WO2014083603A1 - セルロースを原料とした5-ヒドロキシメチルフルフラールの製造方法 - Google Patents

セルロースを原料とした5-ヒドロキシメチルフルフラールの製造方法 Download PDF

Info

Publication number
WO2014083603A1
WO2014083603A1 PCT/JP2012/080552 JP2012080552W WO2014083603A1 WO 2014083603 A1 WO2014083603 A1 WO 2014083603A1 JP 2012080552 W JP2012080552 W JP 2012080552W WO 2014083603 A1 WO2014083603 A1 WO 2014083603A1
Authority
WO
WIPO (PCT)
Prior art keywords
mixing
channel
fluid
cellulose
reaction
Prior art date
Application number
PCT/JP2012/080552
Other languages
English (en)
French (fr)
Inventor
近藤 健之
上川 将行
松尾 俊明
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2012/080552 priority Critical patent/WO2014083603A1/ja
Publication of WO2014083603A1 publication Critical patent/WO2014083603A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/38Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/40Radicals substituted by oxygen atoms
    • C07D307/46Doubly bound oxygen atoms, or two oxygen atoms singly bound to the same carbon atom
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Definitions

  • the present invention relates to a method for producing 5-hydroxymethylfurfural using cellulose contained in biomass as a raw material and an apparatus used for the method.
  • 5-Hydroxymethylfurfural is a precursor of 2,5-dimethylfuran, which has potential as a biogasoline, and 2,5-furandicarboxylic acid, which can be an alternative to terephthalic acid, a raw material for plastics. Since it is a body and also a raw material for a sickle cell disease therapeutic agent, it has attracted attention as a useful compound. It is known that 5-HMF can be produced from monosaccharides (glucose and fructose). If 5-HMF can be efficiently produced from cellulose contained in biomass via monosaccharides, a new method for using biomass Can be provided.
  • Non-Patent Document 1 describes the decomposition behavior of cellulose in super / subcritical water, and 5-HMF is a by-product in the reaction to obtain monosaccharides and oligosaccharides by treating cellulose with super / subcritical water. It is described that about 10% at maximum was produced as a product. However, a method for obtaining 5-HMF in high yield from cellulose is not known.
  • 5-HMF is obtained by dehydration reaction of monosaccharides (glucose and fructose). Therefore, the production method of 5-HMF using biomass as a raw material, as represented by the following formula, mainly includes the first reaction of hydrolyzing cellulose contained in biomass to obtain glucose and the dehydration reaction of glucose. A second reaction to obtain 5-HMF.
  • an object of the present invention is to provide a method for producing 5-HMF from biomass at a high yield while suppressing the production of by-products, and an apparatus used for the method.
  • the method of the present invention is a method for continuously synthesizing 5-hydroxymethylfurfural using cellulose as a raw material, and the step of hydrolyzing cellulose by mixing cellulose and supercritical water or subcritical water was obtained.
  • a step of cooling and reducing the pressure of the reaction solution to a temperature and pressure for dehydration reaction of the monosaccharide, and mixing the acid heated to the dehydration reaction temperature of the monosaccharide ⁇ 100 ° C. and the reaction solution to dehydrate the monosaccharide It includes a step of performing a reaction to obtain 5-hydroxymethylfurfural.
  • the apparatus of the present invention is an apparatus for continuously producing 5-hydroxymethylfurfural, which is a super-subcritical water supply unit equipped with a pipe for feeding water, a water high-pressure pump, and a heater, and a cellulose slurry.
  • a monosaccharide dehydration reaction unit having a mixer for mixing the water, a subsequent pipe, a mixer for mixing cooling water into the fluid sent
  • hydrolysis of cellulose contained in biomass and dehydration reaction of monosaccharides obtained by the hydrolysis can be performed under conditions suitable for each reaction, resulting in high yield.
  • the method of the present invention comprises a step of hydrolyzing cellulose by mixing cellulose and supercritical water or subcritical water, and cooling and depressurizing the resulting reaction liquid to a temperature and pressure at which a monosaccharide is dehydrated. And a step of mixing the acid heated to the monosaccharide dehydration reaction temperature ⁇ 100 ° C. and the reaction solution to dehydrate the monosaccharide to obtain 5-HMF.
  • the hydrolysis of cellulose is preferably performed at 380 to 400 ° C. and 25 to 40 MPa, and the monosaccharide dehydration reaction is preferably performed at 200 to 280 ° C. and 10 to 20 MPa.
  • Monosaccharides obtained by hydrolysis of cellulose and convertible to 5-HMF include glucose and fructose produced by isomerization of glucose.
  • Cooling of the reaction liquid after hydrolysis of cellulose is preferably performed by directly mixing cooling water.
  • the method of the present invention further includes a step of stopping the dehydration reaction by cooling the reaction solution by directly mixing the cooling water with the reaction solution after the dehydration reaction of the monosaccharide.
  • mixing of cellulose and supercritical water or subcritical water mixing of cooling water after hydrolysis, mixing of acid and reaction solution, and mixing of cooling water after dehydration reaction, especially reaction with acid
  • the mixing of the liquid is preferably performed using a fluid mixer, referred to herein as a swirling mixer.
  • a fluid mixer referred to herein as a swirling mixer.
  • the hydrolysis reaction is once stopped, and then the monosaccharide obtained by hydrolysis is dehydrated.
  • the temperature and pressure suitable for hydrolysis of cellulose using super-subcritical water is higher than the temperature and pressure suitable for dehydration of monosaccharides. Therefore, after the hydrolysis, it is possible to realize conditions suitable for the dehydration reaction only by cooling and depressurization, and it is not necessary to reheat or repressurize the reaction solution. The operating cost does not increase compared with the conventional method.
  • An apparatus for continuously producing 5-HMF used in the method of the present invention is a super-subcritical water supply unit equipped with a pipe for feeding water, a water high-pressure pump, and a heater, and a cellulose slurry.
  • a cellulose slurry supply unit equipped with a pipe, a cellulose slurry high-pressure pump, and a heater, a mixer for mixing the fluid sent from the super-subcritical water supply unit and the cellulose slurry supply unit, and a subsequent pipe A cellulose hydrolysis reaction unit provided, a mixer for mixing cooling water with the fluid sent from the hydrolysis reaction unit, and a first cooling decompression unit equipped with a pressure reducing valve, and a fluid containing acid are fed.
  • a mixer for mixing an acid with a fluid fed from the first cooling pressure reducing unit having a pipe, an acid high-pressure pump for feeding a fluid containing acid, and an acid supply unit provided with a heater And a monosaccharide dehydration reaction section provided with a subsequent pipe, a mixer for mixing cooling water with the fluid sent from the monosaccharide dehydration reaction section, and a second cooling pressure reduction section provided with a pressure reducing valve.
  • At least one of the mixers is a swirl flow mixer described later.
  • the temperature and pressure in the pipe following the mixer in the cellulose hydrolysis reaction section are 380 to 400 ° C. and 25 to 40 MPa, and the temperature and pressure in the pipe following the mixer in the monosaccharide dehydration reaction section. Is preferably 200 to 280 ° C. and 10 to 20 MPa.
  • FIG. 1 is a schematic view showing an example of an apparatus used in the method for producing 5-HMF of the present invention.
  • cellulose slurry and super-subcritical water are mixed by a mixer, and then subjected to a hydrolysis reaction of cellulose in a subsequent pipe under high temperature and high pressure.
  • the reaction solution is cooled and depressurized by a cooler and a pressure reducing valve to a temperature and pressure suitable for the monosaccharide dehydration reaction while the hydrolysis reaction is stopped.
  • the reaction solution is further mixed with an acid by a mixer, and is subjected to a dehydration reaction of monosaccharides (glucose, fructose, etc.) obtained by hydrolysis of cellulose in the subsequent piping.
  • monosaccharides glucose, fructose, etc.
  • reaction solution is cooled and decompressed by a cooler and a pressure reducing valve, and a reaction product containing 5-HMF is recovered.
  • the apparatus becomes large and the indirect cooling by the cooler is not in time and the reaction time cannot be controlled, it is possible to adopt a configuration in which the cooling water is directly mixed with the reaction liquid instead of the cooler (see FIG. 2). .
  • FIG. 3 is a diagram showing a more specific configuration example of the 5-HMF manufacturing apparatus of the present invention.
  • the flow until the recovery of 5-HMF from cellulose derived from biomass will be described in detail.
  • water is fed at a water high pressure pump (0110) at an optimum hydrolysis reaction pressure of cellulose of 25 to 40 MPa, and supercritical or subcritical water preheater (0120) is used to achieve a supercritical or subcritical temperature. Raise the temperature.
  • cellulose slurry aqueous dispersion of cellulose
  • a cellulose slurry high-pressure pump (0210)
  • heated to 100 to 200 ° C. with a cellulose slurry preheater (0220).
  • both are mixed with super / subcritical water and a cellulose slurry mixer (0300), and the hydrolysis reaction of cellulose is started instantaneously at 380 to 400 ° C. and 25 to 40 MPa.
  • the hydrolysis reaction time is preferably 0.1 to 120 seconds, particularly 5 to 15 seconds.
  • FIG. 4 is a view showing an example of an apparatus for supplying cellulose slurry.
  • the supply flow rate of the cellulose slurry is preferably 2 m / s or more from the viewpoint of preventing precipitation of cellulose.
  • the concentration of cellulose in the slurry is preferably 1 to 30% by weight, particularly 5 to 10% by weight, considering the cost and the risk of pipe clogging due to a decrease in fluidity.
  • the reaction solution hydrolyzed in the hydrolysis reaction pipe (0350) is mixed with the cooling water fed by the first cooling water high-pressure pump (0410) by the first cooling water mixer (0500), and instantly a monosaccharide.
  • the reaction is cooled to a temperature suitable for the dehydration reaction, and the hydrolysis reaction is stopped.
  • the temperature of the reaction liquid after cooling is preferably 200 to 280 ° C., particularly preferably 230 to 250 ° C.
  • the cooled reaction liquid is depressurized to a pressure suitable for monosaccharide dehydration reaction by the first pressure reducing valve (0530).
  • the pressure of the reaction liquid after depressurization is preferably 10 to 20 MPa, particularly preferably 15 to 20 MPa (see the pressure and temperature ranges of hydrolysis and dehydration reactions in FIG. 5).
  • the fed dehydration reaction catalyst (acid) using the dehydration reaction catalyst supply pump (0610) is heated to a predetermined temperature by the dehydration reaction catalyst preheater (0620), and in the dehydration reaction catalyst and reaction liquid mixer (0700).
  • the dehydration reaction is started by mixing with the reaction solution.
  • the acid as the dehydration reaction catalyst is preferably sulfuric acid or phosphoric acid.
  • the amount of acid added is 1 to 5 mol equivalents, particularly 2 to 4 mol equivalents relative to the monosaccharides contained in the system, and the acid heating temperature is such as sulfuric acid or phosphoric acid.
  • the inorganic acid does not thermally decompose, it is preferable to set the temperature in the range of 140 to 340 ° C., particularly 210 to 270 ° C.
  • the heating temperature of the acid is preferably in the range of ⁇ 100 ° C., particularly ⁇ 40 ° C., with the temperature of the reaction solution to be mixed. By heating in advance before addition of the acid, it can be quickly and uniformly mixed with the reaction liquid when added to the reaction liquid, thereby suppressing the formation of by-products due to the non-uniformity of the reaction liquid. be able to.
  • the dehydration reaction time is preferably in the range of 5 seconds to 30 minutes, particularly 15 to 120 seconds.
  • the reaction solution is mixed with the cooling water fed from the second cooling water high-pressure pump (0810) and the second cooling water mixer (0900) after the optimal reaction time has elapsed. ) And the dehydration reaction is stopped.
  • the reaction solution is preferably cooled to a temperature of 50 ° C. or lower, particularly 30 ° C. or lower.
  • the carbon particles generated in a small amount by the monosaccharide dehydration reaction are captured by the carbon particle removal filter (1000) in the subsequent stage and separated and removed from the reaction solution. Thereafter, the pressure is reduced to the atmospheric pressure with the second pressure reducing valve (1200), and then recovered, and the hydroxyl group is esterified with acetic acid or the like and then purified by distillation to obtain 5-HMF.
  • 5-HMF can be converted to 2,5-furandicarboxylic acid, which is a substitute for terephthalic acid by oxidation treatment, and further converted to polyester by being polymerized with diols.
  • 5-HMF can be converted to 2,5-dimethylfuran, which is an alternative to biogasoline, by hydrogenation treatment.
  • the “swirl mixer” refers to a cylindrical mixing channel for mixing the first fluid and the second fluid, and a first fluid installed offset from the central axis of the mixing channel.
  • a plurality of first inlet channels and second inlet channels are alternately installed so as to rotate around the central axis of the mixing channel.
  • FIG. 6 shows a front view and a plan view of an example of a swirling mixer used as the super-subcritical water and cellulose slurry mixer (300) in the 5-HMF production apparatus of the present invention.
  • Other mixers can have the same configuration.
  • the end of the cylindrical mixing channel (320) is hermetically sealed, and the first inlet channel (310X) for guiding one fluid to the mixing channel (320) and the other end are sealed at the sealed end.
  • a second inlet channel (310Y) for guiding fluid to the mixing channel (320) is connected.
  • the first inlet channel (310X) and the second inlet channel (310Y) are connected to the mixing channel (320) in a state offset by ⁇ with respect to the central axis of the mixing channel (320).
  • a total of eight first inlet channels (310X) and second inlet channels (310Y) are alternately connected so as to rotate 45 ° around the central axis of the mixing channel (320). Since a plurality of the first and second inlet flow paths (310X, 310Y) are connected to the mixing flow path (320), a multilayer flow can be formed in the mixing flow path (320). Since the diffusion distance is reduced compared to the flow, the mixing property can be improved.
  • the first inlet channel (310X) and the second inlet channel (310Y) are connected at right angles to the central axis of the mixing channel (320), but the connection angle is It is not limited. By setting the connection angle to 90 ° or less, the flow direction in the mixing flow path (320) and the flow direction in the first and second inlet flow paths (310X, 310Y) are close to each other, so that pressure loss is reduced. Can increase production.
  • the first and second inlet channels (310X, 310Y) are described as having a rectangular cross section, but other shapes such as a cylindrical shape may be used.
  • the mixing channel (320) is assumed to have a cylindrical shape, but here, the cylindrical shape includes a case where the cross-section is a polygon approximate to a circle.
  • the flow rate QX of the raw material high-pressure pump (210) and the flow rate QY of the super / subcritical water high-pressure pump (110) are the same.
  • the first inlet channel (310X) and the second inlet are set so that the flow rates in the first inlet channel (310X) and the second inlet channel (310Y) are the same. Mixability can be improved by making the size of the flow path (310Y) different.
  • Is preferably set so as to satisfy the relationship of QX / SX QY / SY.
  • FIG. 7 shows an embodiment of a swirling mixer used in the 5-HMF manufacturing apparatus of the present invention.
  • a conical portion with low mixing property is generated on the central axis of the mixing flow path (320).
  • the mixability can be improved.
  • the distance between layers is further reduced, so that the mixing property can be improved.
  • the structure provided on the central axis of the mixing channel is preferably formed so as to become thinner (the cross-sectional area becomes smaller) toward the downstream.
  • Example 1 Using the apparatus described in FIG. 3, 5-HMF was continuously produced from cellulose.
  • a normal T-shaped mixer was used as the mixer.
  • Crystalline cellulose fine powder (Wako Pure Chemical Industries) was used as cellulose, and phosphoric acid (Wako Pure Chemical Industries) was used as a dehydration reaction catalyst.
  • the cellulose concentration of the cellulose slurry was 10% by weight.
  • the yield of 5-HMF was 50%. Moreover, even if the apparatus was operated continuously for 5 hours, piping clogging due to by-products did not occur.
  • FIG. 8 shows the change in reaction yield when the temperature before mixing the liquid obtained by cooling the hydrolysis reaction liquid of cellulose and phosphoric acid was changed. The temperature difference between them is adjusted by changing only the cooling water flow rate of the hydrolysis reaction solution and the flow rate / concentration of the phosphoric acid aqueous solution, and the reaction temperature of the hydrolysis reaction and the dehydration reaction temperature in the latter stage are the same as in Example 1.
  • a reaction test was conducted. As a result, when the temperature of the hydrolysis reaction solution of cellulose and the phosphoric acid aqueous solution were the same, the reaction yield was as high as 50%, but when both temperatures were changed by about 100 ° C., the reaction yield decreased to 40%.
  • Example 3 Using the same apparatus described in FIG. 3 as in Example 1, 5-HMF was continuously produced from cellulose.
  • FIG. 9 shows the change in reaction yield when the temperature of the hydrolysis reaction of cellulose is changed.
  • the temperature of the hydrolysis reaction was adjusted by changing the flow rate / temperature of the cellulose slurry and the supercritical water flow rate / temperature.
  • the temperature and pressure conditions for the dehydration reaction were the same as in the examples. As a result, the reaction yield peaked at a hydrolysis reaction temperature of 380 to 400 ° C., and was about 50%.
  • Example 4 Using the same apparatus described in FIG. 3 as in Example 1, 5-HMF was continuously produced from cellulose.
  • FIG. 10 shows the change in reaction yield when the hydrolysis pressure of cellulose is changed.
  • the hydrolysis reaction pressure was adjusted by changing the opening of the first pressure reducing valve.
  • the temperature and pressure conditions for the dehydration reaction were the same as in Example 1. As a result, the yield was high when the hydrolysis reaction pressure was 25 to 40 MPa.
  • FIG. 11 shows the change in the reaction yield when the dehydration temperature of the monosaccharide is changed.
  • the dehydration reaction temperature was adjusted by changing the cooling water flow rate of the hydrolysis reaction solution and the temperature of the phosphoric acid aqueous solution.
  • the reaction conditions for the hydrolysis reaction and the pressure for the dehydration reaction were the same as in Example 1.
  • the yield peaked at a dehydration reaction temperature of 240 ° C., and a high value of about 50% was observed at 230 to 250 ° C.
  • the temperature range in which a yield of 40% or more was obtained was 200 to 280 ° C.
  • Example 6 Using the same apparatus described in FIG. 3 as in Example 1, 5-HMF was continuously produced from cellulose.
  • FIG. 12 shows the change in the reaction yield when the dehydration reaction pressure of the monosaccharide is changed.
  • the dehydration reaction pressure was adjusted by changing the opening of the second pressure reducing valve.
  • the hydrolysis reaction conditions and the dehydration temperature conditions were the same as in Example 1. As a result, the yield was high at a dehydration reaction pressure of 15 to 20 MPa.
  • Example 7 Using the apparatus described in FIG. 3, 5-HMF was continuously produced from cellulose. Unlike Example 1, the swirl flow mixer shown in FIGS. 6 and 7 was used for the four mixers. Otherwise, the test was conducted under the same conditions as in Example 1. As a result, the yield of cellulose was 53%. Moreover, even if the apparatus was operated continuously for 5 hours, piping clogging due to by-products did not occur.
  • Example 2 (Comparative Example 2) Using the same apparatus described in FIG. 3 as in Example 1, 5-HMF was continuously produced from cellulose. Example 1 was repeated except that phosphoric acid was mixed with the reaction solution at room temperature without heating in advance. The yield of 5-HMF remained at 35%, and further, the piping was blocked near the pressure reducing valve 60 minutes after the start of operation.

Abstract

 本発明は、副生成物の生成を抑制しつつ、高収率でバイオマスから5-HMFを製造する方法およびその方法に用いる装置を提供することを目的とする。本発明は、セルロースと超臨界水または亜臨界水とを混合してセルロースを加水分解する工程、得られた反応液を冷却および減圧して単糖類の脱水反応を行う温度および圧力にする工程、ならびに前記単糖類の脱水反応温度±100℃に加熱した酸と前記反応液とを混合して単糖類の脱水反応を行い5-ヒドロキシメチルフルフラールを得る工程を含む、セルロースを原料として5-ヒドロキシメチルフルフラールを連続的に合成する方法に関する。

Description

セルロースを原料とした5-ヒドロキシメチルフルフラールの製造方法
 本発明はバイオマスに含まれるセルロースを原料として5-ヒドロキシメチルフルフラールを製造する方法およびその方法に用いる装置に関する。
 5-ヒドロキシメチルフルフラール(5-HMF)は、バイオガソリンとしての可能性を有する2,5-ジメチルフランや、プラスチックの原料であるテレフタル酸の代替物質になり得る2,5-フランジカルボン酸の前駆体であり、さらには鎌状赤血球症治療薬の原料ともなるため、有用な化合物として着目されている。5-HMFは単糖類(グルコースやフルクトース)から製造できることが知られており、バイオマスに含まれるセルロースから単糖類を経由して5-HMFを効率よく製造することができれば、バイオマスの新たな利用法を提供することが可能となる。
 非特許文献1には、超・亜臨界水中におけるセルロースの分解挙動について記載されており、セルロースを超・亜臨界水で処理して単糖類やオリゴ糖を得る反応において、5-HMFが副生成物として最大で10%程度生成したことが記載されている。しかし、セルロースから5-HMFを高収率で得る方法は知られていない。
Decomposition behavior of cellulose in supercritical water, subcritical water, and their combined treatments.Journal of Wood Science 51(2) (2005) 148 -153
 5-HMFは単糖類(グルコースやフルクトース)の脱水反応により得られる。従って、バイオマスを原料とする5-HMFの製造方法は、下記の式で表されるように、主としてバイオマスに含まれるセルロースを加水分解してグルコースを得る第1の反応と、グルコースの脱水反応により5-HMFを得る第2の反応とからなる。
Figure JPOXMLDOC01-appb-C000001
 しかし、そのような第1の加水分解と第2の脱水反応とは好ましい反応条件が大きく異なるため、それらの反応を同時に行おうとすれば、副生成物としてタールや炭素粒子などが生成してしまう。タールや炭素粒子などの副生成物の発生は、5-HMFの収率低下を招くと共に、製造装置における配管閉塞などの原因ともなり得るため好ましくない。そこで、本発明は、副生成物の生成を抑制しつつ、高収率でバイオマスから5-HMFを製造する方法およびその方法に用いる装置を提供することを目的とする。
 本発明者らは上述したような問題を検討した結果、セルロースの加水分解とそれに続く単糖類の脱水反応の反応条件を最適化し、バイオマスに含まれるセルロースから高収率で5-HMFを連続的に製造することを可能とする方法を見出した。
 本発明の方法は、セルロースを原料として5-ヒドロキシメチルフルフラールを連続的に合成する方法であって、セルロースと超臨界水または亜臨界水とを混合してセルロースを加水分解する工程、得られた反応液を冷却および減圧して単糖類の脱水反応を行う温度および圧力にする工程、ならびに前記単糖類の脱水反応温度±100℃に加熱した酸と前記反応液とを混合して単糖類の脱水反応を行い5-ヒドロキシメチルフルフラールを得る工程を含むことを特徴とする。
 本発明の装置は、5-ヒドロキシメチルフルフラールを連続的に製造するための装置であって、水を送液する配管、水高圧ポンプ、およびヒーターを備えた超・亜臨界水供給部、セルローススラリーを送液する配管、セルローススラリー高圧ポンプ、およびヒーターを備えたセルローススラリー供給部、前記超・亜臨界水供給部と前記セルローススラリー供給部から送液された流体を混合するための混合器、およびそれに続く配管を備えたセルロース加水分解反応部、前記加水分解反応部から送液された流体に冷却水を混合するための混合器、および減圧弁を備えた第1冷却減圧部、酸を含む流体を送液する配管、酸を含む流体を送液する酸高圧ポンプ、およびヒーターを備えた酸供給部を有し、前記第1冷却減圧部から送液された流体に酸を混合するための混合器、およびそれに続く配管を備えた単糖類脱水反応部、ならびに前記単糖類脱水反応部から送液された流体に冷却水を混合するための混合器、および減圧弁を備えた第2冷却減圧部を備えることを特徴とする。
 本発明の方法によれば、バイオマスに含まれるセルロースの加水分解と、該加水分解により得られた単糖類の脱水反応とを、それぞれの反応に適した条件下で行うことができ、高収率で5-HMFを製造することができる。また、本発明の方法によれば、副生成物の生成を抑制して、配管やその他の機器の閉塞や摩耗を防ぎ、安定して5-HMFを製造することが可能となる。
本発明の5-HMF製造方法に用いる装置の一例を示す概略図である。 本発明の5-HMF製造方法に用いる装置の他の一例を示す概略図である。 本発明の5-HMF製造方法に用いる装置の構成例を示す図である。 セルローススラリーを供給するための装置の一例を示す図である。 加水分解反応および脱水反応の圧力および温度範囲を表す相図である。 旋回流ミキサの一例の正面図および平面図である。 旋回流ミキサの一例の断面図である。 5-HMF収率に及ぼす加水分解反応液と酸の温度差の影響を表すグラフである。 5-HMF収率に及ぼす加水分解反応温度の影響を表すグラフである。 5-HMF収率に及ぼす加水分解反応圧力の影響を表すグラフである。 5-HMF収率に及ぼす脱水反応温度の影響を表すグラフである。 5-HMF収率に及ぼす脱水反応圧力の影響を表すグラフである。 比較例1で用いた従来の装置を示す概略図である。
 本発明の方法は、セルロースと超臨界水または亜臨界水とを混合してセルロースを加水分解する工程、得られた反応液を冷却および減圧して単糖類の脱水反応を行う温度および圧力にする工程、ならびに前記単糖類の脱水反応温度±100℃に加熱した酸と前記反応液とを混合して単糖類の脱水反応を行い5-HMFを得る工程を含む。セルロースの加水分解は380~400℃、25~40MPaで行い、単糖類の脱水反応を200~280℃、10~20MPaで行うことが好ましい。
 セルロースを加水分解して得られ、5-HMFに変換可能な単糖類としては、グルコースおよびグルコースが異性化して生じるフルクトースが挙げられる。
 単糖類の脱水反応において、脱水反応触媒である酸を予め脱水反応温度±100℃に加熱すると、反応液に加えた際の酸が効率よく混合され、反応液に濃度や温度のムラが生じることを防ぐことができる。タールや炭素粒子などの副生成物は、反応液中に濃度や温度のムラが生じることにより発生すると考えられているため、酸を予め加熱することは副生成物の生成抑制に有利である。
 セルロースを加水分解した後の反応液の冷却は、冷却水を直接混合することにより行うことが好ましい。また、本発明の方法は、単糖類の脱水反応を行った後、冷却水を反応液に直接混合することにより反応液を冷却させて脱水反応を停止させる工程をさらに含むことが好ましい。
 本発明の方法において、セルロースと超臨界水または亜臨界水との混合、加水分解後の冷却水の混合、酸と反応液の混合、および脱水反応後の冷却水の混合、中でも特に酸と反応液の混合は、本明細書で旋回流ミキサと称する流体混合器を用いて行うことが好ましい。旋回流ミキサを用いることにより、反応液に濃度や温度のムラが生じることを防ぐことができる。旋回流ミキサについては後に詳述する。
 本発明の方法では、超・亜臨界水を用いてセルロースの加水分解を行った後、一度加水分解反応を停止させてから、加水分解で得られた単糖類の脱水反応を行う。このように、加水分解と脱水反応とを分けて行うことにより、それぞれの反応を最適な反応条件下で行うことが可能となる。また、一般に超・亜臨界水を用いてセルロースの加水分解に好適な温度・圧力は、単糖類の脱水反応に好適な温度・圧力よりも高い。従って、加水分解後は、冷却・減圧を行うのみで脱水反応に好適な条件を実現することができ、反応液の再加熱または再加圧を必要としないため、加水分解と脱水反応を同時に行う従来法と比較して運転コストが増大することもない。
 本発明の方法に用いる5-HMFを連続的に製造するための装置は、水を送液する配管、水高圧ポンプ、およびヒーターを備えた超・亜臨界水供給部、セルローススラリーを送液する配管、セルローススラリー高圧ポンプ、およびヒーターを備えたセルローススラリー供給部、前記超・亜臨界水供給部と前記セルローススラリー供給部から送液された流体を混合するための混合器、およびそれに続く配管を備えたセルロース加水分解反応部、前記加水分解反応部から送液された流体に冷却水を混合するための混合器、および減圧弁を備えた第1冷却減圧部、酸を含む流体を送液する配管、酸を含む流体を送液する酸高圧ポンプ、およびヒーターを備えた酸供給部を有し、前記第1冷却減圧部から送液された流体に酸を混合するための混合器、およびそれに続く配管を備えた単糖類脱水反応部、ならびに前記単糖類脱水反応部から送液された流体に冷却水を混合するための混合器、および減圧弁を備えた第2冷却減圧部を備える。
 本発明の装置において、各混合器の少なくとも一つは後述する旋回流ミキサであることが好ましい。また、本発明の装置において、セルロース加水分解反応部における混合器に続く配管における温度および圧力は380~400℃、25~40MPaであり、単糖類脱水反応部における混合器に続く配管における温度および圧力は200~280℃、10~20MPaであることが好ましい。
 図1は、本発明の5-HMFの製造方法に用いる装置の一例を示す概略図である。まず、セルローススラリーと超・亜臨界水とがミキサにより混合され、その後段の配管中で、高温高圧下、セルロースの加水分解反応に供される。次いで、反応液は冷却器および減圧弁により、加水分解反応が停止され、かつ単糖類の脱水反応に好適である温度および圧力まで冷却・減圧される。反応液はさらにミキサにより酸と混合され、その後段の配管中で、セルロースの加水分解により得られた単糖類(グルコースやフルクトースなど)の脱水反応に供される。次いで反応液は冷却器および減圧弁により冷却・減圧され、5-HMFを含む反応生成物が回収される。なお、装置が大型化し、冷却器による間接冷却では間に合わず、反応時間を制御できない場合には、冷却器に代えて冷却水を反応液に直接混合する構成とすることもできる(図2参照)。
 図3は、本発明の5-HMF製造装置のより具体的な構成例を示す図である。以下、図3を参照して、バイオマスに由来するセルロースから5-HMFを回収するまでの流れを詳細に説明する。
 まず、水を水高圧ポンプ(0110)によりセルロースの最適加水分解反応圧力である25~40MPaで送液し、超・亜臨界水プレヒーター(0120)で超臨界または亜臨界となる所定の温度に昇温する。一方、セルローススラリー(セルロースの水分散液)をセルローススラリー高圧ポンプ(0210)で25~40MPaにて送液し、セルローススラリープレヒーター(0220)で100~200℃に昇温する。次いで、両者を超・亜臨界水およびセルローススラリーミキサ(0300)で混合し、瞬時に380~400℃、25~40MPaにしてセルロースの加水分解反応を開始する。加水分解反応時間は0.1~120秒、特に5~15秒とすることが好ましい。
 ここで、セルローススラリーを入れたタンク内では、十分に撹拌を行なうと共に、タンク外の循環ラインで循環送液を行い、セルローススラリーの沈殿を防止することが好ましい。図4はセルローススラリーを供給するための装置の一例を示す図である。セルローススラリーの供給流速は、セルロースの沈殿防止の観点から2m/s以上にすることが好ましい。スラリー中のセルロースの濃度は、コスト面や流動性低下による配管閉塞の恐れを考慮すると、1~30重量%、特に5~10重量%とすることが好ましい。
 加水分解反応配管(0350)で加水分解された反応液は、第1冷却水高圧ポンプ(0410)により送液された冷却水と第1冷却水ミキサ(0500)にて混合され、瞬時に単糖類の脱水反応に適した温度に冷却され、加水分解反応が停止される。冷却後の反応液の温度は200~280℃、特に230~250℃の範囲の温度とすることが好ましい。冷却された反応液は、第1減圧弁(0530)で単糖類の脱水反応に適した圧力に減圧される。減圧後の反応液の圧力は10~20MPa、特に15~20MPaの範囲の圧力とすることが好ましい(図5の加水分解反応および脱水反応の圧力および温度範囲を示す図を参照)。
 脱水反応触媒供給ポンプ(0610)を用いた送液された脱水反応触媒(酸)は、脱水反応触媒プレヒーター(0620)で所定の温度に加熱され、脱水反応触媒および反応液ミキサ(0700)において反応液と混合され、脱水反応が開始される。脱水反応触媒としての酸は、硫酸、またはリン酸が好ましい。酸の添加量は、硫酸およびリン酸の場合は、系中に含まれる単糖類に対して1~5mol当量、特に2~4mol当量となる量、酸の加熱温度は、硫酸やリン酸などの無機酸は熱分解しないため、140~340℃、特に210~270℃の範囲の温度とすることが好ましい。酸の加熱温度は、混合される反応液の温度と±100℃、特に±40℃の範囲とすることが好ましい。酸を添加前に予め加熱しておくことにより、反応液に加えた際に反応液と速やかに均一に混合することができ、反応液の不均一性に起因する副生成物の生成を抑制することができる。脱水反応時間は、5秒~30分、特に15~120秒の範囲とすることが好ましい。
 単糖類の脱水反応により発生した5-HMFは分解しやすいため、反応液は最適な反応時間経過後、第2冷却水高圧ポンプ(0810)から送液した冷却水と第2冷却水ミキサ(0900)にて混合され、脱水反応が停止される。脱水反応を停止するため、反応液は50℃以下、特に30℃以下の温度に冷却することが好ましい。
 単糖類の脱水反応で微量発生した炭素粒子は後段の炭素粒子除去フィルター(1000)にて捕捉され、反応液から分離除去される。この後、第2減圧弁(1200)で大気圧に減圧された後に回収され、酢酸等で水酸基をエステル化した後に蒸留精製され、5-HMFが得られる。
 5-HMFは、酸化処理によるテレフタル酸代替物質である2,5-フランジカルボン酸に変換することができ、さらにジオール類と重合されることによりポリエステルに変換することができる。また、5-HMFは水素添加処理することにより、バイオガソリンの代替物質である2,5-ジメチルフランに変換することができる。
 本発明の5-HMF製造装置において、各ミキサ(0300)(0500)(0700)(0900)として旋回流ミキサを用いると、流体の混合性を改善し副生成物の生成を防止する観点から好ましい。ここで「旋回流ミキサ」とは、第1の流体と第2の流体とを混合するための円筒形状の混合流路と、該混合流路の中心軸からオフセットして設置され第1の流体を混合流路に流入するための第1の入口流路と、同様に混合流路の中心軸からオフセットして設置され第2の流体を混合流路に流入するための第2の入口流路とを備え、第1の入口流路と第2の入口流路とが混合流路の中心軸の周りを回転するように交互に複数設置されている流体混合装置を意味する。
 図6は、本発明の5-HMF製造装置における超・亜臨界水およびセルローススラリーミキサ(300)として用いる旋回流ミキサの一例の正面図および平面図を示したものである。なお、他のミキサについてもこれと同様の構成とすることができる。
 円筒形状の混合流路(320)の端部は密閉されており、密閉された端部に一方の流体を混合流路(320)に導くための第1の入口流路(310X)と他方の流体を混合流路(320)に導くための第2の入口流路(310Y)とが接続されている。第1の入口流路(310X)及び第2の入口流路(310Y)は混合流路(320)の中心軸に対してδだけオフセットした状態で混合流路(320)と接続している。この構造により混合流路(320)内に旋回流を発生させ、混合性を改善することができる。
 第1の入口流路(310X)と第2の入口流路(310Y)は、混合流路(320)の中心軸の周りを45°づつ回転するように交互に合計8本接続されている。第1及び第2の入口流路(310X、310Y)が混合流路(320)に複数接続されているため、混合流路(320)内に多層流を形成することができ、従来の2層流に比べて拡散距離が低減されるため、混合性を改善することができる。
 図6では、第1の入口流路(310X)及び第2の入口流路(310Y)は、混合流路(320)の中心軸に対して直角に接続されているが、接続角度はこれに制限されるものではない。接続角度は90°以下とすることで、混合流路(320)での流れ方向と第1及び第2の入口流路(310X、310Y)での流れ方向とが近づくため、圧力損失を低減することができ、生産量を増大することができる。
 図6では、第1及び第2の入口流路(310X、310Y)の断面は矩形状であるように記載しているが、円筒形状等の他の形状であっても構わない。また、混合流路(320)は円筒形状であるとしているが、ここで円筒形状には断面が円に近似される多角形である場合も含まれるものとする。第1及び第2の入口流路(310X、310Y)の幅Wは、混合流路(320)の直径φの1/4にすることで最も高い混合性が得られる。
 また、混合流路(320)での混合性を高めるためには、原料高圧ポンプ(210)の流量QXと超・亜臨界水高圧ポンプ(110)の流量QYとが同一であることが望ましい。しかし、両者が異なる場合は、第1の入口流路(310X)と第2の入口流路(310Y)における流速が同一になるように、第1の入口流路(310X)と第2の入口流路(310Y)の寸法を異なるものにすることで混合性を改善することができる。すなわち、第1の入口流路(310X)の流量QX、及びW×HXで求められる断面積SXと、第2の入口流路(310Y)の流量QY、及びW×HYで求められる断面積SYとが、QX/SX=QY/SYの関係を満足するように設定することが望ましい。
 図7に、本発明の5-HMF製造装置に用いる旋回流ミキサの一実施形態を示す。旋回流を用いたミキサでは、混合流路(320)の中心軸上に円錐状の混合性の低い部分が発生する。この混合性の低い部分に構造物(325)を設けることで混合性を改善することができる。また、中心部分にそのような構造物が存在することにより、層間の距離がさらに低減されるため、混合性を改善することができる。混合流路の中心軸上に設ける構造物は、下流に向かうほど細くなる(断面積が小さくなる)ように形成することが好ましい。
 以下、実施例を用いて本発明をより詳細に説明するが、本発明はこれら実施例に限定されるものではない。
(実施例1)
 図3に記載した装置を用いて、セルロースから5-HMFを連続的に製造した。ミキサーには通常のT字型のミキサーを使用した。セルロースとして結晶性セルロース微粉末(和光純薬工業)を、脱水反応触媒としてリン酸(和光純薬工業)を用いた。セルローススラリーのセルロース濃度を10重量%とした。400℃、40MPaで1秒間加水分解反応させた後、冷却水を加えて240℃まで冷却させた。次いで、240℃に加熱したリン酸をグルコース換算で3mol当量添加し、17MPaで120秒間脱水反応させた。5-HMFの収率は50%であった。また、装置を5時間連続して運転しても、副生成物による配管閉塞は生じなかった。
(実施例2)
 実施例1と同じ図3に記載した装置を用いて、セルロースから5-HMFを連続的に製造した。セルロースの加水分解反応液を冷却した液とリン酸の混合前の温度を変えた時の反応収率の変化を図8に示す。両者の温度差は、加水分解反応液の冷却水流量およびリン酸水溶液の流量・濃度のみを変更して調整し、加水分解反応の反応温度、後段の脱水反応温度は実施例1と同一条件で反応試験を行った。その結果、セルロースの加水分解反応液とリン酸水溶液の温度が同じ場合、反応収率は50%と高いが、両者温度が約100℃変化すると反応収率が40%まで低下した。
(実施例3)
 実施例1と同じ図3に記載した装置を用いて、セルロースから5-HMFを連続的に製造した。セルロースの加水分解反応の温度を変えた時の反応収率の変化を図9に示す。加水分解反応の温度は、セルローススラリーの流量・温度、超臨界水流量・温度を変更して調整した。また、脱水反応の温度・圧力条件は実施例と同一で実施した。その結果、反応収率は、加水分解反応温度が380~400℃でピークとなり、50%程度であった。
(実施例4)
 実施例1と同じ図3に記載した装置を用いて、セルロースから5-HMFを連続的に製造した。セルロースの加水分解圧力を変えた時の反応収率の変化を図10に示す。加水分解反応圧力は第一減圧弁の開度を変更して調節した。また、脱水反応の温度・圧力条件は実施例1と同一で実施した。その結果、収率は加水分解反応圧力が25~40MPaで高い値を示した。
(実施例5)
 実施例1と同じ図3に記載した装置を用いて、セルロースから5-HMFを連続的に製造した。単糖類の脱水反応温度を変えた時の反応収率の変化を図11に示す。脱水反応温度は加水分解反応液の冷却水流量とリン酸水溶液の温度を変更することで調整した。また、加水分解反応の反応条件および脱水反応の圧力は実施例1と同一で実施した。その結果、収率は、脱水反応温度が240℃でピークとなり、230~250℃では約50%の高い値を示した。また40%以上の収率が得られる温度範囲は200~280℃であった。
(実施例6)
 実施例1と同じ図3に記載した装置を用いて、セルロースから5-HMFを連続的に製造した。単糖類の脱水反応圧力を変えた時の反応収率の変化を図12に示す。脱水反応圧力は第二減圧弁の開度を変更して調節した。また、加水分解の反応条件、脱水反応の温度条件は実施例1同一で実施した。その結果、収率は脱水反応圧力が15~20MPaで高い値を示した。
(実施例7)
 図3に記載した装置を用いて、セルロースから5-HMFを連続的に製造した。実施例1と異なり、4つのミキサーには図6および図7に示す旋回流ミキサーを使用した。それ以外は実施例1と同一条件で試験を行った結果、セルロースの収率は53%であった。また、装置を5時間連続して運転しても、副生成物による配管閉塞は生じなかった。
(比較例1)
 図13に示したような、セルロースと酸と超・亜臨界水を同時に反応させる従来の装置を用いて5-HMFの連続的製造を試みた。原料と脱水反応触媒は実施例1と同一品を同一の比率で用いた。240℃、15MPaで120秒間反応させたところ、5-HMFの収率は20%に留まった。また、運転開始5分経過後に減圧弁近傍で配管の閉塞が生じた。
(比較例2)
 実施例1と同じ図3に記載した装置を用いて、セルロースから5-HMFを連続的に製造した。リン酸を予め加熱せずに室温で反応液に混合した以外は実施例1と同様にした。5-HMFの収率は35%に留まり、さらに運転開始60分経過後に減圧弁近傍で配管の閉塞が生じた。
 本明細書中で引用した全ての刊行物、特許および特許出願をそのまま参考として本明細書中にとり入れるものとする。
0100 … 水ヘッダー
0110 … 水高圧ポンプ
0120 … 超・亜臨界水プレヒーター
0150 … 超・亜臨界水供給配管
0200 … セルローススラリーヘッダー
0210 … セルローススラリー高圧ポンプ
0220 … セルローススラリープレヒーター
0250 … セルローススラリー供給配管
0300 … 超・亜臨界水およびセルローススラリーミキサ
0350 … 加水分解反応配管
0400 … 第1冷却水ヘッダー
0410 … 第1冷却水高圧ポンプ
0450 … 第1冷却水供給配管
0500 … 第1冷却水ミキサ
0530 … 第1減圧弁
0550 … 第1冷却水混合配管
0600 … 脱水反応触媒供給ヘッダー
0610 … 脱水反応触媒高圧ポンプ
0620 … 脱水反応触媒プレヒーター
0650 … 脱水反応触媒供給配管
0700 … 脱水反応触媒および反応液ミキサ
0750 … 脱水反応配管
0800 … 第2冷却水ヘッダー
0810 … 第2冷却水高圧ポンプ
0850 … 第2冷却水供給配管
0900 … 第2冷却水ミキサ
0930 … 弁
0950 … 第2冷却水混合配管
1000 … 炭素粒子除去フィルタ
1030 … 弁
1030 … 反応液ライン
1090 … ドレン
1100 … 逆洗流体供給ヘッダー
1110 … 逆洗流体供給ポンプ
1130 … 弁
1150 … 逆洗流体供給配管
1160 … 逆洗流体分岐
1170 … 弁
1200 … 第2減圧弁
1250 … 減圧配管
1350 … 反応液排出配管
1390 … 反応液排出配口

Claims (9)

  1.  セルロースを原料として5-ヒドロキシメチルフルフラールを連続的に合成する方法であって、セルロースと超臨界水または亜臨界水とを混合してセルロースを加水分解する工程、得られた反応液を冷却および減圧して単糖類の脱水反応を行う温度および圧力にする工程、ならびに前記単糖類の脱水反応温度±100℃に加熱した酸と前記反応液とを混合して単糖類の脱水反応を行い5-ヒドロキシメチルフルフラールを得る工程を含む、前記方法。
  2.  セルロースの加水分解を380~400℃、25~40MPaで行い、単糖類の脱水反応を200~280℃、10~20MPaで行う、請求項1に記載の方法。
  3.  酸と反応液の混合を、第1の流体と第2の流体とを混合するための円筒形状の混合流路と、前記混合流路の中心軸からオフセットして設置され第1の流体を混合流路に流入するための第1の入口流路と、前記混合流路の中心軸からオフセットして設置され第2の流体を混合流路に流入するための第2の入口流路とを備え、前記第1の入口流路と前記第2の入口流路とが前記混合流路の中心軸の周りを回転するように交互に複数設置されている流体混合器を用いて行う、請求項1または2に記載の方法。
  4.  セルロースと超臨界水または亜臨界水との混合を、第1の流体と第2の流体とを混合するための円筒形状の混合流路と、前記混合流路の中心軸からオフセットして設置され第1の流体を混合流路に流入するための第1の入口流路と、前記混合流路の中心軸からオフセットして設置され第2の流体を混合流路に流入するための第2の入口流路とを備え、前記第1の入口流路と前記第2の入口流路とが前記混合流路の中心軸の周りを回転するように交互に複数設置されている流体混合器を用いて行う、請求項1または2に記載の方法。
  5.  セルロースの加水分解後の冷却を、冷却水を反応液に直接混合することにより行い、前記混合は、第1の流体と第2の流体とを混合するための円筒形状の混合流路と、前記混合流路の中心軸からオフセットして設置され第1の流体を混合流路に流入するための第1の入口流路と、前記混合流路の中心軸からオフセットして設置され第2の流体を混合流路に流入するための第2の入口流路とを備え、前記第1の入口流路と前記第2の入口流路とが前記混合流路の中心軸の周りを回転するように交互に複数設置されている流体混合器を用いて行う、請求項1または2に記載の方法。
  6.  単糖類の脱水反応を行った後、冷却水を反応液に直接混合することにより反応液を冷却させて脱水反応を停止させる工程をさらに含み、前記混合は、第1の流体と第2の流体とを混合するための円筒形状の混合流路と、前記混合流路の中心軸からオフセットして設置され第1の流体を混合流路に流入するための第1の入口流路と、前記混合流路の中心軸からオフセットして設置され第2の流体を混合流路に流入するための第2の入口流路とを備え、前記第1の入口流路と前記第2の入口流路とが前記混合流路の中心軸の周りを回転するように交互に複数設置されている流体混合器を用いて行う、請求項1または2に記載の方法。
  7.  水を送液する配管、水高圧ポンプ、およびヒーターを備えた超・亜臨界水供給部、
     セルローススラリーを送液する配管、セルローススラリー高圧ポンプ、およびヒーターを備えたセルローススラリー供給部、
     前記超・亜臨界水供給部と前記セルローススラリー供給部から送液された流体を混合するための混合器、およびそれに続く配管を備えたセルロース加水分解反応部、
     前記加水分解反応部から送液された流体に冷却水を混合するための混合器、および減圧弁を備えた第1冷却減圧部、
     酸を含む流体を送液する配管、酸を含む流体を送液する酸高圧ポンプ、およびヒーターを備えた酸供給部を有し、前記第1冷却減圧部から送液された流体に酸を混合するための混合器、およびそれに続く配管を備えた単糖類脱水反応部、ならびに
     前記単糖類脱水反応部から送液された流体に冷却水を混合するための混合器、および減圧弁を備えた第2冷却減圧部
    を備えた、5-ヒドロキシメチルフルフラールを連続的に製造するための装置。
  8.  前記混合器の少なくとも一つが、第1の流体と第2の流体とを混合するための円筒形状の混合流路と、前記混合流路の中心軸からオフセットして設置され第1の流体を混合流路に流入するための第1の入口流路と、前記混合流路の中心軸からオフセットして設置され第2の流体を混合流路に流入するための第2の入口流路とを備え、前記第1の入口流路と前記第2の入口流路とが前記混合流路の中心軸の周りを回転するように交互に複数設置されている流体混合器である、請求項7に記載の装置。
  9.  前記セルロース加水分解反応部において、混合器に続く配管における温度および圧力が380~400℃、25~40MPaであり、前記単糖類脱水反応部において、混合器に続く配管における温度および圧力が220~280、10~20MPaである、請求項7または8に記載の装置。
PCT/JP2012/080552 2012-11-27 2012-11-27 セルロースを原料とした5-ヒドロキシメチルフルフラールの製造方法 WO2014083603A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/080552 WO2014083603A1 (ja) 2012-11-27 2012-11-27 セルロースを原料とした5-ヒドロキシメチルフルフラールの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/080552 WO2014083603A1 (ja) 2012-11-27 2012-11-27 セルロースを原料とした5-ヒドロキシメチルフルフラールの製造方法

Publications (1)

Publication Number Publication Date
WO2014083603A1 true WO2014083603A1 (ja) 2014-06-05

Family

ID=50827279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080552 WO2014083603A1 (ja) 2012-11-27 2012-11-27 セルロースを原料とした5-ヒドロキシメチルフルフラールの製造方法

Country Status (1)

Country Link
WO (1) WO2014083603A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104987315A (zh) * 2015-05-31 2015-10-21 西北农林科技大学 一种自农林废弃物生产5-羟甲基糠醛的方法
CN108640892A (zh) * 2018-07-25 2018-10-12 苏州盖德精细材料有限公司 一种5-羟甲基糠醛的合成方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005200321A (ja) * 2004-01-14 2005-07-28 Canon Inc 5−ヒドロキシメチルフルフラールおよびフルフラールの製造方法
JP2010248113A (ja) * 2009-04-14 2010-11-04 National Institute Of Advanced Industrial Science & Technology 5−ヒドロキシメチル−2−フルフリルアルデヒドの製造法とその装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005200321A (ja) * 2004-01-14 2005-07-28 Canon Inc 5−ヒドロキシメチルフルフラールおよびフルフラールの製造方法
JP2010248113A (ja) * 2009-04-14 2010-11-04 National Institute Of Advanced Industrial Science & Technology 5−ヒドロキシメチル−2−フルフリルアルデヒドの製造法とその装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ASGHARI,F.S. ET AL.: "Acid-catalyzed production of 5-hydroxymethylfurfural from D-fructose in subcritical water", INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, vol. 45, no. 7, 2006, pages 2163 - 2173 *
EHARA,K. ET AL.: "Decomposition behavior of cellulose in supercritical water, subcritical water, and their combined treatments", JOURNAL OF WOOD SCIENCE, vol. 51, no. 2, 2005, pages 148 - 153 *
HOKUTO TAKAI ET AL.: "Difference between the effects of acid and base catalyst on reaction characteristics of supercritical water gasification of glucose", BIOMASS KAGAKU KAIGI HAPPYO RONBUNSHU, vol. 7, 2012, pages 82 - 83 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104987315A (zh) * 2015-05-31 2015-10-21 西北农林科技大学 一种自农林废弃物生产5-羟甲基糠醛的方法
CN104987315B (zh) * 2015-05-31 2017-11-07 西北农林科技大学 一种自农林废弃物生产5‑羟甲基糠醛的方法
CN108640892A (zh) * 2018-07-25 2018-10-12 苏州盖德精细材料有限公司 一种5-羟甲基糠醛的合成方法

Similar Documents

Publication Publication Date Title
US10195671B2 (en) System for preparing nanoparticles by supercritical hydrothermal synthesis
US9777292B2 (en) Methods for treating biosolids sludge with cavitation
CA2639378C (en) Process for the manufacture of monobasic potassium phosphate
JP5628063B2 (ja) 難燃剤用金属水酸化物微粒子の製造方法
JP2008011753A (ja) リグノセルロースの水熱加水分解方法
WO2010092909A1 (ja) 臨界水を用いた反応プロセス
WO2014083603A1 (ja) セルロースを原料とした5-ヒドロキシメチルフルフラールの製造方法
KR20120041208A (ko) 메타텅스텐산 암모늄 제조방법
CN101939087A (zh) 涡流混合器和获得过饱和溶液或浆液的方法
CN103992287A (zh) 一种三聚氰胺氰尿酸盐的制备方法
CN103804172B (zh) 一种提高有机酸产品质量的方法
JP2010013367A (ja) 超臨界水を用いたアクロレインの製造方法
CN112495430A (zh) 一种改性分子筛催化剂及其在处理3-甲基-3-丁烯-1-醇高浓度废水中的应用
CN104003888A (zh) 2,4-二硝基-6-氯苯胺制备方法
JP2009291083A (ja) 植物系繊維材料の糖化分離方法
JP2013248554A (ja) 超臨界水もしくは亜臨界水を用いた反応装置および方法
WO2012063349A1 (ja) グリセリンの精製方法
JP2003219900A (ja) セルロース含有材から加水分解生成物を製造する方法
CN105523947A (zh) 精异丙甲草胺连续化不对称氢化反应工艺
CN107365273B (zh) 一种一锅法合成5-硝基苯并咪唑酮的生产方法
WO2011099112A1 (ja) アクロレインの合成方法
CN102153461A (zh) 一种由乙二醇制备羟基乙酸的方法
CN110697731A (zh) 一种以脱硫石膏制备硫酸铵和碳酸钙的方法
CN115583894B (zh) 一种连续化生产2-硝基-4-甲氧基乙酰苯胺的方法和装置
CN109225349B (zh) 一种甲基叔丁基醚裂解制异丁烯催化剂的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12889108

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12889108

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP