time point, when a predetermined period has elapsed since the use of the storage element 200 with charging / discharging was started, but what is the predetermined time period?
  • the unit of the predetermined period is not particularly limited, and is, for example, a period such as a minute order, an hour order, a day order, or a month order. That is, the second time point may be expressed in any unit such as minutes, hours, days, months, and the like, similar to the first time point.
  • the second acquisition unit 120 acquires the relationship between the voltage of the power storage element 200 and the energization capacity by charging or discharging the power storage element 200 at the second time point. That is, the second acquisition unit 120 acquires the relationship by acquiring the voltage and the energization capacity from the power storage element 200 and writing them in the determination data 151 of the storage unit 150.
  • the second acquisition unit 120 calculates the amount of change in capacity by differentiating the energization capacity with voltage from the acquired relationship, and acquires the capacity-voltage characteristic indicating the relationship between the calculated amount of change in capacity and the voltage. That is, the second acquisition unit 120 reads the voltage and the energization capacity from the determination data 151, calculates the capacity change amount by differentiating the energization capacity with the voltage, and writes the calculated capacity change amount to the determination data 151. Thus, the capacitance-voltage characteristic is acquired.
  • the second acquisition unit 120 acquires the second maximum change amount by referring to the acquired capacitance-voltage characteristic. That is, the second acquisition unit 120 acquires the second maximum change amount by reading the maximum capacity change amount from the determination data 151.
  • the performance degradation detection device 100 does not include the storage unit 150, and the second acquisition unit 120 acquires the second maximum change amount by writing data to another device and reading data from the other device. You may decide.
  • the performance degradation determination unit 130 determines that the storage element 200 is in a performance degradation start state at the second time point when a variation ratio that is a ratio of the second maximum variation to the first maximum variation exceeds a predetermined value. To do. That is, the performance degradation determination unit 130 calculates the change rate ratio by dividing the second maximum change amount by the first maximum change amount, and determines whether the calculated change rate ratio exceeds a predetermined value. Then, when it is determined that the calculated change amount ratio exceeds a predetermined value, the performance degradation determination unit 130 determines that the power storage element 200 is in a performance degradation start state at the second time point.
  • the performance deterioration determination unit 130 causes a sudden decrease in the reversible capacity, which is a capacity that allows the storage element 200 to be charged or discharged, at the second time point. It is determined that the storage element 200 is in a performance deterioration start state by determining that it is in a state where it starts to occur or a state in which an abrupt decrease in input / output performance indicated by the input / output characteristics of the storage element 200 starts.
  • the predetermined value is preferably a value within the range of 0.7 to 0.8.
  • the performance degradation determination unit 130 when the change rate ratio exceeds a predetermined value set within a range of 0.7 or more and 0.8 or less, the performance degradation determination unit 130 is in a performance degradation start state at the second time point. Is determined. Specifically, when the change amount ratio exceeds a predetermined value set within a range of 0.7 or more and 0.8 or less, the performance deterioration determination unit 130 determines the reversible capacity of the storage element 200 at the second time point. Alternatively, it is determined that the storage element 200 is in a performance deterioration start state by determining that the input / output performance starts to rapidly decrease. In addition, it is mentioned later that it is preferable to set this predetermined value within the range of 0.7 or more and 0.8 or less.
  • the predetermined value (a value within a range of 0.7 to 0.8) is written in advance in the determination data 151 of the storage unit 150, and the performance degradation determination unit 130 The predetermined value is read from the use data 151 and the above determination is made.
  • the performance degradation determination unit 130 may acquire the predetermined value from another device or obtain it by calculation, or the predetermined value may be acquired by the performance degradation determination unit 130 according to a program or a circuit configuration. It does not matter even if it is incorporated.
  • the performance degradation determination part 130 restrict
  • the performance degradation determination unit 130 may limit the maximum energization current to the electrical storage element 200 when it is determined that the electrical storage element 200 is in a performance degradation start state at the second time point. That is, in this case, the performance degradation determination unit 130 issues a signal for limiting the maximum energization current to the power storage element 200 and suppresses an excessive value of the current flowing through the power storage element 200.
  • the performance degradation determination unit 130 may issue a warning before or instead of limiting the charging upper limit voltage and the maximum energization current, and the storage element 200 is in a performance degradation start state. If it is determined, charging to the power storage element 200 may be stopped.
  • FIG. 3 and 4 are diagrams for explaining the first maximum change amount acquired by the first acquisition unit 110 and the second maximum change amount acquired by the second acquisition unit 120 according to the embodiment of the present invention. . Specifically, FIG. 3 is a graph showing the relationship between the voltage and the current carrying capacity when the power storage element 200 is discharged, and FIG. 4 is a graph showing the capacity-voltage characteristics of the power storage element 200.
  • a first maximum change P 0 that is the maximum value of the capacity change dQ / dV in the initial state (first time point) is obtained.
  • the maximum value of the magnitude of the second maximum variation P X of capacitance variation dQ / dV in the second time point after a lapse of a predetermined time period from the first time point is obtained.
  • the first acquisition unit 110 acquires the first maximum change amount P 0
  • the second acquisition unit 120 acquires the second maximum change amount P X.
  • 3 and 4 show graphs for the case where the power storage element 200 is discharged, but similar graphs can be obtained for the case where the power storage element 200 is charged. For this reason, the first acquisition unit 110 acquires the first maximum change P 0 and the second acquisition unit 120 acquires the second maximum change P X in the same way as when the storage element 200 is charged. Can be acquired. The same applies to the following.
  • FIG. 5 is a flowchart illustrating an example of processing in which the performance degradation detection device 100 according to the embodiment of the present invention detects a performance degradation start state of the power storage element 200.
  • the first acquisition unit 110 acquires the first maximum change amount that is the maximum value of the capacity change amount in the capacity-voltage characteristic at the first time point (S102). Specifically, the first acquisition unit 110 acquires the first maximum change amount that is the maximum value of the capacitance change amount in the capacity-voltage characteristic in the initial state of the power storage element 200 by reading from the determination data 151.
  • the second acquisition unit 120 acquires the second maximum change amount that is the maximum value of the capacity change amount in the capacity-voltage characteristic at the second time point after the first time point (S104). Specifically, the second acquisition unit 120 acquires the relationship between the voltage of the power storage element 200 and the current-carrying capacity by charging or discharging the power storage element 200 at the second time point, and calculates the current-carrying capacity from the acquired relationship. The capacitance change amount is calculated by differentiating with the voltage, and the second maximum change amount is acquired by acquiring the capacitance voltage characteristic indicating the relationship between the calculated capacitance change amount and the voltage. A detailed description of the process in which the second acquisition unit 120 acquires the second maximum change amount will be described later.
  • the performance deterioration determining unit 130 is in a state where the power storage element 200 is in a performance deterioration start state at the second time point. It is determined that there is (S106). Specifically, when the change amount ratio exceeds the predetermined value, the performance deterioration determination unit 130 is in a state in which a sudden decrease in the reversible capacity or input / output performance of the storage element 200 starts to occur at the second time point. By determining that there is, it is determined that the power storage element 200 is in a performance deterioration start state. A detailed description of the process in which the performance degradation determination unit 130 determines that the storage element 200 is in the performance degradation start state at the second time point will be described later.
  • FIG. 6 is a flowchart illustrating an example of processing in which the second acquisition unit 120 according to the embodiment of the present invention acquires the second maximum change amount.
  • 7 and 8 are diagrams for describing processing in which the second acquisition unit 120 according to the embodiment of the present invention acquires the second maximum change amount. Specifically, FIG. 7 is a graph showing the relationship between the voltage and the current carrying capacity when the power storage element 200 is discharged, and FIG. 8 is a graph showing the capacity-voltage characteristics of the power storage element 200.
  • a charge / discharge cycle test that repeats charge / discharge under certain conditions is performed in order to continuously advance the degree of use of the electricity storage element 200, and based on the data acquired thereby, The number of cycles in the charge / discharge cycle test is used as an index indicating the degree of use.
  • the charge / discharge conditions, particularly the discharge conditions are not constant. Needless to say, it is usually not possible to acquire.
  • the second acquisition unit 120 charges or discharges the storage element 200 at the second time point (S202).
  • S202 the second time point
  • the 2nd acquisition part 120 acquires the relationship between the voltage of the electrical storage element 200, and an energization capacity (S204). Specifically, the second acquisition unit 120 acquires the relationship between the voltage V and the capacity Q of the storage element 200 as shown in FIG.
  • the second acquisition unit 120 corresponds to the graph of “50 cycles” illustrated in FIG. 7, for example, if the second time point is a time point when the degree of use of the power storage element 200 corresponds to 50 cycles in the charge / discharge cycle test. Data to be acquired.
  • the second acquisition unit 120 corresponds to the graph of “300 cycles” shown in FIG. 5 when the second time point is a time point when the degree of use of the storage element 200 corresponds to 300 cycles in the charge / discharge cycle test. Data to be acquired.
  • the result of having performed the following 45 degreeC and 1C cycle tests as a specific example is shown.
  • a lithium ion secondary battery (hereinafter referred to as battery A) having a positive electrode having a positive electrode mixture formed on an aluminum foil and a negative electrode having a negative electrode mixture formed on a copper foil was used.
  • the positive electrode mixture of the battery A includes a positive electrode active material, polyvinylidene fluoride as a binder, and acetylene black as a conductive material.
  • the positive electrode active material is LiNi 1/3 Co 1/3 Mn.
  • the negative electrode mixture of the battery A includes a graphitic carbon material which is a negative electrode active material, and styrene butadiene rubber and carboxymethyl cellulose as a binder.
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • EMC ethyl methyl carbonate
  • a constant current discharge with a final voltage of 2.85V was used.
  • a 10-minute rest period was provided between charging and discharging and between discharging and charging.
  • the battery was in an open circuit state. That is, four steps of charging, resting, discharging, and resting are defined as one cycle.
  • the second acquisition unit 120 calculates the amount of change in capacity by differentiating the energized capacity with voltage from the acquired relationship, and the capacitance-voltage characteristic indicating the relationship between the calculated amount of change in capacity and the voltage. Is acquired (S206). Specifically, the second acquisition unit 120 calculates the capacitance change amount dQ / dV by differentiating the capacitance Q with the voltage V in the graph shown in FIG. And the 2nd acquisition part 120 acquires the capacity voltage characteristic which shows the relationship between the calculated capacitance variation
  • the second acquisition unit 120 corresponds to the graph of “50 cycles” illustrated in FIG. 8, for example, when the second time point is a time point when the degree of use of the power storage element 200 corresponds to 50 cycles in the charge / discharge cycle test. Data to be acquired.
  • the second acquisition unit 120 corresponds to the graph of “300 cycles” shown in FIG. 5 when the second time point is a time point when the degree of use of the storage element 200 corresponds to 300 cycles in the charge / discharge cycle test. Data to be acquired.
  • the second acquisition unit 120 acquires the second maximum change amount by referring to the acquired capacitance-voltage characteristic (S208). Specifically, the second acquisition unit 120 acquires the second maximum change amount with reference to the graph shown in FIG.
  • the second acquisition unit 120 displays P 50 shown in FIG. 8 as the second maximum change amount. The value of is obtained.
  • the second acquisition unit 120 displays P 300 shown in FIG. The value of is obtained.
  • FIG. 9 is a flowchart illustrating an example of processing in which the performance deterioration determination unit 130 according to the embodiment of the present invention determines that the power storage element 200 is in the performance deterioration start state at the second time point.
  • 10A to 10C are diagrams for describing processing in which the performance degradation determination unit 130 according to the embodiment of the present invention determines that the power storage element 200 is in a performance degradation start state at the second time point.
  • FIG. 10A shows the state of performance deterioration when the value of the change amount ratio when the degree of use (number of cycles) is changed and the value of the change amount ratio is adopted as the predetermined value.
  • FIG. 10A shows the state of performance deterioration when the value of the change amount ratio when the degree of use (number of cycles) is changed and the value of the change amount ratio is adopted as the predetermined value.
  • FIG. 10B is a graph showing the transition of the capacity retention rate of the electricity storage device 200 when the degree of use (number of cycles) is changed.
  • FIG. 10C is a graph showing changes in the output DC resistance, input DC resistance, and AC resistance of the storage element 200 when the degree of use (number of cycles) is changed. Specifically, (a) of FIG. 10C shows the transition of the ratio of the output DC resistance of the storage element 200 to the initial state (output DC resistance increase rate of FIG. 10A) when the degree of use (number of cycles) is changed. It is a graph to show.
  • FIG. 10C (b) is a graph showing the transition of the ratio of the input DC resistance of the storage element 200 to the initial state (input DC resistance increase rate in FIG.
  • FIG. 10C is a graph which shows transition of the ratio (AC resistance increase rate of FIG. 10A) with respect to the initial state of the alternating current resistance of the electrical storage element 200 at the time of changing the use degree (cycle number). .
  • the performance degradation determination unit 130 determines whether or not a change amount ratio that is a ratio of the second maximum change amount to the first maximum change amount exceeds a predetermined value (S302). Specifically, the performance deterioration determining unit 130 calculates the change amount ratio P X / P 0 by dividing the second maximum change amount P X by the first maximum change amount P 0 . Then, the performance degradation determination unit 130 determines whether or not the calculated change amount ratio P X / P 0 exceeds a predetermined value determined within a range of 0.7 to 0.8.
  • the second time point is a time point when the degree of use of the power storage element 200 corresponds to 300 cycles in the charge / discharge cycle test
  • the power storage element 200 is in a performance deterioration start state at the second time point. Determination is made (S304). Specifically, when the performance deterioration determination unit 130 determines that the change rate ratio exceeds a predetermined value set within a range of 0.7 or more and 0.8 or less, the power storage element 200 performs at the second time point. It determines with it being a fall start state.
  • the performance deterioration determining unit 130 determines that the change amount ratio exceeds a predetermined value set within a range of 0.7 or more and 0.8 or less, at the second time point, the power storage element 200 It is determined that the storage element 200 is in a performance deterioration start state by determining that the reversible capacity or the input / output performance starts to rapidly decrease.
  • the performance degradation determination is made because the storage element 200 is not in a performance degradation start state (the timing for detecting a sudden performance degradation is fast).
  • the unit 130 cannot appropriately determine the performance deterioration start state.
  • the storage element 200 has passed the performance degradation start state (the timing for detecting a sudden performance degradation is slow), so the performance degradation.
  • the determination unit 130 cannot appropriately determine the performance deterioration start state.
  • the performance degradation determination unit 130 can accurately determine when the power storage element 200 is in a performance degradation start state.
  • the performance deterioration determination unit 130 determines that the sudden decrease in the reversible capacity of the electricity storage element 200 starts to occur at the second time point, and the electricity storage element 200 is in a performance deterioration start state at the second time point. judge.
  • performance degradation occurs in proportion to the cycle number route. According to the prior art, it can be seen that it is not possible to determine the time when the power storage element enters the performance deterioration start state. Similarly, as shown in FIG.
  • the performance degradation determination unit 130 can accurately determine when the power storage element 200 is in a performance degradation start state.
  • the performance degradation determination unit 130 determines that the input / output performance of the power storage element 200 starts to suddenly decrease at the second time point, so that the power storage element 200 is in a performance degradation start state at the second time point. Is determined.
  • performance degradation occurs in proportion to the cycle number cycle. According to the prior art, it can be seen that it is not possible to determine the time when the power storage element enters the performance deterioration start state.
  • the input / output performance indicated by the input / output characteristics of the power storage element decreases when the output DC resistance, input DC resistance, or AC resistance of the power storage element (battery) increases.
  • the battery is adjusted by charging / discharging until it reaches a certain SOC (State Of Charge) (for example, 50%).
  • SOC State Of Charge
  • a discharge pulse (with an output characteristic of 10 seconds or 60 seconds) at a specified current rate (for example, at least three times at different current rates such as 0.2, 0.5, 1 C) at a specified current supply time (for example, 10 seconds or 60 seconds). Case) and charging pulse (in case of input / output characteristics).
  • the auxiliary charge is performed after the discharge pulse, and the auxiliary discharge is performed after the charge pulse.
  • the vertical axis plots the decreased voltage value (or increased voltage value after the charge pulse) [V] after the discharge pulse, and the horizontal axis plots the current value [I].
  • V I ⁇ R + V0
  • R and V0 are a resistance (a negative value in the case of a discharge pulse and a positive value in the case of a charge pulse) and OCV (open circuit voltage), respectively.
  • the resistance (R) and OCV (V0) at the time of discharging and charging pulses are calculated.
  • the input / output performance (W) is calculated by (Vx ⁇ V0) / R ⁇ Vx, where Vx is the voltage of the input / output characteristics to be calculated.
  • Vx is the voltage of the input / output characteristics to be calculated.
  • R resistance
  • W the input / output performance
  • the following problems occur. For example, in lithium ion secondary batteries used in HEVs (hybrid electric vehicles), PHEVs (plug-in hybrid electric vehicles), and the like, stored power is used as electric power for driving the motor (assist at start-up / acceleration).
  • the secondary battery is charged by the generated power when the electric motor generates regenerative power, the generated electric power of the generator that generates power as the engine rotates, or the like.
  • the input / output performance of the secondary battery decreases (resistance increases)
  • the driving power of the electric motor decreases, the output characteristics as assist decreases, or when the electric motor generates regenerative power
  • input characteristics charge acceptability
  • the output DC resistance, input DC resistance, and AC resistance shown in (a) to (c) of FIG. 10C are obtained by measuring as follows.
  • the battery is adjusted by charging or discharging so that the SOC becomes 50%, and energization is performed for 60 seconds at a discharge rate of 0.2, 0.5, 1C. (The temperature is 25 ° C.), and the output DC resistance is calculated as the resistance (R).
  • the battery is adjusted by charging or discharging so that the SOC becomes 50%, and the energization time is 60 seconds at the charging rate of 0.2, 0.5, 1C. By energizing (temperature is 25 ° C.), the input DC resistance is calculated as the resistance (R).
  • the battery is discharged until the SOC becomes 0%, and the AC resistance at a frequency of 1 kHz (temperature is 25 ° C.) is measured and calculated as the resistance (R).
  • the resistance (R) As described above, as shown in FIGS. 10A to 10C, the period of rapid reversible capacity decrease and the period of rapid resistance increase generally coincide. This is due to the following reason. That is, in the battery capacity transition when discharged under specified conditions (for example, 1C discharge), the capacity obtained by the energizing current is greatly reduced at the end of the secondary battery life, and the capacity obtained by the energizing current is greatly reduced. A drop will occur.
  • the reason why the rate performance of the secondary battery is lowered is mainly due to the increase in direct current and alternating current resistance of the battery as the life test progresses. Therefore, the transition of resistance such as the output DC resistance, input DC resistance, or AC resistance of the secondary battery shows a behavior corresponding to the transition of the reversible capacity of the secondary battery.
  • the performance degradation determination unit 130 limits the charging upper limit voltage of the power storage element 200 or limits the maximum energization current to the power storage element 200 (S306). That is, when the performance degradation determination unit 130 determines that the power storage element 200 is in a performance degradation start state at the second time point, the performance degradation determination unit 130 performs control so as to suppress a rapid performance degradation of the power storage element.
  • the predetermined value used when the performance degradation determination unit 130 determines the performance degradation start state is preferably a value within the range of 0.7 to 0.8.
  • FIGS. 11 to 14C are used to explain that the predetermined value used by the performance deterioration determining unit 130 according to the embodiment of the present invention is preferably a value within the range of 0.7 to 0.8.
  • FIG. 11 and FIG. 13 are graphs showing the capacity-voltage characteristics of the electricity storage device 200, and FIG. 12A and FIG. 14A are values of change rate ratios when the degree of use (number of cycles) is changed.
  • FIG. 12B and FIG. 14B show the results of determining the performance deterioration start state when the value of the change amount ratio is adopted as the predetermined value, and FIGS. 12B and 14B change the degree of use (number of cycles).
  • 12C and 14C are graphs showing transitions of the output DC resistance, input DC resistance, and AC resistance of the storage element 200 when the degree of use (number of cycles) is changed.
  • FIG. 12C and FIG. 14C show the ratio of the output DC resistance of the storage element 200 to the initial state when the degree of use (number of cycles) is changed (FIGS. 12A and 14A).
  • FIGS. 12A and 14A show transition of output DC resistance increase rate of No.
  • 12B and 14B show the ratio of the input DC resistance of the storage element 200 to the initial state when the degree of use (number of cycles) is changed (the inputs in FIGS.
  • the positive electrode active material is a lithium transition metal oxide having a layered structure represented by LiNi 1/3 Co 1/3 Mn 1/3 O 2 and spinel type lithium manganese oxide represented by LiMn 2 O 4.
  • a lithium ion secondary battery (hereinafter referred to as battery B) which is a mixture with the product (mass ratio 3: 7) was used.
  • a lithium ion secondary battery (hereinafter referred to as a battery C), which is a lithium transition metal oxide having a layered structure in which the positive electrode active material is represented by LiNi 1/3 Co 1/3 Mn 1/3 O 2 ) was used.
  • the other configurations of the battery B and the battery C are the same as those of the battery A.
  • the performance degradation determination unit 130 is in a state where a sudden decrease in the reversible capacity of the electric storage element 200 starts to occur when the change amount ratio is 0.80 (when a predetermined value less than 0.80 is exceeded), or By determining that the output performance starts to suddenly decrease, it is determined that the storage element 200 is in a performance deterioration start state.
  • the performance degradation determination unit 130 is in a state where a sudden decrease in the reversible capacity of the electric storage element 200 starts to occur when the change amount ratio is 0.71 (when the change ratio exceeds a predetermined value less than 0.71), or By determining that the output performance starts to suddenly decrease, it is determined that the storage element 200 is in a performance deterioration start state.
  • the performance degradation determination unit 130 accurately determines when the power storage element 200 enters the performance degradation start state when a value within the range of 0.7 to 0.8 is set as the predetermined value. Can be determined. That is, it is preferable that the predetermined value used by the performance degradation determination unit 130 is a value within a range of 0.7 or more and 0.8 or less.
  • the capacity voltage characteristic obtained by charging the electrical storage element 200 is used will be described.
  • the performance degradation detection device 100 acquires the capacitance-voltage characteristic as shown in FIG. 11 as the differential characteristic of the discharge curve when the storage element 200 is discharged.
  • the performance deterioration detection device 100 acquires the capacity-voltage characteristic as the differential characteristic of the charging curve when the storage element 200 is charged.
  • FIG. 15 is a diagram showing a capacitance-voltage characteristic obtained as the differential characteristic of the charging curve of the electricity storage device 200 according to the embodiment of the present invention.
  • FIG. 16 is a diagram showing a determination result of the performance deterioration start state when the capacitance-voltage characteristic obtained as the differential characteristic of the charging curve of the storage element 200 according to the embodiment of the present invention is acquired. In these figures, the results obtained using the battery B are shown.
  • the performance is the same as when the capacity voltage characteristic obtained by discharging the electricity storage element 200 is used.
  • the decrease determination unit 130 can determine that the power storage element 200 is in a performance deterioration start state when the change amount ratio exceeds a predetermined value in the range of 0.7 to 0.8. For this reason, even if it is a case where the capacity voltage characteristic obtained by charging the electrical storage element 200 is used, the performance degradation detection apparatus 100 can detect the state where the rapid performance degradation of the electrical storage element 200 begins to occur accurately. it can. Next, the case where the capacity-voltage characteristic obtained by conducting a 0.2 C discharge capacity confirmation test about the electrical storage element 200 will be described.
  • the performance degradation detection device 100 has obtained the capacity-voltage characteristic as shown in FIG. 11 as the differential characteristic of the discharge curve when the 1C discharge capacity confirmation test is performed on the storage element 200.
  • the performance deterioration detection device 100 acquires the capacity voltage characteristic as the differential characteristic of the discharge curve when the 0.2C discharge capacity confirmation test is performed on the power storage element 200.
  • FIG. 17 is a diagram showing a capacity-voltage characteristic obtained when a 0.2C discharge capacity confirmation test is performed on the electric storage element 200 according to the embodiment of the present invention.
  • FIG. 17 is a diagram showing a capacity-voltage characteristic obtained when a 0.2C discharge capacity confirmation test is performed on the electric storage element 200 according to the embodiment of the present invention.
  • FIG 18 is a figure which shows the determination result of the performance fall start state at the time of acquiring the capacity voltage characteristic obtained by performing a 0.2C discharge capacity confirmation test about the electrical storage element 200 which concerns on embodiment of this invention. .
  • the results obtained using the battery B are shown.
  • the performance degradation determination unit 130 indicates that the storage element 200 is in a performance degradation start state when the change amount ratio exceeds a predetermined value in the range of 0.7 to 0.8. It can be determined that.
  • the performance degradation detection apparatus 100 produces the rapid performance degradation of the electrical storage element 200.
  • the starting state can be detected with high accuracy.
  • the performance deterioration detection device 100 is not limited to the case where the current rate at the time of the discharge capacity confirmation test is 1C, and a sudden performance deterioration of the power storage element 200 is caused even at a current rate other than 1C. It is possible to accurately detect a state that starts to occur.
  • the current rate may be 1C or higher or 1C or lower. However, in order to detect with higher accuracy, the current rate is preferably 1C or lower on average.
  • the capacitance-voltage characteristic is illustrated with the interval of the voltage change amount (dV) in the capacitance change amount (dQ / dV) on the vertical axis in the capacitance-voltage characteristic being 0.02V. That is, the performance deterioration detection device 100 acquires the capacitance-voltage characteristic by plotting the relationship between the capacitance change amount (dQ / dV) and the voltage (V) with a dV thinning interval of 0.02V.
  • the performance degradation detection device 100 plots the relationship between the capacitance change amount (dQ / dV) and the voltage (V) with the dV thinning-out interval set to 0.04 V, thereby obtaining the capacitance-voltage characteristic.
  • FIG. 19 is a diagram showing a capacitance-voltage characteristic obtained when the voltage change amount interval is changed for power storage element 200 according to the embodiment of the present invention.
  • FIG. 20 is a diagram illustrating a determination result of the performance deterioration start state when the capacitance-voltage characteristic obtained by changing the voltage change amount interval is obtained for the storage element 200 according to the embodiment of the present invention. . In these figures, the results obtained using the battery B are shown.
  • the performance deterioration determining unit 130 stores the power when the change amount ratio exceeds a predetermined value within the range of 0.7 to 0.8. It can be determined that the element 200 is in a performance deterioration start state. For this reason, even if it is a case where the capacity voltage characteristic obtained when the space
  • the performance degradation detection device 100 is not limited to 0.02V as long as the voltage change interval is constant, and the power storage element 200 even at intervals other than 0.02V. Thus, it is possible to accurately detect a state in which the rapid performance degradation starts.
  • the voltage change amount interval may be any value, but in order to detect the voltage more accurately, the voltage change amount interval is between 0.01V and 0.05V. The value is preferred.
  • the relationship between the capacitance change amount that is the magnitude of the change in the energization capacity with respect to the change in the voltage of the storage element 200 and the voltage is shown.
  • the capacity-voltage characteristic when a change amount ratio that is a ratio of the maximum value of the capacity change amount at the second time point to the maximum value of the capacity change amount at the first time point exceeds a predetermined value, the storage element at the second time point It is determined that 200 is a performance degradation start state.
  • the inventors of the present application have found that when the change amount ratio exceeds a predetermined value, the performance of the electric storage element 200 starts to rapidly decrease at the second time point.
  • the capacity voltage characteristic (dQ / dV-V characteristic) calculated from the discharge curve of the battery capacity (or the charge curve when charged) when discharged under specified conditions (for example, 1 C discharge) is polarization dependent. It is possible to capture the electrochemical performance of the positive electrode and the negative electrode containing as a phase change. Assuming that the negative electrode having a long plateau region is used in the actual operating region of the battery, it is considered that the decrease in the rate performance of the battery is mainly caused by the single electrode of the positive electrode active material and the deterioration of the rate performance. It has been found that the deterioration of the positive electrode active material can be detected by the capacity-voltage characteristics of the battery. For example, when the capacity of the battery deteriorates, the plateau range that appears at a constant potential of the battery is narrowed. Therefore, when Q is differentiated by V in the VQ characteristics, the amount of change in capacity caused by the plateau becomes small.
  • the state where the rapid performance degradation of the electrical storage element 200 begins to occur can be accurately detected. Thereby, for example, it is possible to accurately determine the timing of the replacement time of the lithium ion secondary battery for moving bodies. Further, as a result of intensive studies and experiments, the inventors of the present application have found that when the change amount ratio exceeds a predetermined value, the reversible capacity or input / output performance of the storage element 200 starts to rapidly decrease at the second time point. I found it. Then, the fact that the reversible capacity or the input / output performance of the electricity storage element 200 starts to decrease rapidly indicates that the performance deterioration of the energy storage element 200 starts to occur.
  • the performance degradation detection device 100 by detecting that the reversible capacity or input / output performance of the energy storage device 200 starts to rapidly decrease, the state in which the performance degradation of the energy storage device 200 starts to occur is accurately detected. Can be detected.
  • the inventors of the present application have the performance of the power storage device 200 at the second time point when the change rate ratio exceeds a predetermined value within the range of 0.7 to 0.8. We found that it began to decline sharply. For this reason, according to the performance degradation detection apparatus 100, the state where the rapid performance degradation of the electrical storage element 200 begins to occur can be accurately detected.
  • the performance deterioration detection device 100 acquires the maximum value of the capacity change amount in the capacity-voltage characteristic in the initial state of the storage element 200 as the first maximum change amount. For this reason, the performance degradation detection apparatus 100 stores the maximum value of the capacity change amount in the initial state such as the time of manufacture of the power storage element 200, the time of factory shipment, or the start of charge / discharge in advance in the memory. One maximum change amount can be easily obtained.
  • the performance deterioration detection device 100 can easily acquire the second maximum change amount by acquiring the capacitance-voltage characteristic by charging or discharging the storage element 200 at the second time point.
  • the performance degradation detection device 100 determines that the power storage element 200 is in a performance degradation start state at the second time point, the performance degradation detection device 100 limits the charging upper limit voltage of the power storage element 200, thereby causing a sudden performance degradation of the power storage element 200. Can be suppressed, and life extension measures can be taken.
  • the performance degradation detection device 100 determines that the power storage element 200 is in a performance degradation start state at the second time point, the performance degradation detection device 100 restricts the maximum energization current to the power storage element 200, thereby causing the rapid performance of the power storage element 200. The decrease can be suppressed, and the life extension measure can be taken.
  • the electricity storage element 200 is a lithium ion secondary battery including a layered lithium transition metal oxide as a positive electrode active material.
  • the performance degradation detection device 100 can accurately detect a state in which a rapid performance degradation of the lithium ion secondary battery starts to occur.
  • the first acquisition unit 110 acquires the first maximum change amount by reading it from the determination data 151.
  • the first acquisition unit 110 may acquire the first maximum change amount in the same manner as the second acquisition unit 120 acquires the second maximum change amount. That is, the first acquisition unit 110 acquires the relationship between the voltage of the power storage element 200 and the current carrying capacity by charging or discharging the power storage element 200 at the first time point, and differentiates the current carrying capacity from the obtained relationship.
  • the first maximum change amount may be acquired by calculating the capacitance change amount and acquiring the capacitance-voltage characteristic indicating the relationship between the calculated capacitance change amount and the voltage.
  • the first time point is as early as possible before the power storage element 200 is shipped from the factory, before the user starts actual use after the power storage element 200 is mounted on the application device, or after the user starts actual use. It is preferable to adopt.
  • the performance degradation determination unit 130 acquires an appropriate determination criterion from an input by the user or the like, or calculates an appropriate determination criterion by itself. Thereby, the performance fall start state of the electrical storage element 200 can be determined appropriately.
  • the performance degradation detection device 100 uses the change amount ratio calculated from the change in the value of the capacity change amount (vertical axis) at the peak position where the capacity change amount is maximum in the capacity-voltage characteristic. Therefore, it was decided to detect the performance degradation start state.
  • the performance deterioration detection device 100 may detect the performance deterioration start state by using a change in the value of the battery voltage (horizontal axis) at the peak position where the capacity change amount is maximum in the capacity voltage characteristic. . That is, the performance degradation detection device 100 may detect the performance degradation start state in consideration of the lateral position change of the peak position of the capacity variation amount in the capacity-voltage characteristic.
  • the present invention can be realized not only as the power storage system 10 or the performance degradation detection device 100 but also as a performance degradation detection method using a characteristic processing unit included in the performance degradation detection device 100 as a step. Can be realized.
  • each processing unit included in the performance degradation detection device 100 according to the present invention may be realized as an LSI (Large Scale Integration) that is an integrated circuit.
  • the present invention can be realized as an integrated circuit 160 including a first acquisition unit 110, a second acquisition unit 120, and a performance deterioration determination unit 130.
  • FIG. 21 is a block diagram showing a configuration for realizing the performance degradation detection apparatus 100 according to the embodiment of the present invention with an integrated circuit.
  • each processing unit included in the integrated circuit 160 may be individually made into one chip, or may be made into one chip so as to include some or all of them.
  • the name used here is LSI, but it may also be called IC, system LSI, super LSI, or ultra LSI depending on the degree of integration.
  • the method of circuit integration is not limited to LSI, and implementation with a dedicated circuit or a general-purpose processor is also possible.
  • An FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • the present invention is realized as a program that causes a computer to execute characteristic processing included in the performance degradation detection method, or a computer-readable non-transitory recording medium in which the program is recorded, such as a flexible disk, It can also be realized as a hard disk, CD-ROM, MO, DVD, DVD-ROM, DVD-RAM, BD (Blu-ray Disc (registered trademark)), or semiconductor memory. Needless to say, such a program can be distributed via a recording medium such as a CD-ROM and a transmission medium such as the Internet.
  • the present invention can be applied to a performance deterioration detection device or the like that can accurately detect a state in which a sudden performance deterioration starts in a power storage element such as a lithium ion secondary battery.
  • Performance fall detection apparatus 1st acquisition part 120 2nd acquisition part 130 Performance fall determination part 150 Storage part 151 Data for determination 160 Integrated circuit 200 Power storage element 300 Storage case

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

蓄電素子200の性能低下開始状態を検知する性能低下検知装置100であって、第一時点での、蓄電素子200を充電または放電した場合の蓄電素子200の電圧の変化に対する通電容量の変化の大きさである容量変化量と電圧との関係を示す容量電圧特性において、容量変化量の最大値である第一最大変化量を取得する第一取得部110と、第一時点以降の第二時点での容量電圧特性において、容量変化量の最大値である第二最大変化量を取得する第二取得部120と、第一最大変化量に対する第二最大変化量の比率である変化量比率が所定の値を超える場合に、第二時点において蓄電素子200が性能低下開始状態であると判定する性能低下判定部130とを備える。

Description

蓄電素子の性能低下検知装置、性能低下検知方法及び蓄電システム
 本発明は、蓄電素子の急激な性能低下が生じ始める状態を検知する性能低下検知装置、性能低下検知方法、及び蓄電素子と性能低下検知装置とを備える蓄電システムに関する。
 リチウムイオン二次電池などの蓄電素子は、ノートパソコンや携帯電話などのモバイル機器の電源として用いられてきたが、近年、電気自動車の電源など、幅広い分野で使用されるようになってきた。特に、蓄電素子を電気自動車の電源として使用する場合には、長期の寿命性能が要求されている。また、このような蓄電素子は、電気自動車の電源として使用された後に、ロードレベリング(電力負荷平準化)用の電源として二次使用されることが期待されている。
 このため、蓄電素子の劣化状態を把握することが必要であり、従来、蓄電素子の状態を精度良く検知することができる技術が提案されている(例えば、特許文献1参照)。この技術では、二次電池の電池容量が当該電池容量の差分値に対して直線的に小さくなる、または二次電池の内部抵抗が電池電圧の差分値に対して直線的に大きくなるという特性を用いて、二次電池の劣化状態を検知している。
特開2009-252381号公報
 しかしながら、上記従来の技術においては、蓄電素子の急激な性能低下が生じ始める状態を精度良く検知することができないという問題がある。
 本発明は、上記問題を解決するためになされたものであり、蓄電素子の急激な性能低下が生じ始める状態を精度良く検知することができる性能低下検知装置、性能低下検知方法及び蓄電システムを提供することを目的とする。
 上記目的を達成するために、本発明の一態様に係る蓄電素子の性能低下検知装置は、蓄電素子の急激な性能低下が生じ始める状態を性能低下開始状態として検知する性能低下検知装置であって、第一時点での、前記蓄電素子を充電または放電した場合の前記蓄電素子の電圧の変化に対する通電容量の変化の大きさである容量変化量と前記電圧との関係を示す容量電圧特性において、前記容量変化量の最大値である第一最大変化量を取得する第一取得部と、前記第一時点以降の第二時点での前記容量電圧特性において、前記容量変化量の最大値である第二最大変化量を取得する第二取得部と、前記第一最大変化量に対する前記第二最大変化量の比率である変化量比率が所定の値を超える場合に、前記第二時点において前記蓄電素子が前記性能低下開始状態であると判定する性能低下判定部とを備える。
 なお、本発明は、このような蓄電素子の性能低下検知装置として実現することができるだけでなく、蓄電素子と、当該蓄電素子の急激な性能低下が生じ始める状態を検知する性能低下検知装置とを備える蓄電システムとしても実現することができる。また、本発明は、性能低下検知装置が行う特徴的な処理をステップとする性能低下検知方法としても実現することができる。また、本発明は、性能低下検知装置に含まれる特徴的な処理部を備える集積回路としても実現することができる。また、本発明は、性能低下検知方法に含まれる特徴的な処理をコンピュータに実行させるプログラムとして実現したり、当該プログラムが記録されたコンピュータ読み取り可能なCD-ROM(Compact Disc-Read Only Memory)などの記録媒体として実現したりすることもできる。そして、そのようなプログラムは、CD-ROM等の記録媒体及びインターネット等の伝送媒体を介して流通させることができるのは言うまでもない。
 本発明によると、リチウムイオン二次電池などの蓄電素子において、急激な性能低下が生じ始める状態を精度良く検知することができる。
本発明の実施の形態に係る性能低下検知装置を備える蓄電システムの外観図である。 本発明の実施の形態に係る性能低下検知装置の機能的な構成を示すブロック図である。 本発明の実施の形態に係る第一取得部が取得する第一最大変化量及び第二取得部が取得する第二最大変化量を説明するための図である。 本発明の実施の形態に係る第一取得部が取得する第一最大変化量及び第二取得部が取得する第二最大変化量を説明するための図である。 本発明の実施の形態に係る性能低下検知装置が蓄電素子の性能低下開始状態を検知する処理の一例を示すフローチャートである。 本発明の実施の形態に係る第二取得部が第二最大変化量を取得する処理の一例を示すフローチャートである。 本発明の実施の形態に係る第二取得部が第二最大変化量を取得する処理を説明するための図である。 本発明の実施の形態に係る第二取得部が第二最大変化量を取得する処理を説明するために電池Aの容量電圧特性を示す図である。 本発明の実施の形態に係る性能低下判定部が第二時点において蓄電素子が性能低下開始状態であると判定する処理の一例を示すフローチャートである。 本発明の実施の形態に係る性能低下判定部が第二時点において蓄電素子が性能低下開始状態であると判定する処理を説明するために電池Aの性能低下開始状態の判定結果を示す図である。 本発明の実施の形態に係る性能低下判定部が第二時点において蓄電素子が性能低下開始状態であると判定する処理を説明するために電池Aの容量維持率の推移を示す図である。 本発明の実施の形態に係る性能低下判定部が第二時点において蓄電素子が性能低下開始状態であると判定する処理を説明するために電池Aの抵抗の推移を示す図である。 本発明の実施の形態に係る性能低下判定部が用いる所定の値が0.7以上0.8以下の範囲内の値であるのが好ましいことについて説明するために電池Bの容量電圧特性を示す図である。 本発明の実施の形態に係る性能低下判定部が用いる所定の値が0.7以上0.8以下の範囲内の値であるのが好ましいことについて説明するために電池Bの性能低下開始状態の判定結果を示す図である。 本発明の実施の形態に係る性能低下判定部が用いる所定の値が0.7以上0.8以下の範囲内の値であるのが好ましいことについて説明するために電池Bの容量維持率の推移を示す図である。 本発明の実施の形態に係る性能低下判定部が用いる所定の値が0.7以上0.8以下の範囲内の値であるのが好ましいことについて説明するために電池Bの抵抗の推移を示す図である。 本発明の実施の形態に係る性能低下判定部が用いる所定の値が0.7以上0.8以下の範囲内の値であるのが好ましいことについて説明するために電池Cの容量電圧特性を示す図である。 本発明の実施の形態に係る性能低下判定部が用いる所定の値が0.7以上0.8以下の範囲内の値であるのが好ましいことについて説明するために電池Cの性能低下開始状態の判定結果を示す図である。 本発明の実施の形態に係る性能低下判定部が用いる所定の値が0.7以上0.8以下の範囲内の値であるのが好ましいことについて説明するために電池Cの容量維持率の推移を示す図である。 本発明の実施の形態に係る性能低下判定部が用いる所定の値が0.7以上0.8以下の範囲内の値であるのが好ましいことについて説明するために電池Cの抵抗の推移を示す図である。 本発明の実施の形態に係る蓄電素子の充電カーブの微分特性として得られる容量電圧特性を示す図である。 本発明の実施の形態に係る蓄電素子の充電カーブの微分特性として得られる容量電圧特性を取得した場合の性能低下開始状態の判定結果を示す図である。 本発明の実施の形態に係る蓄電素子について0.2C放電容量確認試験を行った場合に得られる容量電圧特性を示す図である。 本発明の実施の形態に係る蓄電素子について0.2C放電容量確認試験を行って得られる容量電圧特性を取得した場合の性能低下開始状態の判定結果を示す図である。 本発明の実施の形態に係る蓄電素子について電圧の変化量の間隔を変更した場合に得られる容量電圧特性を示す図である。 本発明の実施の形態に係る蓄電素子について電圧の変化量の間隔を変更して得られる容量電圧特性を取得した場合の性能低下開始状態の判定結果を示す図である。 本発明の実施の形態に係る性能低下検知装置を集積回路で実現する構成を示すブロック図である。
 (本発明の基礎となった知見)
 上記従来の技術においては、蓄電素子の急激な性能低下が生じ始める状態を精度良く検知することができないという問題がある。
 すなわち、特にハイブリッド自動車や電気自動車用途で使用されるリチウムイオン二次電池では、寿命末期に電池性能が急激に低下するため、電池性能の急激な低下が生じ始める状態を精度良く検知することが極めて重要である。しかし、従来の技術では、電池性能を示す電池容量や内部抵抗の変化が直線的なものであるため、当該電池性能の急激な低下を事前に精度良く検知することは困難である。
 本発明は、上記問題を解決するためになされたものであり、蓄電素子の急激な性能低下が生じ始める状態を精度良く検知することができる性能低下検知装置、性能低下検知方法及び蓄電システムを提供することを目的とする。
 上記目的を達成するために、本発明の一態様に係る蓄電素子の性能低下検知装置は、蓄電素子の急激な性能低下が生じ始める状態を性能低下開始状態として検知する性能低下検知装置であって、第一時点での、前記蓄電素子を充電または放電した場合の前記蓄電素子の電圧の変化に対する通電容量の変化の大きさである容量変化量と前記電圧との関係を示す容量電圧特性において、前記容量変化量の最大値である第一最大変化量を取得する第一取得部と、前記第一時点以降の第二時点での前記容量電圧特性において、前記容量変化量の最大値である第二最大変化量を取得する第二取得部と、前記第一最大変化量に対する前記第二最大変化量の比率である変化量比率が所定の値を超える場合に、前記第二時点において前記蓄電素子が前記性能低下開始状態であると判定する性能低下判定部とを備える。
 これによれば、性能低下検知装置は、蓄電素子の電圧(V)の変化に対する通電容量(Q)の変化の大きさである容量変化量(dQ/dV)と当該電圧(V)との関係を示す容量電圧特性において、第一時点での容量変化量の最大値に対する第二時点での容量変化量の最大値の比率である変化量比率が所定の値を超える場合に、第二時点において蓄電素子が性能低下開始状態であると判定する。ここで、本願発明者らは、鋭意検討と実験の結果、当該変化量比率が所定の値を超える場合に、第二時点において、蓄電素子の性能が急激に低下し始めることを見出した。このため、当該性能低下検知装置によれば、蓄電素子の急激な性能低下が生じ始める状態を精度良く検知することができる。
 また、前記性能低下判定部は、前記変化量比率が前記所定の値を超える場合に、前記第二時点において、前記蓄電素子の充電または放電可能な容量の急激な低下が生じ始める状態、または前記蓄電素子の入出力特性で示される入出力性能の急激な低下が生じ始める状態であると判定することで、前記蓄電素子が前記性能低下開始状態であると判定することにしてもよい。
 ここで、本願発明者らは、鋭意検討と実験の結果、当該変化量比率が所定の値を超える場合に、第二時点において、蓄電素子の当該容量または入出力性能が急激に低下し始めることを見出した。そして、蓄電素子の当該容量または入出力性能が急激に低下し始めるということは、蓄電素子の急激な性能低下が生じ始めるということを示している。このため、当該性能低下検知装置によれば、蓄電素子の当該容量または入出力性能が急激に低下し始めることを検出することで、蓄電素子の急激な性能低下が生じ始める状態を精度良く検知することができる。
 また、前記性能低下判定部は、前記変化量比率が0.7以上0.8以下の範囲内で設定された前記所定の値を超える場合に、前記第二時点において前記蓄電素子が前記性能低下開始状態であると判定することにしてもよい。
 ここで、本願発明者らは、鋭意検討と実験の結果、変化量比率が0.7以上0.8以下の範囲内で設定された所定の値を超える場合に、第二時点において、蓄電素子の性能が急激に低下し始めることを見出した。このため、当該性能低下検知装置によれば、蓄電素子の急激な性能低下が生じ始める状態を精度良く検知することができる。
 また、前記第一取得部は、前記蓄電素子の初期状態での前記容量電圧特性における前記第一最大変化量を取得することにしてもよい。
 これによれば、性能低下検知装置は、第一最大変化量として、蓄電素子の初期状態での容量電圧特性における容量変化量の最大値を取得する。このため、性能低下検知装置は、蓄電素子の製造時点、工場出荷時点または充放電開始時点などの初期状態での容量変化量の最大値を事前にメモリに記憶しておくなどにより、第一最大変化量を容易に取得することができる。
 また、前記第二取得部は、前記第二時点において前記蓄電素子を充電または放電させることにより、前記蓄電素子の電圧と通電容量との関係を取得し、取得した当該関係から前記通電容量を前記電圧で微分して前記容量変化量を算出し、算出した前記容量変化量と前記電圧との関係を示す容量電圧特性を取得することで前記第二最大変化量を取得することにしてもよい。
 これによれば、性能低下検知装置は、第二時点において蓄電素子を充電または放電させることにより、容量電圧特性を取得することで第二最大変化量を容易に取得することができる。
 また、前記性能低下判定部は、前記第二時点において前記蓄電素子が前記性能低下開始状態であると判定した場合に、前記蓄電素子の充電上限電圧を制限することにしてもよい。
 これによれば、性能低下検知装置は、第二時点において蓄電素子が性能低下開始状態であると判定した場合に、蓄電素子の充電上限電圧を制限することで、蓄電素子の急激な性能低下を抑制することができ、寿命延命措置をとることができる。
 また、前記性能低下判定部は、前記第二時点において前記蓄電素子が前記性能低下開始状態であると判定した場合に、前記蓄電素子への通電最大電流を制限することにしてもよい。
 これによれば、性能低下検知装置は、第二時点において蓄電素子が性能低下開始状態であると判定した場合に、蓄電素子への通電最大電流を制限することで、蓄電素子の急激な性能低下を抑制することができ、寿命延命措置をとることができる。
 また、前記蓄電素子は、正極活物質として層状構造のリチウム遷移金属酸化物を含むリチウムイオン二次電池であり、前記第一取得部は、前記リチウムイオン二次電池についての前記第一最大変化量を取得し、前記第二取得部は、前記リチウムイオン二次電池についての前記第二最大変化量を取得することにしてもよい。
 これによれば、蓄電素子は、正極活物質として層状構造のリチウム遷移金属酸化物を含むリチウムイオン二次電池である。ここで、本願発明者らは、鋭意検討と実験の結果、蓄電素子が当該リチウムイオン二次電池の場合に、上記の方法によって急激な性能低下を事前に精度良く検知できることを見出した。このため、性能低下検知装置は、当該リチウムイオン二次電池の急激な性能低下が生じ始める状態を精度良く検知することができる。
 以下、図面を参照しながら、本発明の実施の形態に係る性能低下検知装置、及び当該性能低下検知装置を備える蓄電システムについて説明する。なお、以下で説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、より好ましい形態を構成する任意の構成要素として説明される。
 まず、蓄電システム10の構成について、説明する。
 図1は、本発明の実施の形態に係る性能低下検知装置100を備える蓄電システム10の外観図である。
 同図に示すように、蓄電システム10は、性能低下検知装置100と、複数(同図では6個)の蓄電素子200と、性能低下検知装置100及び複数の蓄電素子200を収容する収容ケース300とを備えている。
 性能低下検知装置100は、複数の蓄電素子200の上方に配置され、複数の蓄電素子200の電池性能の急激な低下が生じ始める状態を性能低下開始状態として検知する回路を搭載した回路基板である。具体的には、性能低下検知装置100は、複数の蓄電素子200に接続されており、複数の蓄電素子200から情報を取得して、複数の蓄電素子200の性能低下開始状態を検知する。
 なお、ここでは、性能低下検知装置100は複数の蓄電素子200の上方に配置されているが、性能低下検知装置100はどこに配置されていてもよい。この性能低下検知装置100の詳細な機能構成の説明については、後述する。
 蓄電素子200は、正極と負極とを有する非水電解質二次電池などの二次電池である。また、同図では6個の矩形状の蓄電素子200が直列に配置されて組電池を構成している。なお、蓄電素子200の個数は6個に限定されず、他の複数個数または1個であってもよい。また蓄電素子200の形状も特に限定されない。
 蓄電素子200は、アルミニウムやアルミニウム合金などからなる長尺帯状の正極基材箔上に正極活物質層が形成された正極と、銅や銅合金などからなる長尺帯状の負極基材箔上に負極活物質層が形成された負極とを有している。ここで、正極活物質層に用いられる正極活物質、または負極活物質層に用いられる負極活物質としては、リチウムイオンを吸蔵放出可能な正極活物質または負極活物質であれば、適宜公知の材料を使用できる。
 ここで、蓄電素子200は、正極活物質として層状構造のリチウム遷移金属酸化物を含むリチウムイオン二次電池であるのが好ましい。具体的には、正極活物質として、LiNi1/3Co1/3Mn1/3など、Li1+x1-y(MはFe、Ni、Mn、Co等から選択される1種または2種以上の遷移金属元素、0≦x<1/3、0≦y<1/3)等の層状構造のリチウム遷移金属酸化物等を用いるのが好ましい。なお、当該正極活物質として、LiMnやLiMn1.5Ni0.5等のスピネル型リチウムマンガン酸化物や、LiFePO等のオリビン型正極活物質等と、上記層状構造のリチウム遷移金属酸化物とを混合して用いてもよい。
 また、負極活物質としては、例えば、リチウム金属、リチウム合金(リチウム-ケイ素、リチウム-アルミニウム、リチウム-鉛、リチウム-錫、リチウム-アルミニウム-錫、リチウム-ガリウム、及びウッド合金等のリチウム金属含有合金)の他、リチウムを吸蔵・放出可能な合金、炭素材料(例えば黒鉛、難黒鉛化炭素、易黒鉛化炭素、低温焼成炭素、非晶質カーボン等)、ケイ素酸化物、金属酸化物、リチウム金属酸化物(LiTi12等)、ポリリン酸化合物などが挙げられる。なお、黒鉛質炭素(Graphite)、ソフトカーボンやハードカーボンなどの炭素材料、LiTi12、LiMnなど、電極電位特性が平坦な電位平坦部を有する負極活物質が用いられることが好ましい。
 次に、性能低下検知装置100の詳細な機能構成について、説明する。
 図2は、本発明の実施の形態に係る性能低下検知装置100の機能的な構成を示すブロック図である。
 性能低下検知装置100は、蓄電素子200の急激な性能低下が生じ始める状態を性能低下開始状態として検知する装置である。同図に示すように、性能低下検知装置100は、第一取得部110、第二取得部120、性能低下判定部130及び記憶部150を備えている。また、記憶部150は、蓄電素子200が性能低下開始状態であるか否かを判定するための判定用データ151を記憶している。
 第一取得部110は、第一時点での、蓄電素子200を充電または放電した場合の蓄電素子200の電圧の変化に対する通電容量の変化の大きさである容量変化量と電圧との関係を示す容量電圧特性において、容量変化量の最大値である第一最大変化量を取得する。つまり、蓄電素子の電圧をV、通電容量をQとすると、容量変化量は、電圧Vの変化(dV)に対する通電容量Qの変化(dQ)の大きさとして、dQ/dVで表される。この第一最大変化量の詳細な説明については、後述する。
 ここで、第一時点とは、性能低下開始状態を検知する基準となる時点であり、本実施の形態では、第一時点は、蓄電素子200が初期状態のときの時点である。つまり、第一取得部110は、蓄電素子200の初期状態での容量電圧特性における容量変化量の最大値を第一最大変化量として取得する。
 具体的には、蓄電素子200の製造時点、工場出荷時点または充放電開始時点などの初期状態での容量変化量の最大値が、第一最大変化量として事前に記憶部150の判定用データ151に書き込まれている。そして、第一取得部110は、当該第一最大変化量を当該判定用データ151から読み出すことで取得する。
 なお、記憶部150には上記の容量電圧特性などの蓄電素子200の第一時点でのデータが記憶されており、第一取得部110は、当該データを参照して、第一最大変化量を算出することにより取得することにしてもよい。また、性能低下検知装置100は記憶部150を備えておらず、第一取得部110は、他の機器から第一最大変化量を取得することにしてもよいし、第一最大変化量がプログラムや回路構成などによって第一取得部110に組み込まれていたりしていてもかまわない。
 なお、第一時点は、上記の初期状態のときの時点には限定されず、どのような時点でもよく、例えば、蓄電素子200が充放電を伴う使用を開始してから所定の期間が経過した時点でもかまわない。この場合、第一取得部110は、後述する第二取得部120が第二最大変化量を取得するのと同様の方法で、第一最大変化量を取得することができる。また、第一時点は、分、時、日、月など、どのような単位で表現されてもかまわない。
 第二取得部120は、第一時点以降の第二時点での容量電圧特性において、容量変化量の最大値である第二最大変化量を取得する。この第二最大変化量の詳細な説明については、後述する。
 なお、第二時点とは、第一時点より後の、蓄電素子200の充放電を伴う使用を開始して所定の期間が経過した時点であるが、当該所定の期間はどのような期間であってもよく、特に限定されない。また、当該所定の期間の単位も特に限定されず、例えば、分オーダー、時間オーダー、日オーダー、月オーダーなどの期間である。つまり、第二時点は、第一時点と同様に、分、時、日、月など、どのような単位で表現されてもかまわない。
 具体的には、第二取得部120は、第二時点において蓄電素子200を充電または放電させることにより、蓄電素子200の電圧と通電容量との関係を取得する。つまり、第二取得部120は、蓄電素子200から電圧及び通電容量を取得し、記憶部150の判定用データ151に書き込むことで、当該関係を取得する。
 そして、第二取得部120は、取得した当該関係から通電容量を電圧で微分して容量変化量を算出し、算出した容量変化量と電圧との関係を示す容量電圧特性を取得する。つまり、第二取得部120は、判定用データ151から電圧及び通電容量を読み出して、通電容量を電圧で微分して容量変化量を算出し、算出した容量変化量を判定用データ151に書き込むことで、容量電圧特性を取得する。
 そして、第二取得部120は、取得した容量電圧特性を参照することで、第二最大変化量を取得する。つまり、第二取得部120は、判定用データ151から最大の容量変化量を読み出すことで、第二最大変化量を取得する。
 なお、性能低下検知装置100は記憶部150を備えておらず、第二取得部120は、他の機器にデータを書き込み、他の機器からデータを読み出すことで、第二最大変化量を取得することにしてもよい。
 性能低下判定部130は、第一最大変化量に対する第二最大変化量の比率である変化量比率が所定の値を超える場合に、第二時点において蓄電素子200が性能低下開始状態であると判定する。つまり、性能低下判定部130は、第二最大変化量を第一最大変化量で除することで変化量比率を算出し、算出した変化量比率が所定の値を超えるか否かを判断する。そして、性能低下判定部130は、算出した変化量比率が所定の値を超えると判断した場合に、第二時点において蓄電素子200が性能低下開始状態であると判定する。
 具体的には、性能低下判定部130は、当該変化量比率が当該所定の値を超える場合に、第二時点において、蓄電素子200の充電または放電可能な容量である可逆容量の急激な低下が生じ始める状態、または蓄電素子200の入出力特性で示される入出力性能の急激な低下が生じ始める状態であると判定することで、蓄電素子200が性能低下開始状態であると判定する。
 ここで、所定の値は、0.7以上0.8以下の範囲内の値であるのが好ましい。つまり、性能低下判定部130は、変化量比率が0.7以上0.8以下の範囲内で設定された所定の値を超える場合に、第二時点において蓄電素子200が性能低下開始状態であると判定する。具体的には、性能低下判定部130は、変化量比率が0.7以上0.8以下の範囲内で設定された所定の値を超える場合に、第二時点において、蓄電素子200の可逆容量または入出力性能の急激な低下が生じ始める状態であると判定することで、蓄電素子200が性能低下開始状態であると判定する。なお、この所定の値を0.7以上0.8以下の範囲内の値に設定するのが好ましいことについては、後述する。
 具体的には、当該所定の値(0.7以上0.8以下の範囲内の値)は、事前に記憶部150の判定用データ151に書き込まれており、性能低下判定部130は、判定用データ151から当該所定の値を読み出して、上記の判定を行う。なお、性能低下判定部130は、当該所定の値を他の機器から取得したり、計算によって取得したりしてもよいし、当該所定の値がプログラムや回路構成などによって性能低下判定部130に組み込まれていたりしてもかまわない。
 また、性能低下判定部130は、第二時点において蓄電素子200が性能低下開始状態であると判定した場合に、蓄電素子200の充電上限電圧を制限する。つまり、性能低下判定部130は、この場合には、蓄電素子200の充電上限電圧を制限する信号を発して、蓄電素子200が満充電になる前に蓄電素子200の充電を停止させる。
 また、性能低下判定部130は、第二時点において蓄電素子200が性能低下開始状態であると判定した場合に、蓄電素子200への通電最大電流を制限することにしてもよい。つまり、性能低下判定部130は、この場合には、蓄電素子200への通電最大電流を制限する信号を発して、蓄電素子200に流れる電流値が過剰になるのを抑える。
 なお、性能低下判定部130は、充電上限電圧や通電最大電流を制限する前に、または制限するのに代えて、警告を行ったりしてもよいし、蓄電素子200が性能低下開始状態であると判定した場合に、蓄電素子200への充電を停止させることにしてもよい。
 次に、第一最大変化量及び第二最大変化量について、以下に詳細に説明する。
 図3及び図4は、本発明の実施の形態に係る第一取得部110が取得する第一最大変化量及び第二取得部120が取得する第二最大変化量を説明するための図である。具体的には、図3は、蓄電素子200を放電した場合の電圧と通電容量との関係を示すグラフであり、図4は、蓄電素子200の容量電圧特性を示すグラフである。
 図3に示すように、蓄電素子200を放電した場合の電圧Vと容量Qとの関係において、初期状態(第一時点)から充放電を伴う使用を継続していくと、所定の期間経過後の第二時点では第一時点よりも容量Qが低下する。そして、さらに期間が経過すると、さらに容量Qが低下して劣化状態になっていく。そして、この図3における容量Qを電圧Vで微分して算出される容量変化量dQ/dVと電圧Vとの関係をグラフに表すと、図4に示す容量電圧特性が得られる。
 そして、図4に示す容量電圧特性において、初期状態(第一時点)における容量変化量dQ/dVの大きさの最大値である第一最大変化量Pが得られる。また、当該容量電圧特性において、第一時点から所定の期間経過後の第二時点における容量変化量dQ/dVの大きさの最大値である第二最大変化量Pが得られる。
 つまり、第一取得部110は第一最大変化量Pを取得し、第二取得部120は第二最大変化量Pを取得する。なお、図3及び図4では蓄電素子200を放電した場合についてのグラフを示したが、蓄電素子200を充電した場合についても同様のグラフが得られる。このため、蓄電素子200を充電した場合についても放電した場合と同様に、第一取得部110は第一最大変化量Pを取得し、第二取得部120は第二最大変化量Pを取得することができる。以下についても、同様である。
 次に、性能低下検知装置100が蓄電素子200の性能低下開始状態を検知する処理について、説明する。
 図5は、本発明の実施の形態に係る性能低下検知装置100が蓄電素子200の性能低下開始状態を検知する処理の一例を示すフローチャートである。
 同図に示すように、まず、第一取得部110は、第一時点での容量電圧特性において、容量変化量の最大値である第一最大変化量を取得する(S102)。具体的には、第一取得部110は、蓄電素子200の初期状態での容量電圧特性における容量変化量の最大値である第一最大変化量を、判定用データ151から読み出すことで取得する。
 次に、第二取得部120は、第一時点以降の第二時点での容量電圧特性において、容量変化量の最大値である第二最大変化量を取得する(S104)。具体的には、第二取得部120は、第二時点において蓄電素子200を充電または放電させることにより、蓄電素子200の電圧と通電容量との関係を取得し、取得した当該関係から通電容量を電圧で微分して容量変化量を算出し、算出した容量変化量と電圧との関係を示す容量電圧特性を取得することで第二最大変化量を取得する。この第二取得部120が第二最大変化量を取得する処理の詳細な説明については、後述する。
 次に、性能低下判定部130は、第一最大変化量に対する第二最大変化量の比率である変化量比率が所定の値を超える場合に、第二時点において蓄電素子200が性能低下開始状態であると判定する(S106)。具体的には、性能低下判定部130は、当該変化量比率が当該所定の値を超える場合に、第二時点において、蓄電素子200の可逆容量または入出力性能の急激な低下が生じ始める状態であると判定することで、蓄電素子200が性能低下開始状態であると判定する。なお、この性能低下判定部130が第二時点において蓄電素子200が性能低下開始状態であると判定する処理の詳細な説明については、後述する。
 以上により、性能低下検知装置100が蓄電素子200の性能低下開始状態を検知する処理は、終了する。
 次に、第二取得部120が第二最大変化量を取得する処理(図5のS104)について、詳細に説明する。
 図6は、本発明の実施の形態に係る第二取得部120が第二最大変化量を取得する処理の一例を示すフローチャートである。また、図7及び図8は、本発明の実施の形態に係る第二取得部120が第二最大変化量を取得する処理を説明するための図である。具体的には、図7は、蓄電素子200を放電した場合の電圧と通電容量との関係を示すグラフであり、図8は、蓄電素子200の容量電圧特性を示すグラフである。
 なお、以下の説明では、蓄電素子200の使用の程度を連続的に進行させるために、一定の条件下での充放電を繰り返す充放電サイクル試験を行い、これにより取得されたデータに基づき、また、使用の程度を表す指標として当該充放電サイクル試験におけるサイクル数を用いて示しているが、実際の実施態様においては充放電、特に放電の条件は一定ではないから、サイクル数に相当するパラメータは通常取得し得ないことはいうまでもない。
 図6に示すように、まず、第二取得部120は、第二時点において蓄電素子200を充電または放電させる(S202)。なお、以下では、蓄電素子200を放電した場合について説明するが、上述の通り、蓄電素子200を充電した場合についても同様であるため、説明を省略する。
 そして、第二取得部120は、蓄電素子200の電圧と通電容量との関係を取得する(S204)。具体的には、第二取得部120は、図7に示すような蓄電素子200の電圧Vと容量Qとの関係を取得する。
 つまり、第二取得部120は、例えば第二時点が、蓄電素子200の使用の程度が充放電サイクル試験における50サイクルに相当する時点であれば、図7に示す「50サイクル」のグラフに相当するデータが取得される。同様に、第二取得部120は、第二時点が、蓄電素子200の使用の程度が充放電サイクル試験における300サイクルに相当する時点であれば、同図に示す「300サイクル」のグラフに相当するデータが取得される。
 ここで、図7においては、具体例として、以下の45℃、1Cサイクル試験を行った結果を示している。なお、以下の試験では、アルミニウム箔上に正極合剤が形成された正極と、銅箔上に負極合剤が形成された負極とを有するリチウムイオン二次電池(以下、電池Aとする)を用いた。ここで、電池Aの正極合剤は、正極活物質と、結着剤としてのポリフッ化ビニリデンと、導電材としてのアセチレンブラックとを含み、正極活物質は、LiNi1/3Co1/3Mn1/3で表される層状構造のリチウム遷移金属酸化物とLiMnで表されるスピネル型リチウムマンガン酸化物との混合物(質量比7:3)である。また、電池Aの負極合剤は、負極活物質である黒鉛質炭素材料と、結着剤としてのスチレンブタジエンゴム及びカルボキシメチルセルロースとを含む。また、電池Aの電解液には、エチレンカーボネート(EC):ジメチルカーボネート(DMC):エチルメチルカーボネート(EMC)=25:20:55(体積比)の混合溶媒に、LiPFを1mol/L添加することにより調製した。
 そして、45℃、1Cサイクル試験においては、充電は、45℃、電流1CmA(=650mA)、電圧4.2V、充電時間3時間の定電流定電圧充電とし、放電は、45℃、電流1CmA(=650mA)、終止電圧2.85Vの定電流放電とした。また、放電容量確認試験時には、充電は、25℃、電流1CmA(=650mA)、電圧4.2V、充電時間3時間の定電流定電圧充電とし、放電は、25℃、電流1CmA(=650mA)、終止電圧2.85Vの定電流放電とした。なお、充電と放電の間、及び、放電と充電の間にはそれぞれ10分間の休止時間を設けた。休止時間は電池を開回路状態とした。即ち、充電、休止、放電、休止の4工程を1サイクルとする。
 次に、図6に戻り、第二取得部120は、取得した当該関係から通電容量を電圧で微分して容量変化量を算出し、算出した容量変化量と電圧との関係を示す容量電圧特性を取得する(S206)。具体的には、第二取得部120は、図7に示したグラフにおいて、容量Qを電圧Vで微分して容量変化量dQ/dVを算出する。そして、第二取得部120は、図8に示すように、算出した容量変化量dQ/dVと電圧Vとの関係を示す容量電圧特性を取得する。
 さらに具体的には、電圧VがV1からV2に変化した場合に、容量QがQ1からQ2に変化したとすれば、第二取得部120は、容量変化量dQ/dV=(Q2-Q1)/(V2-V1)を算出する。そして、第二取得部120は、算出した容量変化量dQ/dV=(Q2-Q1)/(V2-V1)と電圧V=(V1+V2)/2との関係を示す容量電圧特性を取得する。
 つまり、第二取得部120は、例えば第二時点が、蓄電素子200の使用の程度が充放電サイクル試験における50サイクルに相当する時点であれば、図8に示す「50サイクル」のグラフに相当するデータが取得される。同様に、第二取得部120は、第二時点が、蓄電素子200の使用の程度が充放電サイクル試験における300サイクルに相当する時点であれば、同図に示す「300サイクル」のグラフに相当するデータが取得される。
 そして、図6に戻り、第二取得部120は、取得した容量電圧特性を参照することで、第二最大変化量を取得する(S208)。具体的には、第二取得部120は、図8に示したグラフを参照して、第二最大変化量を取得する。
 つまり、第二取得部120は、例えば第二時点が、蓄電素子200の使用の程度が充放電サイクル試験における50サイクルに相当する時点であれば、第二最大変化量として図8に示すP50の値が取得される。同様に、第二取得部120は、第二時点が、蓄電素子200の使用の程度が充放電サイクル試験における300サイクルに相当する時点であれば、第二最大変化量として同図に示すP300の値が取得される。
 以上により、第二取得部120が第二最大変化量を取得する処理(図5のS104)は、終了する。
 次に、性能低下判定部130が第二時点において蓄電素子200が性能低下開始状態であると判定する処理(図5のS106)について、詳細に説明する。
 図9は、本発明の実施の形態に係る性能低下判定部130が第二時点において蓄電素子200が性能低下開始状態であると判定する処理の一例を示すフローチャートである。また、図10A~図10Cは、本発明の実施の形態に係る性能低下判定部130が第二時点において蓄電素子200が性能低下開始状態であると判定する処理を説明するための図である。
 具体的には、図10Aは、使用の程度(サイクル数)を変化させた場合の変化量比率の値と、当該変化量比率の値を上記の所定の値として採用した場合の性能低下開始状態の判定結果を示す表であり、図10Bは、使用の程度(サイクル数)を変化させた場合の蓄電素子200の容量維持率の推移を示すグラフである。
 また、図10Cは、使用の程度(サイクル数)を変化させた場合の蓄電素子200の出力直流抵抗、入力直流抵抗及び交流抵抗の推移を示すグラフである。詳細には、図10Cの(a)は、使用の程度(サイクル数)を変化させた場合の蓄電素子200の出力直流抵抗の初期状態に対する比率(図10Aの出力直流抵抗増加率)の推移を示すグラフである。また、図10Cの(b)は、使用の程度(サイクル数)を変化させた場合の蓄電素子200の入力直流抵抗の初期状態に対する比率(図10Aの入力直流抵抗増加率)の推移を示すグラフである。また、図10Cの(c)は、使用の程度(サイクル数)を変化させた場合の蓄電素子200の交流抵抗の初期状態に対する比率(図10Aの交流抵抗増加率)の推移を示すグラフである。
 図9に示すように、まず、性能低下判定部130は、第一最大変化量に対する第二最大変化量の比率である変化量比率が所定の値を超えるか否かを判断する(S302)。具体的には、性能低下判定部130は、第二最大変化量Pを第一最大変化量Pで除することで変化量比率P/Pを算出する。そして、性能低下判定部130は、算出した変化量比率P/Pが、0.7以上0.8以下の範囲内で定めた所定の値を超えるか否かを判断する。
 つまり、図10Aに示すように、性能低下判定部130は、例えば第二時点が、蓄電素子200の使用の程度が充放電サイクル試験における50サイクルに相当する時点であれば、変化量比率P/P=P50/P=0.94を算出する。同様に、性能低下判定部130は、第二時点が、蓄電素子200の使用の程度が充放電サイクル試験における300サイクルに相当する時点であれば、変化量比率P/P=P300/P=0.74を算出する。
 そして、図9に戻り、性能低下判定部130は、変化量比率が所定の値を超えると判断した場合(S302でYes)には、第二時点において蓄電素子200が性能低下開始状態であると判定する(S304)。具体的には、性能低下判定部130は、変化量比率が0.7以上0.8以下の範囲内で定めた所定の値を超えると判断した場合に、第二時点において蓄電素子200が性能低下開始状態であると判定する。さらに具体的には、性能低下判定部130は、変化量比率が0.7以上0.8以下の範囲内で定めた所定の値を超えると判断した場合に、第二時点において、蓄電素子200の可逆容量または入出力性能の急激な低下が生じ始める状態であると判定することで、蓄電素子200が性能低下開始状態であると判定する。
 つまり、図10Aに示すように、第二時点が、蓄電素子200の使用の程度が充放電サイクル試験における300サイクルに相当する時点の場合(実施例1)の変化量比率が、P/P=P300/P=0.74と、0.7以上0.8以下の値である。従って、上記の所定の値として0.7以上0.8以下の範囲内の値を設定すれば、性能低下判定部130は、当該第二時点において蓄電素子200が性能低下開始状態であることを適切な時点で判定できる。
 なお、上記の所定の値として0.8より大きい値を設定した場合には、蓄電素子200が性能低下開始状態になっていない(急激な性能低下を検知するタイミングがはやい)ため、性能低下判定部130は性能低下開始状態を適切に判定できない。同様に、上記の所定の値として0.7より小さい値を設定した場合には、蓄電素子200が性能低下開始状態を過ぎている(急激な性能低下を検知するタイミングがおそい)ため、性能低下判定部130は性能低下開始状態を適切に判定できない。
 ここで、図10Bに示すように、充放電サイクル試験(1Cサイクル試験)において500サイクルの蓄電素子200の充放電を行った場合((サイクル数)1/2=22.4の場合)に、容量維持率が急激に低下し、劣化状態となっている。このため、300サイクルの蓄電素子200の充放電を行った場合((サイクル数)1/2=17.3の場合)が、蓄電素子200の可逆容量の急激な低下が生じ始める状態であり、本発明によれば、性能低下判定部130は、蓄電素子200が性能低下開始状態になる時期を正確に判定することができている。つまり、性能低下判定部130は、第二時点において蓄電素子200の可逆容量の急激な低下が生じ始める状態であると判定することで、第二時点において蓄電素子200が性能低下開始状態であると判定する。
 これに対して、図10Aの「(サイクル数)1/2」の欄の値とこれをプロットした図10Bの点線のグラフとからわかるように、サイクル数のルートに比例して性能低下が生じるとする従来技術によれば、蓄電素子が性能低下開始状態になる時期を判定できないことがわかる。
 また、同様に、図10Cに示すように、充放電サイクル試験(1Cサイクル試験)において500サイクルの蓄電素子200の充放電を行った場合((サイクル数)1/2=22.4の場合)に、蓄電素子200の出力直流抵抗、入力直流抵抗及び交流抵抗ともに急激に上昇している。このため、300サイクルの蓄電素子200の充放電を行った場合((サイクル数)1/2=17.3の場合)が、蓄電素子200の出力直流抵抗、入力直流抵抗及び交流抵抗ともに急激な上昇が生じ始める状態である。
 ここで、出力直流抵抗、入力直流抵抗または交流抵抗が上昇すると入出力性能が低下する。つまり、当該500サイクルの蓄電素子200の充放電を行った場合((サイクル数)1/2=22.4の場合)に、蓄電素子200の入出力性能が急激に低下し、劣化状態となっている。このため、300サイクルの蓄電素子200の充放電を行った場合((サイクル数)1/2=17.3の場合)が、蓄電素子200の入出力性能の急激な低下が生じ始める状態であり、本発明によれば、性能低下判定部130は、蓄電素子200が性能低下開始状態になる時期を正確に判定することができている。つまり、性能低下判定部130は、第二時点において蓄電素子200の入出力性能の急激な低下が生じ始める状態であると判定することで、第二時点において蓄電素子200が性能低下開始状態であると判定する。
 これに対して、図10Aの「(サイクル数)1/2」の欄の値とこれをプロットした図10Cの点線のグラフとからわかるように、サイクル数のルートに比例して性能低下が生じるとする従来技術によれば、蓄電素子が性能低下開始状態になる時期を判定できないことがわかる。
 ここで、蓄電素子(電池)の出力直流抵抗、入力直流抵抗または交流抵抗が上昇すると、蓄電素子の入出力特性で示される入出力性能が低下することについて、以下に詳細に説明する。
 まず、当該入出力性能を求めるために、電池をある規定のSOC(State Of Charge)(例えば50%)になるまで充放電により調整する。そして、ある規定の電流レート(例えば0.2、0.5、1Cなど異なる電流レートで少なくとも3回以上)で、ある規定の通電時間(例えば10秒間や60秒間)の放電パルス(出力特性の場合)及び充電パルス(入力出力特性の場合)の通電を実施する。このとき、放電パルス後は補充電を、充電パルス後は補放電をそれぞれ実施する。
 そして、縦軸には放電パルス後の降下した電圧値(あるいは充電パルス後の上昇した電圧値)[V]を、横軸には電流値[I]をプロットして、V=I×R+V0の直線性が成立するかを確認する。ここでR及びV0は、それぞれ抵抗(放電パルスの場合は負の値、充電パルスの場合は正の値)及びOCV(開回路電圧)である。
 次に、上記の確認後に、放電及び充電パルス時の抵抗(R)とOCV(V0)とを算出する。そして、算出したい入出力特性の電圧をVxとして、入出力性能(W)を(Vx-V0)/R×Vxにより算出する。
 この式から分かるように、出力直流抵抗、入力直流抵抗または交流抵抗などの抵抗(R)が上昇すると、入出力性能(W)が低下する。なお、当該入出力性能が低下すると、以下の問題が生じる。
 例えば、HEV(ハイブリッド電気自動車)やPHEV(プラグインハイブリッド電気自動車)などに使用されているリチウムイオン二次電池は、蓄積電力が電動機の駆動用電力(始動・加速時のアシスト)として用いられる。また、この電動機が回生発電したときの発電電力やエンジンの回転に伴って発電する発電機の発電電力等によって、この二次電池が充電される。
 そして、当該二次電池の入出力性能が低下する(抵抗が大きくなる)と、当該電動機の駆動用電力が低下して、アシストとしての出力特性が低下したり、当該電動機が回生発電したときの回生エネルギーとして蓄電することができる入力特性(充電受入性)が低下するといった問題が生じてしまう。
 なお、図10Cの(a)~(c)に示された出力直流抵抗、入力直流抵抗及び交流抵抗は、以下のように測定して得られたものである。つまり、出力直流抵抗については、まず、電池をSOCが50%になるように充電または放電により調整し、0.2、0.5、1Cの放電レートで、通電時間が60秒間の通電を実施する(温度は25℃)ことで、上記の抵抗(R)として出力直流抵抗を算出する。また、同様に、入力直流抵抗については、まず、電池をSOCが50%になるように充電または放電により調整し、0.2、0.5、1Cの充電レートで、通電時間が60秒間の通電を実施する(温度は25℃)ことで、上記の抵抗(R)として入力直流抵抗を算出する。また、交流抵抗については、電池をSOCが0%になるまで放電し、1kHzの周波数(温度は25℃)での交流抵抗を測定し、上記の抵抗(R)として算出する。
 以上のように、図10A~図10Cに示したように、急激な可逆容量低下の時期と急激な抵抗増加の時期とは概ね一致する。これは、以下の理由による。つまり、規定条件(例えば1C放電)で放電させたときの電池容量推移において、二次電池の寿命末期には、レート性能が低下するため通電電流によって得られる容量が大きく低下して、急激な容量低下が生じてしまう。この二次電池のレート性能が低下する理由は、主に寿命試験の経過に応じて電池の直流及び交流抵抗が増加することに起因する。従って、二次電池の出力直流抵抗、入力直流抵抗または交流抵抗などの抵抗の推移は、二次電池の可逆容量の推移に対応する挙動を示す。
 そして、図9に戻り、性能低下判定部130は、蓄電素子200の充電上限電圧を制限する、または蓄電素子200への通電最大電流を制限する(S306)。つまり、性能低下判定部130は、第二時点において蓄電素子200が性能低下開始状態であると判定した場合に、蓄電素子の急激な性能低下を抑制するように制御を行う。
 以上により、性能低下判定部130が第二時点において蓄電素子200が性能低下開始状態であると判定する処理(図5のS106)は、終了する。
 次に、性能低下判定部130が性能低下開始状態の判定を行う際に用いる所定の値が0.7以上0.8以下の範囲内の値であるのが好ましいことについて、説明する。
 図11~図14Cは、本発明の実施の形態に係る性能低下判定部130が用いる所定の値が0.7以上0.8以下の範囲内の値であるのが好ましいことについて説明するための図である。
 具体的には、図11及び図13は、蓄電素子200の容量電圧特性を示すグラフであり、図12A及び図14Aは、使用の程度(サイクル数)を変化させた場合の変化量比率の値と、当該変化量比率の値を上記の所定の値として採用した場合の性能低下開始状態の判定結果を示す表であり、図12B及び図14Bは、使用の程度(サイクル数)を変化させた場合の蓄電素子200の容量維持率の推移を示すグラフである。
 また、図12C及び図14Cは、使用の程度(サイクル数)を変化させた場合の蓄電素子200の出力直流抵抗、入力直流抵抗及び交流抵抗の推移を示すグラフである。詳細には、図12Cの(a)及び図14Cの(a)は、使用の程度(サイクル数)を変化させた場合の蓄電素子200の出力直流抵抗の初期状態に対する比率(図12A及び図14Aの出力直流抵抗増加率)の推移を示すグラフである。また、図12Cの(b)及び図14Cの(b)は、使用の程度(サイクル数)を変化させた場合の蓄電素子200の入力直流抵抗の初期状態に対する比率(図12A及び図14Aの入力直流抵抗増加率)の推移を示すグラフである。また、図12Cの(c)及び図14Cの(c)は、使用の程度(サイクル数)を変化させた場合の蓄電素子200の交流抵抗の初期状態に対する比率(図12A及び図14Aの交流抵抗増加率)の推移を示すグラフである。
 なお、図12Cの(a)~(c)及び図14Cの(a)~(c)に示された出力直流抵抗、入力直流抵抗及び交流抵抗の測定方法は、図10Cの(a)~(c)に示された出力直流抵抗、入力直流抵抗及び交流抵抗の測定方法と同様であるため、説明は省略する。
 ここで、図11及び図13においては、図7及び図8での説明と同様の45℃、1Cサイクル試験を行った結果を示している。なお、図11では、正極活物質がLiNi1/3Co1/3Mn1/3で表される層状構造のリチウム遷移金属酸化物とLiMnで表されるスピネル型リチウムマンガン酸化物との混合物(質量比3:7)であるリチウムイオン二次電池(以下、電池Bとする)を用いた。また、図13では、正極活物質がLiNi1/3Co1/3Mn1/3で表される層状構造のリチウム遷移金属酸化物であるリチウムイオン二次電池(以下、電池Cとする)を用いた。なお、電池B及び電池Cのその他の構成は、電池Aと同様である。
 つまり、図11では、1Cサイクル試験及び放電容量確認試験においては、充電は、電流1CmA(=600mA)の定電流定電圧充電とし、放電は、電流1CmA(=600mA)の定電流放電とした。また、図13では、1Cサイクル試験及び放電容量確認試験において、充電は、電流1CmA(=700mA)の定電流定電圧充電とし、放電は、電流1CmA(=700mA)の定電流放電とした。なお、1Cサイクル試験及び放電容量確認試験についてのその他の条件は図7及び図8での説明と同様であるため、詳細な説明は省略する。
 そして、性能低下判定部130は、図11に示した容量電圧特性を用いて、図12Aに示すように、変化量比率P/Pを算出する。例えば第二時点が、蓄電素子200の使用の程度が充放電サイクル試験における50サイクルに相当する時点であれば、変化量比率P/P=P50/P=0.94を算出する。同様に、性能低下判定部130は、第二時点が、蓄電素子200の使用の程度が充放電サイクル試験における300サイクルに相当する時点であれば、変化量比率P/P=P300/P=0.80を算出する。
 ここで、図12Bに示すように、充放電サイクル試験(1Cサイクル試験)において500サイクルの充放電を行った場合((サイクル数)1/2=22.4の場合)に、容量維持率が急激に低下し、劣化状態となっている。このため、300サイクルの充放電を行った場合((サイクル数)1/2=17.3の場合)が、蓄電素子200の可逆容量の急激な低下が生じ始める状態である。
 また、図12Cに示すように、充放電サイクル試験(1Cサイクル試験)において500サイクルの蓄電素子200の充放電を行った場合((サイクル数)1/2=22.4の場合)に、蓄電素子200の出力直流抵抗、入力直流抵抗及び交流抵抗ともに急激に上昇している。このため、300サイクルの蓄電素子200の充放電を行った場合((サイクル数)1/2=17.3の場合)が、蓄電素子200の出力直流抵抗、入力直流抵抗及び交流抵抗ともに急激な上昇が生じ始める状態である。
 このように、図12Aに示す変化量比率P/P=P300/P=0.80の場合に、蓄電素子200が性能低下開始状態になっている。つまり、性能低下判定部130は、変化量比率が0.80の場合(0.80未満の所定の値を超える場合)に、蓄電素子200の可逆容量の急激な低下が生じ始める状態、または入出力性能の急激な低下が生じ始める状態であると判定することで、蓄電素子200が性能低下開始状態であると判定する。
 また、性能低下判定部130は、図13に示した容量電圧特性を用いて、図14Aに示すように、変化量比率P/Pを算出する。例えば第二時点が、蓄電素子200の使用の程度が50サイクルに相当する時点であれば、変化量比率P/P=P50/P=0.97を算出する。同様に、性能低下判定部130は、第二時点が、蓄電素子200の使用の程度が300サイクルに相当する時点であれば、変化量比率P/P=P300/P=0.71を算出する。
 ここで、図14Bに示すように、充放電サイクル試験において500サイクルの充放電を行った場合((サイクル数)1/2=22.4の場合)に、容量維持率が急激に低下し、劣化状態となっている。このため、300サイクルの充放電を行った場合((サイクル数)1/2=17.3の場合)が、蓄電素子200の可逆容量の急激な低下が生じ始める状態である。
 また、図14Cに示すように、充放電サイクル試験(1Cサイクル試験)において500サイクルの蓄電素子200の充放電を行った場合((サイクル数)1/2=22.4の場合)に、蓄電素子200の出力直流抵抗、入力直流抵抗及び交流抵抗ともに急激に上昇している。このため、300サイクルの蓄電素子200の充放電を行った場合((サイクル数)1/2=17.3の場合)が、蓄電素子200の出力直流抵抗、入力直流抵抗及び交流抵抗ともに急激な上昇が生じ始める状態である。
 このように、図14Aに示す変化量比率P/P=P300/P=0.71の場合に、蓄電素子200が性能低下開始状態になっている。つまり、性能低下判定部130は、変化量比率が0.71の場合(0.71未満の所定の値を超える場合)に、蓄電素子200の可逆容量の急激な低下が生じ始める状態、または入出力性能の急激な低下が生じ始める状態であると判定することで、蓄電素子200が性能低下開始状態であると判定する。
 以上のことから、性能低下判定部130は、上記の所定の値として0.7以上0.8以下の範囲内の値を設定した場合に、蓄電素子200が性能低下開始状態になる時期を正確に判定することができる。つまり、性能低下判定部130が用いる所定の値が0.7以上0.8以下の範囲内の値であるのが好ましい。
 次に、蓄電素子200を充電して得られる容量電圧特性を用いた場合について、説明する。つまり、上記では、性能低下検知装置100は、蓄電素子200を放電した場合の放電カーブの微分特性として図11に示されたような容量電圧特性を取得することにした。しかし、以下では、性能低下検知装置100は、蓄電素子200を充電した場合の充電カーブの微分特性としての容量電圧特性を取得する。
 図15は、本発明の実施の形態に係る蓄電素子200の充電カーブの微分特性として得られる容量電圧特性を示す図である。また、図16は、本発明の実施の形態に係る蓄電素子200の充電カーブの微分特性として得られる容量電圧特性を取得した場合の性能低下開始状態の判定結果を示す図である。なお、これらの図では、上記の電池Bを用いて行った結果を示している。
 これらの図に示すように、蓄電素子200を充電して得られる容量電圧特性を用いた場合であっても、蓄電素子200を放電して得られる容量電圧特性を用いた場合と同様に、性能低下判定部130は、変化量比率が0.7以上0.8以下の範囲内の所定の値を超える場合に、蓄電素子200が性能低下開始状態であると判定することができている。このため、蓄電素子200を充電して得られる容量電圧特性を用いた場合であっても、性能低下検知装置100は、蓄電素子200の急激な性能低下が生じ始める状態を精度良く検知することができる。
 次に、蓄電素子200について0.2C放電容量確認試験を行って得られる容量電圧特性を用いた場合について、説明する。つまり、上記では、性能低下検知装置100は、蓄電素子200について1C放電容量確認試験を行った場合の放電カーブの微分特性として図11に示されたような容量電圧特性を取得することにした。しかし、以下では、性能低下検知装置100は、蓄電素子200について0.2C放電容量確認試験を行った場合の放電カーブの微分特性としての容量電圧特性を取得する。
 図17は、本発明の実施の形態に係る蓄電素子200について0.2C放電容量確認試験を行った場合に得られる容量電圧特性を示す図である。また、図18は、本発明の実施の形態に係る蓄電素子200について0.2C放電容量確認試験を行って得られる容量電圧特性を取得した場合の性能低下開始状態の判定結果を示す図である。なお、これらの図では、上記の電池Bを用いて行った結果を示している。
 これらの図に示すように、蓄電素子200について0.2C放電容量確認試験を行った場合に得られる容量電圧特性を用いた場合であっても、1C放電容量確認試験を行った場合に得られる容量電圧特性を用いた場合と同様に、性能低下判定部130は、変化量比率が0.7以上0.8以下の範囲内の所定の値を超える場合に、蓄電素子200が性能低下開始状態であると判定することができている。このため、蓄電素子200について0.2C放電容量確認試験を行った場合に得られる容量電圧特性を用いた場合であっても、性能低下検知装置100は、蓄電素子200の急激な性能低下が生じ始める状態を精度良く検知することができる。
 以上のように、性能低下検知装置100は、放電容量確認試験時の電流レートが1Cである場合には限定されず、1C以外の電流レートであっても、蓄電素子200の急激な性能低下が生じ始める状態を精度良く検知することができる。なお、当該電流レートは、1C以上であっても1C以下であってもかまわないが、より精度良く検知するためには、当該電流レートは平均として1C以下であるのが好ましい。
 次に、容量電圧特性を得るための電圧の変化量を変更した場合について、説明する。例えば図11では、容量電圧特性における縦軸の容量変化量(dQ/dV)においての電圧の変化量(dV)の間隔を0.02Vとして容量電圧特性を図示している。つまり、性能低下検知装置100は、dVの間引き間隔を0.02Vとして容量変化量(dQ/dV)と電圧(V)との関係をプロットすることで、容量電圧特性を取得している。これに対し、以下では、性能低下検知装置100は、当該dVの間引き間隔を0.04Vとして容量変化量(dQ/dV)と電圧(V)との関係をプロットすることで、容量電圧特性を取得する。
 図19は、本発明の実施の形態に係る蓄電素子200について電圧の変化量の間隔を変更した場合に得られる容量電圧特性を示す図である。また、図20は、本発明の実施の形態に係る蓄電素子200について電圧の変化量の間隔を変更して得られる容量電圧特性を取得した場合の性能低下開始状態の判定結果を示す図である。なお、これらの図では、上記の電池Bを用いて行った結果を示している。
 これらの図に示すように、蓄電素子200について電圧の変化量の間隔を0.04Vに変更した場合に得られる容量電圧特性を用いた場合であっても、当該電圧の変化量の間隔が0.02Vの場合に得られる容量電圧特性を用いた場合と同様に、性能低下判定部130は、変化量比率が0.7以上0.8以下の範囲内の所定の値を超える場合に、蓄電素子200が性能低下開始状態であると判定することができている。このため、蓄電素子200について電圧の変化量の間隔を0.04Vに変更した場合に得られる容量電圧特性を用いた場合であっても、性能低下検知装置100は、蓄電素子200の急激な性能低下が生じ始める状態を精度良く検知することができる。
 以上のように、性能低下検知装置100は、電圧の変化量の間隔が一定であれば、0.02Vである場合には限定されず、0.02V以外の間隔であっても、蓄電素子200の急激な性能低下が生じ始める状態を精度良く検知することができる。なお、当該電圧の変化量の間隔は、どのような値であってもかまわないが、より精度良く検知するためには、当該電圧の変化量の間隔は0.01V~0.05Vの間の値であるのが好ましい。
 以上のように、本発明の実施の形態に係る性能低下検知装置100によれば、蓄電素子200の電圧の変化に対する通電容量の変化の大きさである容量変化量と当該電圧との関係を示す容量電圧特性において、第一時点での容量変化量の最大値に対する第二時点での容量変化量の最大値の比率である変化量比率が所定の値を超える場合に、第二時点において蓄電素子200が性能低下開始状態であると判定する。ここで、本願発明者らは、鋭意検討と実験の結果、当該変化量比率が所定の値を超える場合に、第二時点において、蓄電素子200の性能が急激に低下し始めることを見出した。
 つまり、規定条件(例えば1C放電)で放電させたときの電池容量の放電カーブ(または充電させたときの充電カーブ)から算出される容量電圧特性(dQ/dV-V特性)は、分極依存性を含んだ正極、負極の電気化学性能を相変化としてとらえることが可能である。そして、負極については電池の実作動領域においてプラトー領域の長い負極を用いると仮定した場合、電池のレート性能低下は主に正極活物質の単極及びレート性能劣化により引き起こされると考えられるため、その正極活物質の劣化を電池の容量電圧特性により検知することができることを見出した。例えば、電池の容量劣化が生じると、電池の一定の電位であらわれるプラトー範囲が狭くなるため、V-Q特性においてQをVで微分するとそのプラトーに起因する容量変化量の大きさが小さくなる。
 このため、性能低下検知装置100によれば、蓄電素子200の急激な性能低下が生じ始める状態を精度良く検知することができる。これにより、例えば移動体用リチウムイオン二次電池の交換時期のタイミングを正確に見極めることができる。
 また、本願発明者らは、鋭意検討と実験の結果、変化量比率が所定の値を超える場合に、第二時点において、蓄電素子200の可逆容量または入出力性能が急激に低下し始めることを見出した。そして、蓄電素子200の可逆容量または入出力性能が急激に低下し始めるということは、蓄電素子200の急激な性能低下が生じ始めるということを示している。このため、性能低下検知装置100によれば、蓄電素子200の可逆容量または入出力性能が急激に低下し始めることを検出することで、蓄電素子200の急激な性能低下が生じ始める状態を精度良く検知することができる。
 また、本願発明者らは、鋭意検討と実験の結果、変化量比率が0.7以上0.8以下の範囲内の所定の値を超える場合に、第二時点において、蓄電素子200の性能が急激に低下し始めることを見出した。このため、性能低下検知装置100によれば、蓄電素子200の急激な性能低下が生じ始める状態を精度良く検知することができる。
 また、性能低下検知装置100は、第一最大変化量として、蓄電素子200の初期状態での容量電圧特性における容量変化量の最大値を取得する。このため、性能低下検知装置100は、蓄電素子200の製造時点、工場出荷時点または充放電開始時点などの初期状態での容量変化量の最大値を事前にメモリに記憶しておくなどにより、第一最大変化量を容易に取得することができる。
 また、性能低下検知装置100は、第二時点において蓄電素子200を充電または放電させることにより、容量電圧特性を取得することで第二最大変化量を容易に取得することができる。
 また、性能低下検知装置100は、第二時点において蓄電素子200が性能低下開始状態であると判定した場合に、蓄電素子200の充電上限電圧を制限することで、蓄電素子200の急激な性能低下を抑制することができ、寿命延命措置をとることができる。
 また、性能低下検知装置100は、第二時点において蓄電素子200が性能低下開始状態であると判定した場合に、蓄電素子200への通電最大電流を制限することで、蓄電素子200の急激な性能低下を抑制することができ、寿命延命措置をとることができる。
 また、蓄電素子200は、正極活物質として層状構造のリチウム遷移金属酸化物を含むリチウムイオン二次電池である。ここで、本願発明者らは、鋭意検討と実験の結果、蓄電素子200が当該リチウムイオン二次電池の場合に、上記の方法によって急激な性能低下を事前に精度良く検知できることを見出した。このため、性能低下検知装置100は、当該リチウムイオン二次電池の急激な性能低下が生じ始める状態を精度良く検知することができる。
 以上、本発明の実施の形態に係る蓄電システム10及び性能低下検知装置100について説明したが、本発明は、この実施の形態に限定されるものではない。つまり、今回開示された実施の形態は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
 例えば、上記実施の形態では、第一取得部110は、第一最大変化量を判定用データ151から読み出すことで取得することとした。しかし、第一取得部110は、第二取得部120が第二最大変化量を取得するのと同様の方法で、第一最大変化量を取得することにしてもよい。つまり、第一取得部110は、第一時点において蓄電素子200を充電または放電させることにより、蓄電素子200の電圧と通電容量との関係を取得し、取得した当該関係から通電容量を電圧で微分して容量変化量を算出し、算出した容量変化量と電圧との関係を示す容量電圧特性を取得することで第一最大変化量を取得することにしてもよい。
 なお、第一取得部110が第一最大変化量を取得する時期(第一時点)によっては、性能低下判定部130が性能低下開始状態を判定するための判定基準(上記では変化量比率が0.7以上0.8以下)は、異なる値となる。この観点から、第一時点は、蓄電素子200の工場出荷前、蓄電素子200を応用機器に着装後ユーザが実際の使用を開始する前、あるいは、ユーザが実際の使用を開始後できるだけ早い時点を採用することが好ましい。また、第一時点としてこのような時点を採用できない場合であっても、性能低下判定部130は、ユーザによる入力などから適切な判定基準を取得したり、自ら適切な判定基準を算出したりすることで、適切に蓄電素子200の性能低下開始状態を判定することができる。
 また、上記実施の形態では、性能低下検知装置100は、容量電圧特性において容量変化量が最大となるピーク位置での容量変化量(縦軸)の値の変動から算出される変化量比率を用いて、性能低下開始状態を検知することとした。しかし、性能低下検知装置100は、容量電圧特性において容量変化量が最大となるピーク位置での電池電圧(横軸)の値の変動を用いて、性能低下開始状態を検知することにしてもよい。つまり、性能低下検知装置100は、容量電圧特性における容量変化量のピーク位置の横方向への位置変化を考慮して、性能低下開始状態を検知することにしてもよい。
 また、本発明は、このような蓄電システム10または性能低下検知装置100として実現することができるだけでなく、性能低下検知装置100に含まれる特徴的な処理部をステップとする性能低下検知方法としても実現することができる。
 また、本発明に係る性能低下検知装置100が備える各処理部は、集積回路であるLSI(Large Scale Integration)として実現されてもよい。例えば、図21に示すように、本発明は、第一取得部110、第二取得部120及び性能低下判定部130を備える集積回路160として実現することができる。図21は、本発明の実施の形態に係る性能低下検知装置100を集積回路で実現する構成を示すブロック図である。
 なお、集積回路160が備える各処理部は、個別に1チップ化されても良いし、一部または全てを含むように1チップ化されても良い。ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。
 また、集積回路化の手法はLSIに限るものではなく、専用回路または汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用しても良い。
 さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適応等が可能性としてあり得る。
 また、本発明は、性能低下検知方法に含まれる特徴的な処理をコンピュータに実行させるプログラムとして実現したり、当該プログラムが記録されたコンピュータ読み取り可能な非一時的な記録媒体、例えば、フレキシブルディスク、ハードディスク、CD-ROM、MO、DVD、DVD-ROM、DVD-RAM、BD(Blu-ray Disc(登録商標))、半導体メモリとして実現したりすることもできる。そして、そのようなプログラムは、CD-ROM等の記録媒体及びインターネット等の伝送媒体を介して流通させることができるのは言うまでもない。
 本発明は、リチウムイオン二次電池などの蓄電素子において、急激な性能低下が生じ始める状態を精度良く検知することができる性能低下検知装置等に適用できる。
   10 蓄電システム
  100 性能低下検知装置
  110 第一取得部
  120 第二取得部
  130 性能低下判定部
  150 記憶部
  151 判定用データ
  160 集積回路
  200 蓄電素子
  300 収容ケース

Claims (11)

  1.  蓄電素子の急激な性能低下が生じ始める状態を性能低下開始状態として検知する性能低下検知装置であって、
     第一時点での、前記蓄電素子を充電または放電した場合の前記蓄電素子の電圧の変化に対する通電容量の変化の大きさである容量変化量と前記電圧との関係を示す容量電圧特性において、前記容量変化量の最大値である第一最大変化量を取得する第一取得部と、
     前記第一時点以降の第二時点での前記容量電圧特性において、前記容量変化量の最大値である第二最大変化量を取得する第二取得部と、
     前記第一最大変化量に対する前記第二最大変化量の比率である変化量比率が所定の値を超える場合に、前記第二時点において前記蓄電素子が前記性能低下開始状態であると判定する性能低下判定部と
     を備える性能低下検知装置。
  2.  前記性能低下判定部は、前記変化量比率が前記所定の値を超える場合に、前記第二時点において、前記蓄電素子の充電または放電可能な容量の急激な低下が生じ始める状態、または前記蓄電素子の入出力特性で示される入出力性能の急激な低下が生じ始める状態であると判定することで、前記蓄電素子が前記性能低下開始状態であると判定する
     請求項1に記載の性能低下検知装置。
  3.  前記性能低下判定部は、前記変化量比率が0.7以上0.8以下の範囲内で設定された前記所定の値を超える場合に、前記第二時点において前記蓄電素子が前記性能低下開始状態であると判定する
     請求項1または2に記載の性能低下検知装置。
  4.  前記第一取得部は、前記蓄電素子の初期状態での前記容量電圧特性における前記第一最大変化量を取得する
     請求項1~3のいずれか1項に記載の性能低下検知装置。
  5.  前記第二取得部は、前記第二時点において前記蓄電素子を充電または放電させることにより、前記蓄電素子の電圧と通電容量との関係を取得し、取得した当該関係から前記通電容量を前記電圧で微分して前記容量変化量を算出し、算出した前記容量変化量と前記電圧との関係を示す容量電圧特性を取得することで前記第二最大変化量を取得する
     請求項1~4のいずれか1項に記載の性能低下検知装置。
  6.  前記性能低下判定部は、前記第二時点において前記蓄電素子が前記性能低下開始状態であると判定した場合に、前記蓄電素子の充電上限電圧を制限する
     請求項1~5のいずれか1項に記載の性能低下検知装置。
  7.  前記性能低下判定部は、前記第二時点において前記蓄電素子が前記性能低下開始状態であると判定した場合に、前記蓄電素子への通電最大電流を制限する
     請求項1~6のいずれか1項に記載の性能低下検知装置。
  8.  前記蓄電素子は、正極活物質として層状構造のリチウム遷移金属酸化物を含むリチウムイオン二次電池であり、
     前記第一取得部は、前記リチウムイオン二次電池についての前記第一最大変化量を取得し、
     前記第二取得部は、前記リチウムイオン二次電池についての前記第二最大変化量を取得する
     請求項1~7のいずれか1項に記載の性能低下検知装置。
  9.  蓄電素子と、
     前記蓄電素子の急激な性能低下が生じ始める状態を性能低下開始状態として検知する請求項1~8のいずれか1項に記載の性能低下検知装置と
     を備える蓄電システム。
  10.  コンピュータが、蓄電素子の急激な性能低下が生じ始める状態を性能低下開始状態として検知する性能低下検知方法であって、
     第一時点での、前記蓄電素子を充電または放電した場合の前記蓄電素子の電圧の変化に対する通電容量の変化の大きさである容量変化量と前記電圧との関係を示す容量電圧特性において、前記容量変化量の最大値である第一最大変化量を取得する第一取得ステップと、
     前記第一時点以降の第二時点での前記容量電圧特性において、前記容量変化量の最大値である第二最大変化量を取得する第二取得ステップと、
     前記第一最大変化量に対する前記第二最大変化量の比率である変化量比率が所定の値を超える場合に、前記第二時点において前記蓄電素子が前記性能低下開始状態であると判定する性能低下判定ステップと
     を含む性能低下検知方法。
  11.  蓄電素子の急激な性能低下が生じ始める状態を性能低下開始状態として検知する集積回路であって、
     第一時点での、前記蓄電素子を充電または放電した場合の前記蓄電素子の電圧の変化に対する通電容量の変化の大きさである容量変化量と前記電圧との関係を示す容量電圧特性において、前記容量変化量の最大値である第一最大変化量を取得する第一取得部と、
     前記第一時点以降の第二時点での前記容量電圧特性において、前記容量変化量の最大値である第二最大変化量を取得する第二取得部と、
     前記第一最大変化量に対する前記第二最大変化量の比率である変化量比率が所定の値を超える場合に、前記第二時点において前記蓄電素子が前記性能低下開始状態であると判定する性能低下判定部と
     を備える集積回路。
PCT/JP2013/006868 2012-11-30 2013-11-22 蓄電素子の性能低下検知装置、性能低下検知方法及び蓄電システム WO2014083813A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014549806A JP6252487B2 (ja) 2012-11-30 2013-11-22 蓄電素子の性能低下検知装置、性能低下検知方法及び蓄電システム
DE112013005733.6T DE112013005733T5 (de) 2012-11-30 2013-11-22 Performanzverschlechterungs-Erfassungsvorrichtung und Performanzverschlechterungs-Erfassungsverfahren für eine Energiespeichereinrichtung sowie Energiespeichersystem
US14/648,657 US9547046B2 (en) 2012-11-30 2013-11-22 Performance deterioration detecting apparatus and performance deterioration detecting method for energy storage device, and energy storage system
CN201380060368.0A CN104813534B (zh) 2012-11-30 2013-11-22 蓄电元件的性能降低探测装置、性能降低探测方法及蓄电系统
US15/385,418 US9864017B2 (en) 2012-11-30 2016-12-20 Performance deterioration detecting apparatus and performance deterioration detecting method for energy storage device, and energy storage system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012263589 2012-11-30
JP2012-263589 2012-11-30
JP2013-041036 2013-03-01
JP2013041036 2013-03-01

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/648,657 A-371-Of-International US9547046B2 (en) 2012-11-30 2013-11-22 Performance deterioration detecting apparatus and performance deterioration detecting method for energy storage device, and energy storage system
US15/385,418 Continuation US9864017B2 (en) 2012-11-30 2016-12-20 Performance deterioration detecting apparatus and performance deterioration detecting method for energy storage device, and energy storage system

Publications (1)

Publication Number Publication Date
WO2014083813A1 true WO2014083813A1 (ja) 2014-06-05

Family

ID=50827474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/006868 WO2014083813A1 (ja) 2012-11-30 2013-11-22 蓄電素子の性能低下検知装置、性能低下検知方法及び蓄電システム

Country Status (5)

Country Link
US (2) US9547046B2 (ja)
JP (1) JP6252487B2 (ja)
CN (1) CN104813534B (ja)
DE (1) DE112013005733T5 (ja)
WO (1) WO2014083813A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3015876A1 (en) * 2014-10-28 2016-05-04 Kabushiki Kaisha Toshiba Storage battery evaluating apparatus and method
JP2016080477A (ja) * 2014-10-15 2016-05-16 株式会社Gsユアサ 蓄電素子の性能低下検知装置、性能低下検知方法及び蓄電システム
JP2016085062A (ja) * 2014-10-23 2016-05-19 エンネット株式会社 電池劣化判定装置及び方法
JP2017020916A (ja) * 2015-07-10 2017-01-26 株式会社Gsユアサ 蓄電素子劣化状態推定装置、蓄電素子劣化状態推定方法及び蓄電システム
JPWO2018062394A1 (ja) * 2016-09-29 2019-08-08 株式会社Gsユアサ 蓄電素子のsoc推定装置、蓄電装置、蓄電素子のsoc推定方法
JP2022510075A (ja) * 2019-05-14 2022-01-26 エルジー エナジー ソリューション リミテッド バッテリーの退化度を決定するための装置及び方法、並びにその装置を含むバッテリーパック
US11480619B2 (en) 2017-10-24 2022-10-25 Gs Yuasa International Ltd. Estimation apparatus, estimation method, and computer program
JP2023515595A (ja) * 2020-09-09 2023-04-13 エルジー エナジー ソリューション リミテッド バッテリー管理装置及び方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015045015A1 (ja) * 2013-09-25 2015-04-02 株式会社日立製作所 二次電池の状態判定方法、二次電池の状態判定装置、二次電池システム、および、状態判定装置を有する充放電制御装置
EP3159708B1 (de) * 2015-10-19 2022-05-04 Robert Bosch GmbH Verfahren zum bestimmen eines alterungszustandes einer batterie, verfahren zum steuern einer batterie und betriebsvorrichtung
JP6380417B2 (ja) * 2016-01-21 2018-08-29 横河電機株式会社 二次電池容量測定システム及び二次電池容量測定方法
CN106569136B (zh) * 2016-10-19 2019-09-10 广州市香港科大霍英东研究院 一种电池健康状态在线估计方法及系统
CN108120932B (zh) * 2016-11-29 2021-02-09 株式会社日立制作所 对充电电池的电池健康状态进行估算的方法和装置
KR102563753B1 (ko) 2017-12-29 2023-08-04 삼성전자주식회사 배터리 충전 방법 및 장치
CN109143078A (zh) * 2018-08-28 2019-01-04 中航锂电技术研究院有限公司 一种磷酸铁锂动力电池“跳水”故障的辨识预判方法
JP7243123B2 (ja) * 2018-10-19 2023-03-22 トヨタ自動車株式会社 車両
JP7110903B2 (ja) * 2018-10-19 2022-08-02 トヨタ自動車株式会社 劣化情報出力装置および劣化情報出力方法
WO2020130422A1 (en) 2018-12-21 2020-06-25 Samsung Electronics Co., Ltd. Method and system for predicting onset of capacity fading in a battery
WO2020250342A1 (ja) * 2019-06-12 2020-12-17 三菱電機株式会社 充放電制御装置および充放電制御方法
KR20210028476A (ko) * 2019-09-04 2021-03-12 삼성전자주식회사 배터리 충전 장치 및 방법
DE102020125127A1 (de) * 2020-09-25 2022-03-31 Elringklinger Ag Verfahren zur Bestimmung des Zustands eines wiederaufladbaren Batteriesystems
CN112666481B (zh) * 2020-12-11 2024-03-08 珠海格力电器股份有限公司 一种电池寿命检测方法及装置
CN112834944B (zh) * 2020-12-30 2023-03-07 上海兰钧新能源科技有限公司 一种锂电池加速循环寿命测试方法、装置、介质及设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0968561A (ja) * 1995-09-01 1997-03-11 Nissan Motor Co Ltd 組電池の残容量計
JP2008014702A (ja) * 2006-07-04 2008-01-24 Fuji Heavy Ind Ltd バッテリの劣化演算装置
JP2012181037A (ja) * 2011-02-28 2012-09-20 Mitsubishi Heavy Ind Ltd 劣化推定装置、劣化推定方法、及びプログラム

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4433294A (en) * 1981-06-05 1984-02-21 Firing Circuits, Inc. Method and apparatus for testing a battery
JP2884746B2 (ja) * 1990-09-03 1999-04-19 松下電器産業株式会社 非水電解液2次電池
JPH06342045A (ja) 1993-05-31 1994-12-13 Omron Corp バッテリーの寿命計測装置
DE69826929T2 (de) * 1997-06-24 2005-03-10 Matsushita Electric Industrial Co., Ltd., Kadoma Verfahren zur Erfassung des Betriebszustandes wiederaufladbarer Batterien mit nicht wasserhaltigem Elektrolyt
JP4353653B2 (ja) 2001-05-10 2009-10-28 古河電池株式会社 鉛蓄電池の状態監視システム
WO2006080067A1 (ja) * 2005-01-27 2006-08-03 Panasonic Ev Energy Co., Ltd. 二次電池の充放電電気量推定方法および装置、二次電池の分極電圧推定方法および装置、並びに二次電池の残存容量推定方法および装置
JP4561859B2 (ja) 2008-04-01 2010-10-13 トヨタ自動車株式会社 二次電池システム
CN101714647B (zh) * 2008-10-08 2012-11-28 株式会社牧田 电动工具用蓄电池匣以及电动工具
JP5624333B2 (ja) * 2009-03-31 2014-11-12 プライムアースEvエナジー株式会社 二次電池の制御装置及びマップの補正方法
DE102009002466A1 (de) 2009-04-17 2010-10-21 Robert Bosch Gmbh Erweiterte Batteriediagnose bei Traktionsbatterien
JP5397679B2 (ja) 2009-05-21 2014-01-22 株式会社Gsユアサ 二次電池の劣化診断方法、及び二次電池の劣化診断装置
JP5512250B2 (ja) * 2009-12-09 2014-06-04 三洋電機株式会社 パック電池
JP5341823B2 (ja) * 2010-06-07 2013-11-13 トヨタ自動車株式会社 リチウムイオン二次電池の劣化判定システムおよび劣化判定方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0968561A (ja) * 1995-09-01 1997-03-11 Nissan Motor Co Ltd 組電池の残容量計
JP2008014702A (ja) * 2006-07-04 2008-01-24 Fuji Heavy Ind Ltd バッテリの劣化演算装置
JP2012181037A (ja) * 2011-02-28 2012-09-20 Mitsubishi Heavy Ind Ltd 劣化推定装置、劣化推定方法、及びプログラム

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016080477A (ja) * 2014-10-15 2016-05-16 株式会社Gsユアサ 蓄電素子の性能低下検知装置、性能低下検知方法及び蓄電システム
JP2016085062A (ja) * 2014-10-23 2016-05-19 エンネット株式会社 電池劣化判定装置及び方法
EP3015876A1 (en) * 2014-10-28 2016-05-04 Kabushiki Kaisha Toshiba Storage battery evaluating apparatus and method
US9952289B2 (en) 2014-10-28 2018-04-24 Kabushiki Kaisha Toshiba Storage battery evaluating apparatus and method
JP2017020916A (ja) * 2015-07-10 2017-01-26 株式会社Gsユアサ 蓄電素子劣化状態推定装置、蓄電素子劣化状態推定方法及び蓄電システム
JPWO2018062394A1 (ja) * 2016-09-29 2019-08-08 株式会社Gsユアサ 蓄電素子のsoc推定装置、蓄電装置、蓄電素子のsoc推定方法
JP7172599B2 (ja) 2016-09-29 2022-11-16 株式会社Gsユアサ 蓄電素子のsoc推定装置、蓄電装置、蓄電素子のsoc推定方法
US11480619B2 (en) 2017-10-24 2022-10-25 Gs Yuasa International Ltd. Estimation apparatus, estimation method, and computer program
JP2022510075A (ja) * 2019-05-14 2022-01-26 エルジー エナジー ソリューション リミテッド バッテリーの退化度を決定するための装置及び方法、並びにその装置を含むバッテリーパック
JP7151044B2 (ja) 2019-05-14 2022-10-12 エルジー エナジー ソリューション リミテッド バッテリーの退化度を決定するための装置及び方法、並びにその装置を含むバッテリーパック
JP2023515595A (ja) * 2020-09-09 2023-04-13 エルジー エナジー ソリューション リミテッド バッテリー管理装置及び方法
JP7362990B2 (ja) 2020-09-09 2023-10-18 エルジー エナジー ソリューション リミテッド バッテリー管理装置及び方法

Also Published As

Publication number Publication date
JP6252487B2 (ja) 2017-12-27
US9547046B2 (en) 2017-01-17
US9864017B2 (en) 2018-01-09
JPWO2014083813A1 (ja) 2017-01-05
CN104813534B (zh) 2016-08-17
US20170102436A1 (en) 2017-04-13
DE112013005733T5 (de) 2015-09-10
CN104813534A (zh) 2015-07-29
US20150301123A1 (en) 2015-10-22

Similar Documents

Publication Publication Date Title
JP6252487B2 (ja) 蓄電素子の性能低下検知装置、性能低下検知方法及び蓄電システム
US10371757B2 (en) Post-deterioration performance estimating apparatus and post-deterioration performance estimating method for energy storage device, and energy storage system
EP3232216B1 (en) Energy storage element state estimation device and energy storage element state estimation method
EP2711727B1 (en) Battery condition estimation device and method of generating open circuit voltage characteristic
EP2952919A1 (en) Method and device for estimating parameters for secondary battery
JP6565675B2 (ja) 蓄電素子の劣化状態検知装置、劣化状態検知方法及び蓄電システム
JP6238325B2 (ja) ハイブリッド二次電池の電圧推定装置及びその方法
CN104335057B (zh) 用于确定电池的实际容量的方法和设备
JP5582099B2 (ja) 電池寿命劣化推定装置、電池寿命劣化推定方法及び蓄電システム
JP2014010003A (ja) 電池モジュールおよびその状態推定方法
JPWO2015037184A1 (ja) 蓄電素子の寿命推定装置、寿命推定方法及び蓄電システム
JP2013254710A (ja) 蓄電素子の寿命推定装置、寿命推定方法及び蓄電システム
JP5998887B2 (ja) 蓄電素子の劣化状態検出装置、劣化状態検出方法及び蓄電システム
CN110471001B (zh) 锂离子电池的诊断方法和锂离子电池的诊断装置
JP6020378B2 (ja) 蓄電素子の劣化状態検出装置、劣化状態検出方法、蓄電システム及び電動車両
JP6607079B2 (ja) 蓄電素子状態推定装置及び蓄電素子状態推定方法
JP6390335B2 (ja) 蓄電素子の性能低下検知装置、性能低下検知方法及び蓄電システム
Gerschler et al. Investigation of open-circuit-voltage behaviour of lithium-ion batteries with various cathode materials under special consideration of voltage equalisation phenomena
JP6773195B2 (ja) 蓄電システム及びコンピュータプログラム
JP2015059928A (ja) 蓄電素子の寿命推定装置、寿命推定方法及び蓄電システム
JP5935524B2 (ja) 蓄電素子の劣化後容量推定装置、劣化後容量推定方法及び蓄電システム
WO2022202318A1 (ja) 推定装置、蓄電モジュール、推定方法及びコンピュータプログラム
JP6642099B2 (ja) 蓄電素子状態推定装置及び蓄電素子状態推定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13857742

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014549806

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14648657

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120130057336

Country of ref document: DE

Ref document number: 112013005733

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13857742

Country of ref document: EP

Kind code of ref document: A1