WO2014080738A1 - レンズ加工システム、加工サイズ管理装置、加工サイズ管理方法および眼鏡レンズの製造方法 - Google Patents

レンズ加工システム、加工サイズ管理装置、加工サイズ管理方法および眼鏡レンズの製造方法 Download PDF

Info

Publication number
WO2014080738A1
WO2014080738A1 PCT/JP2013/079669 JP2013079669W WO2014080738A1 WO 2014080738 A1 WO2014080738 A1 WO 2014080738A1 JP 2013079669 W JP2013079669 W JP 2013079669W WO 2014080738 A1 WO2014080738 A1 WO 2014080738A1
Authority
WO
WIPO (PCT)
Prior art keywords
processing
lens
machining
spectacle lens
data
Prior art date
Application number
PCT/JP2013/079669
Other languages
English (en)
French (fr)
Inventor
喬弘 鈴江
佐藤 司
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Priority to US14/443,482 priority Critical patent/US9962803B2/en
Priority to BR112015011781-3A priority patent/BR112015011781B1/pt
Priority to EP13856984.3A priority patent/EP2924493B1/en
Publication of WO2014080738A1 publication Critical patent/WO2014080738A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B9/00Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
    • B24B9/02Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground
    • B24B9/06Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain
    • B24B9/08Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass
    • B24B9/14Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass of optical work, e.g. lenses, prisms
    • B24B9/148Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass of optical work, e.g. lenses, prisms electrically, e.g. numerically, controlled
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/02Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent

Definitions

  • the present invention relates to a lens processing system, a processing size management device, a processing size management method, and a spectacle lens manufacturing method used for processing a lens shape of a spectacle lens.
  • eyeglass lens processing is performed in order to frame a spectacle lens (uncut lens) having an unprocessed outer shape in a spectacle frame.
  • the spectacle lens is processed according to the frame shape of the spectacle frame (the frame shape of the portion where the spectacle lens is framed).
  • As an ordering system for eyeglass lenses with this lens shape processing information necessary for eyeglass lens processing is transmitted from the eyeglass store on the ordering side to the processing center on the order receiving side and processed using that information.
  • a system is known in which eyeglass lenses processed into a lens shape in a center are supplied to a spectacle store.
  • a target lens processing device is used for target lens lens processing.
  • the size of the spectacle lens that has been processed by this target lens processing device is a problem with the spectacle frame of a spectacle lens that has been processed in a certain period of time due to deterioration of workability such as wear and clogging of processing tools. Even if it is within a desired range of a non-sized size, a spectacle lens that has been cast into a lens at a different time thereafter may deviate from the desired range. In such a case, it is necessary to adjust the processing size so that the processing size of the spectacle lens falls within a desired range.
  • Patent Document 1 when managing the peripheral length of a spectacle lens after target lens processing, the difference in lens peripheral length in lens processing (difference between measured peripheral length and theoretical peripheral length) is disclosed. Accordingly, a technique for adjusting the inter-axis distance between the holding axis of the processing tool and the lens axis serving as the rotation axis of the lens holder is described (see claim 1, paragraph 0018 of Patent Document 1).
  • an object of the present invention is to provide a technique capable of adjusting the processing size of the spectacle lens without breaking the outer shape of the spectacle lens.
  • the first aspect of the present invention is: A lens shape processing apparatus that performs lens shape processing of a spectacle lens according to three-dimensional processing trajectory data obtained by calculation from the lens shape data, A three-dimensional measuring device for measuring in three dimensions the processing size of the spectacle lens that has been processed by the target lens processing device; A machining size management device that corrects a computation parameter used for computation of the machining trajectory data based on a difference between an actual machining size value obtained by measurement of the three-dimensional measurement device and a theoretical value of the machining size obtained by calculation; , Is a lens processing system.
  • the processing size management device stores and holds a correction value in association with the material of the spectacle lens and the type of processing tool, and uses the stored and stored correction value to store the material of the spectacle lens and the type of the processing tool.
  • the calculation parameter is corrected every time.
  • the actual measurement value of the processing size and the theoretical value of the processing size are associated with the material of the spectacle lens used in the current lens processing and the type of processing tool.
  • a machining history storage unit for sequentially storing machining history data;
  • An extraction unit that extracts a plurality of processing history data stored in the processing history storage unit in the same combination as the material of the spectacle lens and the type of processing tool used in the current lens shape processing; Using the plurality of machining history data extracted by the extraction unit, an average value of a difference between an actual value of the machining size and a theoretical value of the machining size is obtained, and the obtained average value is defined in advance.
  • a change unit that changes the correction value used in the same combination as the material of the spectacle lens and the type of the processing tool used in the target lens shape processing when the range is exceeded; Is provided.
  • the fourth aspect of the present invention is: A processing size management device used by connecting to a target lens processing device that performs target lens processing according to three-dimensional processing trajectory data obtained by calculation from target lens shape data, An arithmetic unit that calculates a difference between an actual value of the processing size obtained by measuring the processing size of the spectacle lens processed by the lens processing device in three dimensions and a theoretical value of the processing size obtained by calculation, Based on the calculated difference, a correction unit that corrects a calculation parameter used for calculation of the machining locus data; Is a processing size management device.
  • a processing size management method for managing a processing size of a spectacle lens that has been processed by a target lens processing apparatus that performs target processing of a spectacle lens according to three-dimensional processing trajectory data obtained by calculation from the target lens shape data A step of calculating a difference between an actual value of a processing size obtained by measuring a processing size of a spectacle lens processed by the target lens processing device in three dimensions and a theoretical value of a processing size obtained by calculation; Correcting a calculation parameter used for calculation of the machining trajectory data based on the calculated difference; Is a processing size management method.
  • the sixth aspect of the present invention is: Calculating the machining trajectory data using the calculation parameters corrected by the machining size management method according to the fifth aspect; A step of processing the spectacle lens by the lens processing apparatus according to the processing trajectory data obtained by the calculation; Is a method of manufacturing a spectacle lens.
  • the processing size of the spectacle lens can be adjusted without breaking the outer shape of the spectacle lens.
  • FIG. 6 is a diagram (No.
  • FIG. 6 is a diagram (No. 2) for explaining the relationship between the value of the tool diameter used for the calculation of the machining locus data and the circumference of the spectacle lens that has been cast according to the machining locus data.
  • FIG. 11 is a diagram (No. 3) for explaining the relationship between the value of the tool diameter used for the calculation of the processing locus data and the circumference of the spectacle lens that has been cast according to the processing locus data. It is a figure explaining the difference in the correction
  • FIG. 1 is a block diagram showing a configuration example of an eyeglass lens ordering system to which the present invention is applicable.
  • a terminal of an eyeglass store 1 that is an ordering side and a terminal of a processing center 2 that is an ordering side are connected to each other via a communication line 3 so that they can communicate with each other.
  • the communication line 3 may be a public communication line or a dedicated communication line.
  • a lens processing system 4 is constructed in the processing center 2.
  • the number of devices (including devices and terminals) constituting the lens processing system 4 is not limited to one, but may be a plurality.
  • the ordering side is not limited to the spectacle store 1, but, for example, when an external processing factory or another lens manufacturer entrusts the processing of the spectacle lens to the processing center 2, the processing factory or the lens manufacturer is the ordering side. .
  • the spectacle store 1 is provided with an ordering terminal 5 and a tracer 6.
  • a server device 7, a client device 8, a target lens processing device 9, and a three-dimensional circumference measuring device 10 are installed, and a lens processing system 4 is configured by these devices.
  • a plurality of (only two in the illustrated example) target lens processing devices 9 are connected to each client device 8.
  • Unique processing device identification information is assigned to each of the plurality of target lens processing devices 9.
  • the apparatus installed in the processing center 2 is connected to be communicable via the network 11 of the processing center 2.
  • the ordering terminal 5 is configured using a computer device.
  • the computer device has an arithmetic function, a control function, a storage function, an input / output function, and the like.
  • the computer device is configured using hardware resources such as a CPU (Central Processing Unit), a ROM (Read-Only Memory), a RAM (Random Access Memory), and an HDD (Hard disk drive). is there.
  • a CPU Central Processing Unit
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • HDD Hard disk drive
  • the ordering terminal 5 is connected to the communication line 3 via a router or the like (not shown), and is configured to exchange data with an external terminal (the server device 7 of the processing center 2 in this embodiment) through the communication line 3. Has been.
  • the ordering terminal 5 accepts input of ordering data necessary for requesting (ordering) the eyeglass lens processing to the processing center 2 and transmits the received ordering data to the server device 7 of the processing center 2.
  • the ordering terminal 5 is normally operated by a store clerk of the spectacle store 1.
  • the tracer 6 measures the frame shape of the spectacle frame in three dimensions.
  • the frame shape data of the spectacle frame obtained by the measurement by the tracer 6 is data that can specify the frame shape of the spectacle frame in a three-dimensional coordinate space.
  • the tracer 6 includes a contact for measuring the shape and a support shaft that supports the contact.
  • the tracer 6 measures the frame shape of the spectacle frame by bringing a contactor into contact with the groove of the rim portion of the spectacle frame to be measured (the portion where the spectacle lens is framed).
  • an original lens (dummy lens or pattern) attached to the spectacle frame by, for example, “rimless spectacles” is used.
  • the frame shape data obtained by the measurement of the tracer 6 is three-dimensional data that can specify the frame shape of the spectacle frame.
  • the tracer 6 a well-known one (for example, described in Japanese Patent Application Laid-Open No. 2009-243952 and International Publication No. 2007/0777848) can be used.
  • the server device 7 is configured using a computer device, and includes a data management unit 14 and a database unit 15.
  • the data management unit 14 manages various data using the database unit 15. For example, the data management unit 14 receives order data transmitted from the order terminal 5 of the spectacle store 1 via the communication line 3 and registers the received data in the database unit 15 as order data. Further, each time the data management unit 14 registers the order data in the database unit 15, the data management unit 14 generates job identification information of a job related to eyeglass processing of the spectacle lens, and associates the received order data with the job identification information. Register in the database unit 15. Therefore, one piece of job identification information is generated every time the lens processing of the spectacle lens is performed once. The relationship between the job identification information registered in the database unit 15 and the order data is a one-to-one relationship.
  • the data management unit 14 converts the job identification information generated as described above into, for example, a two-dimensional barcode, and sends the barcode to a printing apparatus (not shown), thereby printing out a worksheet with the barcode.
  • the worksheet is, for example, a sheet-like paper medium.
  • the worksheet is put in a tray (not shown) together with an unprocessed spectacle lens (uncut lens) specified by the order data.
  • the database unit 15 stores and holds various information (data) necessary for the operation of the eyeglass lens ordering system (including the lens processing system 4).
  • the database unit 15 stores spectacle lens design data, processing history data, and the like.
  • the spectacle lens design data is data that allows the surface shapes of the two optical surfaces of the spectacle lens to be specified in three dimensions.
  • the processing history data will be described later.
  • the client device 8 constitutes a processing size management device together with the server device 7 described above.
  • the client device 8 is configured using a computer device, and includes a processing control unit 16, a processing size monitoring unit 17, a calculation unit 18, and a storage unit 19.
  • the server device 7 and the client device 8 are shown as independent components, but the present invention is not limited to this, and the server device 7 and the client device 8 can be realized by a single computer device. .
  • a plurality of client devices 8 are installed in the processing center 2, a configuration in which the plurality of client devices 8 are connected to a common server device 7 via the network 11 can be employed.
  • the processing control unit 16 performs various control processes when performing the lens processing of the eyeglass lens using each of the target lens processing devices 9 connected to the client device 8.
  • the processing size monitoring unit 17 monitors the size of the spectacle lens processed by the target lens processing device 9 and performs processing for adjusting the processing size as necessary.
  • the calculation unit 18 performs various types of calculation processing related to eyeglass processing of spectacle lenses.
  • the calculation items performed by the calculation unit 18 include at least target lens shape data, machining size difference data, and the like.
  • Each of the target lens shape processing devices 9 calculates three-dimensional processing trajectory data using the target lens shape data, and performs target lens processing on the spectacle lens according to the processing trajectory data.
  • the target lens shape data is data calculated using the above-mentioned spectacle frame frame shape data, etc., and is data indicating the three-dimensional shape (three-dimensional shape) of the spectacle lens after processing the target lens shape. This is the size of the spectacle lens in the shape of the target lens.
  • the peripheral length of a spectacle lens that has been processed into a target lens shape is defined as a processing size.
  • the machining size difference data is data indicating a difference between an actual machining size value obtained by measurement by the three-dimensional measuring apparatus and a theoretical value of the machining size obtained by calculation.
  • a three-dimensional circumference measuring device 10 is used as a three-dimensional measuring device.
  • the difference data of the machining size is data indicating a difference between the actually measured circumference obtained by the measurement of the three-dimensional circumference measuring apparatus 10 and the theoretical circumference obtained in the calculation.
  • the machining trajectory data is obtained by calculating the amount of movement for each drive axis for each cutting point using the target lens shape data.
  • the target lens target lens lens is matched with the frame shape of the spectacle frame. This is data for determining the processing conditions for mold processing.
  • the processing conditions for the target lens processing are driving such as the cutting pressure and grinding pressure when the target lens processing device 9 performs target lens processing for the spectacle lens, the cutting amount of the processing tool, the rotational speed of the tool, and the rotational speed of the lens shaft.
  • a plurality of processing tools included in the target lens processing device 9 are selected in any order, and the holding shaft, the lens axis, and other actuators of the selected processing tool are driven to provide spectacle lenses. The condition of whether to process.
  • the storage unit 19 stores information other than information stored in the database unit 15 among information related to eyeglass processing of spectacle lenses.
  • the information stored in the storage unit 19 includes at least a correction table (details will be described later) in which calculation parameters used for calculation of machining locus data and correction values used for correction of the calculation parameters are stored.
  • the calculation parameters to be corrected are parameters that can change the processing size of the spectacle lens. For this reason, when the value of the calculation parameter is changed (corrected), the machining trajectory data calculated using the calculation parameter before the change and the processing trajectory data calculated using the calculation parameter after the change are different, As a result, the size (processing size) of the spectacle lens obtained in the target lens processing is also different.
  • the size of the spectacle lens that can be adjusted by correcting the calculation parameter is the circumference of the spectacle lens.
  • a value of a tool diameter of a processing tool included in the target lens processing device 9 is assumed.
  • the tool diameter of the processing tool corresponds to the radius of the grinding wheel when, for example, the spectacle lens is processed with a cylindrical grinding wheel.
  • the target lens processing device 9 performs target lens processing for a spectacle lens.
  • the eyeglass lens processing refers to processing a spectacle lens called an uncut lens according to the shape of the spectacle frame in which the spectacle lens is framed.
  • the lens processing of the spectacle lens by the target lens processing device 9 is performed through two processing steps such as roughing and finishing.
  • Roughing is a processing step for processing a spectacle lens into a shape that is slightly larger than the final finished shape of the spectacle lens.
  • the finishing process is to process the spectacle lens after the rough processing in accordance with the final finishing shape of the spectacle lens, and is a processing step including a beveling process.
  • Roughing and finishing may be performed by changing a processing tool for each process, or may be performed using the same processing tool.
  • the processing method may be changed for each process, for example, roughing is performed by cutting and finishing is performed by grinding, or the same processing method may be applied.
  • the finishing process may include a mirror surface process as necessary.
  • Mirror finish is a process that gives the gloss by polishing the edge of the lens with a fine tool.
  • the beveling process is a process of forming a bevel on the outer peripheral surface of the spectacle lens.
  • shapes There are several types (shapes) of eyeglass lens bevels. Examples of the bevel type include a mountain-shaped bevel, a groove-shaped bevel, and a flat bevel.
  • the types of processing tools used for finishing differ depending on the bevel type.
  • the ball shape processing device 9 is attached with a barcode reader.
  • the barcode reader optically reads the barcode printed on the above-described worksheet and acquires job identification information indicated by the barcode.
  • the target lens processing device 9 receives information necessary for target lens lens processing from the client device 8 by transmitting job identification information obtained as a result of reading by the barcode reader to the client device 8.
  • the three-dimensional circumference measuring device 10 is provided as an example of a processing size measuring device that measures a processing size of a spectacle lens that has been processed by the target lens processing device 9 in a three-dimensional manner.
  • the three-dimensional circumference measuring device 10 measures the circumference of the spectacle lens that has been subjected to the lens processing (finishing processing) by the lens processing device 9 in three dimensions.
  • the three-dimensional circumference measuring apparatus 10 has a stylus that is a measuring element for circumference measurement. When the bevel type of the spectacle lens to be measured is a mountain-shaped bevel, the three-dimensional circumference measuring apparatus 10 makes the stylus contact the top of the bevel formed on the edge surface, and maintains this contact state.
  • the circumference of the spectacle lens is measured by rotating the spectacle lens. If the bevel type is a flat bevel (flat bevel) or a bevel with a groove on the edge, the stylus is brought into contact with the edge that forms the flat bevel, and the eyeglass lens is rotated while maintaining this contact state. By doing so, the circumference of the spectacle lens is measured. In that case, the three-dimensional circumference measuring device 10 recognizes the displacement amount and direction of the stylus accompanying the rotation of the spectacle lens in a three-dimensional coordinate space, and based on the recognition result, determines the circumference of the top of the spectacle lens. measure. Data on the actual circumference of the spectacle lens obtained by the measurement of the three-dimensional circumference measuring device 10 is sent to the server device 7 via the network 11. In addition, as the three-dimensional circumference measuring apparatus 10, what was described in the patent 3208656 gazette can be used, for example.
  • a bar code reader is attached to the three-dimensional circumference measuring apparatus 10.
  • the barcode reader optically reads the barcode printed on the above-described worksheet and acquires job identification information indicated by the barcode.
  • the three-dimensional circumference measuring device 10 transmits the job identification information obtained as a result of reading by the barcode reader to the server device 7 together with the measured circumference data of the spectacle lens corresponding to the job identification information.
  • FIG. 2 is a flowchart showing a flow of processing relating to ordering of eyeglass lenses.
  • the spectacle frame desired (selected) by the customer is set on the tracer 6 and the frame shape of the spectacle frame is measured (S1). Data measured by the tracer 6 is taken into the ordering terminal 5.
  • the store clerk of the spectacle store 1 inputs ordering data using the ordering terminal 5 (S2).
  • the order data includes spectacle frame information, spectacle lens information, layout information, prescription information, and the like.
  • the spectacle frame information includes a frame manufacturer, a model name, a frame material, a frame size, a frame pattern, a frame color, and the like in addition to the above-described frame shape data of the spectacle frame.
  • the spectacle lens information includes lens material, presence / absence of functional film (light control / polarization), lens color, presence / absence of hard coat film, product code, and the like.
  • the layout information includes an interpupillary distance, a pupil height, and the like.
  • the prescription information includes spherical power, astigmatism power, astigmatism axis, addition power, prism prescription, and the like.
  • the server device 7 receives the order data transmitted from the order terminal 5 of the spectacle store 1 as order data (S4).
  • the data management unit 14 of the server device 7 generates job identification information when receiving the order data or at an appropriate timing thereafter (S5).
  • the data management unit 14 registers the received order data in the database unit 15 in association with the generated job identification information (S6).
  • a worksheet with a barcode is printed out using a printing device (not shown) (S7).
  • the spectacle lens to be put in the tray may be an uncut lens as a stock lens or an uncut lens as a custom lens.
  • FIG. 3 and FIG. 4 are flowcharts showing the flow of processing related to eyeglass processing of a spectacle lens.
  • the operator of the target lens shape processing apparatus 9 takes out the worksheet from the tray, and reads the barcode printed on the worksheet with the barcode reader attached to the target lens shape processing apparatus 9 (S11).
  • the target lens processing device 9 transmits the job identification information obtained as a result of reading by the barcode reader together with the processing device identification information assigned to the own device to the client device 8 via the network 11 ( S12).
  • the processing control unit 16 of the client device 8 receives the job identification information and the processing device identification information transmitted from the target lens processing device 9 (S13). Next, the processing control unit 16 transmits (transfers) the received job identification information and processing device identification information to the server device 7 (S14).
  • the data management unit 14 of the server device 7 receives the job identification information and the processing device identification information transmitted from the client device 8 (S15).
  • the data management unit 14 searches the database unit 15 using the job identification information as a search key among the received job identification information and processing device identification information (S16).
  • the data management unit 14 registers the processing apparatus identification information received earlier in association with the job identification information that matches the search key (S17).
  • the order data and the target lens processing device 9 that performs target processing based on the received order data are linked using the same job identification information.
  • the data management unit 14 reads out information necessary for eyeglass processing of the spectacle lens from the order data registered in the database unit 15 (S18).
  • the information necessary for eyeglass processing of spectacle lenses means spectacle frame information, spectacle lens information, layout information, prescription information, and the like.
  • the data management unit 14 transmits the read information to the client device 8 (S19).
  • the processing control unit 16 of the client device 8 receives information necessary for eyeglass processing of the spectacle lens transmitted from the server device 7 as described above (S20).
  • the computing unit 18 of the client device 8 computes the target lens shape data using the information received by the machining control unit 16 (S21).
  • Various data are used for the calculation of the target lens shape data.
  • the tool diameter value (design value) of the target lens processing device 9 is included as one of the data related to the target lens processing device 9.
  • Data relating to the target lens processing device 9 (including the type of processing tool and the value of each tool diameter) is automatically transmitted from the target lens processing device 9 to the client device 8 when the target lens processing device 9 is connected to the network 11, for example.
  • each target lens processing apparatus 9 is stored in the storage unit 19.
  • the data related to the target lens processing device 9 is stored in the database unit 15 of the server device 7 for each target lens processing device 9 instead of the storage unit 19 of the client device 8, and the client device 8 then stores the data as necessary. It is good also as a structure which reads the data regarding the target lens processing apparatus 9.
  • the calculation unit 18 calculates the theoretical circumference of the spectacle lens (S22).
  • the theoretical circumference corresponds to a theoretical value obtained by calculation as the processing size of the spectacle lens after processing the target lens shape.
  • Theoretical circumference means that when processing an uncut lens according to the specified bevel size, bevel position, bevel mode, etc., the processed lens is firmly framed in the frame selected by the customer For this purpose, it refers to the circumference of the spectacle lens based on the target lens shape data obtained by correcting the frame shape data.
  • the theoretical circumference is calculated as the circumference of the spectacle lens that is preferable from the viewpoint of improving the fitting rate when the spectacle lens that has been subjected to the finishing process of the target lens shape is put into the spectacle frame.
  • the ideal state is when the circumference of the spectacle lens after processing the target lens shape matches this theoretical circumference.
  • a calculation method described in Japanese Patent No. 2994870 may be adopted.
  • the calculation unit 18 has a calculation program for machining calculation, and obtains the target lens shape data and the theoretical circumference by executing this calculation program.
  • the processing control unit 16 of the client device 8 transmits the target lens shape data calculated by the calculating unit 18 to the target lens processing device 9 (S23). At this time, the processing control unit 16 uses the lens shape processing device 9 together with the target lens shape data for the correction value used when correcting the “tool diameter value of the processing tool” which is one of the calculation parameters of the processing trajectory data. Send to.
  • the correction value is read from the storage unit 19 by the processing control unit 16.
  • FIG. 5 is a diagram for explaining an example of a storage form of correction values used when correcting the tool diameter value of the machining tool.
  • a parameter correction folder is a folder for storing a correction table for correcting calculation parameters used for calculation of machining locus data.
  • a correction table is prepared for each target lens processing device 9.
  • the plurality of target lens processing devices 9 are divided into No. 1, No. 2,... For convenience.
  • correction values are registered (stored) in association with the material of the spectacle lens and the type of processing tool.
  • the spectacle lens materials are divided into five types M1 to M5, and the processing tool types are divided into six types T1 to T6.
  • a total of 30 correction values (H11 to H65) are registered according to the number of combinations of the material of the spectacle lens and the type of processing tool.
  • the number of correction values stored can be increased or decreased as appropriate according to the type of processing tool and the type of material of the spectacle lens.
  • Each correction value is a value obtained by converting the difference between the measured circumference and the theoretical circumference into a radius.
  • the processing tools T1 to T6 to be registered in the correction table are processing tools used for at least the finishing processing of the target lens shape (beveling processing) among the processing tools of one target lens processing device 9 to which the correction table is applied. is there.
  • different types of processing tools are selected according to the type of the bevel formed on the edge surface of the spectacle lens. For this reason, the bevel type of the spectacle lens may be registered in the correction table instead of the type of processing tool.
  • Reading of the correction value is performed as follows. First, the material of the spectacle lens to be processed is specified with reference to the spectacle lens information included in the order data received by the processing control unit 16 from the server device 7 earlier. Here, it is assumed that the material of the spectacle lens is M3. Further, it is assumed that the target lens processing apparatus 9 used for target lens processing is No. 1 and the type of processing tool used for finishing processing is T2. In such a case, the processing control unit 16 reads the correction value H23 from the correction table stored in the storage unit 19 corresponding to the first lens processing apparatus 9 and uses the correction value T23 together with the target lens shape data. It transmits to the target lens shape processing apparatus 9.
  • the machining control unit 16 transmits the theoretical circumference calculated by the calculation unit 18 to the server device 7 together with the job identification information (S24).
  • the data management unit 14 of the server device 7 receives the theoretical circumference from the client device 8 (S25), and registers the received theoretical circumference in the processing history table of the database unit 15 in association with the job identification information. (S26).
  • the database unit 15 stores a machining history table, for example, in the data format shown in FIG.
  • the illustrated processing history table is prepared for each target lens processing device 9.
  • Processing history data is registered in the processing history table.
  • the processing history data the theoretical circumference and the actually measured circumference are registered in time series in association with the material of the spectacle lens and the type of the processing tool for each job identification information (job ID).
  • job ID job identification information
  • One piece of job identification information is generated every time the lens processing of the spectacle lens is performed once. For this reason, one piece of processing history data is stored each time the lens processing of the spectacle lens is performed, and the processing history data is sequentially accumulated by repeating the processing of the target lens processing.
  • the spectacle lens material extracted from the order data is registered.
  • the type of processing tool column the type of processing tool corresponding to the bevel type of the spectacle lens is registered.
  • the theoretical circumference received from the client device 8 is registered in the theoretical circumference column.
  • the column of the measured circumference is blank at this stage.
  • the processing history table is not necessarily prepared separately for each target lens processing device 9. Specifically, one processing history table may be provided, and processing history data regarding all target lens shape processing devices 9 may be registered in this processing history table. In that case, the processing history data is registered for each job identification information, and the processing device identification information is included in the processing history data so that it can be understood which of the target lens processing devices 9 is used for processing the target lens shape. do it.
  • the target lens shape processing device 9 receives the target lens shape data and the correction value for correcting the operation parameter transmitted from the client device 8 (S27).
  • the target lens shape processing apparatus 9 corrects the calculation parameters used for the calculation of the machining trajectory data using the correction values (S28). Specifically, the value of the tool diameter of the machining tool used for the calculation parameter is corrected using the correction value received together with the target lens shape data.
  • the tool radius value used for the calculation of the machining trajectory data is the tool radius Ra
  • the design value of the tool radius is the tool radius Rb
  • the correction value H23 is positive or negative
  • the correction value used for correction of the calculation parameter may be acquired by the target lens processing device 9 at any timing as long as the calculation unit 18 does not calculate the machining locus data. Also, regarding the correction value acquisition method, the target lens processing device 9 accesses the client device 8, and the correction value necessary for the calculation of the processing trajectory data is obtained from the correction table for the own device stored in the calculation unit 18. A method of reading and acquiring may be used.
  • the target lens shape processing apparatus 9 calculates processing trajectory data based on the target lens shape data (S29).
  • the calculation parameter (tool diameter value) corrected with the correction value is used for the calculation of the machining trajectory data.
  • the machining trajectory data obtained by this calculation is three-dimensional data. For this reason, when the value of the tool diameter used for the calculation of the machining locus data is corrected, the corrected tool diameter value can be reflected in the three-dimensional machining locus data.
  • the relationship between the value of the tool diameter used for the calculation of the processing trajectory data and the circumference of the spectacle lens that has been cast in accordance with the processing trajectory data will be described.
  • the tool diameter used for the calculation of machining trajectory data if the tool diameter value after correction is smaller than the tool diameter value before correction with the correction value, the circumference of the spectacle lens finished by the lens processing will be reduced. The length is shortened.
  • the value of the corrected tool diameter is larger than the value of the tool diameter before correction with the correction value, the peripheral length of the spectacle lens finished by the lens shape processing becomes longer.
  • FIG. 7 shows the case where the tool diameter value used for the calculation of the machining locus data is not corrected, that is, the correction value is zero.
  • the machining trajectory data 33 is calculated using the value of the prescribed tool diameter (design value of the machining tool) 32 used for the calculation of the target lens shape data 31 as it is. For this reason, the outer shape 34 of the spectacle lens when the target lens diameter 32 is processed into a target lens shape matches the target lens shape data 31.
  • FIG. 8 shows a case where correction is performed so that the value of the tool diameter used for the calculation of the machining trajectory data becomes small, that is, a case where the correction value takes a negative value.
  • the machining trajectory data 36 is calculated using a value of the tool diameter 35 smaller than the prescribed tool diameter 32 with respect to the target lens shape data 31.
  • the machining locus data 36 is set inside the machining locus data 33 calculated based on the prescribed tool diameter 32. For this reason, the feed amount of the processing tool to the spectacle lens is increased by the amount that the tool diameter of the processing tool assumed in the calculation is reduced. However, even if the tool diameter value used for the calculation is corrected, the tool diameter of the actual machining tool does not change.
  • the outer shape 37 of the spectacle lens when the target lens diameter 32 is processed into a target lens shape is formed inside the target lens shape data 31. Therefore, the outer size of the spectacle lens is smaller than before correcting the value of the tool diameter, and accordingly, the peripheral length of the spectacle lens is also shortened.
  • FIG. 9 shows a case where correction is performed so that the value of the tool diameter used for the calculation of machining trajectory data becomes large, that is, a case where the correction value takes a positive value.
  • the machining trajectory data 39 is calculated using a value of the tool diameter 38 larger than the prescribed tool diameter 32 with respect to the target lens shape data 31.
  • the machining locus data 39 is set outside the machining locus data 33 calculated based on the prescribed tool diameter 32. For this reason, the feed amount of the processing tool with respect to the spectacle lens can be reduced by an amount corresponding to the increase in the tool diameter of the processing tool assumed in the calculation. However, even if the tool diameter value used for the calculation is corrected, the tool diameter of the actual machining tool does not change.
  • the outer shape 40 of the spectacle lens when the target lens diameter 32 is processed into a target lens shape is formed outside the target lens shape data 31. Therefore, the outer size of the spectacle lens becomes larger than before the value of the tool diameter is corrected, and accordingly, the peripheral length of the spectacle lens becomes longer.
  • the tool diameter value is corrected so that the corrected tool diameter value is increased by an appropriate amount compared to the tool diameter value before correction.
  • the measured circumference can be brought close to the theoretical circumference in the subsequent target lens processing.
  • the tool diameter value is corrected with the correction value so that the corrected tool diameter value is reduced by an appropriate amount compared to the tool diameter value before correction. As a result, the measured circumference can be made closer to the theoretical circumference in subsequent lens processing.
  • the operator attaches the spectacle lens to the lens axis of the target lens processing device 9 and then instructs the start of processing by operating a button or the like. Then, in response to this instruction, the target lens processing device 9 performs target lens processing for the spectacle lens (S30).
  • the target lens processing apparatus 9 performs target lens processing for the spectacle lens (S30).
  • the above-described roughing and finishing processing are sequentially performed using the processing tools included in the target lens shape processing apparatus 9 by appropriately driving and controlling each actuator.
  • the driving of the actuator is stopped in the lens processing device 9. Roughing and finishing may be performed using the same processing tool or different processing tools. Thereafter, the operator removes the processed spectacle lens from the lens axis of the target lens shape processing apparatus 9 and returns it to the original tray.
  • the tray in which the eyeglass lenses that have been processed into a lens shape are accommodated is transferred to the installation location of the three-dimensional circumference measuring apparatus 10. Therefore, the operator of the three-dimensional circumference measuring apparatus 10 first takes out the worksheet from the tray, and reads the barcode printed on the worksheet with the barcode reader attached to the three-dimensional circumference measuring apparatus 10 ( S31). Next, the operator sets a spectacle lens in the three-dimensional circumference measurement device 10 and causes the circumference measurement of the spectacle lens to be executed (S32).
  • the operator of the three-dimensional circumference measuring apparatus 10 sets the spectacle lens to be measured on the three-dimensional circumference measuring apparatus 10 and then instructs the start of measurement by operating a button or the like. Then, in response to this instruction, in the three-dimensional circumference measuring apparatus 10, each actuator starts driving.
  • the stylus comes into contact with the bevel portion of the edge surface of the spectacle lens, and the stylus is displaced in the radial direction and the thickness direction of the spectacle lens by rotating the spectacle lens in this state.
  • the displacement amount and direction of the stylus that is displaced as described above are detected for each rotation angle of the spectacle lens, and the circumference of the spectacle lens is measured in three dimensions based on the detection result. To do.
  • the measuring device 10 transmits to the server device 7 (S33).
  • the operator removes the spectacle lens from the lens holding portion of the three-dimensional circumference measurement apparatus 10 and returns it to the original tray.
  • the data management unit 14 of the server device 7 receives the job identification information and the actually measured circumference transmitted from the three-dimensional circumference measuring device 10 as described above (S34).
  • the data management unit 14 registers the measured circumference in the processing history table in the database unit 15 in association with the received job identification information (S35).
  • each column of the material of the spectacle lens, the type of processing tool, the theoretical circumference, and the actual measurement circumference is associated with the job identification information related to the target lens processing. In addition, each information is registered.
  • the data management unit 14 uses the measured circumference and the theoretical circumference registered in the database unit 15 as described above, and uses the difference between the measured circumference and the theoretical circumference (hereinafter also referred to as “circumference difference”). ) Is calculated (S36). Next, the data management unit 14 determines whether or not the circumference difference obtained by the calculation is within an appropriate range set in advance in terms of the quality of the spectacle lens of the final product (S37). If it is within the appropriate range, the client device 8 is notified (transmitted) to that effect (S38). This notification includes job identification information of a job that has finished the target lens shape processing normally.
  • the circumference difference is outside the appropriate range, there is a high possibility that some abnormality has occurred, so error processing (not shown) is performed and the series of processing is completed.
  • error processing (not shown) is performed and the series of processing is completed.
  • the calculation of the circumference difference and the determination of the pass / fail are performed by the data management unit 14, but the present invention is not limited to this, and it is also possible to perform the processing by the three-dimensional circumference measurement apparatus 10. It is.
  • the processing control unit 16 of the client PC receives the notification from the server device 7 (S39), and then stores the processing history data registered in the database unit 15 in association with the job identification information included in the notification.
  • the server device 7 is requested to provide (S40).
  • the data management unit 14 of the server device 7 extracts the processing history data designated by this request from the database unit 15 (S42).
  • the data management unit 14 selects a processing history from the processing history table of the target lens processing device 9 requested by the server device 7 in the same combination as the spectacle lens material and processing tool type used in the current target lens processing. At least one machining history data registered in the table is extracted. The number of machining history data to be extracted can be arbitrarily set. As one preferable example, a plurality of processing history data having the same combination as the spectacle lens material and the processing tool type used in the current lens processing are registered in the database unit 15 in the order of new registration (for example, 10). )Extract.
  • the processing history data of the same combination (in the figure, with an asterisk) Multiple) are extracted.
  • the material of the eyeglass lens and the type of machining tool used in the current lens shape processing are selected from the machining history data registered in the machining history table after tool exchange. It is desirable to extract a plurality of combination processing history data.
  • the data management unit 14 transmits a plurality of machining history data extracted from the database unit 15 to the client device 8 (S43).
  • the machining history data transmitted at this time includes at least the theoretical circumference and the actually measured circumference.
  • the machining control unit 16 of the client device 8 receives a plurality of machining history data transmitted from the server device 7 (S44).
  • the computing unit 18 of the client device 8 obtains the average value of the circumference differences using the received plurality of machining history data (S45). Specifically, first, for each machining history data, the difference between the measured circumference and the theoretical circumference is obtained as a circumference difference. Further, the average value of the circumference differences is obtained by dividing the obtained circumference difference by the number of machining history data.
  • the machining size monitoring unit 17 of the client device 8 determines whether it is necessary to change the correction value in the correction table using the average value of the circumference differences (S46). Whether or not the correction value needs to be changed is determined by whether or not the average value of the circumference differences obtained as described above is within a predetermined range. Specifically, if the average value of the circumference differences is within a specified range, it is determined that the correction value need not be changed, and the process ends here. If the average value of the circumference differences exceeds the specified range, it is determined that the correction value needs to be changed, and the process proceeds to the subsequent processes.
  • the processing size monitoring unit 17 uses the correction table registered in the correction table shown in FIG. 5 with the same combination as the material of the spectacle lens and the type of processing tool used in the current lens processing.
  • the correction value registered in is changed (S47).
  • the correction value is changed in order to reduce the difference between the measured circumference and the theoretical circumference (ideally zero).
  • how much the correction value of the correction table is changed may be obtained by converting the average value of the circumferential length differences into a radius based on the average value of the circumferential length differences described above.
  • the correction frequency increases, and there is a concern that the correction amount per time is too large and the risk of a size defect increases. .
  • the maximum correction amount allowed for one correction is set, and the correction value is changed in a plurality of times based on this correction amount, so that the actually measured circumference gradually becomes the theoretical circumference. It is preferable to correct so that it approaches. For example, when the correction amount necessary to make the circumference difference zero is 0.05 mm and the maximum correction amount allowed for one correction is 0.02 mm, the correction value is divided into three times. It is preferable to make changes. In that case, it is desirable that the maximum correction amount allowed for one correction is set in advance for each lens material, and the maximum correction amount is switched for each lens material.
  • the correction value is registered in the correction table of the same combination.
  • the correction value H23 is changed.
  • the tool diameter value corrected with the corrected value after the calculation is calculated.
  • the machining trajectory data is calculated using the parameters. Further, in the lens shape processing apparatus 9, the lens shape processing of the spectacle lens is performed according to the processing locus data reflecting the value of the tool diameter corrected by the corrected correction value.
  • the computation parameter (machining) used for computing the machining trajectory data Tool radius value) is corrected.
  • the peripheral length of the spectacle lens can be appropriately adjusted (corrected) without destroying the outer shape of the spectacle lens.
  • the adjustment of the inter-axis distance between the holding axis of the processing tool and the rotation axis of the lens holder is not performed by physically shifting the position of each axis. This is done by the operator changing the setting of the distance between the axes.
  • size correction is applied by the same amount La from the rotation center 20 of the spectacle lens in the radial direction. For this reason, if the contour line of the spectacle lens that has been cast without adjusting the distance between the axes is a straight line 21, the contour line of the spectacle lens that has been processed with the adjustment of the distance between the axes is curved outward (swelled). It becomes the curve 22 made out).
  • the outer shape of the spectacle lens is destroyed. If the outer shape of the spectacle lens actually collapses, even if the peripheral length of the spectacle lens is within the desired size range, for example, when the spectacle lens is framed in the spectacle frame, there may be a deviation in the interpupillary distance, for example. There is.
  • the size correction is always applied by the same amount Lb in the orthogonal direction (normal direction) to the outline of the spectacle lens. For this reason, assuming that the contour line of the spectacle lens is a straight line 23 before correcting the value of the tool diameter, the contour line of the spectacle lens is also a straight line 24 parallel to the straight line 23 even after the value of the tool diameter is corrected. become. Accordingly, the size (peripheral length) of the spectacle lens can be corrected without breaking the outer shape of the spectacle lens.
  • machining interference may change before and after the adjustment.
  • Processing interference is a phenomenon in which when a part of a spectacle lens is processed with a processing tool, the processing tool touches (interferences) with the other part of the spectacle lens, and that part is processed excessively. It is.
  • machining locus data is calculated by taking this machining interference into account.
  • machining interference that is not assumed in the calculation may occur. For this reason, for example, when a mountain-shaped bevel is formed on the edge surface of the spectacle lens, there is a possibility that the bevel becomes thin at a part of the outer periphery of the lens.
  • the correction value is registered in the correction table in association with the material of the spectacle lens and the type of the processing tool, and the correction value read from the correction table is used to determine the material of the spectacle lens and Calculation parameters (value of the tool diameter of the machining tool) are corrected for each type of machining tool.
  • the material of the spectacle lens changes, even if the spectacle lens is processed in the shape of the same processing tool and in accordance with the same processing trajectory data, a difference occurs in the size of the spectacle lens after processing. This is because processability (e.g., ease of lens removal) and processing conditions (e.g., rotation speed of the processing tool) differ depending on the material of the spectacle lens (typically a glass lens and a plastic lens). For this reason, the size correction of the spectacle lens can be performed with higher accuracy than the case where the size correction is simply performed for each processing tool regardless of the material of the spectacle lens.
  • the processing history data at that time is stored in the database unit 15, and the spectacles used in the current processing of the target lens shape are stored therein.
  • the average value of the peripheral length difference is obtained using a plurality of processing history data of the same combination as the lens material and the type of processing tool. For this reason, compared with the case of using only the processing history data of one bead processing, for example, it is possible to reduce the influence of an error in circumference measurement and accurately determine whether or not the correction value needs to be changed. .
  • the spectacle lens material used in this lens processing and The correction value registered in the correction table is changed in the same combination as the type of machining tool. For this reason, not only correction of calculation parameters used for calculation of processing locus data but also correction values used for correction of calculation parameters should be appropriately changed in consideration of the combination of the spectacle lens material and the type of processing tool. Can do.
  • FIG. 11 and FIG. 12 are flowcharts showing an example of processing that can be executed using the lens processing system according to the present embodiment.
  • the illustrated process is performed by the client device 8 in order to maintain and manage a plurality of target lens processing devices 9 connected to the client device 8 for each target lens processing device 9.
  • the target lens processing apparatus 9 of No. 1 machine is the object of maintenance management.
  • the total count is the number of times that the eyeglass lens processing of the first lens processing apparatus 9 is performed after the processing tool is replaced.
  • the total count is an index of machining tool replacement.
  • the number of times of change is the number of times the correction value registered in the correction table is changed with respect to the No. 1 target lens shape processing apparatus 9.
  • step S61 when it is determined Yes in step S61, the total count number and the total number of changes are cleared and zero is acquired (S62). If it is determined No in step S61, the data management unit 14 of the server device 7 acquires the total number of counts and the total number of changes managed for each type of spectacle lens material and type of processing tool (S63). ).
  • the change ratio is an index for state management of the target lens shape processing apparatus 9, and is obtained based on the following equation (2).
  • Change ratio (%) total change count / total count x 100 (2)
  • the latest machining history data is acquired from the machining history table registered in the database unit 15 with respect to the first lens shape processing apparatus 9 (S65).
  • the material of the spectacle lens and the type of processing tool used for the current lens shape processing are acquired (S66).
  • the unit for changing the correction value includes a combination unit of the material of the spectacle lens and the type of the processing tool in addition to the tool unit. In which unit the correction value is changed is preset for each of the target lens shape processing devices 9. For this reason, in step S67, the change unit of the correction value is determined according to the prior setting.
  • step S67 When it is determined Yes in step S67, 1 is added to the total count of all lens materials regardless of the difference in the material of the spectacle lens with respect to the type of processing tool used for this target lens processing (S68). .
  • step S68 the processing history data for the specified number registered in the processing history table when the target lens processing has been performed in the past is acquired ( S69). That is, after adding 1 to the total count for each processing tool, processing history data having the same type of processing tool is acquired.
  • step S67 1 is added to the total count for the combination of the material of the spectacle lens and the type of processing tool used for the target lens processing (S70).
  • step S70 1 is added to the total count for the combination of the material of the spectacle lens and the type of processing tool used for the target lens processing (S70).
  • the processing history data for the specified number registered in the processing history table is acquired in the same combination as the eyeglass lens material and processing tool type combination used for this processing. (S71). That is, after adding 1 to the total count in the combination unit of the material of the spectacle lens and the type of processing tool, processing history data having the same combination is acquired.
  • step S69 or S71 it is determined whether or not the specified number of machining history data has been acquired (S72). If it is determined No in step S72, the process returns to step S65, and when it is determined Yes, the process proceeds to the next step S73.
  • step S73 it is determined whether the material of the spectacle lens and the type of processing tool used for the target lens processing this time are targets for changing the correction value. When it is determined No in step S73, the process returns to step S65, and when it is determined Yes, the process proceeds to the next step S74.
  • step S74 the average value of the circumference differences between the measured circumference and the theoretical circumference is obtained by calculation using the machining history data for the designated number.
  • step S67 it is determined whether or not the correction value is changed in units of tools (S75). If it is determined Yes in step S75, the process proceeds to step S76. If it is determined No, the process proceeds to step S77.
  • step S76 it is determined whether or not the average value of the circumference differences obtained in step S74 is within a specified range.
  • the designated range can be changed as appropriate.
  • step S76 all the correction values registered in the correction table corresponding to the type of processing tool used in the current lens shape processing are not related to the difference in the material of the spectacle lens.
  • Each lens material is changed by an appropriate amount (S78).
  • S79 regarding the type of processing tool used for this target lens processing, 1 is added to the total number of changes in all lens materials regardless of the difference in the material of the spectacle lens (S79). That is, after correcting the correction value in units of machining tools, 1 is added to the total number of changes.
  • step S77 it is determined whether or not the average value of the circumference differences obtained in step S74 is within the specified range.
  • the designated range can be changed as appropriate.
  • the process returns to step S65. If NO is determined in step S77, the correction value registered in the correction table is changed by an appropriate amount corresponding to the material of the spectacle lens used in the current lens processing and the type of processing tool (S80). .
  • 1 is added to the total number of changes regarding the material of the spectacle lens and the type of processing tool used for the target lens processing (S81). That is, after the correction value is changed in units of combination of the material of the spectacle lens and the type of processing tool, 1 is added to the total number of changes.
  • step S82 the change ratio is calculated again based on the above equation (2), and the value of the change ratio displayed on the screen is changed based on the calculation result.
  • the operator or the like looks at the information (change ratio, total count) displayed on the monitor screen of the client device 8 to check the state of the target lens processing device 9. It is possible to grasp or predict the maintenance time such as tool replacement.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Eyeglasses (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

 本発明のレンズ加工システム4は、玉型形状データから演算によって得られる三次元の加工軌跡データにしたがって眼鏡レンズの玉型加工を行う玉型加工装置9と、玉型加工装置9によって玉型加工された眼鏡レンズの周長を測定する三次元周長測定装置10と、三次元周長測定装置10によって得られる実測周長と計算上得られる理論周長との周長差に基づいて、加工軌跡データの演算に用いる演算パラメータを補正する加工サイズ管理装置(7,8)と、を備える。

Description

レンズ加工システム、加工サイズ管理装置、加工サイズ管理方法および眼鏡レンズの製造方法
 本発明は、眼鏡レンズの玉型加工のために用いられるレンズ加工システム、加工サイズ管理装置、加工サイズ管理方法および眼鏡レンズの製造方法に関する。
 一般に、外形が未加工の眼鏡レンズ(アンカットレンズ)を眼鏡フレームに枠入れするために眼鏡レンズの玉型加工が行われている。眼鏡レンズの玉型加工では、眼鏡フレームのフレーム形状(眼鏡レンズが枠入れされる部分のフレーム形状)にあわせて眼鏡レンズを加工している。この玉型加工をともなう眼鏡レンズの受発注システムとして、眼鏡レンズの玉型加工に必要な情報を、発注側である眼鏡店から、受注側である加工センタに伝送し、その情報を用いて加工センタ内で玉型加工した眼鏡レンズを眼鏡店に供給する、というシステムが知られている。
 眼鏡レンズの玉型加工には玉型加工装置が用いられる。この玉型加工装置で玉型加工された眼鏡レンズのサイズは、たとえば加工ツールの摩耗や目詰まりなどの加工性の悪化により、ある時期に玉型加工した眼鏡レンズでは眼鏡フレームの枠入れに問題ないサイズの所望の範囲に入っていても、その後の異なる時期に玉型加工した眼鏡レンズでは所望の範囲から外れてしまう場合がある。このような場合は、眼鏡レンズの加工サイズが所望の範囲に収まるように加工サイズ調整を行う必要がある。
 加工サイズ調整の一例として、たとえば特許文献1には、玉型加工後の眼鏡レンズの周長を管理する場合に、玉型加工におけるレンズ周長差(実測周長と理論周長の差分)に応じて、加工ツールの保持軸とレンズホルダの回転軸となるレンズ軸との間の軸間距離を調整する技術が記載されている(特許文献1の請求項1、段落0018を参照)。
特許第4888947号公報
 しかしながら、上述した軸間距離を調整する技術では、レンズ周長差を小さくすることは可能であるものの、玉型加工後の眼鏡レンズの外形形状に崩れが生じてしまう(詳細は後述)。このため、より高品質な眼鏡を提供するにあたって、更なる加工精度の向上が望まれていた。また、軸間距離の調整は加工ツール単位で行われるため、ある加工ツールについて軸間距離を調整すると、その後にその加工ツールで加工するすべての眼鏡レンズに同様のサイズ補正が加えられる。したがって、軸間距離の調整では、加工ツール単位でしか加工サイズを補正することができず、眼鏡レンズの材質ごとのサイズ調整に対応できないという難点もあった。
 そこで、本発明においては、眼鏡レンズの外形形状を崩すことなく、眼鏡レンズの加工サイズを調整することができる技術を提供することを目的とする。
 本発明の第1の態様は、
 玉型形状データから演算によって得られる三次元の加工軌跡データにしたがって眼鏡レンズの玉型加工を行う玉型加工装置と、
 前記玉型加工装置によって玉型加工された眼鏡レンズの加工サイズを三次元で測定する三次元測定装置と、
 前記三次元測定装置の測定によって得られる加工サイズの実測値と計算上得られる加工サイズの理論値との差分に基づいて、前記加工軌跡データの演算に用いる演算パラメータを補正する加工サイズ管理装置と、
 を備えるレンズ加工システムである。
 本発明の第2の態様は、上記第1の態様に記載のレンズ加工システムにおいて、
 前記加工サイズ管理装置は、眼鏡レンズの材質および加工ツールの種類に対応付けて補正値を記憶保持しておき、当該記憶保持した補正値を用いて、前記眼鏡レンズの材質および前記加工ツールの種類ごとに、前記演算パラメータを補正するものである。
 本発明の第3の態様は、上記第1の態様または第2の態様に記載のレンズ加工システムにおいて、
 前記眼鏡レンズの玉型加工を1回行うたびに、今回の玉型加工で使用した眼鏡レンズの材質および加工ツールの種類に対応付けて、前記加工サイズの実測値および前記加工サイズの理論値を加工履歴データとして順に記憶する加工履歴記憶部と、
 前記今回の玉型加工で使用した眼鏡レンズの材質および加工ツールの種類と同じ組み合わせで前記加工履歴記憶部に記憶されている複数個の加工履歴データを抽出する抽出部と、
 前記抽出部が抽出した前記複数個の加工履歴データを用いて、前記加工サイズの実測値と前記加工サイズの理論値との差分の平均値を求め、この求めた平均値が予め設定された規定範囲を超えている場合に、今回の玉型加工で使用した眼鏡レンズの材質および加工ツールの種類と同じ組み合わせで用いられる前記補正値を変更する変更部と、
 を備えるものである。
 本発明の第4の態様は、
 玉型形状データから演算によって得られる三次元の加工軌跡データにしたがって眼鏡レンズの玉型加工を行う玉型加工装置に接続して用いられる加工サイズ管理装置であって、
 前記玉型加工装置によって玉型加工された眼鏡レンズの加工サイズを三次元で測定して得られる加工サイズの実測値と計算上得られる加工サイズの理論値との差分を演算する演算部と、
 前記演算した差分に基づいて、前記加工軌跡データの演算に用いる演算パラメータを補正する補正部と、
 を備える加工サイズ管理装置である。
 本発明の第5の態様は、
 玉型形状データから演算によって得られる三次元の加工軌跡データにしたがって眼鏡レンズの玉型加工を行う玉型加工装置によって玉型加工された眼鏡レンズの加工サイズを管理する加工サイズ管理方法であって、
 前記玉型加工装置によって玉型加工された眼鏡レンズの加工サイズを三次元で測定して得られる加工サイズの実測値と計算上得られる加工サイズの理論値との差分を演算する工程と、
 前記演算した差分に基づいて、前記加工軌跡データの演算に用いる演算パラメータを補正する工程と、
 を備える加工サイズ管理方法である。
 本発明の第6の態様は、
 上記第5の態様に記載の加工サイズ管理方法により補正された前記演算パラメータを用いて前記加工軌跡データの演算を行う工程と、
 前記演算によって得られた前記加工軌跡データにしたがって前記玉型加工装置が眼鏡レンズを玉型加工する工程と、
 を備える眼鏡レンズの製造方法である。
 本発明によれば、眼鏡レンズの外形形状を崩すことなく、眼鏡レンズの加工サイズを調整することができる。
本発明を適用可能な眼鏡レンズの受発注システムの構成例を示すブロック図である。 眼鏡レンズの受発注に関する処理の流れを示すフロー図である。 眼鏡レンズの玉型加工に関する処理の流れを示すフロー図(その1)である。 眼鏡レンズの玉型加工に関する処理の流れを示すフロー図(その2)である。 加工ツールのツール径の値を補正するときに用いられる補正値の格納形態の一例を説明する図である。 加工履歴テーブルにおける加工履歴データの登録内容を説明する図である。 加工軌跡データの演算に用いるツール径の値と、この加工軌跡データにしたがって玉型加工された眼鏡レンズの周長との関係を説明するための図(その1)である。 加工軌跡データの演算に用いるツール径の値と、この加工軌跡データにしたがって玉型加工された眼鏡レンズの周長との関係を説明するための図(その2)である。 加工軌跡データの演算に用いるツール径の値と、この加工軌跡データにしたがって玉型加工された眼鏡レンズの周長との関係を説明するための図(その3)である。 軸間距離を調整した場合と演算パラメータを補正した場合の加工サイズの補正原理の違いを説明する図である。 本実施の形態に係るレンズ加工システムを用いて実行可能な処理の一例を示すフローチャート(その1)である。 本実施の形態に係るレンズ加工システムを用いて実行可能な処理の一例を示すフローチャート(その2)である。
 以下、本発明の実施の形態について図面を参照しつつ詳細に説明する。
 図1は本発明を適用可能な眼鏡レンズの受発注システムの構成例を示すブロック図である。この受発注システムにおいては、発注側である眼鏡店1の端末と、受注側である加工センタ2の端末とが、通信回線3を介して相互に通信可能に接続されている。通信回線3は、公衆通信回線でもよいし、専用通信回線でもよい。加工センタ2にはレンズ加工システム4が構築されている。レンズ加工システム4を構成する装置(機器、端末を含む)などの台数は、それぞれ一台に限らず、複数台であってもよい。また、発注側は眼鏡店1に限らず、たとえば、加工センタ2に対して外部の加工工場や他のレンズメーカーが眼鏡レンズの加工を委託する場合は、加工工場やレンズメーカーが発注側となる。
 眼鏡店1には、発注端末5とトレーサ6とが設置されている。加工センタ2には、サーバ装置7とクライアント装置8と玉型加工装置9と三次元周長測定装置10とが設置され、これらの装置によってレンズ加工システム4が構成されている。また、クライアント装置8には、一つのクライアント装置8につき複数(図例では2つのみ表記)の玉型加工装置9が接続されている。複数の玉型加工装置9には、それぞれ固有の加工装置識別情報が割り当てられている。加工センタ2に設置された装置は、加工センタ2のネットワーク11を介して通信可能に接続されている。
 (発注端末)
 発注端末5は、コンピュータ装置を用いて構成されるものである。コンピュータ装置は、演算機能、制御機能、記憶機能、入出力機能等を備えるものである。具体的には、コンピュータ装置は、CPU(Central Processing Unit)、ROM(Read-Only Memory)、RAM(Random Access Memory)、HDD(Hard disk drive)等のハードウェア資源を用いて構成されるものである。
 発注端末5は、図示せぬルータ等を介して通信回線3と接続され、その通信回線3を通じて外部の端末(本形態例では加工センタ2のサーバ装置7)とデータの受け渡しを行えるように構成されている。発注端末5は、眼鏡レンズの玉型加工を加工センタ2に依頼(発注)するために必要な発注データの入力を受け付けるとともに、受け付けた発注データを加工センタ2のサーバ装置7宛に送信する。発注端末5の操作は通常、眼鏡店1の店員が行う。
 (トレーサ)
 トレーサ6は、眼鏡フレームのフレーム形状を三次元で測定するものである。トレーサ6による測定によって得られる眼鏡フレームのフレーム形状データは、眼鏡フレームのフレーム形状を三次元の座標空間で特定可能なデータである。トレーサ6は、形状測定のための接触子と、この接触子を支持する支持軸とを有する。トレーサ6は、測定対象の眼鏡フレームのリム部分(眼鏡レンズが枠入れされる部分)の溝に接触子を接触させて眼鏡フレームのフレーム形状を測定する。トレーサ6が測定対象とする被測定物のなかには、眼鏡フレームだけでなく、たとえば「縁なし眼鏡」で眼鏡フレームに取り付けられているオリジナルレンズ(ダミーレンズやパターン)も含まれるが、いずれにしてもトレーサ6の測定によって得られるフレーム形状データは、眼鏡フレームのフレーム形状を特定可能な三次元のデータとなる。トレーサ6としては周知(たとえば、特開2009-243952号公報、国際公開第2007/077848号に記載)のものを使用可能である。
 (サーバ装置)
 サーバ装置7は、コンピュータ装置を用いて構成されるもので、データ管理部14とデータベース部15とを備えている。データ管理部14は、データベース部15を用いて各種のデータを管理するものである。たとえば、データ管理部14は、眼鏡店1の発注端末5から送信された発注データを通信回線3を介して受信し、この受信したデータを受注データとしてデータベース部15に登録する。また、データ管理部14は、受注データをデータベース部15に登録するにあたって、その都度、眼鏡レンズの玉型加工に係るジョブのジョブ識別情報を生成し、このジョブ識別情報と対応付けて受注データをデータベース部15に登録する。このため、眼鏡レンズの玉型加工を1回行うたびに一つのジョブ識別情報が生成される。また、データベース部15に登録されるジョブ識別情報と受注データの関係は、一対一の関係となる。
 データ管理部14は、上述のように生成したジョブ識別情報を、たとえば二次元のバーコードに変換し、このバーコードを図示しない印刷装置に送ることにより、バーコード付きのワークシートを印刷出力させる。ワークシートは、たとえば、シート状の紙媒体である。ワークシートは、受注データで特定される、加工前の眼鏡レンズ(アンカットレンズ)と一緒に、図示しないトレイに入れられる。
 なお、眼鏡レンズには左眼用と右眼用があり、それぞれ個別に加工、測定その他の処理が行われるが、それらの処理内容は左眼用、右眼用で共通する。このため、以降の段落においては、左眼用、右眼用の区別をつけずに、それらに共通の事項として説明する。
 データベース部15は、眼鏡レンズの受発注システム(レンズ加工システム4を含む)の運用に必要な種々の情報(データ)を記憶して保持するものである。たとえば、データベース部15には、上述した受注データの他に、眼鏡レンズの設計データや、加工履歴データなどが記憶される。眼鏡レンズの設計データは、眼鏡レンズの2つの光学面の面形状を三次元で特定可能なデータである。加工履歴データについては後段で説明する。
 (クライアント装置)
 クライアント装置8は、上述したサーバ装置7とともに、加工サイズ管理装置を構成するものである。クライアント装置8は、コンピュータ装置を用いて構成されるもので、加工制御部16、加工サイズ監視部17、演算部18および記憶部19を備えている。図1においては、サーバ装置7とクライアント装置8をそれぞれ独立した構成要素として表記しているが、これに限らず、サーバ装置7とクライアント装置8を一つのコンピュータ装置で実現することも可能である。また、加工センタ2内に複数のクライアント装置8を設置する場合は、これら複数のクライアント装置8をネットワーク11を介して共通のサーバ装置7に接続した構成を採用することもが可能である。
 加工制御部16は、クライアント装置8に接続された各々の玉型加工装置9を用いて眼鏡レンズの玉型加工を行う場合に、種々の制御処理を行うものである。加工サイズ監視部17は、玉型加工装置9で玉型加工された眼鏡レンズのサイズを監視し、必要に応じて加工サイズ調整のための処理を行うものである。
 演算部18は、眼鏡レンズの玉型加工に関する各種の演算処理を行うものである。演算部18が行う演算項目には、少なくとも、玉型形状データ、加工サイズの差分データ、などが含まれる。各々の玉型加工装置9では、玉型形状データを用いて三次元の加工軌跡データを演算し、この加工軌跡データにしたがって眼鏡レンズの玉型加工を行う。
 玉型形状データは、上述した眼鏡フレームのフレーム形状データ等を用いて計算されるデータであって、玉型加工後の眼鏡レンズの三次元形状(立体形状)を示すデータである 加工サイズは、玉型加工された状態の眼鏡レンズのサイズである。本実施の形態においては、一例として、玉型加工された状態の眼鏡レンズの周長を加工サイズとする。
 加工サイズの差分データは、三次元測定装置の測定によって得られる加工サイズの実測値と計算上得られる加工サイズの理論値との差分を示すデータである。本実施の形態においては、三次元測定装置として三次元周長測定装置10を用いる。このため、加工サイズの差分データは、三次元周長測定装置10の測定で得られる実測周長と計算上得られる理論周長との差分を示すデータとなる。
 加工軌跡データは、玉型形状データを用いて切削点毎に、各駆動軸毎の移動量を算出したもので、玉型加工の対象となる眼鏡レンズを、眼鏡フレームのフレーム形状にあわせて玉型加工するための加工条件を決定するデータとなる。玉型加工の加工条件とは、玉型加工装置9が眼鏡レンズの玉型加工を行うときの切削圧や研削圧、加工ツールの切り込み量、ツールの回転数、レンズ軸の回転スピードなどの駆動条件をいう。具体的には、玉型加工装置9が有する複数の加工ツールをどのような順序で選択し、かつ、選択した加工ツールの保持軸やレンズ軸、その他のアクチュエータをどのように駆動して眼鏡レンズを加工するかといった条件をいう。
 記憶部19は、眼鏡レンズの玉型加工に関連する情報のうち、データベース部15に記憶される情報以外の情報を記憶するものである。記憶部19に記憶される情報の中には、少なくとも、加工軌跡データの演算に用いる演算パラメータと、この演算パラメータの補正に用いる補正値を格納した補正テーブル(詳細は後述)が含まれる。加工軌跡データの演算に使用する演算パラメータは複数あるが、補正の対象となる演算パラメータは、眼鏡レンズの加工サイズを変更可能なパラメータである。このため、演算パラメータの値を変更(補正)すると、変更前の演算パラメータを用いて演算した加工軌跡データと、変更後の演算パラメータを用いて演算した加工軌跡データとが、相異なるものとなり、その結果、玉型加工に得られる眼鏡レンズのサイズ(加工サイズ)も相異なるものとなる。
 本実施の形態においては、一例として、演算パラメータの補正によって調整可能な眼鏡レンズのサイズが、眼鏡レンズの周長である場合を想定している。また、眼鏡レンズの周長を調整可能な演算パラメータとしては、玉型加工装置9が有する加工ツールのツール径の値を想定している。加工ツールのツール径は、たとえば、眼鏡レンズを円筒状の研削ホイールで加工する場合に、この研削ホイールの半径に相当するものである。
 (玉型加工装置)
 玉型加工装置9は、眼鏡レンズの玉型加工を行うものである。眼鏡レンズの玉型加工とは、アンカットレンズと呼ばれる眼鏡レンズを、この眼鏡レンズが枠入れされる眼鏡フレームのフレーム形状にあわせて加工することをいう。玉型加工装置9による眼鏡レンズの玉型加工は、荒加工と仕上げ加工といった2つの加工ステップを経て行われる。荒加工は、眼鏡レンズの最終的な仕上げ形状よりも一回り大きい形状に眼鏡レンズを加工する加工ステップである。仕上げ加工は、眼鏡レンズの最終的な仕上げ形状にあわせて、荒加工後の眼鏡レンズを加工するもので、ヤゲン加工を含む加工ステップである。
 荒加工と仕上げ加工は、工程ごとに加工ツールを変えて行ってもよいし、同じ加工ツールを用いて行ってもよい。また、荒加工と仕上げ加工は、たとえば、荒加工を切削加工、仕上げ加工を研削加工で行うなど、工程ごとに加工方式を変えてもよいし、同じ加工方式を適用してもよい。さらに、仕上げ加工には、必要に応じて、鏡面加工を含めてもよい。鏡面加工は、レンズのコバ面を目の細かいツールで研磨して光沢を出す加工である。
 ヤゲン加工は、眼鏡レンズの外周面にヤゲンを形成する加工である。眼鏡レンズのヤゲンには複数のタイプ(形状)がある。ヤゲンタイプの一例としては、山形状のヤゲン、溝状のヤゲン、平らなヤゲンなどがある。仕上げ加工で使用する加工ツールの種類は、ヤゲンタイプごとに異なる。
 玉型加工装置9にはバーコードリーダが付属している。バーコードリーダは、上述したワークシートに印刷されたバーコードを光学的に読み取って、そのバーコードが示すジョブ識別情報を取得するものである。玉型加工装置9は、バーコードリーダの読み取り結果として得られたジョブ識別情報をクライアント装置8に送信することにより、眼鏡レンズの玉型加工に必要な情報をクライアント装置8から受け取る。
 (三次元周長測定装置)
 三次元周長測定装置10は、玉型加工装置9によって玉型加工された眼鏡レンズの加工サイズを三次元で測定する加工サイズ測定装置の一例として設けられたものである。三次元周長測定装置10は、玉型加工装置9で玉型加工(仕上げ加工)を終えた眼鏡レンズの周長を三次元で測定する。三次元周長測定装置10は、周長測定のための測定子であるスタイラスを有する。三次元周長測定装置10は、測定対象とする眼鏡レンズのヤゲンタイプが山形状のヤゲンである場合は、コバ面に形成されたヤゲンの頂部にスタイラスを接触させ、この接触状態を維持しながら眼鏡レンズを回転させることにより、眼鏡レンズの周長を測定する。また、ヤゲンタイプが平らなヤゲン(平ヤゲン)やコバ面に溝を有するヤゲンである場合は、平らなヤゲンを形成するコバ面にスタイラスを接触させ、この接触状態を維持しながら眼鏡レンズを回転させることにより、眼鏡レンズの周長を測定する。その場合、三次元周長測定装置10は、眼鏡レンズの回転に伴うスタイラスの変位量および変位方向を三次元の座標空間で認識し、この認識結果に基づいて眼鏡レンズのヤゲン頂部の周長を計測する。三次元周長測定装置10の測定によって得られた眼鏡レンズの実測周長のデータは、ネットワーク11を介してサーバ装置7に送られる。なお、三次元周長測定装置10としては、たとえば、特許第3208566号公報に記載されたものを用いることができる。
 三次元周長測定装置10にはバーコードリーダが付属している。バーコードリーダは、上述したワークシートに印刷されたバーコードを光学的に読み取って、そのバーコードが示すジョブ識別情報を取得するものである。三次元周長測定装置10は、バーコードリーダの読み取り結果として得られたジョブ識別情報を、当該ジョブ識別情報に対応する眼鏡レンズの実測周長のデータと一緒にサーバ装置7に送信する。
 (眼鏡レンズの受発注に関する処理の流れ)
 図2は眼鏡レンズの受発注に関する処理の流れを示すフロー図である。
 まず、眼鏡店1においては、顧客が希望(選択)した眼鏡フレームをトレーサ6にセットし、眼鏡フレームのフレーム形状を測定する(S1)。トレーサ6で測定したデータは、発注端末5に取り込まれる。次に、眼鏡店1の店員は、発注端末5を用いて発注データを入力する(S2)。発注データには、眼鏡フレーム情報、眼鏡レンズ情報、レイアウト情報、処方情報などが含まれる。眼鏡フレーム情報には、上述した眼鏡フレームのフレーム形状データの他に、フレームメーカ、モデル名、フレーム材質、フレームサイズ、フレームパターン、フレームカラーなどが含まれる。眼鏡レンズ情報には、レンズ材質、機能性膜(調光・偏光)の有無、レンズカラー、ハードコート膜の有無、商品コードなどが含まれる。レイアウト情報には、瞳孔間距離、瞳孔高さなどが含まれる。処方情報には、球面度数、乱視度数、乱視軸、加入度、プリズム処方などが含まれる。次に、発注端末5から通信回線3を介して加工センタ2のサーバ装置7に発注データを送信する(S3)。発注データの送信は、発注端末5のモニタに表示された発注用の画面を見ながら入力操作する店員が、発注データの入力を終えた後、マウスのクリック操作などで発注を確定したときに行われる。
 一方、加工センタ2においては、眼鏡店1の発注端末5から送信された発注データを、サーバ装置7が受注データとして受信する(S4)。次に、サーバ装置7のデータ管理部14は、受注データを受信したとき、またはその後の適切なタイミングで、ジョブ識別情報を生成する(S5)。次に、データ管理部14は、生成したジョブ識別情報と対応付けて受注データをデータベース部15に登録する(S6)。
 次に、加工センタ2では、玉型加工前の準備作業として、図示しない印刷装置を用いてバーコード付きのワークシートを印刷出力する(S7)。以上で受発注に関する処理が完了する。その後、加工センタ2内では、作業者が、受注データで指定された眼鏡レンズ(アンカットレンズ)を、バーコード付きのワークシートと一緒にトレイに入れて、玉型加工を受け持つ玉型加工装置9の設置場所まで移送する。その際、トレイに入れる眼鏡レンズは、在庫レンズのアンカットレンズであってもよいし、特注レンズのアンカットレンズであってもよい。
 (眼鏡レンズの玉型加工に関する処理の流れ)
 図3および図4は眼鏡レンズの玉型加工に関する処理の流れを示すフロー図である。
 まず、玉型加工装置9の操作者は、上記のトレイからワークシートを取り出し、そのワークシートに印刷されているバーコードを、玉型加工装置9に付属のバーコードリーダで読み取る(S11)。そうすると、玉型加工装置9は、バーコードリーダの読み取り結果として得られたジョブ識別情報を、自装置に割り当てられた加工装置識別情報と一緒に、ネットワーク11を介してクライアント装置8に送信する(S12)。
 次に、クライアント装置8の加工制御部16は、玉型加工装置9から送信されたジョブ識別情報と加工装置識別情報を受信する(S13)。次に、加工制御部16は、受信したジョブ識別情報および加工装置識別情報をサーバ装置7に送信(転送)する(S14)。
 次に、サーバ装置7のデータ管理部14は、クライアント装置8から送信されたジョブ識別情報および加工装置識別情報を受信する(S15)。次に、データ管理部14は、受信したジョブ識別情報および加工装置識別情報のうち、ジョブ識別情報を検索キーとしてデータベース部15を検索する(S16)。次に、データ管理部14は、検索キーに一致するジョブ識別情報に対応付けて、先ほど受信した加工装置識別情報を登録する(S17)。これにより、データベース部15においては、受注データとこの受注データを基に玉型加工を行う玉型加工装置9とが、同一のジョブ識別情報を用いて紐付けされる。次に、データ管理部14は、データベース部15に登録されている受注データの中から、眼鏡レンズの玉型加工に必要な情報を読み出す(S18)。眼鏡レンズの玉型加工に必要な情報とは、眼鏡フレーム情報、眼鏡レンズ情報、レイアウト情報、処方情報などをいう。次に、データ管理部14は、読み出した情報をクライアント装置8に送信する(S19)。
 次に、クライアント装置8の加工制御部16は、上述のようにサーバ装置7から送信された、眼鏡レンズの玉型加工に必要な情報を受信する(S20)。次に、クライアント装置8の演算部18は、先ほど加工制御部16が受信した情報を用いて玉型形状データを演算する(S21)。玉型形状データの演算には種々のデータが用いられる。その中には玉型加工装置9に関するデータの一つとして、玉型加工装置9が有するツール径の値(設計値)が含まれる。玉型加工装置9に関するデータ(加工ツールの種類や各ツール径の値を含む)は、たとえば、ネットワーク11に玉型加工装置9を接続した段階で、玉型加工装置9からクライアント装置8に自装置に関するデータを通知することにより、玉型加工装置9ごとに記憶部19に記憶される。なお、玉型加工装置9に関するデータは、クライアント装置8の記憶部19に代えて、サーバ装置7のデータベース部15に玉型加工装置9ごとに記憶し、そこから必要に応じてクライアント装置8が玉型加工装置9に関するデータを読み出す構成としてもよい。
 また、演算部18は、上述した玉型形状データの他にも、眼鏡レンズの理論周長を演算する(S22)。理論周長は、玉型加工後の眼鏡レンズの加工サイズとして計算上得られる理論値に相当する。理論周長とは、アンカットレンズを、指定されたヤゲンサイズ、ヤゲン位置、ヤゲンモードなどに準じて玉型加工する際に、顧客によって選択されたフレームに加工後のレンズがしっかりと枠入れされるようにするために、フレーム形状データを補正して得られる玉型形状データに基づく眼鏡レンズの周長をいう。理論周長は、玉型加工の仕上げ加工を終えた眼鏡レンズを眼鏡フレームに枠入れする際に、フィッティング率向上の観点から好ましいとされる眼鏡レンズの周長として算出される。したがって、玉型加工後の眼鏡レンズの周長がこの理論周長に一致するときが理想的な状態となる。理論周長の計算については、たとえば、特許第2994870号公報に記載された計算手法を採用すればよい。演算部18は、加工計算のための演算プログラムを有し、この演算プログラムを実行することにより、玉型形状データおよび理論周長を求める。これらの演算に必要な情報には、ここで記述した情報以外にも、種々の情報があるが、ここでは説明を省略する。
 次に、クライアント装置8の加工制御部16は、先ほど演算部18が演算した玉型形状データを玉型加工装置9に送信する(S23)。このとき、加工制御部16は、加工軌跡データの演算パラメータの一つとなる「加工ツールのツール径の値」を補正するときに用いる補正値を、玉型形状データと一緒に玉型加工装置9に送信する。補正値は、加工制御部16が記憶部19から読み出す。
 図5は加工ツールのツール径の値を補正するときに用いられる補正値の格納形態の一例を説明する図である。図5において、パラメータ補正用フォルダは、加工軌跡データの演算に用いられる演算パラメータを補正するための補正テーブルを格納するフォルダである。パラメータ補正用フォルダには、玉型加工装置9ごとに補正テーブルが用意されている。複数の玉型加工装置9は、便宜上、1号機、2号機、…と分かれている。
 補正テーブルには、眼鏡レンズの材質および加工ツールの種類に対応付けて補正値が登録(格納)されている。具体的には、眼鏡レンズの材質がM1~M5の5種類に分かれ、加工ツールの種類がT1~T6の6種類に分かれている。そして、眼鏡レンズの材質と加工ツールの種類の組み合わせの数に応じて、合計30個の補正値(H11~H65)が登録されている。補正値の格納数は、加工ツールの種類や眼鏡レンズの材質の種類に応じて適宜、増減可能である。
 各々の補正値は、実測周長と理論周長の差分を半径に換算した値となっている。補正テーブルに登録する加工ツールT1~T6は、この補正テーブルが適用される1台の玉型加工装置9が有する加工ツールのうち、少なくとも玉型加工の仕上げ加工(ヤゲン加工)に用いる加工ツールである。玉型加工の仕上げ加工では、眼鏡レンズのコバ面に形成されるヤゲンのタイプに応じて異なる種類の加工ツールが選択される。このため、補正テーブルには、加工ツールの種類の代わりに、眼鏡レンズのヤゲンタイプを登録してもよい。
 補正値の読み出しは、次のように行われる。まず、先ほど加工制御部16がサーバ装置7から受け取った受注データに含まれる眼鏡レンズ情報を参照して、加工対象となる眼鏡レンズの材質を特定する。ここでは眼鏡レンズの材質がM3であったとする。また、玉型加工に使用する玉型加工装置9が1号機であって、仕上げ加工に用いる加工ツールの種類がT2であったとする。そうした場合、加工制御部16は、1号機の玉型加工装置9に対応して記憶部19に記憶されている補正テーブルから補正値H23を読み出し、この補正値T23を玉型形状データと一緒に玉型加工装置9に送信する。
 次に、加工制御部16は、先ほど演算部18が演算した理論周長をジョブ識別情報と一緒にサーバ装置7に送信する(S24)。これにより、サーバ装置7のデータ管理部14は、クライアント装置8から理論周長を受信し(S25)、この受信した理論周長をジョブ識別情報に対応付けてデータベース部15の加工履歴テーブルに登録する(S26)。
 データベース部15には、たとえば図6に示すデータ形式で、加工履歴テーブルが格納されている。図示した加工履歴テーブルは、玉型加工装置9ごとに用意されている。加工履歴テーブルには加工履歴データが登録されている。加工履歴データは、各々のジョブ識別情報(ジョブID)につき、眼鏡レンズの材質および加工ツールの種類に対応付けて、理論周長および実測周長を時系列で登録したものである。ジョブ識別情報は、眼鏡レンズの玉型加工を1回行うたびに一つ生成されるものである。このため、加工履歴データは、眼鏡レンズの玉型加工を1回行うたびに一つ記憶され、玉型加工の回数を重ねることによって順に蓄積されていく。眼鏡レンズの材質の欄には、受注データから取り出した眼鏡レンズの材質を登録する。加工ツールの種類の欄には、その眼鏡レンズのヤゲンタイプに対応する加工ツールの種類を登録する。理論周長の欄には、クライアント装置8から受信した理論周長を登録する。実測周長の欄は、この段階では空欄になっている。
 なお、加工履歴テーブルは、必ずしも玉型加工装置9ごとに分けて用意する必要はない。具体的には、加工履歴テーブルを一つとし、この加工履歴テーブルにすべての玉型加工装置9に関する加工履歴データを登録してもよい。その場合は、ジョブ識別情報ごとに加工履歴データを登録するとともに、いずれの玉型加工装置9を使用して玉型加工したかが分かるように、加工履歴データに加工装置識別情報を含めるようにすればよい。
 次に、玉型加工装置9では、クライアント装置8から送信された玉型形状データと演算パラメータ補正用の補正値を受信する(S27)。次に、玉型加工装置9では、加工軌跡データの演算に用いる演算パラメータを、上記の補正値を用いて補正する(S28)。具体的には、演算パラメータに用いる加工ツールのツール径の値を、玉型形状データと一緒に受信した補正値を用いて補正する。たとえば、加工軌跡データの演算に用いるツール径の値がツール半径Raであり、ツール径の設計値がツール半径Rbであり、上記の補正値H23が正負の値をとる場合は、以下の(1)式に基づいてツール半径Raを補正し、補正後のツール半径Raを演算パラメータに用いて加工軌跡データを演算する。
 Ra=Rb+H23   …(1)
 なお、演算パラメータの補正に用いる補正値は、演算部18が加工軌跡データを演算する前であれば、どのようなタイミングで玉型加工装置9が取得してもかまわない。また、補正値の取得方式についても、玉型加工装置9がクライアント装置8にアクセスし、演算部18に記憶されている自装置用の補正テーブルから、加工軌跡データの演算に必要な補正値を読み出して取得する方式であってもよい。
 次に、玉型加工装置9では、玉型形状データに基づいて加工軌跡データを演算する(S29)。加工軌跡データの演算には、先ほど補正値により補正した演算パラメータ(ツール径の値)を用いる。この演算によって得られる加工軌跡データは三次元のデータである。このため、加工軌跡データの演算に用いるツール径の値を補正した場合は、補正後のツール径の値を三次元の加工軌跡データに反映させることができる。
 ここで、加工軌跡データの演算に用いるツール径の値と、この加工軌跡データにしたがって玉型加工された眼鏡レンズの周長との関係について説明する。
 まず、加工軌跡データの演算に用いるツール径に関し、補正値で補正する前のツール径の値に比べて、補正後のツール径の値が小さくなると、玉型加工で仕上げられた眼鏡レンズの周長は短くなる。これに対し、補正値で補正する前のツール径の値に比べて、補正後のツール径の値が大きくなると、玉型加工で仕上げられた眼鏡レンズの周長は長くなる。以下に、その理由を図7~図9を用いて説明する。
 図7は加工軌跡データの演算に用いるツール径の値を補正しない場合、つまり補正値がゼロの場合を示している。この場合は、玉型形状データ31の演算に用いた規定のツール径(加工ツールの設計値)32の値をそのまま用いて加工軌跡データ33を演算することになる。このため、規定のツール径32で玉型加工したときの眼鏡レンズの外形34は、玉型形状データ31に一致したものとなる。
 図8は加工軌跡データの演算に用いるツール径の値が小さくなるように補正する場合、つまり補正値が負の値をとる場合を示している。この場合は、玉型形状データ31に対して規定のツール径32よりも小さいツール径35の値を用いて加工軌跡データ36を演算することになる。この加工軌跡データ36は、規定のツール径32をもとに演算される加工軌跡データ33よりも内側に設定される。このため、演算上想定している加工ツールのツール径が小さくなった分だけ、眼鏡レンズに対する加工ツールの送り込み量が増加させられる。ただし、演算に用いるツール径の値を補正しても、現物の加工ツールのツール径は変わらない。よって、規定のツール径32で玉型加工したときの眼鏡レンズの外形37は、玉型形状データ31よりも内側に形成される。したがって、ツール径の値を補正する前に比べて眼鏡レンズの外形サイズが小さくなり、これにともなって眼鏡レンズの周長も短くなる。
 図9は加工軌跡データの演算に用いるツール径の値が大きくなるように補正する場合、つまり補正値が正の値をとる場合を示している。この場合は、玉型形状データ31に対して規定のツール径32よりも大きいツール径38の値を用いて加工軌跡データ39を演算することになる。この加工軌跡データ39は、規定のツール径32をもとに演算される加工軌跡データ33よりも外側に設定される。このため、演算上想定している加工ツールのツール径が大きくなった分だけ、眼鏡レンズに対する加工ツールの送り込み量が減少させられる。ただし、演算に用いるツール径の値を補正しても、現物の加工ツールのツール径は変わらない。よって、規定のツール径32で玉型加工したときの眼鏡レンズの外形40は、玉型形状データ31よりも外側に形成される。したがって、ツール径の値を補正する前に比べて眼鏡レンズの外形サイズが大きくなり、これにともなって眼鏡レンズの周長も長くなる。
 以上のことから、実測周長が理論周長よりも短い場合は、補正前のツール径の値に比べて、補正後のツール径の値が適量だけ大きくなるように、ツール径の値を補正値によって補正することにより、その後の玉型加工で実測周長を理論周長に近づけることができる。また、実測周長が理論周長よりも長い場合は、補正前のツール径の値に比べて、補正後のツール径の値が適量だけ小さくように、ツール径の値を補正値によって補正することにより、その後の玉型加工で実測周長を理論周長に近づけることができる。
 その後、オペレータが玉型加工装置9のレンズ軸に眼鏡レンズを装着した後、ボタン操作等によって加工の開始を指示する。そうすると、この指示を受けて玉型加工装置9が眼鏡レンズの玉型加工を実施する(S30)。この場合、玉型加工装置9では、各々のアクチュエータを適宜駆動制御することにより、玉型加工装置9が有する加工ツールを用いて、上述した荒加工と仕上げ加工を順に行う。そして、眼鏡レンズの玉型加工が終了すると、玉型加工装置9では、アクチュエータの駆動が停止する。荒加工と仕上げ加工は、同じ加工ツールを用いて行ってもよいし、異なる加工ツールを用いて行ってもよい。その後、オペレータは、玉型加工装置9のレンズ軸から加工済みの眼鏡レンズを取り外し、元のトレイに戻す。
 次に、玉型加工済みの眼鏡レンズが収容されたトレイを三次元周長測定装置10の設置場所に移送する。そこで、三次元周長測定装置10のオペレータは、まず、トレイからワークシートを取り出し、そのワークシートに印刷されているバーコードを、三次元周長測定装置10に付属のバーコードリーダで読み取る(S31)。次に、オペレータは、三次元周長測定装置10に眼鏡レンズをセットし、眼鏡レンズの周長測定を実行させる(S32)。
 より詳しく説明すると、三次元周長測定装置10のオペレータは、測定対象の眼鏡レンズを三次元周長測定装置10にセットした後、ボタン操作等によって測定の開始を指示する。そうすると、この指示を受けて三次元周長測定装置10では、各々のアクチュエータが駆動を開始する。これにより、眼鏡レンズのコバ面のヤゲン部分にスタイラスが接触し、その状態で眼鏡レンズが回転することにより、眼鏡レンズの径方向および厚み方向にスタイラスが変位する。三次元周長測定装置10においては、上述のように変位するスタイラスの変位量および変位方向を眼鏡レンズの回転角度ごとに検知し、この検知結果を基に眼鏡レンズの周長を三次元で測定する。
 その後、三次元周長測定装置10による周長測定が終了すると、この周長測定によって得られた実測周長は、先のバーコードの読み取りによって取得したジョブ識別情報と一緒に、三次元周長測定装置10がサーバ装置7に送信する(S33)。また、周長測定が終了すると、オペレータは、三次元周長測定装置10のレンズ保持部から眼鏡レンズを取り外し、元のトレイに戻す。
 次に、サーバ装置7のデータ管理部14は、上述のように三次元周長測定装置10から送信されたジョブ識別情報および実測周長を受信する(S34)。次に、データ管理部14は、受信したジョブ識別情報と対応付けて実測周長をデータベース部15内の加工履歴テーブルに登録する(S35)。この段階で加工履歴テーブル(図6を参照)には、今回の玉型加工に係るジョブ識別情報に対応付けて、眼鏡レンズの材質、加工ツールの種類、理論周長、実測周長の各欄に、それぞれ情報が登録された状態となる。
 次に、データ管理部14は、上述のようにデータベース部15に登録された実測周長と理論周長とを用いて、実測周長と理論周長の差分(以下「周長差」ともいう)を計算する(S36)。次に、データ管理部14は、計算により求めた周長差が、最終製品の眼鏡レンズの品質上、あらかじめ設定されている適正範囲内に収まっているかどうかを判断する(S37)。そして、適正範囲内に収まっていれば、その旨をクライアント装置8に通知(送信)する(S38)。この通知には、玉型加工を正常に終えたジョブのジョブ識別情報が含まれる。周長差が適正範囲を外れている場合は、何らかの異常が発生している可能性が高いため、図示しないエラー処理を行って一連の処理を終える。
 なお、ここでは周長差の計算およびその合否の判断をデータ管理部14で行うとしているが、これに限らず、それらの処理を三次元周長測定装置10で行うように構成することも可能である。
 次に、クライアントPCの加工制御部16は、サーバ装置7からの通知を受信した後(S39)、その通知に含まれるジョブ識別情報に対応付けてデータベース部15に登録されている加工履歴データの提供をサーバ装置7に要求する(S40)。
 次に、サーバ装置7のデータ管理部14は、サーバ装置7からの要求を受け付けた後(S41)、この要求で指定された加工履歴データをデータベース部15から抽出する(S42)。
 データ管理部14は、サーバ装置7から要求のあった玉型加工装置9の加工履歴テーブルの中から、今回の玉型加工で使用した眼鏡レンズの材質および加工ツールの種類と同じ組み合わせで加工履歴テーブルに登録されている加工履歴データを、少なくとも一つ抽出する。加工履歴データをいくつ抽出するかは任意に設定可能である。一つの好ましい例を挙げると、今回の玉型加工で使用した眼鏡レンズの材質および加工ツールの種類と同じ組み合わせの加工履歴データを、データベース部15への登録が新しい順に複数個(たとえば、10個)抽出する。具体例として、今回の玉型加工で使用した眼鏡レンズの材質が「M1」であり、加工ツールの種類が「T3」であれば、これと同じ組み合わせの加工履歴データ(図中、星印で示す)を複数個抽出する。ただし、加工ツールの交換作業が行われた場合は、ツール交換後に加工履歴テーブルに登録された加工履歴データの中から、今回の玉型加工で使用した眼鏡レンズの材質および加工ツールの種類と同じ組み合わせの加工履歴データを複数個抽出することが望ましい。
 次に、データ管理部14は、データベース部15から抽出した複数個の加工履歴データをクライアント装置8に送信する(S43)。このとき送信する加工履歴データには、少なくとも理論周長と実測周長が含まれる。
 次に、クライアント装置8の加工制御部16は、サーバ装置7から送信された複数個の加工履歴データを受信する(S44)。次に、クライアント装置8の演算部18は、受信した複数個の加工履歴データを用いて、周長差の平均値を求める(S45)。具体的には、まず、各々の加工履歴データごとに、実測周長と理論周長の差分を、周長差として求める。さらに、求めた周長差を、加工履歴データの個数で除算することにより、周長差の平均値を求める。
 次に、クライアント装置8の加工サイズ監視部17は、上記周長差の平均値を用いて、補正テーブルの補正値を変更する必要があるかどうかを判断する(S46)。補正値の変更の要否は、上述のように求めた周長差の平均値が、予め設定された規定範囲内に収まっているか否かにより行う。具体的には、周長差の平均値が、規定範囲内であれば、補正値の変更が不要であると判断し、ここで処理を終える。また、周長差の平均値が規定範囲を超えていれば、補正値の変更が必要であると判断し、以降の処理に進む。
 次に、加工サイズ監視部17は、上記図5に示す補正テーブルに登録されている補正値のうち、今回の玉型加工で使用した眼鏡レンズの材質および加工ツールの種類と同じ組み合わせで補正テーブルに登録されている補正値を変更する(S47)。補正値の変更は、実測周長と理論周長の差分を小さくする(理想的にはゼロする)ために行われるものである。その場合、補正テーブルの補正値をどの程度変更するかは、上述した周長差の平均値に基づいて、この周長差の平均値を半径に換算して求めればよい。ただし、1回の補正によって周長差がゼロとなるように補正するとなると、補正頻度の増加につながるとともに、1回あたりの補正量が大きすぎてサイズ不良のリスクが高くなることが懸念される。このため、1回の補正で許容される最大の補正量を設定しておき、この補正量に基づいて補正値の変更を複数回にわけて行うことにより、実測周長を徐々に理論周長に近づけるように補正することが好ましい。たとえば、周長差をゼロにするために必要な補正量が0.05mmであり、1回の補正で許容される最大の補正量が0.02mmである場合は、3回にわけて補正値の変更を行うことが好ましい。その場合、1回の補正で許容される最大の補正量を予めレンズ材質ごとに設定しておき、レンズ材質ごとに最大の補正量を切り替えて使用することが望ましい。
 補正値の変更は、たとえば、今回の玉型加工で使用した眼鏡レンズの材質が「M1」であり、加工ツールの種類が「T3」であれば、これと同じ組み合わせの補正テーブルに登録されている補正値H23の値を変更する。これにより、今回の玉型加工で使用した眼鏡レンズの材質および加工ツールの種類と同じ組み合わせで、次回以降に玉型加工を行う場合は、変更後の補正値で補正したツール径の値を演算パラメータに用いて、加工軌跡データの演算が行われることになる。また、玉型加工装置9においては、変更後の補正値で補正したツール径の値を反映した加工軌跡データにしたがって眼鏡レンズの玉型加工が行われることになる。
 <実施の形態に係る効果>
 本発明の実施の形態によれば、三次元周長測定装置10の測定によって得られる実測周長と計算上得られる理論周長の差分に基づいて、加工軌跡データの演算に用いる演算パラメータ(加工ツールのツール径の値)を補正している。これにより、眼鏡レンズの外形形状を崩すことなく、眼鏡レンズの周長を適切に調整(補正)することができる。また、従来のように加工ツールの保持軸とレンズ軸との間の軸間距離を調整する場合に比べて、更なる加工精度の向上を実現することが可能となる。以下、その理由を説明する。
 まず、加工ツールの保持軸とレンズホルダの回転軸との間の軸間距離の調整は、各軸の位置を物理的にずらして調整するわけではなく、玉型加工装置9の操作パネル等を用いてオペレータが軸間距離の値を設定変更することにより行う。このように軸間距離を調整すると、たとえば図10(A)に示すように、眼鏡レンズの回転中心20から放射方向に同量Laずつサイズ補正が加えられる。このため、仮に軸間距離の調整なしで玉型加工した眼鏡レンズの輪郭線が直線21であるとすると、軸間距離の調整ありで玉型加工した眼鏡レンズの輪郭線は外側に湾曲(膨出)した曲線22になってしまう。したがって、軸間距離の調整によって眼鏡レンズのサイズを補正すると、眼鏡レンズの外形形状が崩れてしまう。実際に眼鏡レンズの外形形状が崩れると、仮に眼鏡レンズの周長が所望の寸法範囲に収まっていたとしても、眼鏡レンズを眼鏡フレームに枠入れした場合に、たとえば瞳孔間距離にズレが生じるおそれがある。
 これに対して、加工軌跡データの演算パラメータに用いる加工ツールのツール径の値をたとえば図10(B)に示すように、補正前に比べて補正後のほうが小さくなるように補正した場合は、眼鏡レンズの輪郭線に対して必ず直交方向(法線方向)に同量Lbずつサイズ補正が加えられる。このため、仮にツール径の値を補正する前は眼鏡レンズの輪郭線が直線23であるとすると、ツール径の値を補正した後も眼鏡レンズの輪郭線も上記の直線23に平行な直線24になる。したがって、眼鏡レンズの外形形状を崩すことなく、眼鏡レンズのサイズ(周長)を補正することができる。
 また、軸間距離を調整した場合は、その調整の前後で加工干渉が変わる可能性がある。加工干渉とは、眼鏡レンズの一部を加工ツールで加工しているときに、その加工ツールが眼鏡レンズの他の部分に接触(干渉)することで、その部分を余分に加工してしまう現象である。玉型加工装置9では、この加工干渉を計算に入れて加工軌跡データを演算しているが、軸間距離を調整すると、計算上想定していない加工干渉が起こり得る。このため、たとえば眼鏡レンズのコバ面に山形状のヤゲンを形成する場合に、レンズ外周の一部でヤゲンの細りが生じるおそれがある。
 これに対して、加工ツールのツール径の値を補正した場合は、補正後のツール径の値を考慮して加工干渉を計算し、加工軌跡データを演算する。このため、加工軌跡データの演算で想定していない加工干渉がほとんど起こらない。したがって、演算によって得られた加工軌跡データにしたがって眼鏡レンズの玉型加工を行うことにより、想定外の加工干渉による加工誤差を低減することができる。また、補正後のツール径の値を用いて加工軌跡データを演算することにより、加工ツールの摩耗、目詰まり等による加工性の悪化に起因した、眼鏡レンズの加工誤差を適切に補正することができる。
 その結果、軸間距離を調整する場合に比べて、眼鏡レンズの加工サイズの更なる高精度化を実現することができる。
 また、本実施の形態においては、眼鏡レンズの材質および加工ツールの種類に対応付けて補正テーブルに補正値を登録しておき、その補正テーブルから読み出した補正値を用いて、眼鏡レンズの材質および加工ツールの種類ごとに、演算パラメータ(加工ツールのツール径の値)を補正している。眼鏡レンズの材質が変わると、同じ加工ツールでかつ同じ加工軌跡データにしたがって眼鏡レンズを玉型加工しても、加工後の眼鏡レンズのサイズに差が生じる。これは、眼鏡レンズの材質(典型的にはガラスレンズとプラスチックレンズ)により、加工性(レンズの削れ易さなど)や加工条件(加工ツールの回転速度など)が異なるからである。このため、眼鏡レンズの材質に関係なく単に加工ツール単位でサイズ補正を行う場合に比べて、眼鏡レンズのサイズ補正を精度良く行うことができる。
 また、本実施の形態においては、眼鏡レンズの玉型加工を1回行うたびに、そのときの加工履歴データをデータベース部15に記憶しておき、その中から今回の玉型加工で使用した眼鏡レンズの材質および加工ツールの種類と同じ組み合わせの複数個の加工履歴データを用いて周長差の平均値を求めている。このため、1回の玉型加工の加工履歴データだけを用いる場合に比べて、たとえば、周長測定の誤差などの影響を低減し、補正値の変更の要否を的確に判断することができる。また、本実施の形態においては、上述のように求めた平均値が規定範囲を超えている場合に、補正値の変更が必要と判断し、今回の玉型加工で使用した眼鏡レンズの材質および加工ツールの種類と同じ組み合わせで補正テーブルに登録されている補正値を変更している。このため、加工軌跡データの演算に用いる演算パラメータの補正だけでなく、この演算パラメータの補正に用いる補正値についても、眼鏡レンズの材質および加工ツールの種類の組み合わせを考慮して適切に変更することができる。
 図11および図12は本実施の形態に係るレンズ加工システムを用いて実行可能な処理の一例を示すフローチャートである。図示した処理は、クライアント装置8に接続されている複数の玉型加工装置9を、玉型加工装置9ごとに保守管理するために、クライアント装置8が行うものである。ここでは一例として、1号機の玉型加工装置9を保守管理の対象とする場合について説明する。
 まず、総カウント数および総変更回数をクリアするかどうかを判断する(S61)。具体的には、玉型加工装置9で加工ツールの交換が行われた場合はYesと判断し、それ以外はNoと判断する。総カウント数は、1号機の玉型加工装置9に関して、加工ツールの交換後に眼鏡レンズの玉型加工を行った回数である。総カウント数は、加工ツールの交換の指標になる。変更回数は、1号機の玉型加工装置9に関して、補正テーブルに登録されている補正値を変更した回数である。これらの回数は、サーバ装置7のデータ管理部14がデータベース部15を用いて管理(計数)している。
 次に、上記のステップS61でYesと判断した場合は、総カウント数および総変更回数をクリアしてゼロを取得する(S62)。また、上記のステップS61でNoと判断した場合は、サーバ装置7のデータ管理部14が眼鏡レンズの材質および加工ツールの種類ごとに管理している総カウント数および総変更回数を取得する(S63)。
 次に、クライアント装置8のモニタの画面上に、変更比率および総カウント数を表示する(S64)。変更比率は、玉型加工装置9の状態管理の指標になるものであって、以下の(2)式に基づいて求められる。
 変更比率(%)=総変更回数÷総カウント数×100   …(2)
 次に、1号機の玉型加工装置9に関してデータベース部15に登録されている加工履歴テーブルから最新の加工履歴データを取得する(S65)。
 次に、データベース部15に登録されている受注データを参照することにより、今回の玉型加工に使用する眼鏡レンズの材質および加工ツールの種類を取得する(S66)。
 次に、演算パラメータの補正に用いる補正値の変更を加工ツールのツール単位(種類別)で行うかどうかを判断する(S67)。補正値を変更する単位には、ツール単位の他に、眼鏡レンズの材質および加工ツールの種類の組み合わせ単位がある。いずれの単位で補正値を変更するかは、玉型加工装置9ごとに予め設定されている。このため、ステップS67においては、事前の設定にしたがって補正値の変更単位を判断する。
 上記ステップS67でYesと判断した場合は、今回の玉型加工に使用する加工ツールの種類に関して、眼鏡レンズの材質の違いによらず、すべてのレンズ材質の総カウント数に1を加える(S68)。次に、今回の玉型加工に使用する加工ツールの種類と同じ種類の加工ツールを用いて、過去に玉型加工したときに加工履歴テーブルに登録した指定個数分の加工履歴データを取得する(S69)。つまり、加工ツール単位で総カウント数に1を加えた後、加工ツールの種類が同じ加工履歴データを取得する。
 これに対して、上記ステップS67でNoと判断した場合は、今回の玉型加工に使用する眼鏡レンズの材質および加工ツールの種類の組み合わせに関して、総カウント数に1を加える(S70)。次に、今回の玉型加工に使用する眼鏡レンズの材質および加工ツールの種類の組み合わせと同じ組み合わせで、過去に玉型加工したときに加工履歴テーブルに登録した指定個数分の加工履歴データを取得する(S71)。つまり、眼鏡レンズの材質および加工ツールの種類の組み合わせ単位で総カウント数に1を加えた後、それと組み合わせが同じ加工履歴データを取得する。
 次に、上記ステップS69またはS71において、指定個数分の加工履歴データを取得できたどうかを判断する(S72)。このステップS72でNoと判断した場合は、上記ステップS65に戻り、Yesと判断した段階で次のステップS73に進む。
 ステップS73においては、今回の玉型加工に使用する眼鏡レンズの材質および加工ツールの種類が、補正値の変更対象になっているかどうかを判断する。このステップS73でNoと判断した場合は、上記ステップS65に戻り、Yesと判断した段階で次のステップS74に進む。
 ステップS74においては、上記指定個数分の加工履歴データを用いて、実測周長と理論周長の周長差の平均値を計算によって求める。
 次に、上記ステップS67と同様に、補正値の変更をツール単位で行うかどうかを判断する(S75)。このステップS75でYesと判断した場合は、ステップS76に進み、Noと判断した場合は、ステップS77に進む。
 ステップS76においては、上記ステップS74で求めた周長差の平均値が指定範囲内であるかどうかを判断する。指定範囲は適宜、変更可能である。
 次に、上記ステップS76でYesと判断した場合はステップS65に戻る。また、ステップS76でNoと判断した場合は、今回の玉型加工で使用した加工ツールの種類に対応して補正テーブルに登録されている補正値を、眼鏡レンズの材質の違いによらず、すべてのレンズ材質につき適量ずつ変更する(S78)。次に、今回の玉型加工に使用する加工ツールの種類に関して、眼鏡レンズの材質の違いによらず、すべてのレンズ材質の総変更回数に1を加える(S79)。つまり、加工ツール単位で補正値を補正した後、総変更回数に1を加える。
 一方、ステップS77においては、上記ステップS74で求めた周長差の平均値が指定範囲内であるかどうかを判断する。指定範囲は適宜、変更可能である。
 次に、上記ステップS77でYesと判断した場合はステップS65に戻る。また、ステップS77でNoと判断した場合は、今回の玉型加工で使用した眼鏡レンズの材質および加工ツールの種類に対応して補正テーブルに登録されている補正値を適量だけ変更する(S80)。次に、今回の玉型加工に使用した眼鏡レンズの材質および加工ツールの種類に関して、総変更回数に1を加える(S81)。
 つまり、眼鏡レンズの材質および加工ツールの種類の組み合わせ単位で補正値を変更した後、総変更回数に1を加える。
 その後、ステップS82においては、上記(2)式に基づいて変更比率を再度計算し、この計算結果に基づいて、画面上に表示する変更比率の値を変更する。
 このような処理を行うことにより、加工センタ2においては、クライアント装置8のモニタ画面上に表示された情報(変更比率、総カウント回数)をオペレータ等が見て、玉型加工装置9の状態を把握したり、ツール交換等のメンテナンス時期を予測したりすることができる。
 1…眼鏡店
 2…加工センタ
 3…通信回線
 4…レンズ加工システム
 5…発注端末
 6…トレーサ
 7…サーバ装置
 8…クライアント装置
 9…玉型加工装置
 10…三次元周長測定装置

Claims (6)

  1.  玉型形状データから演算によって得られる三次元の加工軌跡データにしたがって眼鏡レンズの玉型加工を行う玉型加工装置と、
     前記玉型加工装置によって玉型加工された眼鏡レンズの加工サイズを三次元で測定する三次元測定装置と、
     前記三次元測定装置の測定によって得られる加工サイズの実測値と計算上得られる加工サイズの理論値との差分に基づいて、前記加工軌跡データの演算に用いる演算パラメータを補正する加工サイズ管理装置と、
     を備えるレンズ加工システム。
  2.  前記加工サイズ管理装置は、眼鏡レンズの材質および加工ツールの種類に対応付けて補正値を記憶保持しておき、当該記憶保持した補正値を用いて、前記眼鏡レンズの材質および前記加工ツールの種類ごとに、前記演算パラメータを補正する
     請求項1に記載のレンズ加工システム。
  3.  前記眼鏡レンズの玉型加工を1回行うたびに、今回の玉型加工で使用した眼鏡レンズの材質および加工ツールの種類に対応付けて、前記加工サイズの実測値および前記加工サイズの理論値を加工履歴データとして順に記憶する加工履歴記憶部と、
     前記今回の玉型加工で使用した眼鏡レンズの材質および加工ツールの種類と同じ組み合わせで前記加工履歴記憶部に記憶されている複数個の加工履歴データを抽出する抽出部と、
     前記抽出部が抽出した前記複数個の加工履歴データを用いて、前記加工サイズの実測値と前記加工サイズの理論値との差分の平均値を求め、この求めた平均値が予め設定された規定範囲を超えている場合に、今回の玉型加工で使用した眼鏡レンズの材質および加工ツールの種類と同じ組み合わせで用いられる前記補正値を変更する変更部と、
     を備える請求項1または2に記載のレンズ加工システム。
  4.  玉型形状データから演算によって得られる三次元の加工軌跡データにしたがって眼鏡レンズの玉型加工を行う玉型加工装置に接続して用いられる加工サイズ管理装置であって、
     前記玉型加工装置によって玉型加工された眼鏡レンズの加工サイズを三次元で測定して得られる加工サイズの実測値と計算上得られる加工サイズの理論値との差分を演算する演算部と、
     前記演算した差分に基づいて、前記加工軌跡データの演算に用いる演算パラメータを補正する補正部と、
     を備える加工サイズ管理装置。
  5.  玉型形状データから演算によって得られる三次元の加工軌跡データにしたがって眼鏡レンズの玉型加工を行う玉型加工装置によって玉型加工された眼鏡レンズの加工サイズを管理する加工サイズ管理方法であって、
     前記玉型加工装置によって玉型加工された眼鏡レンズの加工サイズを三次元で測定して得られる加工サイズの実測値と計算上得られる加工サイズの理論値との差分を演算する工程と、
     前記演算した差分に基づいて、前記加工軌跡データの演算に用いる演算パラメータを補正する工程と、
     を備える加工サイズ管理方法。
  6.  請求項5に記載の加工サイズ管理方法により補正された前記演算パラメータを用いて前記加工軌跡データの演算を行う工程と、
     前記演算によって得られた前記加工軌跡データにしたがって前記玉型加工装置が眼鏡レンズを玉型加工する工程と、
     を備える眼鏡レンズの製造方法。
PCT/JP2013/079669 2012-11-26 2013-11-01 レンズ加工システム、加工サイズ管理装置、加工サイズ管理方法および眼鏡レンズの製造方法 WO2014080738A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/443,482 US9962803B2 (en) 2012-11-26 2013-11-01 Lens edging system, edging size management device, edging size management method and method of manufacturing spectacle lens
BR112015011781-3A BR112015011781B1 (pt) 2012-11-26 2013-11-01 Sistema de usinagem de lente, dispositivo e método de gestão de tamanho de usinagem, e, método de fabricação de uma lente oftálmica
EP13856984.3A EP2924493B1 (en) 2012-11-26 2013-11-01 Lens machining system, machining size management device, machining size management method and method for manufacturing spectacle lens

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-257125 2012-11-26
JP2012257125A JP6018889B2 (ja) 2012-11-26 2012-11-26 レンズ加工システム、加工サイズ管理装置、加工サイズ管理方法および眼鏡レンズの製造方法

Publications (1)

Publication Number Publication Date
WO2014080738A1 true WO2014080738A1 (ja) 2014-05-30

Family

ID=50775924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/079669 WO2014080738A1 (ja) 2012-11-26 2013-11-01 レンズ加工システム、加工サイズ管理装置、加工サイズ管理方法および眼鏡レンズの製造方法

Country Status (5)

Country Link
US (1) US9962803B2 (ja)
EP (1) EP2924493B1 (ja)
JP (1) JP6018889B2 (ja)
BR (1) BR112015011781B1 (ja)
WO (1) WO2014080738A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107077120A (zh) * 2014-10-03 2017-08-18 埃西勒国际通用光学公司 使用具有至少一个几何缺陷的车削机床来车削眼科镜片的至少一个表面的机加工方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3013620B1 (fr) * 2013-11-26 2015-12-25 Essilor Int Procede de biseautage d'une lentille ophtalmique
JP6746524B2 (ja) * 2017-03-29 2020-08-26 株式会社トプコン・エシロールジャパン 眼鏡レンズ加工システムおよび方法
JP7358784B2 (ja) * 2019-06-04 2023-10-11 株式会社ニデック 眼鏡レンズ加工用装置および眼鏡レンズ加工用プログラム
KR20230118818A (ko) * 2020-10-20 2023-08-14 호야 렌즈 타일랜드 리미티드 전자 조광 장치의 제조 방법, 조광용 전자 소자 및 전자 조광 안경

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09168954A (ja) * 1996-10-25 1997-06-30 Nidek Co Ltd 眼鏡枠形状測定装置及び眼鏡枠形状測定方法
JP2994870B2 (ja) 1992-08-07 1999-12-27 ホーヤ株式会社 眼鏡レンズヤゲン設定方法
JP3011526B2 (ja) * 1992-02-04 2000-02-21 株式会社ニデック レンズ周縁加工機及びレンズ周縁加工方法
JP3208566B2 (ja) 1999-09-06 2001-09-17 ホーヤ株式会社 眼鏡レンズのヤゲン周長測定装置
WO2005044513A1 (ja) * 2003-11-05 2005-05-19 Hoya Corporation 眼鏡レンズの供給方法
WO2007077848A1 (ja) 2005-12-26 2007-07-12 Hoya Corporation 眼鏡レンズの供給システム、注文システムおよび製造方法
JP2007301695A (ja) * 2006-05-12 2007-11-22 Hoya Corp 眼鏡レンズの面取り方法および面取り装置
JP2009243952A (ja) 2008-03-28 2009-10-22 Topcon Corp 眼鏡枠形状測定装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19804542C5 (de) * 1998-02-05 2009-04-30 Wernicke & Co Gmbh Verfahren und Vorrichtung zum Bearbeiten von Brillengläsern
US8241534B2 (en) * 2004-03-09 2012-08-14 Hoya Corporation Spectacle lens manufacturing method and spectacle lens manufacturing system
CN103974803B (zh) * 2011-12-08 2016-11-16 Hoya株式会社 眼镜镜片的镜片形状加工系统、眼镜镜片的制造方法及镜片形状加工机

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3011526B2 (ja) * 1992-02-04 2000-02-21 株式会社ニデック レンズ周縁加工機及びレンズ周縁加工方法
JP2994870B2 (ja) 1992-08-07 1999-12-27 ホーヤ株式会社 眼鏡レンズヤゲン設定方法
JPH09168954A (ja) * 1996-10-25 1997-06-30 Nidek Co Ltd 眼鏡枠形状測定装置及び眼鏡枠形状測定方法
JP3208566B2 (ja) 1999-09-06 2001-09-17 ホーヤ株式会社 眼鏡レンズのヤゲン周長測定装置
WO2005044513A1 (ja) * 2003-11-05 2005-05-19 Hoya Corporation 眼鏡レンズの供給方法
JP4888947B2 (ja) 2003-11-05 2012-02-29 Hoya株式会社 眼鏡レンズの周縁加工方法
WO2007077848A1 (ja) 2005-12-26 2007-07-12 Hoya Corporation 眼鏡レンズの供給システム、注文システムおよび製造方法
JP2007301695A (ja) * 2006-05-12 2007-11-22 Hoya Corp 眼鏡レンズの面取り方法および面取り装置
JP2009243952A (ja) 2008-03-28 2009-10-22 Topcon Corp 眼鏡枠形状測定装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107077120A (zh) * 2014-10-03 2017-08-18 埃西勒国际通用光学公司 使用具有至少一个几何缺陷的车削机床来车削眼科镜片的至少一个表面的机加工方法

Also Published As

Publication number Publication date
US9962803B2 (en) 2018-05-08
BR112015011781B1 (pt) 2022-01-18
US20150298278A1 (en) 2015-10-22
EP2924493B1 (en) 2017-08-30
EP2924493A1 (en) 2015-09-30
JP2014106265A (ja) 2014-06-09
BR112015011781A2 (pt) 2017-07-11
EP2924493A4 (en) 2016-07-20
JP6018889B2 (ja) 2016-11-02

Similar Documents

Publication Publication Date Title
JP6018889B2 (ja) レンズ加工システム、加工サイズ管理装置、加工サイズ管理方法および眼鏡レンズの製造方法
JP6002151B2 (ja) 眼鏡レンズの玉型加工システム、眼鏡レンズの製造方法、および玉型加工機
JP5138053B2 (ja) 眼鏡レンズの周縁加工方法
JP5972759B2 (ja) レンズ加工システム、加工サイズ管理装置、加工サイズ管理方法および眼鏡レンズの製造方法
JPH10186293A (ja) 眼鏡加工方法及び眼鏡フレーム
AU2012300658B2 (en) Method of surfacing a surface of a spectacle lens
CN104823098A (zh) 眼镜镜片、用于眼镜镜片的制造设备和制造方法
US6890241B2 (en) Lens processing management system
EP2089781B1 (en) Method of surface manufacture with an apex decentered from a spindle axis
EP3502770B1 (en) Eyeglass lens production method, eyeglass lens production system
JP6358621B2 (ja) 眼科用レンズの注文依頼を処理する方法
US6554426B2 (en) Methods for designing and manufacturing single-vision spectacle lens and manufacturing system thereof
US10189138B2 (en) Spectacle lens manufacturing system, manufacturing device, manufacturing method, manufacturing information management system, manufacturing information management device, and manufacturing information management method
JP6543464B2 (ja) 眼鏡レンズ
JP2002126984A (ja) 眼鏡レンズの光学中心測定方法並びに眼鏡レンズのレンズホルダ取付方法及び装置
JP2013205747A (ja) 眼鏡レンズ加工方法、眼鏡レンズ加工システムおよび眼鏡レンズ加工プログラム
JP4576623B2 (ja) プラスチック材料眼鏡レンズを製作するプロセスおよび装置
EP4276555A1 (en) A method for surfacing a lens blank with a cutting tool
JP2002072156A (ja) 眼鏡加工方法及び眼鏡フレーム
JP2013205746A (ja) 周長算出方法、眼鏡レンズの製造方法、周長算出装置および周長算出プログラム
Hale Looking at labs: Manufacturing lenses-part 2 generation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13856984

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14443482

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013856984

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013856984

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015011781

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015011781

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150521