WO2014080778A1 - 内燃機関の冷却装置及びその制御方法 - Google Patents
内燃機関の冷却装置及びその制御方法 Download PDFInfo
- Publication number
- WO2014080778A1 WO2014080778A1 PCT/JP2013/080270 JP2013080270W WO2014080778A1 WO 2014080778 A1 WO2014080778 A1 WO 2014080778A1 JP 2013080270 W JP2013080270 W JP 2013080270W WO 2014080778 A1 WO2014080778 A1 WO 2014080778A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cooling
- temperature
- cooling water
- head
- block
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P7/00—Controlling of coolant flow
- F01P7/14—Controlling of coolant flow the coolant being liquid
- F01P7/16—Controlling of coolant flow the coolant being liquid by thermostatic control
- F01P7/167—Controlling of coolant flow the coolant being liquid by thermostatic control by adjusting the pre-set temperature according to engine parameters, e.g. engine load, engine speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P3/00—Liquid cooling
- F01P3/02—Arrangements for cooling cylinders or cylinder heads
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P11/00—Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
- F01P11/08—Arrangements of lubricant coolers
Definitions
- the present invention relates to a cooling device for an internal combustion engine and a control method thereof.
- Patent Document 1 There is known an engine cooling device that cools a cylinder head and a cylinder block by using cooling water paths of different systems (see Patent Document 1).
- the temperature of the cooling water flowing through the cylinder head is raised to the first set temperature after the engine is started, and the temperature of the cooling water flowing through the cylinder block is set higher than the first set temperature. Raise to a high second set temperature and hold.
- the cooling device selectively introduces one of the cooling water flowing through the cylinder head and the cylinder block into the oil cooler to raise the temperature of the lubricating oil.
- the cooling device described in Patent Document 1 does not raise the temperature of the cooling water flowing through the cylinder head to the same temperature as the temperature of the cooling water flowing through the cylinder block. Therefore, there is a problem that the amount of heat of the cooling water flowing through the cylinder head is reduced, and the temperature rise of the lubricating oil is delayed.
- the present invention has been made in view of the above problems, and an object thereof is to provide a cooling device for an internal combustion engine that improves the fuel consumption rate of the internal combustion engine by early reduction of friction and suppression of abnormal combustion, and a control method therefor. It is to be.
- An internal combustion engine cooling apparatus includes a head cooling channel, a block cooling channel, and an oil heat exchanger.
- the head cooling channel cools the cylinder head by flowing the cooling water.
- the block cooling channel cools the cylinder block by flowing the cooling water.
- the oil heat exchanger can exchange heat between the cooling water flowing through the head cooling channel and the block cooling channel and the lubricating oil in the power train.
- the cooling device raises the temperature of the cooling water flowing through each of the head cooling flow path and the block cooling flow path to the same temperature, and then increases the temperature of the cooling water flowing through the head cooling flow path to the cooling water flowing through the block cooling flow path. Decrease before temperature.
- FIG. 1A and FIG. 1B are block diagrams showing the configuration of a cooling apparatus for an internal combustion engine according to the first embodiment of the present invention.
- FIG. 2A is a graph showing the change over time of the temperature of the cooling water flowing through the head cooling channel 13 and the block cooling channel 14.
- FIG.2 (b) is a graph which shows the time change of the temperature of engine oil and CVT oil.
- FIG. 3 is a block diagram illustrating an example of a flow path of the cooling water in the first period.
- FIG. 4 is a block diagram illustrating an example of a flow path of the cooling water in the second period.
- FIG. 5 is a block diagram illustrating an example of a flow path of the cooling water in the third period.
- FIG. 6 is a graph showing an example of a time change of friction generated in the power train.
- FIG. 7 is a flowchart showing an example of a control method of the cooling device for the internal combustion engine according to the first embodiment of the present invention.
- FIG. 8 shows an example of the change over time in the amount of improvement in the fuel consumption rate due to the reduction in friction generated inside the powertrain and the amount of improvement in the fuel consumption rate due to the reduction in the retard amount of the ignition timing of the internal combustion engine. It is a graph which shows.
- FIG. 9 is a graph showing the change over time of the temperature of the catalyst disposed under the floor of the vehicle body.
- FIG. 10 is a block diagram showing a configuration of a cooling device for an internal combustion engine according to the fourth embodiment of the present invention.
- an engine composed of a cylinder block and a cylinder head is taken as an example of an internal combustion engine.
- the cooling device for an internal combustion engine cools the cylinder block and the cylinder head by flowing cooling water through cooling channels provided in the cylinder block and the cylinder head, respectively.
- the cooling device for the internal combustion engine raises the temperature of the cooling water flowing through the cooling flow paths provided in each of the cylinder head and the cylinder block to the same temperature.
- the temperature of the lubricating oil in the powertrain is raised using the raised cooling water.
- the cooling device for the internal combustion engine After raising the cooling water to the same temperature, the cooling device for the internal combustion engine lowers the temperature of the cooling water flowing through the cylinder head before the temperature of the cooling water flowing through the cylinder block. After the friction is reduced by raising the oil temperature, the temperature of the cylinder head is lowered to suppress abnormal combustion such as knocking.
- the cooling device for the internal combustion engine includes a head cooling channel 13, a block cooling channel 14, a head temperature detection unit 15, a block temperature detection unit 16, a cooling water temperature control unit (10, 17 to 19), an oil A heat exchanger (20, 21).
- the head cooling flow path 13 exchanges heat with the cylinder head 11 when cooling water flows therein. If the temperature of the cylinder head 11 is higher than the cooling water flowing through the head cooling flow path 13, the head cooling flow path 13 can cool the cylinder head 11 by flowing the cooling water.
- the block cooling flow path 14 exchanges heat with the cylinder block 12 when cooling water flows therein. If the temperature of the cylinder block 12 is higher than the cooling water flowing through the block cooling flow path 14, the block cooling flow path 14 can cool the cylinder block 12 by flowing the cooling water.
- the head temperature detection unit 15 detects the temperature of the cooling water flowing through the head cooling flow path 13.
- the block temperature detection unit 16 detects the temperature of the cooling water flowing through the block cooling flow path 14.
- the temperature of the cooling water flowing through the head cooling flow path 13 indicates the temperature of the cooling water that has exchanged heat by flowing through the head cooling flow path 13.
- the temperature of the later cooling water is included.
- the head temperature detection unit 15 is provided at the downstream end of the head cooling flow path 13 and detects the temperature of the cooling water at the downstream end. “Detecting” includes not only measuring the temperature of the cooling water directly using a temperature sensor, but also estimating the temperature of the cooling water by measuring the temperature of the cooling flow path.
- the head temperature detector 15 is provided in the middle of the inlet and outlet of the head cooling channel 13, and the temperature of the cooling water after flowing through the head cooling channel 13 is estimated from the temperature detected by the head temperature detector 15. It doesn't matter.
- the block temperature detection unit 16 is the same as the head temperature detection unit 15.
- the cooling water temperature control units (10, 17 to 19) are arranged on the basis of the cooling water temperatures Th and Tb detected by the head temperature detection unit 15 and the block temperature detection unit 16, respectively.
- the temperature of the cooling water flowing through each of 14 is controlled.
- the cooling water temperature control unit (10, 17-19) includes a head-side four-way valve 17 and a block-side four-way valve 18 that are made of electric variable valves capable of switching valves and adjusting the opening of the valves.
- a controller 10 that switches the flow paths of the head-side four-way valve 17 and the block-side four-way valve 18 and adjusts the opening degree, and a radiator 19 that dissipates heat of the cooling water to the outside when the cooling water flows inside the controller 10. included.
- the controller 10 outputs control signals Sh and Sb based on the cooling water temperatures Th and Tb to switch the flow paths of the head-side four-way valve 17 and the block-side four-way valve 18 and adjust the opening. Thereby, the controller 10 can control the temperature of the cooling water flowing through each of the head cooling channel 13 and the block cooling channel 14. Details of the temperature control of the cooling water by the controller 10 will be described later.
- the controller 10 can be constituted by a general-purpose microcomputer in which a computer program describing a temperature control processing procedure described later is installed. By executing the computer program using the microcomputer, the microcomputer can function as the controller 10.
- the oil heat exchanger (20, 21) exchanges heat between the cooling water flowing through the head cooling channel 13 and the block cooling channel 14 and the lubricating oil in the power train (11, 12, 22). Can do.
- the oil heat exchanger (20, 21) includes a first heat exchanger 20 and a second heat exchanger 21.
- the first heat exchanger 20 exchanges heat between the cooling water and the engine oil present in the cylinder head 11 and the cylinder block 12.
- the second heat exchanger 21 exchanges heat between the cooling water and the CVT oil present in the CVT (continuously variable transmission) 22.
- the power train (11, 12, 22) includes a CVT (continuously variable transmission) 22 in addition to the cylinder head 11 and the cylinder block 12.
- the cooling device for the internal combustion engine includes a pump 23 that applies pressure to the cooling water in the cooling flow path to suck in and discharge the cooling water.
- the pump 23, the four-way valve (17, 18), the first heat exchanger 20, the second heat exchanger 21, and the radiator 19 are connected to each other by a cooling channel through which cooling water flows.
- the cooling water discharged by the pump 23 flows through the pump 23, the four-way valves (17, 18), the first heat exchanger 20, the second heat exchanger 21, and the radiator 19 through the cooling flow path, and again the pump 23 is sucked into.
- the cooling flow path includes the head cooling flow path 13 and the block cooling flow path 14.
- the cooling channel through which the cooling water discharged from the pump 23 flows branches into the head cooling channel 13 and the block cooling channel 14.
- the cooling water discharged from the pump 23 is divided into the cylinder head 11 and the cylinder block 12.
- the cooling water absorbs heat from the cylinder head 11 and the cylinder block 12 while flowing through the head cooling flow path 13 and the block cooling flow path 14, and the temperature of the cooling water rises.
- the downstream end portions of the head cooling channel 13 and the block cooling channel 14 are connected to the head side four-way valve 17 and the block side four-way valve 18 respectively.
- the cooling water that has passed through the head cooling channel 13 and the block cooling channel 14 reaches the head side four-way valve 17 and the block side four-way valve 18, respectively.
- the other valve of the head side four-way valve 17 and the other valve of the block side four-way valve 18 are connected to each other by a cooling flow path.
- the other valve of the head side four-way valve 17 is connected to the inlet of the radiator 19 by a cooling channel.
- the cooling flow path connected to the outlet of the radiator 19 is connected to the suction port of the pump 23.
- the cooling water flowing from the head-side four-way valve 17 toward the radiator 19 is radiated in the radiator 19 and then sucked into the pump 23.
- the cooling flow path connected to the other valves on the block-side four-way valve 18 is branched into two cooling flow paths, and the two branched cooling flow paths are the first heat exchanger 20 and the second heat flow path. Each is connected to the inlet of the heat exchanger 21.
- the cooling flow paths connected to the outlets of the first heat exchanger 20 and the second heat exchanger 21 merge again to form one cooling flow path.
- One cooling channel is connected to the suction port of the pump 23 after joining the cooling channel connected to the outlet of the radiator 19.
- the cooling water flowing through the first heat exchanger 20 and the second heat exchanger 21 exchanges heat with the engine oil and the CVT oil, and is then sucked into the pump.
- the head side four-way valve 17 and the block side four-way valve 18 receive the control signals Sh and Sb output from the controller 10, respectively. Based on the control signals Sh and Sb, switching of the valve through which the cooling water flows and adjustment of the opening of the valve are performed.
- the arrow described along the cooling flow path in FIG. 1 indicates the direction in which the cooling water flows in the cooling flow path.
- the controller 10 includes a valve connected to the head cooling flow path 13 and a block side four-way valve 18 among the valves of the head-side four-way valve 17.
- the connected valve is opened, and the valve connected to the radiator 19 is closed.
- the cooling water that has flowed through the head cooling flow path 13 flows through the head side four-way valve 17 to the block side four-way valve 18.
- the controller 10 includes a valve connected to the block cooling channel 14, a valve connected to the head side four-way valve 17, a first heat exchanger 20, and a second heat among the valves of the block side four-way valve 18.
- the valve connected to the exchanger 21 is opened and the other valves are closed.
- the cooling water that has flowed through the head cooling flow path 13 and the cooling water that has flowed through the block cooling flow path 14 are merged by the block-side four-way valve 18, and then are divided to form the first heat exchanger 20 and the second heat exchanger 20.
- the cooling water that has passed through the first heat exchanger 20 and the second heat exchanger 21 merges and is sucked into the pump 23.
- the opening degree of the head side four-way valve 17 and the block side four-way valve 18 is the same opening degree, for example, fully open.
- the controller 10 makes the temperature (WH) of the cooling water flowing through the head cooling flow path 13 and the temperature (WB) of the cooling water flowing through the block cooling flow path 14 the same as shown in FIG.
- the temperature is raised to a temperature (for example, 100 ° C.) higher than normal (NR).
- a temperature for example, 100 ° C.
- normal normal
- WH indicates the temperature of the cooling water flowing through the head cooling flow path 13
- WB indicates the temperature of the cooling water flowing through the block cooling flow path 14
- NR indicates the normal time. Shows the temperature of the cooling water.
- OE in FIG. 2B indicates the oil temperature of the engine oil
- OC indicates the oil temperature of the CVT oil
- NR C indicates the oil temperature of the CVT oil at the normal time.
- the water temperature can be kept lower than when the flow rate is reduced by reducing the opening degree.
- the amount of heat released to the outside air (for example, engine room atmosphere) can be reduced. Therefore, the heat generated in the cylinder head 11 and the cylinder block 12 can be efficiently transmitted to the engine oil and the CVT oil via the cooling water.
- the opening degree of the head side four-way valve 17 and the block side four-way valve 18 is only an example. The opening degree of the head-side four-way valve 17 and the block-side four-way valve 18 is determined so that the heat generated in the cylinder head 11 and the cylinder block 12 is efficiently transferred to the engine oil and the CVT oil.
- the heat exchange characteristics of the head cooling flow path 13 and the block cooling flow path 14 include the sensitivity of the heat exchange amount with respect to the cooling water flow rate and the water temperature, and the heat dissipation characteristics from the internal combustion engine and the cooling flow path to the outside air. Therefore, the opening degree of the head side four-way valve 17 and the block side four-way valve 18 may be different opening degrees.
- the temperature of the cooling water flowing through each of the head cooling channel 13 and the block cooling channel 14 rises to the same temperature and higher than the normal time, and until the time (t1) when the head water temperature is lowered as will be described later.
- the period is referred to as a “first period”.
- the time required for the temperature of the cooling water flowing through each of the head cooling passage 13 and the block cooling passage 14 to reach a higher temperature than normal (for example, 100 ° C.) from when the engine is started is, for example, 500 seconds.
- ⁇ Second period> After raising the temperature of the cooling water to the same temperature and higher than normal, the controller 10 first starts the head as shown in FIG. 2A in order to suppress abnormal combustion such as knocking. The temperature (WH) of the cooling water flowing through the cooling flow path 13 is reduced. For this purpose, the controller 10 adjusts the switching and opening of the flow paths of the head-side four-way valve 17 and the block-side four-way valve 18.
- the controller 10 opens the valve connected to the head cooling flow path 13 and the valve connected to the radiator 19 among the valves of the head side four-way valve 17, and opens the block-side four-way valve 18. Close the connected valve. As a result, the cooling water that has flowed through the head cooling flow path 13 flows to the radiator 19 through the head-side four-way valve 17.
- the controller 10 opens a valve connected to the block cooling flow path 14 and a valve connected to the first heat exchanger 20 and the second heat exchanger 21 among the valves of the block side four-way valve 18, The valve connected to the head side four-way valve 17 is closed.
- the cooling water that has flowed through the block cooling flow path 14 is diverted after passing through the block-side four-way valve 18 and flows to the first heat exchanger 20 or the second heat exchanger 21.
- the cooling water that has flowed through the head cooling flow path 13 does not flow to the first heat exchanger 20 or the second heat exchanger 21.
- the cooling water that has flowed through the head cooling flow path 13 is cooled by the radiator 19 by the control of the flow path described above, so that the temperature of the cooling water that flows through the head cooling flow path 13 decreases. Since the temperature has decreased, the cooling water flowing through the head cooling flow path 13 does not flow to the first heat exchanger 20 or the second heat exchanger 21.
- the engine oil and the CVT oil are heated only from the cooling water that has flowed through the block cooling flow path 14 while maintaining a high temperature. As a result, the engine oil and the CVT oil are rapidly heated using the cooling water maintained at a high temperature (see FIG. 2B), and at the same time, the temperature of the cylinder head is lowered to cause abnormalities such as knocking. Combustion can be suppressed.
- the controller 10 feedback-controls the opening degree of the head-side four-way valve 17 and the block-side four-way valve 18 based on the cooling water temperatures Th and Tb. Specifically, the controller 10 determines that the temperature of the cooling water flowing through the head cooling channel 13 is lower than the temperature reached in the first period, and the temperature of the cooling water flowing through the block cooling channel 14 is the first. The opening degree of the head-side four-way valve 17 and the block-side four-way valve 18 is adjusted so that the temperature reached in the period is maintained as it is.
- the time from when the engine is started to when the temperature of the cooling water flowing through the head cooling flow path 13 is lowered is, for example, about 900 seconds when the engine is idling.
- ⁇ Third period> After the temperature of the cooling water flowing through the head cooling flow path 13 is lowered, the controller 10 flows through the block cooling flow path 14 as shown in FIG. 2A in order to further suppress abnormal combustion such as knocking. Reduce the temperature (WB) of the cooling water. For this purpose, the controller 10 adjusts the switching and opening of the flow paths of the head-side four-way valve 17 and the block-side four-way valve 18. A period after the temperature of the cooling water flowing through the block cooling channel 14 is lowered is referred to as a “third period”.
- the controller 10 is connected to the valve connected to the head cooling flow path 13, the valve connected to the radiator 19, and the block side four-way valve 18 among the valves of the head side four-way valve 17. Open the valve and close the other valves.
- the controller 10 opens the valve connected to the block cooling flow path 14 and the valve connected to the head side four-way valve 17 among the valves of the block side four-way valve 18, and the first heat exchanger 20 and the second heat exchanger 20.
- the valve connected to the heat exchanger 21 is closed. Thereby, the cooling water that has flowed through the block cooling flow path 14 flows toward the head side four-way valve 17 through the block side four-way valve 18.
- the cooling water that has flowed through the block cooling flow path 14 and the cooling water that has flowed through the head cooling flow path 13 merge into the head-side four-way valve 17 and then flow to the radiator 19. Neither the cooling water flowing through the block cooling flow path 14 nor the cooling water flowing through the head cooling flow path 13 flows to the first heat exchanger 20 or the second heat exchanger 21.
- the cooling water that has flowed through the block cooling flow path 14 is cooled by the radiator 19 due to the control of the flow path described above, so the temperature of the cooling water that flows through the block cooling flow path 14 decreases. Since the temperature has decreased, the cooling water flowing through the block cooling flow path 14 does not flow to the first heat exchanger 20 or the second heat exchanger 21. Thereby, the fall of the temperature increase rate of engine oil and CVT oil, or the temperature fall of engine oil and CVT oil can be suppressed. At the same time, the temperature of the cylinder block can be lowered to further suppress abnormal combustion such as knocking.
- the controller 10 feedback-controls the opening degree of the head-side four-way valve 17 and the block-side four-way valve 18 based on the cooling water temperatures Th and Tb. Specifically, the controller 10 determines that the temperature of the cooling water flowing through the block cooling flow path 14 is lower than the temperature reached in the second period, and the temperature of the cooling water flowing through the head cooling flow path 13 is the second temperature. The opening degree of the head side four-way valve 17 and the block side four-way valve 18 is adjusted so as to maintain the temperature during the period.
- controller 10 reduces the temperature of the cooling water flowing through the block cooling flow path 14, and then the temperature of the cooling water flowing through the block cooling flow path 14 is higher than the temperature of the cooling water flowing through the head cooling flow path 13.
- the opening degree of the head side four-way valve 17 and the block side four-way valve 18 is adjusted.
- Friction generated inside the powertrain decreases with an increase in oil temperature after the engine is started.
- the oil temperature (OE, OC) of the engine oil and CVT oil rises to a predetermined temperature as time passes after the engine is started, as shown in FIG. 2 (b), and maintains the predetermined temperature. Therefore, as shown in FIG. 6, the friction (amount of friction) generated in the power train decreases to a predetermined value with the passage of time after the engine is started, and maintains the predetermined value.
- the controller 10 determines whether or not the reduction rate of the friction generated inside the power train is smaller than a predetermined reference value.
- the controller 10 reduces the temperature of the cooling water flowing through the block cooling flow path 14 when the reduction rate of the friction generated inside the power train becomes smaller than a predetermined reference value, that is, at time (t2).
- the time from when the engine is started to when the temperature of the cooling water flowing through the block cooling flow path 14 is lowered is, for example, about 2000 seconds when the engine is idling.
- step S01 the ignition is turned on and the engine is started. Thereby, the cooling device shown in FIG. 1 is started.
- the controller 10 performs the control of the first period described with reference to FIG. That is, the temperature of the cooling water flowing through each of the head cooling channel 13 and the block cooling channel 14 is increased to the same temperature and higher than normal.
- the engine oil and the CVT oil are heated using both the cooling water flowing through the head cooling flow path 13 and the cooling water flowing through the block cooling flow path 14.
- step S03 the controller 10 determines whether or not the temperature of the cooling water has reached a predetermined temperature.
- the process proceeds to step S04.
- the controller 10 In order to suppress abnormal combustion such as knocking, the controller 10 first lowers the temperature of the cooling water flowing through the head cooling flow path 13 as shown in FIG. For this purpose, the controller 10 performs the control of the second period described with reference to FIG.
- step S05 the controller 10 determines whether or not the reduction rate of the friction generated inside the power train is smaller than a predetermined reference value.
- the controller 10 proceeds to step S06.
- the controller 10 lowers the temperature of the cooling water flowing through the block cooling flow path 14 and uses the cooling water flowing through the block cooling flow path 14 as the first heat exchanger 20 or It does not flow to the second heat exchanger 21.
- the controller 10 performs the control of the third period described with reference to FIG.
- the controller 10 raises the temperature of the cooling water flowing through each of the head cooling flow path 13 and the block cooling flow path 14 to the same temperature, and raises the temperature of the cooling water flowing through the head cooling flow path 13 to the same temperature.
- the temperature is lowered before the temperature of the cooling water flowing through the block cooling channel 14.
- the temperature of the cooling water flowing through the head cooling flow path 13 increases, and the amount of heat held by the cooling water flowing through the head cooling flow path 13 increases.
- the temperature of the lubricating oil in the power train can be raised early, and the friction generated in the power train can be reduced early.
- the temperature of the cooling water flowing through the head cooling flow path 13 is lowered before the temperature of the cooling water flowing through the block cooling flow path 14.
- the temperature of the cylinder head 11 can be lowered to suppress abnormal combustion such as knocking.
- the fuel consumption rate of the internal combustion engine can be improved by early reduction of friction and suppression of abnormal combustion.
- the controller 10 reduces the temperature of the cooling water flowing through the block cooling flow path 14 when the rate of reduction of the friction generated inside the power train becomes smaller than a predetermined reference value.
- the temperature of the cooling water flowing through the block cooling flow path 14 can be kept high until the rate of reduction of the friction generated inside the power train becomes smaller than a predetermined reference value, so that the friction generated inside the power train can be accelerated. This can reduce the fuel consumption rate of the internal combustion engine.
- the temperature of the cooling water flowing through the block cooling flow path 14 becomes higher than the temperature of the cooling water flowing through the head cooling flow path 13.
- Abnormal combustion can be suppressed by lowering the temperature of the cooling water flowing through the head cooling flow path 13.
- the temperature of the exhaust gas can be lowered to suppress catalyst deterioration.
- the fuel injection amount that has been increased so far to lower the temperature of the exhaust gas can be reduced.
- the engine output filling efficiency
- the first heat exchanger 20 or the second heat exchanger 21 has a head cooling channel while the temperature of the cooling water flowing through each of the head cooling channel 13 and the block cooling channel 14 rises to the same temperature. Heat exchange is performed between both the cooling water flowing through 13 and the block cooling flow path 14, and the engine oil and CVT oil.
- the temperature of the lubricating oil in the power train can be raised early, and the friction generated in the power train can be reduced early.
- the first heat exchanger 20 or the second heat exchanger 21 decreases the temperature of the cooling water flowing through the head cooling flow path 13 until the temperature of the cooling water flowing through the block cooling flow path 14 decreases.
- the period (second period) heat is exchanged between the cooling water flowing through the block cooling flow path 14 and the engine oil and CVT oil.
- the engine oil and the CVT oil are heated only from the cooling water that has flowed through the block cooling flow path 14 while maintaining a high temperature.
- the engine oil and the CVT oil can be quickly heated using the cooling water maintained at a high temperature, and at the same time, the temperature of the cylinder head 11 can be lowered to suppress abnormal combustion such as knocking.
- the oil temperature rises as time passes, so the friction generated inside the powertrain is reduced. Therefore, the amount of improvement in the fuel consumption rate due to the reduction in friction increases with the passage of time after the engine is started.
- the oil temperature the temperature of the internal combustion engine
- the amount of retarding the ignition timing retard amount
- the improvement amount of the fuel consumption rate based on the integrated retard amount from the engine start decreases with the passage of time after the engine start.
- the controller 10 adds the fuel consumption rate by the amount of improvement in the fuel consumption rate due to the reduction of the friction generated inside the power train and the reduction amount of the ignition timing of the internal combustion engine. It is determined whether the magnitude relationship with the rate of improvement is reversed.
- the controller 10 reduces the temperature of the cooling water flowing through the head cooling flow path 13 when the magnitude relationship is reversed, that is, at the time of profit / loss split. It is possible to improve the overall fuel consumption rate of the internal combustion engine by combining the fuel consumption rate due to the reduction of friction and the fuel consumption rate based on the integrated retard amount from the start of the engine.
- the controller 10 determines whether or not the rate of increase in the temperature of the catalyst disposed under the floor of the vehicle body has become smaller than a predetermined reference value.
- the controller 10 reduces the temperature of the cooling water flowing through the head cooling flow path 13 when the rate of increase in the temperature of the catalyst disposed under the floor of the vehicle body becomes smaller than a predetermined reference value.
- the catalyst disposed under the floor of the vehicle body can be activated early.
- a cooling device further including an exhaust gas recirculation device (EGR cooler) that takes out a part of the exhaust gas after combustion, guides it to the intake side, and again intakes it into the internal combustion engine.
- the EGR cooler is mainly used for the purpose of reducing nitrogen oxide (NO x ) in exhaust gas and improving the fuel consumption rate at the time of partial load.
- the amount of air taken into the engine is adjusted by a throttle valve.
- the throttle valve is in a throttled state, and the amount of air sucked into the cylinder is reduced and the amount of fuel injected is also reduced. Since the intake passage is throttled by the throttle valve, the cross sectional area of the air is reduced and the engine loss is increased. Further, in a region where the engine load is high, such as during acceleration or high speed running, the combustion temperature becomes high, causing abnormal combustion (knocking). Therefore, it has contributed to the deterioration of the fuel consumption rate.
- the EGR cooler recirculates the exhaust gas, takes the exhaust gas into the cylinder instead of air, and lowers the piston load while keeping the fuel injection amount small. Along with this, the temperature rise of the air-fuel mixture is moderated to prevent abnormal combustion and improve the fuel consumption rate.
- the cooling device for an internal combustion engine further includes an exhaust gas recirculation device (EGR cooler) that takes out a part of the exhaust gas after combustion, guides it to the intake side, and again sucks it into the internal combustion engine.
- EGR cooler exhaust gas recirculation device
- the inlet of the EGR cooler 25 is connected to the other valve of the head side four-way valve 17, and the cooling flow path connected to the outlet of the EGR cooler 25 is the cooling connected to the outlet of the radiator 19. After joining the flow path, it is connected to the suction port of the pump 23.
- the controller 10 switches the flow path as shown in FIG. 10 instead of FIG.
- the controller 10 opens the valve connected to the head cooling flow path 13, the valve connected to the radiator 19, and the valve connected to the EGR cooler 25 among the valves of the head side four-way valve 17,
- the valve connected to the valve 18 is closed.
- the cooling water that has flowed through the head cooling flow path 13 is divided in the head side four-way valve 17 and flows to the radiator 19 or the EGR cooler 25.
- the cooling water that has flowed through the head cooling flow path 13 does not flow to the first heat exchanger 20 or the second heat exchanger 21.
- the control of the block side four-way valve 18 is the same as in FIG.
- the EGR cooler 25 uses the extracted exhaust gas to cool the cooling water flowing through the head cooling flow path 13 at a reduced temperature. Can be used for cooling. Therefore, since the temperature of the exhaust gas (EGR gas) further decreases, the effect of improving abnormal combustion by the EGR cooler 25 increases, and the fuel consumption rate can be improved. Furthermore, since the time (t1) when the temperature of the cooling water flowing through the head cooling flow path 13 is lowered can be further advanced, the fuel consumption rate can be further improved.
- Controller cooling water temperature control unit, cooling water temperature control means
- DESCRIPTION OF SYMBOLS 11 ... Cylinder head 12 ... Cylinder block 13 ... Head cooling flow path 14 ... Block cooling flow path 15 ... Head temperature detection part 16 ... Block temperature detection part 17 ... Head side four-way valve (cooling water temperature control part, cooling water temperature control means ) 18 ... block side four-way valve (cooling water temperature control unit, cooling water temperature control means) 19 ...
- Radiator 20 ... 1st heat exchanger (oil heat exchanger, oil heat exchange means) 21 ... 2nd heat exchanger (oil heat exchanger, oil heat exchange means) 23 ... Pump 25 ... EGR cooler (exhaust gas recirculation device)
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
冷却装置は、ヘッド冷却流路(13)と、ブロック冷却流路(14)と、オイル熱交換器(20,21)とを備える。ヘッド冷却流路は、冷却水が流れることによりシリンダヘッド(11)を冷却する。ブロック冷却流路は、冷却水が流れることによりシリンダブロック(12)を冷却する。オイル熱交換器は、ヘッド冷却流路及びブロック冷却流路を流れる冷却水とパワートレイン内の潤滑油との間で熱交換を行う。冷却装置は、ヘッド冷却流路及びブロック冷却流路の各々を流れる冷却水の温度を同じ温度まで上昇させ、その後、ヘッド冷却流路を流れる冷却水の温度(WH)をブロック冷却流路を流れる冷却水の温度(WB)よりも先に低下させる。
Description
本発明は、内燃機関の冷却装置及びその制御方法に関するものである。
シリンダヘッドとシリンダブロックとを異なる系統の冷却水経路を用いて冷却するエンジンの冷却装置が知られている(特許文献1参照)。特許文献1記載の冷却装置は、エンジン始動後、シリンダヘッドを流れる冷却水の水温を第1の設定温度まで上昇させて保持し、シリンダブロックを流れる冷却水の水温を第1の設定温度よりも高い第2の設定温度まで上昇させて保持する。冷却水の昇温と同時に、冷却装置は、シリンダヘッド及びシリンダブロックを流れる冷却水のいずれか一方を選択的にオイルクーラへ導入して潤滑油を昇温させる。
特許文献1記載の冷却装置は、シリンダヘッドを流れた冷却水の温度を、シリンダブロックを流れる冷却水の温度と同じ温度まで上昇させることはしていない。よって、シリンダヘッドを流れる冷却水が有する熱量が少なくなり、潤滑油の昇温が遅れてしまうという課題がある。
本発明は、上記課題に鑑みて成されたものであり、その目的は、フリクションの早期低減及び異常燃焼の抑制によって内燃機関の燃料消費率を改善する内燃機関の冷却装置及びその制御方法を提供することである。
本発明の一態様に係わる内燃機関の冷却装置は、ヘッド冷却流路と、ブロック冷却流路と、オイル熱交換器とを備える。ヘッド冷却流路は、冷却水が流れることによりシリンダヘッドを冷却する。ブロック冷却流路は、冷却水が流れることによりシリンダブロックを冷却する。オイル熱交換器は、ヘッド冷却流路及びブロック冷却流路を流れる冷却水とパワートレイン内の潤滑油との間で熱交換を行うことができる。冷却装置は、ヘッド冷却流路及びブロック冷却流路の各々を流れる冷却水の温度を同じ温度まで上昇させ、その後、ヘッド冷却流路を流れる冷却水の温度をブロック冷却流路を流れる冷却水の温度よりも先に低下させる。
図面を参照して、本発明の実施形態を説明する。図面の記載において同一部分には同一符号を付し説明を省略する。
(第1の実施形態)
第1の実施形態では、内燃機関として、シリンダブロックとシリンダヘッドで構成されるエンジンを例にとる。内燃機関の冷却装置は、シリンダブロック及びシリンダヘッドの各々に設けられた冷却流路に冷却水をそれぞれ流すことにより、シリンダブロック及びシリンダヘッドを冷却する。内燃機関が始動した後の暖機運転時に、内燃機関の冷却装置は、シリンダヘッド及びシリンダブロックの各々に設けられた冷却流路を流れる冷却水の温度を同じ温度まで上昇させる。昇温した冷却水を用いて、パワートレイン内の潤滑油の温度を上昇させる。同じ温度まで冷却水を上昇させた後、内燃機関の冷却装置は、シリンダヘッドを流れる冷却水の温度をシリンダブロックを流れる冷却水の温度よりも先に低下させる。油温の昇温によりフリクションが低減した後、シリンダヘッドの温度を低下させて、ノッキング等の異常燃焼を抑制する。
第1の実施形態では、内燃機関として、シリンダブロックとシリンダヘッドで構成されるエンジンを例にとる。内燃機関の冷却装置は、シリンダブロック及びシリンダヘッドの各々に設けられた冷却流路に冷却水をそれぞれ流すことにより、シリンダブロック及びシリンダヘッドを冷却する。内燃機関が始動した後の暖機運転時に、内燃機関の冷却装置は、シリンダヘッド及びシリンダブロックの各々に設けられた冷却流路を流れる冷却水の温度を同じ温度まで上昇させる。昇温した冷却水を用いて、パワートレイン内の潤滑油の温度を上昇させる。同じ温度まで冷却水を上昇させた後、内燃機関の冷却装置は、シリンダヘッドを流れる冷却水の温度をシリンダブロックを流れる冷却水の温度よりも先に低下させる。油温の昇温によりフリクションが低減した後、シリンダヘッドの温度を低下させて、ノッキング等の異常燃焼を抑制する。
図1(a)及び(b)を参照して、本発明の第1の実施形態に係わる内燃機関の冷却装置の構成を説明する。内燃機関の冷却装置は、ヘッド冷却流路13と、ブロック冷却流路14と、ヘッド温度検出部15と、ブロック温度検出部16と、冷却水温度制御部(10、17~19)と、オイル熱交換器(20、21)と、を備える。
ヘッド冷却流路13は、その内部に冷却水が流れることによりシリンダヘッド11との間で熱交換を行う。シリンダヘッド11の温度がヘッド冷却流路13を流れる冷却水よりも高ければ、ヘッド冷却流路13は、冷却水が流れることによりシリンダヘッド11を冷却することができる。ブロック冷却流路14は、その内部に冷却水が流れることによりシリンダブロック12との間で熱交換を行う。シリンダブロック12の温度がブロック冷却流路14を流れる冷却水よりも高ければ、ブロック冷却流路14は、冷却水が流れることによりシリンダブロック12を冷却することができる。
ヘッド温度検出部15は、ヘッド冷却流路13を流れる冷却水の温度を検出する。ブロック温度検出部16は、ブロック冷却流路14を流れる冷却水の温度を検出する。ここで、「ヘッド冷却流路13を流れる冷却水の温度」とは、ヘッド冷却流路13を流れることにより熱交換を行った冷却水の温度を示し、例えば、ヘッド冷却流路13を流れた後の冷却水の温度が含まれる。この場合、ヘッド温度検出部15は、ヘッド冷却流路13の下流側端部に設けられ、下流側端部における冷却水の温度を検出する。「検出する」ことには、温度センサを用いて直接冷却水の温度を測定することの他に、冷却流路の温度を測定して冷却水の温度を推定することが含まれる。或いは、ヘッド温度検出部15をヘッド冷却流路13の入口と出口の途中に設け、ヘッド温度検出部15による検出温度から、ヘッド冷却流路13を流れた後の冷却水の温度を推定しても構わない。ブロック温度検出部16についても、ヘッド温度検出部15と同じである。
冷却水温度制御部(10、17~19)は、ヘッド温度検出部15及びブロック温度検出部16により検出された冷却水の温度Th、Tbに基づいて、ヘッド冷却流路13及びブロック冷却流路14の各々を流れる冷却水の温度を制御する。具体的に、冷却水温度制御部(10、17~19)には、弁の切り替え及び弁の開度調整が可能な電製可変バルブからなるヘッド側四方弁17及びブロック側四方弁18と、ヘッド側四方弁17及びブロック側四方弁18の流路の切り替え及び開度の調整を行うコントローラ10と、冷却水がその内部を流れることにより冷却水が有する熱を外部へ発散させるラジエータ19とが含まれる。コントローラ10は、冷却水の温度Th、Tbに基づいて、制御信号Sh、Sbを出力して、ヘッド側四方弁17及びブロック側四方弁18の流路の切り替え及び開度の調整を行う。これにより、コントローラ10は、ヘッド冷却流路13及びブロック冷却流路14の各々を流れる冷却水の温度を制御することができる。コントローラ10による冷却水の温度制御の詳細は後述する。
コントローラ10は、後述する温度制御処理の手順を記述したコンピュータプログラムをインストールした汎用のマイクロコンピュータにより構成することができる。マイクロコンピュータを用いてコンピュータプログラムを実行することにより、マイクロコンピュータをコントローラ10として機能させることができる。
オイル熱交換器(20、21)は、ヘッド冷却流路13及びブロック冷却流路14を流れる冷却水と、パワートレイン(11、12、22)内の潤滑油との間で熱交換を行うことができる。具体的には、オイル熱交換器(20、21)には、第1の熱交換器20と、第2の熱交換器21とが含まれる。第1の熱交換器20は、冷却水とシリンダヘッド11及びシリンダブロック12内に存在するエンジンオイルとの間で熱交換を行う。第2の熱交換器21は、冷却水とCVT(無段変速機)22内に存在するCVTオイルとの間で熱交換を行う。パワートレイン(11、12、22)には、シリンダヘッド11及びシリンダブロック12の他に、CVT(無段変速機)22が含まれる。
このほか、内燃機関の冷却装置は、冷却流路内の冷却水に圧力を加えて、冷却水を吸い込み、吐き出すポンプ23を備える。
ポンプ23、四方弁(17、18)、第1の熱交換器20、第2の熱交換器21及び、ラジエータ19は、その内部に冷却水が流れる冷却流路により互いに接続されている。ポンプ23により吐き出された冷却水は、冷却流路を通じて、ポンプ23、四方弁(17、18)、第1の熱交換器20、第2の熱交換器21、ラジエータ19を流れ、再び、ポンプ23に吸い込まれる。ここで、冷却流路には、ヘッド冷却流路13及びブロック冷却流路14が含まれる。
ポンプ23から吐き出された冷却水が流れる冷却流路は、ヘッド冷却流路13とブロック冷却流路14とに分岐する。ポンプ23から吐き出された冷却水は、シリンダヘッド11とシリンダブロック12へ分流する。冷却水は、ヘッド冷却流路13及びブロック冷却流路14を流れる間に、シリンダヘッド11及びシリンダブロック12から熱を吸収し、冷却水の温度は上昇する。ヘッド冷却流路13及びブロック冷却流路14の下流側端部は、ヘッド側四方弁17及びブロック側四方弁18の弁にそれぞれ接続されている。ヘッド冷却流路13及びブロック冷却流路14を通過した冷却水は、ヘッド側四方弁17及びブロック側四方弁18にそれぞれ到達する。ヘッド側四方弁17の他の弁とブロック側四方弁18の他の弁は冷却流路により互いに接続されている。
ヘッド側四方弁17の他の弁は、冷却流路によりラジエータ19の入口に接続されている。ラジエータ19の出口に接続された冷却流路は、ポンプ23の吸引口に接続されている。ヘッド側四方弁17からラジエータ19に向けて流れる冷却水は、ラジエータ19内で放熱され、その後、ポンプ23に吸引される。
一方、ブロック側四方弁18の他の弁に接続された冷却流路は、2つの冷却流路に分岐し、分岐した2つの冷却流路は、第1の熱交換器20、及び第2の熱交換器21の入口にそれぞれ接続されている。第1の熱交換器20、及び第2の熱交換器21の出口に接続された冷却流路は再び合流して1つの冷却流路となる。1つの冷却流路は、ラジエータ19の出口に接続された冷却流路と合流した後、ポンプ23の吸引口に接続されている。第1の熱交換器20及び第2の熱交換器21を流れる冷却水は、エンジンオイル及びCVTオイルとの間で熱交換を行い、その後、ポンプに吸引される。
ヘッド側四方弁17及びブロック側四方弁18は、コントローラ10から出力された制御信号Sh、Sbをそれぞれ受信する。そして、制御信号Sh、Sbに基づいて、冷却水が流れる弁の切り替え及び弁の開度調整を行う。図1の中で冷却流路に沿って記載する矢印は、冷却流路内で冷却水が流れる方向を示す。
次に、図2~図7を参照して、コントローラ10による冷却水の温度制御の詳細を説明する。
<第1期間>
エンジンが始動した後の暖機運転時に、図3に示すように、コントローラ10は、ヘッド側四方弁17の弁の内、ヘッド冷却流路13に接続された弁と、ブロック側四方弁18に接続された弁とを開き、ラジエータ19に接続された弁を閉じる。これにより、ヘッド冷却流路13を流れた冷却水は、ヘッド側四方弁17を通じて、ブロック側四方弁18へ流れる。コントローラ10は、ブロック側四方弁18の弁の内、ブロック冷却流路14に接続された弁と、ヘッド側四方弁17に接続された弁と、第1の熱交換器20及び第2の熱交換器21に接続された弁とを開き、その他の弁を閉じる。これにより、ヘッド冷却流路13を流れた冷却水とブロック冷却流路14を流れた冷却水とがブロック側四方弁18で合流し、その後分流して、第1の熱交換器20及び第2の熱交換器21へ流れる。第1の熱交換器20及び第2の熱交換器21を通過した冷却水は合流してポンプ23へ吸引される。ヘッド側四方弁17及びブロック側四方弁18の開度は、同じ開度、例えば全開とする。
エンジンが始動した後の暖機運転時に、図3に示すように、コントローラ10は、ヘッド側四方弁17の弁の内、ヘッド冷却流路13に接続された弁と、ブロック側四方弁18に接続された弁とを開き、ラジエータ19に接続された弁を閉じる。これにより、ヘッド冷却流路13を流れた冷却水は、ヘッド側四方弁17を通じて、ブロック側四方弁18へ流れる。コントローラ10は、ブロック側四方弁18の弁の内、ブロック冷却流路14に接続された弁と、ヘッド側四方弁17に接続された弁と、第1の熱交換器20及び第2の熱交換器21に接続された弁とを開き、その他の弁を閉じる。これにより、ヘッド冷却流路13を流れた冷却水とブロック冷却流路14を流れた冷却水とがブロック側四方弁18で合流し、その後分流して、第1の熱交換器20及び第2の熱交換器21へ流れる。第1の熱交換器20及び第2の熱交換器21を通過した冷却水は合流してポンプ23へ吸引される。ヘッド側四方弁17及びブロック側四方弁18の開度は、同じ開度、例えば全開とする。
コントローラ10は、上記制御により、図2(a)に示すように、ヘッド冷却流路13を流れる冷却水の温度(WH)及びブロック冷却流路14を流れる冷却水の温度(WB)を、同じ温度、且つ通常時(NR)よりも高い温度(例えば、100℃)まで上昇させる。同時に、シリンダヘッドを流れる冷却水及びシリンダブロックを流れる冷却水の両方を用いて、図2(b)に示すように、エンジンオイル及びCVTオイルを早期に昇温する。
なお、図2(a)の「WH」はヘッド冷却流路13を流れる冷却水の温度を示し、「WB」はブロック冷却流路14を流れる冷却水の温度を示し、「NR」は通常時の冷却水の温度を示す。図2(b)の「OE」はエンジンオイルの油温を示し、「OC」はCVTオイルの油温を示し、「NRC」は、通常時のCVTオイルの油温を示す。
ヘッド側四方弁17及びブロック側四方弁18の開度を共に全開とすることにより、開度を絞って流量を減らした場合に比べて、水温を低く抑えられるので、冷却水から内燃機関周囲の外気(例えば、エンジンルーム雰囲気)への放熱量を軽減することができる。よって、シリンダヘッド11及びシリンダブロック12で発生した熱を、エンジンオイル及びCVTオイルへ冷却水を介して効率よく伝達することができる。ただし、ヘッド側四方弁17及びブロック側四方弁18の開度を全開とするのは一例である。ヘッド側四方弁17及びブロック側四方弁18の開度は、シリンダヘッド11及びシリンダブロック12で発生した熱を効率よくエンジンオイル及びCVTオイルへ伝えることを目的として、ヘッド冷却流路13及びブロック冷却流路14の熱交換特性を考慮した最適な開度とすることが望ましい。なお、ヘッド冷却流路13及びブロック冷却流路14の熱交換特性には、冷却水の流量と水温に対する熱交換量の感度、及び内燃機関及び冷却流路から外気への放熱特性が含まれる。したがって、ヘッド側四方弁17及びブロック側四方弁18の開度は、異なる開度であっても構わない。
ヘッド冷却流路13及びブロック冷却流路14の各々を流れる冷却水の温度が同じ温度、且つ通常時よりも高い温度まで上昇し、後述するように、ヘッド水温を低下させる時刻(t1)までの期間を、「第1期間」と呼ぶ。
なお、エンジン始動時から、ヘッド冷却流路13及びブロック冷却流路14の各々を流れる冷却水の温度が、通常時よりも高い温度(例えば、100℃)に到達するまでに要する時間は、例えば、500秒である。
<第2期間>
冷却水の温度を、同じ温度、且つ通常時よりも高い温度まで上昇させた後、コントローラ10は、ノッキング等の異常燃焼を抑制するために、図2(a)に示すように、先ず、ヘッド冷却流路13を流れる冷却水の温度(WH)を低下させる。このために、コントローラ10は、ヘッド側四方弁17及びブロック側四方弁18の流路の切り替え及び開度を調整する。
冷却水の温度を、同じ温度、且つ通常時よりも高い温度まで上昇させた後、コントローラ10は、ノッキング等の異常燃焼を抑制するために、図2(a)に示すように、先ず、ヘッド冷却流路13を流れる冷却水の温度(WH)を低下させる。このために、コントローラ10は、ヘッド側四方弁17及びブロック側四方弁18の流路の切り替え及び開度を調整する。
図4に示すように、コントローラ10は、ヘッド側四方弁17の弁の内、ヘッド冷却流路13に接続された弁と、ラジエータ19に接続された弁とを開き、ブロック側四方弁18に接続された弁を閉じる。これにより、ヘッド冷却流路13を流れた冷却水は、ヘッド側四方弁17を通じて、ラジエータ19へ流れる。コントローラ10は、ブロック側四方弁18の弁の内、ブロック冷却流路14に接続された弁と、第1の熱交換器20及び第2の熱交換器21に接続された弁とを開き、ヘッド側四方弁17に接続された弁を閉じる。これにより、ブロック冷却流路14を流れた冷却水は、ブロック側四方弁18を通過した後に分流して、第1の熱交換器20或いは第2の熱交換器21へ流れる。ヘッド冷却流路13を流れた冷却水は、第1の熱交換器20或いは第2の熱交換器21へ流れない。
上記した流路の制御により、ヘッド冷却流路13を流れた冷却水は、ラジエータ19において冷却されるため、ヘッド冷却流路13を流れる冷却水の温度は低下する。温度が低下したため、ヘッド冷却流路13を流れる冷却水は第1の熱交換器20或いは第2の熱交換器21へ流さない。エンジンオイル及びCVTオイルは、高温を維持した、ブロック冷却流路14を流れた冷却水のみより昇温される。これにより、高温が維持された冷却水を用いてエンジンオイル及びCVTオイルの迅速な昇温を継続する(図2(b)参照)と同時に、シリンダヘッドの温度を低下させて、ノッキング等の異常燃焼を抑制することができる。
コントローラ10は、冷却水の温度Th、Tbに基づいて、ヘッド側四方弁17及びブロック側四方弁18の開度をフィードバック制御する。具体的には、コントローラ10は、ヘッド冷却流路13を流れる冷却水の温度が第1期間で到達した温度に比べて低くなり、且つ、ブロック冷却流路14を流れる冷却水の温度が第1期間で到達した温度をそのまま維持するように、ヘッド側四方弁17及びブロック側四方弁18の開度を調整する。
ヘッド冷却流路13を流れる冷却水の温度を低下させる時刻(t1)から、後述するように、ブロック冷却流路14を流れる冷却水の温度を低下させる時刻(t2)までの期間を、「第2期間」と呼ぶ。
なお、エンジン始動時から、ヘッド冷却流路13を流れる冷却水の温度を低下させるまでの時間は、例えば、エンジンがアイドリング状態で900秒程度である。
<第3期間>
ヘッド冷却流路13を流れる冷却水の温度を低下させた後、コントローラ10は、ノッキング等の異常燃焼を更に抑制するために、図2(a)に示すように、ブロック冷却流路14を流れる冷却水の温度(WB)を低下させる。このために、コントローラ10は、ヘッド側四方弁17及びブロック側四方弁18の流路の切り替え及び開度を調整する。ブロック冷却流路14を流れる冷却水の温度を低下させた後の期間を、「第3期間」と呼ぶ。
ヘッド冷却流路13を流れる冷却水の温度を低下させた後、コントローラ10は、ノッキング等の異常燃焼を更に抑制するために、図2(a)に示すように、ブロック冷却流路14を流れる冷却水の温度(WB)を低下させる。このために、コントローラ10は、ヘッド側四方弁17及びブロック側四方弁18の流路の切り替え及び開度を調整する。ブロック冷却流路14を流れる冷却水の温度を低下させた後の期間を、「第3期間」と呼ぶ。
図5に示すように、コントローラ10は、ヘッド側四方弁17の弁の内、ヘッド冷却流路13に接続された弁と、ラジエータ19に接続された弁と、ブロック側四方弁18に接続された弁とを開き、その他の弁を閉じる。コントローラ10は、ブロック側四方弁18の弁の内、ブロック冷却流路14に接続された弁と、ヘッド側四方弁17に接続された弁とを開き、第1の熱交換器20及び第2の熱交換器21に接続された弁を閉じる。これにより、ブロック冷却流路14を流れた冷却水は、ブロック側四方弁18を通じてヘッド側四方弁17へ向けて流れる。ブロック冷却流路14を流れた冷却水及びヘッド冷却流路13を流れた冷却水は、ヘッド側四方弁17で合流した後、ラジエータ19へ流れる。ブロック冷却流路14を流れた冷却水及びヘッド冷却流路13を流れた冷却水のいずれも、第1の熱交換器20或いは第2の熱交換器21へ流れない。
上記した流路の制御により、ブロック冷却流路14を流れた冷却水は、ラジエータ19において冷却されるため、ブロック冷却流路14を流れる冷却水の温度は低下する。温度が低下したため、ブロック冷却流路14を流れる冷却水は第1の熱交換器20或いは第2の熱交換器21へ流さない。これにより、エンジンオイル及びCVTオイルの昇温速度の低下、或いはエンジンオイル及びCVTオイルの温度低下を抑制できる。同時に、シリンダブロックの温度を低下させて、ノッキング等の異常燃焼を更に抑制することができる。
コントローラ10は、冷却水の温度Th、Tbに基づいて、ヘッド側四方弁17及びブロック側四方弁18の開度をフィードバック制御する。具体的には、コントローラ10は、ブロック冷却流路14を流れる冷却水の温度が第2期間で到達した温度に比べて低くなり、且つ、ヘッド冷却流路13を流れる冷却水の温度が第2期間における温度をそのまま維持するように、ヘッド側四方弁17及びブロック側四方弁18の開度を調整する。
更に、コントローラ10は、ブロック冷却流路14を流れる冷却水の温度を低下させた後、ブロック冷却流路14を流れる冷却水の温度が、ヘッド冷却流路13を流れる冷却水の温度よりも高くなるように、ヘッド側四方弁17及びブロック側四方弁18の開度を調整する。
図6を参照して、ブロック冷却流路14を流れる冷却水の温度を低下させる判断基準の一例について説明する。パワートレインの内部に発生するフリクションは、エンジン始動後の油温上昇と共に減少する。エンジンオイル及びCVTオイルの油温(OE、OC)は、図2(b)に示したようにエンジン始動後の時間経過により所定の温度まで上昇し、所定の温度を維持する。よって、図6に示すように、パワートレインの内部に発生するフリクション(摩擦量)は、エンジン始動後の時間経過により所定値まで減少し、所定値を維持する。パワートレインの内部に発生するフリクションが十分に低下した場合、エンジンオイル及びCVTオイルを昇温するために冷却水を高温に維持するよりも、冷却水の温度を低下させてノッキング等の異常燃焼を更に抑制することが、燃料消費率の観点から望ましい。そこで、コントローラ10は、パワートレインの内部で発生するフリクションの低下率が所定の基準値よりも小さくなったか否かを判断する。コントローラ10は、パワートレインの内部で発生するフリクションの低下率が所定の基準値よりも小さくなった時、つまり時刻(t2)に、ブロック冷却流路14を流れる冷却水の温度を低下させる。
なお、エンジン始動時から、ブロック冷却流路14を流れる冷却水の温度を低下させるまでの時間は、例えば、エンジンがアイドリング状態で2000秒程度である。
<冷却方法>
次に、図7のフローチャートを参照して、第1の実施形態に係わる内燃機関の冷却方法の一例について説明する。
次に、図7のフローチャートを参照して、第1の実施形態に係わる内燃機関の冷却方法の一例について説明する。
先ず、ステップS01で、イグニッションをターンオンさせてエンジンを始動する。これにより、図1に示した冷却装置が起動する。ステップS02において、コントローラ10は、図3を参照して説明した第1期間の制御を実施する。つまり、ヘッド冷却流路13及びブロック冷却流路14の各々を流れる冷却水の温度を、同じ温度、且つ通常時よりも高い温度まで上昇させる。同時に、ヘッド冷却流路13を流れる冷却水及びブロック冷却流路14を流れる冷却水の両方を用いてエンジンオイル及びCVTオイルを昇温する。
ステップS03において、コントローラ10は、冷却水の温度が予め定めた温度まで到達したか否かを判断する。冷却水の温度が予め定めた温度まで到達した場合(S03でYES)、ステップS04へ進む。コントローラ10は、ノッキング等の異常燃焼を抑制するために、図2(a)に示すように、先ず、ヘッド冷却流路13を流れる冷却水の温度を低下させる。このために、コントローラ10は、図4を参照して説明した第2期間の制御を実施する。
ステップS05において、コントローラ10は、パワートレインの内部で発生するフリクションの低下率が所定の基準値よりも小さくなったか否かを判断する。コントローラ10は、パワートレインの内部で発生するフリクションの低下率が所定の基準値よりも小さくなった時(S05でYES)、ステップS06へ進む。コントローラ10は、ノッキング等の異常燃焼を更に抑制するために、ブロック冷却流路14を流れる冷却水の温度を低下させ、ブロック冷却流路14を流れる冷却水を、第1の熱交換器20或いは第2の熱交換器21へ流さない。このために、コントローラ10は、図5を参照して説明した第3期間の制御を実施する。
以上説明したように、第1の実施形態によれば、以下の作用効果が得られる。
コントローラ10は、ヘッド冷却流路13及びブロック冷却流路14の各々を流れる冷却水の温度を同じ温度まで上昇させ、同じ温度まで上昇させた後、ヘッド冷却流路13を流れる冷却水の温度をブロック冷却流路14を流れる冷却水の温度よりも先に低下させる。これにより、ヘッド冷却流路13を流れる冷却水の温度が高くなり、ヘッド冷却流路13を流れる冷却水が保有する熱量が増加する。暖機運転時においてパワートレイン内の潤滑油の温度を早期に上昇させることができ、パワートレインの内部に発生するフリクションを早期に低減できる。また、ヘッド冷却流路13を流れる冷却水の温度をブロック冷却流路14を流れる冷却水の温度よりも先に低下させる。これにより、油温の昇温によりフリクションが低減した後、シリンダヘッド11の温度を低下させて、ノッキング等の異常燃焼を抑制することができる。フリクションの早期低減及び異常燃焼の抑制によって内燃機関の燃料消費率を改善することができる。
コントローラ10は、パワートレインの内部で発生するフリクションの低下率が所定の基準値よりも小さくなった時に、ブロック冷却流路14を流れる冷却水の温度を低下させる。パワートレインの内部で発生するフリクションの低下率が所定の基準値よりも小さくなるまで、ブロック冷却流路14を流れる冷却水の温度を高く維持できるので、パワートレインの内部に発生するフリクションを早期に低減して内燃機関の燃料消費率を改善することができる。
コントローラ10は、ブロック冷却流路14を流れる冷却水の温度を低下させた後、ブロック冷却流路14を流れる冷却水の温度が、ヘッド冷却流路13を流れる冷却水の温度よりも高くなるように制御する。ヘッド冷却流路13を流れる冷却水の温度を低くすることにより、異常燃焼を抑制することができる。排気ガスの温度を低下させて、触媒の劣化を抑制することができる。これまで排気ガスの温度を低下させるために増量していた燃料噴射量を低減することができる。吸気ガスの温度を低下させて、エンジンの出力(充填効率)を向上させることができる。また、ブロック冷却流路14を流れる冷却水の温度を、異常燃焼の抑制と、排気ガス中のNOX抑制及びパワートレインの内部に発生するフリクションの抑制とが両立可能な温度に設定することができる。
第1の熱交換器20或いは第2の熱交換器21は、ヘッド冷却流路13及びブロック冷却流路14の各々を流れる冷却水の温度が同じ温度まで上昇している間、ヘッド冷却流路13及びブロック冷却流路14を流れる両方の冷却水と、エンジンオイル及びCVTオイルとの間で熱交換を行う。パワートレイン内の潤滑油の温度を早期に上昇させることができ、パワートレインの内部に発生するフリクションを早期に低減できる。
第1の熱交換器20或いは第2の熱交換器21は、ヘッド冷却流路13を流れる冷却水の温度を低下させてから、ブロック冷却流路14を流れる冷却水の温度を低下させるまでの間(第2期間)、ブロック冷却流路14を流れる冷却水と、エンジンオイル及びCVTオイルとの間で熱交換を行う。エンジンオイル及びCVTオイルは、高温を維持した、ブロック冷却流路14を流れた冷却水のみより昇温される。これにより、高温が維持された冷却水を用いてエンジンオイル及びCVTオイルを迅速に昇温すると同時に、シリンダヘッド11の温度を低下させて、ノッキング等の異常燃焼を抑制することができる。
(第2の実施形態)
第2の実施形態では、図8を参照して、ヘッド冷却流路13を流れる冷却水の温度を低下させる判断基準の一例について説明する。
第2の実施形態では、図8を参照して、ヘッド冷却流路13を流れる冷却水の温度を低下させる判断基準の一例について説明する。
エンジン始動後、時間の経過と共に油温は上昇するため、パワートレインの内部に発生するフリクションは低減する。よって、フリクションの低減による燃料消費率の向上量は、エンジン始動後からの時間経過と共に増加する。一方、エンジン始動後、時間の経過と共に油温(内燃機関の温度)は上昇するため、ノッキング等の異常燃焼時に点火時期を遅らせる量(リタード量)が増加する。よって、エンジン始動からの積算リタード量に基づく燃料消費率の向上量は、エンジン始動後からの時間経過と共に減少する。
そこで、第2の実施形態では、コントローラ10は、始動時から積算した、パワートレインの内部で発生するフリクションの低下による燃料消費率の改善量と、内燃機関の点火時期のリタード量低減による燃料消費率の改善量との大小関係が逆転するか否かを判断する。コントローラ10は、大小関係が逆転した時、即ち、損益分岐時に、ヘッド冷却流路13を流れる冷却水の温度を低下させる。フリクションの低減による燃料消費率と、エンジン始動からの積算リタード量に基づく燃料消費率とを組み合わせた内燃機関全体の燃料消費率の向上を図ることができる。
(第3の実施形態)
第3の実施形態では、図9を参照して、ヘッド冷却流路13を流れる冷却水の温度を低下させる判断基準の他の例について説明する。
第3の実施形態では、図9を参照して、ヘッド冷却流路13を流れる冷却水の温度を低下させる判断基準の他の例について説明する。
車体の床下に配置された触媒の温度が十分に上昇していない時に、ヘッド冷却流路13を流れる冷却水の温度を低下させると、排気ガスの温度が低下してしまい、車体の床下に配置された触媒を早期に活性化することが妨げられる。図9に示すように、車体の床下に配置された触媒の温度は、エンジンの始動からの経過時間とともに所定の温度まで上昇し、所定の温度に維持される。そこで、コントローラ10は、車体の床下に配置された触媒の温度の上昇率が所定の基準値よりも小さくなったか否かを判断する。コントローラ10は、車体の床下に配置された触媒の温度の上昇率が所定の基準値よりも小さくなった時に、ヘッド冷却流路13を流れる冷却水の温度を低下させる。車体の床下に配置された触媒を早期に活性化することができる。
(第4の実施形態)
第4の実施形態では、燃焼後の排気ガスの一部を取り出して吸気側へ導き、再度、内燃機関へ吸気させる排気ガス再循環装置(EGRクーラ)を更に備える冷却装置について説明する。EGRクーラは、主として、排気ガス中の窒素酸化物(NOX)を低減すること、及び部分負荷時に燃料消費率を向上させることを目的として用いられる。
第4の実施形態では、燃焼後の排気ガスの一部を取り出して吸気側へ導き、再度、内燃機関へ吸気させる排気ガス再循環装置(EGRクーラ)を更に備える冷却装置について説明する。EGRクーラは、主として、排気ガス中の窒素酸化物(NOX)を低減すること、及び部分負荷時に燃料消費率を向上させることを目的として用いられる。
通常、エンジンへ吸入される空気量はスロットルバルブにより調整される。しかし、低速走行時など、高出力を必要としない場合、スロットルバルブは絞った状態となり、シリンダー内への空気の吸入量が低下すると同時に燃料の噴射量も減少する。スロットルバルブで吸気通路が絞られるため、空気の通過断面積は小さくなり、エンジンの損失が増大する。また、加速時や高速走行などのエンジン負荷の高い領域においては、燃焼温度が高温となり、異常燃焼(ノッキング)を引き起こす。よって、燃料消費率悪化の一因となっていた。
EGRクーラは、排気ガスを再循環させ、空気の代わりに排気ガスをシリンダー内に取り込み、燃料の噴射量を少なく保ったまま、ピストンの負荷を低下させる。これとともに、混合気の温度上昇を緩やかにすることで異常燃焼を防ぎ、燃料消費率の向上を図る。
第4の実施形態に係わる内燃機関の冷却装置は、燃焼後の排気ガスの一部を取り出して吸気側へ導き、再度、内燃機関へ吸気させる排気ガス再循環装置(EGRクーラ)を更に備える。図10に示すように、EGRクーラ25の入口は、ヘッド側四方弁17の他の弁に接続され、EGRクーラ25の出口に接続された冷却流路は、ラジエータ19の出口に接続された冷却流路と合流した後、ポンプ23の吸引口に接続されている。
コントローラ10は、上記した第2期間において、図4の代わりに図10に示すように、流路を切り替える。コントローラ10は、ヘッド側四方弁17の弁の内、ヘッド冷却流路13に接続された弁と、ラジエータ19に接続された弁と、EGRクーラ25に接続された弁とを開き、ブロック側四方弁18に接続された弁を閉じる。これにより、ヘッド冷却流路13を流れた冷却水は、ヘッド側四方弁17において分流して、ラジエータ19或いはEGRクーラ25へ流れる。ヘッド冷却流路13を流れた冷却水は、第1の熱交換器20或いは第2の熱交換器21へ流れない。ブロック側四方弁18の制御は、図4と同じであり、省略する。
上記した流路の制御により、ヘッド冷却流路13を流れる冷却水の温度を低下させた後、EGRクーラ25は、取り出した排気ガスを、温度が低下した、ヘッド冷却流路13を流れる冷却水を用いて冷却することができる。よって、排気ガス(EGRガス)の温度が更に低下するため、EGRクーラ25による異常燃焼の改善効果が増加し、燃料消費率の向上を図ることができる。更に、ヘッド冷却流路13を流れる冷却水の温度を低下させる時刻(t1)を更に早めることもできるので、燃料消費率を更に向上させることができる。
以上、実施例に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
特願2012-255293号(出願日:2012年11月21日)の全内容は、ここに援用される。
10…コントローラ(冷却水温度制御部、冷却水温度制御手段)
11…シリンダヘッド
12…シリンダブロック
13…ヘッド冷却流路
14…ブロック冷却流路
15…ヘッド温度検出部
16…ブロック温度検出部
17…ヘッド側四方弁(冷却水温度制御部、冷却水温度制御手段)
18…ブロック側四方弁(冷却水温度制御部、冷却水温度制御手段)
19…ラジエータ
20…第1の熱交換器(オイル熱交換器、オイル熱交換手段)
21…第2の熱交換器(オイル熱交換器、オイル熱交換手段)
23…ポンプ
25…EGRクーラ(排気ガス再循環装置)
11…シリンダヘッド
12…シリンダブロック
13…ヘッド冷却流路
14…ブロック冷却流路
15…ヘッド温度検出部
16…ブロック温度検出部
17…ヘッド側四方弁(冷却水温度制御部、冷却水温度制御手段)
18…ブロック側四方弁(冷却水温度制御部、冷却水温度制御手段)
19…ラジエータ
20…第1の熱交換器(オイル熱交換器、オイル熱交換手段)
21…第2の熱交換器(オイル熱交換器、オイル熱交換手段)
23…ポンプ
25…EGRクーラ(排気ガス再循環装置)
Claims (10)
- 冷却水が流れることによりシリンダヘッドを冷却するヘッド冷却流路と、
冷却水が流れることによりシリンダブロックを冷却するブロック冷却流路と、
前記ヘッド冷却流路を流れる冷却水の温度を検出するヘッド温度検出部と、
前記ブロック冷却流路を流れる冷却水の温度を検出するブロック温度検出部と、
前記ヘッド温度検出部及び前記ブロック温度検出部により検出された冷却水の温度に基づいて、前記ヘッド冷却流路及び前記ブロック冷却流路の各々を流れる冷却水の温度を制御する冷却水温度制御部と、
前記ヘッド冷却流路及び前記ブロック冷却流路を流れる冷却水と、パワートレイン内の潤滑油との間で熱交換を行うオイル熱交換器と、
を備える内燃機関の冷却装置であって、
前記冷却水温度制御部は、前記ヘッド冷却流路及び前記ブロック冷却流路の各々を流れる前記冷却水の温度を同じ温度まで上昇させ、前記同じ温度まで上昇させた後、前記ヘッド冷却流路を流れる冷却水の温度を前記ブロック冷却流路を流れる冷却水の温度よりも先に低下させることを特徴とする内燃機関の冷却装置。 - 前記冷却水温度制御部は、パワートレインの内部で発生するフリクションの低下率が所定の基準値よりも小さくなった時に、前記ブロック冷却流路を流れる冷却水の温度を低下させることを特徴とする請求項1に記載の内燃機関の冷却装置。
- 前記冷却水温度制御部は、前記ブロック冷却流路を流れる冷却水の温度を低下させた後、前記ブロック冷却流路を流れる冷却水の温度が、前記ヘッド冷却流路を流れる冷却水の温度よりも高くなるように制御することを特徴とする請求項1又は2に記載の内燃機関の冷却装置。
- 前記冷却水温度制御部は、内燃機関の始動時から積算した、パワートレインの内部で発生するフリクションの低下による燃料消費率の改善量と、内燃機関の点火時期のリタード量低減による燃料消費率の改善量との大小関係が逆転する時に、前記ヘッド冷却流路を流れる冷却水の温度を低下させることを特徴とする請求項1~3のいずれか一項に記載の内燃機関の冷却装置。
- 前記冷却水温度制御部は、車体の床下に配置された触媒の温度の上昇率が所定の基準値よりも小さくなった時に、前記ヘッド冷却流路を流れる冷却水の温度を低下させることを特徴とする請求項1~3のいずれか一項に記載の内燃機関の冷却装置。
- 燃焼後の排気ガスの一部を取り出して吸気側へ導き、再度、内燃機関へ吸気させる排気ガス再循環装置を更に備え、
前記ヘッド冷却流路を流れる冷却水の温度を低下させた後、前記排気ガス再循環装置は、取り出した排気ガスを、前記ヘッド冷却流路を流れる冷却水を用いて冷却する
ことを特徴とする請求項1~5のいずれか一項に記載の内燃機関の冷却装置。 - 前記オイル熱交換器は、前記ヘッド冷却流路及び前記ブロック冷却流路の各々を流れる前記冷却水の温度が同じ温度まで上昇している間、前記ヘッド冷却流路及び前記ブロック冷却流路を流れる両方の冷却水と、パワートレイン内の潤滑油との間で熱交換を行うことを特徴とする請求項1~6のいずれか一項に記載の内燃機関の冷却装置。
- 前記オイル熱交換器は、前記ヘッド冷却流路を流れる冷却水の温度を低下させてから、前記ブロック冷却流路を流れる冷却水の温度を低下させるまでの間、前記ブロック冷却流路を流れる冷却水と、パワートレイン内の潤滑油との間で熱交換を行うことを特徴とする請求項7に記載の内燃機関の冷却装置。
- 冷却水が流れることによりシリンダヘッドを冷却するヘッド冷却流路と、
冷却水が流れることによりシリンダブロックを冷却するブロック冷却流路と、
前記ヘッド冷却流路を流れる冷却水の温度を検出するヘッド温度検出部と、
前記ブロック冷却流路を流れる冷却水の温度を検出するブロック温度検出部と、
前記ヘッド冷却流路及び前記ブロック冷却流路を流れる冷却水と、パワートレイン内の潤滑油との間で熱交換を行うオイル熱交換器と、
前記ヘッド温度検出部及び前記ブロック温度検出部により検出された冷却水の温度に基づいて、前記ヘッド冷却流路及び前記ブロック冷却流路の各々を流れる冷却水の温度を制御する冷却水温度制御部と、
を備える内燃機関の冷却装置の制御方法であって、
前記ヘッド冷却流路及び前記ブロック冷却流路の各々を流れる前記冷却水の温度を同じ温度まで上昇させ、
前記同じ温度まで上昇させた後、前記ヘッド冷却流路を流れる冷却水の温度を前記ブロック冷却流路を流れる冷却水の温度よりも先に低下させることを特徴とする内燃機関の冷却装置の制御方法。 - 冷却水が流れることによりシリンダヘッドを冷却するヘッド冷却手段と、
冷却水が流れることによりシリンダブロックを冷却するブロック冷却手段と、
前記ヘッド冷却手段を流れる冷却水の温度を検出するヘッド温度検出手段と、
前記ブロック冷却手段を流れる冷却水の温度を検出するブロック温度検出手段と、
前記ヘッド温度検出手段及び前記ブロック温度検出手段により検出された冷却水の温度に基づいて、前記ヘッド冷却手段及び前記ブロック冷却手段の各々を流れる冷却水の温度を制御する冷却水温度制御手段と、
前記ヘッド冷却手段及び前記ブロック冷却手段を流れる冷却水と、パワートレイン内の潤滑油との間で熱交換を行うオイル熱交換手段と、
を備える内燃機関の冷却装置であって、
前記冷却水温度制御手段は、前記ヘッド冷却手段及び前記ブロック冷却手段の各々を流れる前記冷却水の温度を同じ温度まで上昇させ、前記同じ温度まで上昇させた後、前記ヘッド冷却手段を流れる冷却水の温度を前記ブロック冷却手段を流れる冷却水の温度よりも先に低下させることを特徴とする内燃機関の冷却装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012255293 | 2012-11-21 | ||
JP2012-255293 | 2012-11-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014080778A1 true WO2014080778A1 (ja) | 2014-05-30 |
Family
ID=50775963
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/080270 WO2014080778A1 (ja) | 2012-11-21 | 2013-11-08 | 内燃機関の冷却装置及びその制御方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2014080778A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017089585A (ja) * | 2015-11-17 | 2017-05-25 | 日産自動車株式会社 | 車両の制御方法及び車両の制御装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3389279B2 (ja) * | 1993-03-02 | 2003-03-24 | マツダ株式会社 | エンジンの冷却装置 |
WO2009113366A1 (ja) * | 2008-03-12 | 2009-09-17 | 本田技研工業株式会社 | 内燃機関の冷却装置 |
JP2011256736A (ja) * | 2010-06-07 | 2011-12-22 | Nippon Soken Inc | 内燃機関の冷却システム |
-
2013
- 2013-11-08 WO PCT/JP2013/080270 patent/WO2014080778A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3389279B2 (ja) * | 1993-03-02 | 2003-03-24 | マツダ株式会社 | エンジンの冷却装置 |
WO2009113366A1 (ja) * | 2008-03-12 | 2009-09-17 | 本田技研工業株式会社 | 内燃機関の冷却装置 |
JP2011256736A (ja) * | 2010-06-07 | 2011-12-22 | Nippon Soken Inc | 内燃機関の冷却システム |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017089585A (ja) * | 2015-11-17 | 2017-05-25 | 日産自動車株式会社 | 車両の制御方法及び車両の制御装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20160363038A1 (en) | Heat exchange apparatus of vehicle | |
KR101637779B1 (ko) | 차량의 배기열 회수 장치 및 방법 | |
WO2012176286A1 (ja) | 内燃機関の制御装置 | |
JP2017223171A (ja) | 車両用内燃機関の冷却装置及び冷却装置の制御方法 | |
JP2006348793A (ja) | 内燃機関の排気還流装置 | |
JP2011047305A (ja) | 内燃機関 | |
JP2014001703A (ja) | 内燃機関の冷却システム | |
JP2013160183A (ja) | エンジンの冷却構造 | |
JP2010229878A (ja) | 内燃機関の冷却システム | |
JP6007128B2 (ja) | 排気再循環装置の冷却装置 | |
JP2018105189A (ja) | 内燃機関の制御装置 | |
JP4023910B2 (ja) | Egrクーラ装置 | |
JP5083277B2 (ja) | 内燃機関の冷却装置 | |
WO2014080778A1 (ja) | 内燃機関の冷却装置及びその制御方法 | |
WO2013011768A1 (ja) | エンジンの冷却回路 | |
US20110265740A1 (en) | Engine cooling device | |
JP2016109081A (ja) | インタークーラの温度制御装置 | |
JP2012082723A (ja) | 内燃機関の冷却装置 | |
US9638139B2 (en) | Engine with coolant throttle and method for controlling the same | |
JP4930332B2 (ja) | 内燃機関の制御装置 | |
JP5994450B2 (ja) | 可変流量型ポンプの制御装置 | |
JP5880325B2 (ja) | 内燃機関の制御装置 | |
JP2017089586A (ja) | 車両の冷却装置 | |
JP6581922B2 (ja) | 車両制御装置 | |
JP2013124546A (ja) | 車両の冷却装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13856326 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13856326 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |