WO2014080727A1 - レーザアニール方法およびレーザアニール装置 - Google Patents

レーザアニール方法およびレーザアニール装置 Download PDF

Info

Publication number
WO2014080727A1
WO2014080727A1 PCT/JP2013/079231 JP2013079231W WO2014080727A1 WO 2014080727 A1 WO2014080727 A1 WO 2014080727A1 JP 2013079231 W JP2013079231 W JP 2013079231W WO 2014080727 A1 WO2014080727 A1 WO 2014080727A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
intensity
pulse laser
laser annealing
steepness
Prior art date
Application number
PCT/JP2013/079231
Other languages
English (en)
French (fr)
Inventor
純一 次田
政志 町田
石煥 鄭
Original Assignee
株式会社日本製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本製鋼所 filed Critical 株式会社日本製鋼所
Priority to CN201380060413.2A priority Critical patent/CN104798180B/zh
Priority to KR1020157010386A priority patent/KR102108028B1/ko
Priority to SG11201503917UA priority patent/SG11201503917UA/en
Publication of WO2014080727A1 publication Critical patent/WO2014080727A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02686Pulsed laser beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation

Definitions

  • the present invention relates to a laser annealing method and a laser annealing apparatus for crystallizing an amorphous film or modifying a crystal film by irradiating a non-single crystal semiconductor with a line beam shaped pulse laser and performing multiple overlap irradiations It is about.
  • Thin film transistors generally used in TVs and PC displays are composed of amorphous (non-crystalline) silicon (hereinafter referred to as a-silicon), but silicon is crystallized (hereinafter referred to as p-silicon) by some means.
  • a-silicon amorphous (non-crystalline) silicon
  • p-silicon silicon is crystallized
  • the performance as a TFT can be remarkably improved.
  • excimer laser annealing technology has already been put into practical use as a Si crystallization process at low temperature, and is frequently used for small displays such as smartphones, and further applied to large screen displays. ing.
  • a non-single crystal semiconductor film is irradiated with an excimer laser having a high pulse energy, so that the semiconductor that has absorbed the light energy is melted or semi-molten, and then crystallized when cooled and solidified. It is a mechanism.
  • a pulse laser shaped into a line beam shape is irradiated while scanning in a relatively short axis direction.
  • scanning with a pulsed laser is performed by moving an installation table on which an amorphous semiconductor film is installed.
  • the beam shape of the laser is shaped into a predetermined shape through the optical system, the beam intensity is made uniform in the beam cross section (top flat: flat portion), and further if necessary.
  • the beam is condensed and irradiated to the object to be processed.
  • a line beam shape having a short axis width and a long axis width in a cross sectional view of the beam is known.
  • a wide object to be processed is obtained.
  • the area can be processed efficiently in a lump.
  • the energy intensity decreases toward the outside at the edge in the minor axis direction and the major axis direction through various optical members (also called a steepness part). have.
  • the line width is defined by passing a line beam through a slit, and a flat property having a generally sharp edge is obtained (paragraph 0011).
  • the steepness portion can be reduced by designing an optical member or the like. However, if the steepness portion is excessively reduced by designing the optical member or the like, as shown in FIG. In the strength profile, a strength protrusion 151a whose strength rapidly increases is locally formed at the end of the flat portion 151 in the short axis direction. Further, even when a mask or slit is used, an intensity protrusion 151a whose intensity rapidly increases at the end in the short axis direction of the flat portion 151 in the beam intensity profile of the transmitted laser beam is similarly formed due to the diffraction phenomenon. .
  • Patent Document 1 straight lines are drawn by ultraviolet light on a processed surface such as a light-transmitting conductive film, and the above-described protrusions do not cause any particular trouble.
  • the laser annealing when a pulse laser having a protrusion formed at the end of the flat portion is used, the annealing process becomes defective due to deviating from the optimum energy density range.
  • the short axis width of the steepness portion is set to about 70 to 100 ⁇ m, which is considered to have no problem in laser irradiation. The appearance of the protrusion is avoided, and the design of the optical member is facilitated.
  • the semiconductor crystallized by the irradiation of the pulsed laser has an irradiation unevenness, and this causes the performance when it is used as a device.
  • the above-mentioned irradiation unevenness is considered to be caused by uneven formation of the polysilicon film at the end of the scanning direction of the line beam for each shot. This portion corresponds to a boundary between a melted portion of the semiconductor film by laser irradiation and a portion that remains solid without being irradiated with a laser having a sufficient intensity to melt the semiconductor film.
  • This rise is considered to increase in proportion to the intensity of irradiation energy. That is, as the irradiation energy increases, melting progresses in the film thickness direction of the semiconductor film, and the temperature of the semiconductor film layer that becomes liquid increases even after the entire film has melted. When this liquid phase part is crystallized as the temperature decreases, the liquid is solidified while being sucked to the solid-liquid interface, that is, the edge of the short axis of the line beam, so that the swell is considered to occur. . Irradiation unevenness is not so conspicuous as long as the bulges are formed at the same height at predetermined intervals.
  • the slope of the steepness portion also fluctuates, as shown in FIG. 9, and the minor axis width of the region that affects the annealing of the semiconductor film (for example, the region that exceeds the melting threshold) changes. Resulting in.
  • the minor axis width of the melting threshold region increases by 3% at both ends in the beam intensity profile having a 100 ⁇ m steepness portion.
  • the melt width in the non-single-crystal semiconductor varies, so that the height and interval of the bulge portion are disturbed and appear as irradiation unevenness.
  • the present invention has been made against the background of the above circumstances, and an object of the present invention is to provide a laser annealing method and a laser annealing apparatus that can reduce the influence of fluctuations in laser output energy.
  • the first invention is a laser that irradiates a non-single crystal semiconductor film with a pulse laser whose beam cross-sectional shape is a line beam while scanning in the minor axis direction of the line beam.
  • the line beam In the beam intensity profile, the line beam has a steepness portion located at an end in the minor axis direction, and the steepness portion is a region having an intensity of 10% to 90% of the maximum intensity in the beam intensity profile.
  • the irradiation is performed such that the width in the short axis direction of the steepness portion located on the rear side in the scanning direction of the steepness portion is 50 ⁇ m or less on the irradiation surface of the non-single crystal semiconductor film. .
  • the laser annealing method of the second aspect of the present invention is characterized in that, in the first aspect of the present invention, the wavelength of the pulse laser is 400 nm or less.
  • the laser annealing method of the third aspect of the present invention is characterized in that, in the first or second aspect of the present invention, a pulse half-value width on an irradiation surface of the pulse laser is 200 ns or less.
  • the laser annealing method of the fourth aspect of the present invention is the laser annealing method according to any one of the first to third aspects of the present invention, wherein the pulse laser has a maximum intensity value in the beam intensity profile on the irradiated surface of 250 to 500 mJ / cm 2. It is characterized by being.
  • the laser annealing method of the fifth aspect of the present invention is characterized in that, in any of the first to fourth aspects of the present invention, the non-single crystal semiconductor is silicon.
  • the pulse laser has a flat portion in the minor axis direction in the beam intensity profile, and the maximum intensity is It is given by the average value of the intensity in the flat part.
  • the laser annealing method of the seventh aspect of the present invention is the laser annealing method according to any one of the first to sixth aspects of the present invention, wherein the pulse laser has a locally increased intensity at one or both ends in the beam intensity profile.
  • the maximum strength is given in a range excluding the strength protrusions.
  • the laser annealing method according to an eighth aspect of the present invention is the method according to the sixth or seventh aspect, wherein the line beam is a short region of 96% or more of the maximum intensity on the irradiation surface of the non-single crystal semiconductor film.
  • the axial width is 100 to 500 ⁇ m.
  • the ninth aspect of the laser annealing apparatus of the present invention is: A laser light source that outputs a pulsed laser; An attenuator for adjusting the transmittance of the pulse laser; An optical system that shapes the beam cross-sectional shape of the pulse laser and guides the shaped pulse laser onto the irradiation surface of the non-single-crystal semiconductor film,
  • the optical system includes: an optical member that shapes a beam cross-sectional shape of the pulse laser into a line beam having a high intensity region having a predetermined intensity or higher in a beam intensity profile; and a steepness located at a short-axis direction end of the line beam. And an optical member that steepens at least a short-axis direction width on the rear side in the scanning direction on the irradiation surface of the non-single-crystal semiconductor film to 50 ⁇ m or less.
  • a laser annealing apparatus is the laser annealing apparatus according to the ninth aspect, wherein an optical member that sharpens the steepness portion is disposed in an optical path of the pulse laser, and a part of a beam cross section of the pulse laser is It is the shielding part which shields, It is characterized by the above-mentioned.
  • the laser annealing apparatus is the laser annealing apparatus according to the tenth aspect of the present invention, wherein the shielding portion shields a part of a beam cross section of the pulse laser outside an end in a short axis direction of the high intensity region. It is characterized by being.
  • a laser annealing apparatus is characterized in that, in any of the ninth to eleventh aspects of the present invention, the laser light source outputs the pulse laser having a wavelength of 400 nm or less.
  • a laser annealing apparatus is characterized in that, in any of the ninth to twelfth aspects of the present invention, the laser light source outputs the pulsed laser having a half width of 200 ns or less. .
  • the laser annealing apparatus is the optical annealing system according to any one of the ninth to thirteenth aspects, wherein the optical system transmits the pulse laser to the high-intensity region whose intensity is 96% or more of the maximum intensity.
  • An optical member for adjusting the intensity to a beam intensity profile having a steepness portion located at the end is provided.
  • the attenuator has a maximum intensity in a beam intensity profile of the pulse laser on the irradiation surface of the non-single crystal semiconductor film. It is characterized by being adjusted to 250 to 500 mJ / cm 2 .
  • the steepness portion by making the steepness portion steep, irradiation unevenness due to fluctuations in the output of the pulse laser is reduced. For example, in a predetermined number of overlapping irradiations, there is an appropriate irradiation energy density, but the energy density has a certain allowable range. However, when the width of the steepness portion is as large as before (for example, 70 ⁇ m or more), even if the fluctuation is within the appropriate irradiation energy density width, it appears as irradiation unevenness.
  • the steepness portion is a portion where the energy intensity decreases toward the outside, and refers to a region having an intensity of 10% to 90% of the maximum intensity in the beam intensity profile in the minor axis direction.
  • the width of the steepness portion is reduced (50 ⁇ m or less)
  • the influence of energy fluctuation is greatly reduced, and as a result, irradiation unevenness can be reduced.
  • the width of the steepness portion is desirably 45 ⁇ m or less for the same reason.
  • an amorphous one is crystallized or a crystalline one is modified.
  • the reforming includes a single crystal of a polycrystalline one or improvement of crystallinity.
  • a typical example of the non-single crystal semiconductor is silicon, but the present invention is not limited to this.
  • the pulse laser is not limited to a specific one in the present invention, for example, a laser having a wavelength of 400 nm or less and a half width of 200 ns or less is exemplified. Also, the type of pulse laser is not particularly limited, and for example, an excimer laser can be mentioned.
  • the pulse laser is shaped into a line beam using various optical members such as a cylindrical lens.
  • the shape of the line beam is not limited to a specific shape, and any shape may be used as long as the major axis has a large ratio with respect to the minor axis. For example, the ratio is 10 or more.
  • the length on the long axis side and the length on the short axis side are not limited to specific ones in the present invention. For example, the length on the long axis side is 370 to 1300 mm, and the length on the short axis side is 100 ⁇ m to 500 ⁇ m. Things.
  • the pulse laser mainly includes a high intensity region (preferably mainly a flat portion) having an intensity of 96% or more of the maximum intensity in the beam intensity profile by an optical member such as a homogenizer or a cylindrical lens.
  • a profile having a steepness portion of 10 to 90% of the maximum strength located at the end portion can be obtained.
  • the high-strength region and the steepness portion there is a transition portion where the strength changes, and the width is slight.
  • examples of the high-strength region include those in which the strength tends to be inclined in the minor axis direction and those in which the strength has a curved distribution, and the maximum strength is provided therebetween.
  • Steepness of the steepness portion can be performed using, for example, a shielding portion capable of shielding the end portion of the beam. Shielding can be performed by blocking the beam transmission or by reducing the transmittance. By arranging the shielding portion at a position close to the non-single-crystal semiconductor film, the width of the steepness portion can be reduced. In this case, a material having higher heat resistance can be used. Further, by arranging the shielding portions in multiple stages along the optical path, it is possible to reduce the width of the steepness portion in the minor axis direction while reducing damage to the shielding portions.
  • this shielding part shields a part of the beam cross section of the pulse laser outside the end in the short axis direction of the high intensity region.
  • the intensity is increased at the end of the transmission part due to the diffraction phenomenon, and the intensity protrusion is formed. If shielding is performed at a portion where the strength starts to decrease outside the high strength region by utilizing this phenomenon, the strength protrusion is not generated or can be made extremely small. However, if the shielding is performed on the outer side too much, the strength is once lowered on the outer side of the high-strength region, and the strength is increased on the outer side. Therefore, it is desirable to shield at an appropriate strength position. For example, it is desirable to shield at a position in the intensity range that is 70 to 90% of the maximum intensity.
  • the steepness of the steepness portion can be performed by adjusting an optical member, for example.
  • an optical member for example, it can be realized by adjusting the position of the silicon film with respect to the image formation position by the cylindrical lens, or using a combination lens having better image formation performance as the cylindrical lens.
  • the pulse laser varies depending on the number of overlaps, for example, a laser that irradiates a non-single crystal semiconductor with an energy density of 250 to 500 mJ / cm 2 can be used.
  • the number of overlaps can be exemplified by 8 to 50 times, and the scanning speed can be 1 to 100 mm / second.
  • the steepness portion is sharpened, the influence when the energy output fluctuates can be reduced, and irradiation unevenness can be reduced, and as a result, a high-quality semiconductor device can be provided.
  • the laser annealing apparatus 1 includes a processing chamber 2, a scanning device 3 that can move in the XY direction in the processing chamber 2, and a base 4 on the upper portion thereof.
  • a substrate placement table 5 is provided on the base 4 as a stage.
  • the scanning device 3 is driven by a motor (not shown).
  • the processing chamber 2 is provided with an introduction window 6 for introducing a pulse laser from the outside.
  • an amorphous silicon film 100 or the like is placed on the substrate placement table 5 as a non-single crystal semiconductor film.
  • the silicon film 100 is formed on a substrate (not shown) with a thickness of, for example, 40 to 100 nm (specifically, for example, a thickness of 50 nm).
  • the formation can be performed by a conventional method, and the method for forming a semiconductor film is not particularly limited in the present invention.
  • the description will be made on laser processing for crystallizing an amorphous film by laser processing.
  • the present invention is not limited to this, for example, non-single crystal
  • the semiconductor film may be single-crystallized or the crystalline semiconductor film may be modified.
  • a pulsed laser light source 10 is installed outside the processing chamber 2.
  • the pulsed laser light source 10 is composed of an excimer laser oscillator and can output a pulsed laser having a wavelength of 400 nm or less and a repetition oscillation frequency of 1 to 1200 Hz.
  • the pulsed laser light source 10 performs pulse control by feedback control.
  • the laser output can be controlled to be maintained within a predetermined range.
  • the pulse laser 15 that is output after being pulsated by the pulsed laser light source 10 is adjusted by an attenuator 11 in an energy density, and is an optical system 12 including optical members such as a homogenizer 12a, a reflection mirror 12b, and a cylindrical lens 12c. Shaping and deflection into a line beam shape, intensity distribution adjustment to a beam intensity profile shape having a flat portion and a steepness portion, and the like are performed, and a pulse laser 150 is formed in the processing chamber 2 through an introduction window 6 provided in the processing chamber 2.
  • the amorphous silicon film 100 is irradiated.
  • the optical member constituting the optical system 12 is not limited to the above, and can include various lenses (such as a homogenizer and a cylindrical lens), a mirror, a waveguide unit, and the like.
  • a shielding part 20 is disposed in the processing chamber 2.
  • the shielding unit 20 is disposed at a position where the rear end portion in the short axis direction with respect to the relative beam scanning direction of the pulse laser 150 can be shielded.
  • the two shielding plates to be paired may be arranged with a gap between each other so as to shield both ends in the scanning direction of the pulse laser.
  • the pulse laser 15 that is pulsed and output from the pulsed laser light source 10 has, for example, a wavelength of 400 nm or less and a pulse half-value width of 200 ns or less. However, the present invention is not limited to these.
  • the pulse energy density of the pulse laser 15 is adjusted by the attenuator 11.
  • the attenuator 11 is set to a predetermined attenuation rate, and the attenuation rate is adjusted so that a predetermined irradiation pulse energy density is obtained on the surface irradiated with the silicon film 100.
  • the energy density can be adjusted to 150 to 500 mJ / cm 2 , preferably 250 to 500 mJ / cm 2 on the irradiated surface. .
  • the pulse laser 15 transmitted through the attenuator 11 is shaped into a line beam shape by the optical system 12, and further, the short axis width is condensed through the cylindrical lens 12 c of the optical system 12, and is introduced into the introduction window 6 provided in the processing chamber 2. be introduced.
  • the pulse laser 150 is located at a high intensity region including the flat portion 151 with respect to the maximum energy intensity of 96% or more, and both ends in the major axis direction, and has an energy smaller than that of the flat portion 151.
  • a steepness portion 152 having strength and gradually decreasing energy strength toward the outside is provided. The steepness portion is an area in the range of 10% to 90% of the maximum strength.
  • the pulse laser 150 passes through the introduction window 6 and is introduced into the processing chamber 2, and further proceeds to the shielding unit 20.
  • the shielding part 20 is arranged at a position of 70 to 90% of the maximum intensity in the beam intensity profile so as to shield the steepness parts 152 at both ends in the minor axis direction with respect to the pulse laser 150. Thereby, it can control so that the magnitude
  • the pulse laser 150 with the reduced steepness portion 152 passes through the shielding portion 20 to form a steepness portion 153 at the rear end portion in the minor axis direction in the beam scanning direction by diffraction or the like. Is done.
  • the steepness portion 153 that has passed through the shielding portion 20 is formed by shielding the steepness portion 152 before passing through the shielding portion 20, and therefore, compared to the steepness portion 152 before passing through the shielding portion 20.
  • the spread width is considerably smaller.
  • the steepness portion 152 at the front end in the short axis direction in the beam scanning direction can be used without any problem.
  • 3 and 4 show the relative scanning directions of the beams (hereinafter also FIG. 5 is shown).
  • the shielding unit 20 shields the pulse laser 150 at a position where the intensity is lower than the intensity of the flat part, there is less damage to the shielding part even if it is installed at a position closer to the silicon film 100 than when the flat part is shielded. .
  • the spread of the steepness portion 153 can be further reduced, and the short axis width can be reduced to 50 ⁇ m or less on the irradiation surface. In this respect, it has peculiarities with respect to conventional masks and slits that shield at flat portions.
  • a steepness part 153 having a small spread is obtained, and the width of the steepness part is 50 ⁇ m or less on the irradiated surface, more preferably It is reduced to 45 ⁇ m or less.
  • the silicon film 100 is moved by the scanning device 3 to irradiate the silicon film 100 while scanning the pulse laser 150 relative to the silicon film 100.
  • the scanning speed is not limited to a specific one.
  • the irradiation pitch can be 5 to 65 ⁇ m.
  • the width of the steepness portion 153 is reduced to 50 ⁇ m or less as described above, and even if the output of the pulse laser 15 fluctuates, the variation rate of the width of the region above the melting threshold value Can be kept small. For example, as shown in FIG. 5, even when the output energy is increased by 10%, if the width of the steepness portion 153 is 50 ⁇ m or less, the variation in the width of the region above the melting threshold can be suppressed to 0.95% or less. .
  • FIG. 6 shows a laser annealing apparatus 1a according to another embodiment, in which shielding portions are installed in multiple stages (in this example, two stages).
  • shielding portions are installed in multiple stages (in this example, two stages).
  • symbol is attached
  • a first shielding part 21 corresponding to the first shielding part is disposed between the cylindrical lens 12c that is a condenser lens and the introduction window 6, and the processing chamber 2 corresponds to the second shielding part.
  • a second shielding part 22 is arranged. As shown in FIG. 6, the first shielding part 21 is arranged at a position where the rear end part in the short axis direction in the beam scanning direction of the pulse laser 150 can be shielded. Similarly, the second shielding part 22 is also arranged at a position where the rear end part in the minor axis direction in the beam scanning direction of the pulse laser 150 can be shielded. In addition, in the 1st shielding part 21 and the 2nd shielding part 22, it may arrange
  • the pulse laser 150 in which the steepness portion 152 is reduced by the first shielding portion 21 passes through the first shielding portion 21, so that a steepness portion 153 is formed at the rear end portion in the short axis direction in the scanning direction by diffraction or the like. .
  • the steepness portion 153 is formed so as to shield the steepness portion 152, so that the spreading width is considerably smaller than that of the steepness portion 152.
  • the pulse laser 150 having the steepness portion 153 passes through the introduction window 6 and is introduced into the processing chamber 2 and further proceeds to reach the second shielding portion 22.
  • the steepness part 153 reduced by the first shielding part 21 is located.
  • the remaining steepness part is shielded.
  • a steepness part is formed by diffraction or the like, but the spreading width is further reduced compared to the steepness part before reaching the second transmission part 22.
  • the neck portion is further reduced.
  • the second shielding part 22 it is desirable to shield a part of the beam cross section of the pulse laser outside the end in the short axis direction of the high intensity region, and the maximum in the beam intensity profile after passing through the first shielding part 21. It is desirable to be disposed at a position of 70 to 90% of the strength.
  • the width of the steepness portion at the rear end in the short axis direction in the scanning direction is reduced by arranging the shielding portion on the optical path.
  • the silicon film position with respect to the imaging position by the cylindrical lens 12c It is also possible to reduce the width of the steepness portion by using a combination lens having a better imaging performance as the adjustment of the cylindrical lens 12c, or in combination with a shielding portion.
  • a substrate on which an amorphous silicon film with a thickness of 50 nm is formed is prepared.
  • an excimer laser oscillator (trade name: LSX540C) is used as a pulsed laser light source, and a pulse laser with a wavelength of 308 nm is used as a pulse frequency.
  • the output was made at 300 Hz.
  • the beam size was shaped into a line beam of 370 mm ⁇ 0.4 mm by an optical system, and the width of the steepness portion at the rear end in the minor axis direction in the beam scanning direction was set to 40 ⁇ m by a mask.
  • a mask was prepared in which the mask was disposed at a high position with respect to the amorphous silicon film and the width of the steepness portion in the minor axis direction was set to 70 ⁇ m.
  • the irradiation energy density optimum for crystallization is in the range of 310 to 330 mJ / cm 2 .
  • the scanning pitch is 20 ⁇ m.
  • the irradiation test was performed by changing the irradiation energy density at 310, 320, 330, 340, 350, 360, and 370 mJ / cm 2 by adjusting the attenuator, and the crystallinity was evaluated.
  • the optimum energy density range (OED) for crystallization was 310 to 340 mJ / cm 2 , but in order to make the influence of fluctuations in energy density more remarkable, an optical microscope was used for a test example of 350 mJ / cm 2.
  • the bulge interval at the end of the short axis direction melted region for each shot was a constant value, that is, 20 ⁇ m, and thus was not recognized as irradiation unevenness.
  • the amount of mechanical movement of the silicon film for each laser shot is 20 ⁇ m, there is a portion where the actual melt width is widened and the bulge at the end of the short-axis direction melted region is large. It was. This was due to the fact that the pulse energy of the laser when irradiating this part was relatively high, which was recognized as irradiation unevenness.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

レーザのエネルギー出力の変動による照射ムラを低減するため、非単結晶半導体膜上に、ビーム断面形状をラインビームとしたパルスレーザをラインビームの短軸方向に走査しつつ照射するレーザアニール方法において、ラインビームが、ビーム強度プロファイルにおいて、短軸方向端部に位置するスティープネス部とを有し、スティープネス部がビーム強度プロファイルにおける最大強度の10%以上90%以下の強度を有する領域であり、スティープネス部のうち走査方向後方側の短軸方向幅が非単結晶半導体膜の照射面上で50μm以下になるようにして前記照射を行うことで、スティープネス部が急峻化され、エネルギー出力が変動した際の溶融幅の変動による影響を軽減して照射ムラを小さくすることができる。

Description

レーザアニール方法およびレーザアニール装置
 この発明は、非単結晶半導体にラインビーム形状のパルスレーザを走査しつつ複数回のオーバーラップ照射をして非晶質膜の結晶化や結晶膜の改質を行うレーザアニール方法およびレーザアニール装置に関するものである。
 一般的にTVやPCディスプレイで用いられている薄膜トランジスタは、アモルファス(非結晶)シリコン(以降a-シリコンという)により構成されているが、何らかの手段でシリコンを結晶化(以降p-シリコンという)して利用することでTFTとしての性能を格段に向上させることができる。現在は、低温度でのSi結晶化プロセスとしてエキシマレーザアニール技術がすでに実用化されており、スマートフォン等の小型ディスプレイ向け用途で頻繁に利用されており、さらに大画面ディスプレイなどへの実用化がなされている。
 このレーザアニール法では、高いパルスエネルギーを持つエキシマレーザを非単結晶半導体膜に照射することで、光エネルギーを吸収した半導体が溶融または半溶融状態になり、その後冷却され凝固する際に結晶化する仕組みである。この際には、広い領域を処理するために、ラインビーム形状に整形したパルスレーザを相対的に短軸方向に走査しながら照射する。通常は、非結晶半導体膜を設置した設置台を移動させることでパルスレーザの走査が行われる。
 このレーザアニール処理では、光学系を通してレーザのビーム形状を所定形状に整形し、また、ビーム強度がビーム断面において一様(トップフラット:平坦部)になるようにしており、さらには必要に応じてビームを集光して被処理物に照射している。
 ビーム形状の一種としてビーム断面視で短軸幅と長軸幅を有するラインビーム形状が知られており、これを短軸方向に走査しつつ被処理物に照射することで、被処理物の広い面積を一括して効率よく処理することが可能になる。ただし、トップフラットにしたラインビーム形状でも、各種の光学部材などを経ることで、短軸方向および長軸方向の縁部にはエネルギー強度が外側に向かって減少する部分(スティープネス部ともいう)を有している。
 特許文献1では、集光されたレーザ光の周辺部にガウス分布に従った強度の弱くなる領域が発生するため、線の端部のきれが明確でなくなることを課題として、100μmにまで集光した後、被加工面より離れた位置にマスクを配設し、このマスクのパターン形状により、例えば100μm×30cmの巾に対し20μm×30cmの極細の開溝パターンをその周辺部のエッジを明確にして作り得るとしている。
 また、特許文献2では、ラインビームをスリットに通すことでライン幅が規定され、概ね鋭いエッジを有したフラットな性質を得るとしている(段落0011)。
特開平5-206558号公報 特開平9-321310号公報
 しかし、マスクやスリット、または各種光学系を用いてもスティープネス部を全くゼロにすることは困難である。このスティープネス部の低減は光学部材の設計などにより行うことも可能であるが、光学部材の設計などによって過度にスティープネス部を低減しようとすると、図8に示すように、パルスレーザ150のビーム強度プロファイルにおいて平坦部151の短軸方向端に強度が急激に増加する強度突部151aが局所的に形成されてしまう。また、マスクやスリットを用いた場合にも回折現象によって、透過したレーザビームのビーム強度プロファイルにおいて平坦部151の短軸方向端に強度が急激に増加する強度突部151aが同様に形成されてしまう。特許文献1は、透光性導電膜などの加工面に紫外線光により直線描画を行うものであり、上記した突部が格別な支障となるものではない。しかし、レーザアニールでは、平坦部端に形成される突部を有するパルスレーザを用いた場合、最適エネルギー密度範囲から外れるなどしてアニール処理に不具合が生じてしまう。
 このため、従来のレーザアニールでは、マスクやスリットを使用することなく、スティープネス部の短軸方向幅をレーザ照射に際し比較的支障がないと考えられている70~100μm程度にすることで、強度突部の出現を避け、かつ光学部材の設計を容易にしている。
 しかし、本発明者らの注意深い観察によれば、現状でもパルスレーザの照射によって結晶化された半導体には照射ムラが認められ、これが原因になってデバイスとした際に性能に影響が生じていることが分かっている。
 本願発明者らの研究によれば、上記照射ムラは、ラインビームの走査方向端部のポリシリコン膜の盛り上がりがショット毎で不均一に形成されることが原因と考えられる。この部分は、レーザ照射による半導体膜の溶融部と、半導体膜が溶融するのに十分な強度を有するレーザが照射されず固体のままである部分との境目に相当する。この盛り上がりは、照射エネルギーの強度に比例して大きくなると考えられる。すなわち、照射エネルギーが大きくなるに従い半導体膜の膜厚方向に溶融が進み、また膜全体が溶融した後も液体となった半導体膜層の温度が増大する。この液相部分が温度低下に伴い結晶化する際に、より先行して温度が低下し始める固液界面すなわちラインビーム短軸エッジ部に液体が吸い寄せられつつ固化するため、盛り上がりが生じると考えられる。この盛り上がりが所定の間隔で同等の高さで形成されている限りは照射ムラは大きく目立つものではない。
 しかし、レーザの出力エネルギーの変動が生じると、図9に示すようにスティープネス部の傾きも変動し、半導体膜のアニールに影響がある領域(例えば溶融閾値以上の領域)の短軸幅が変化してしまう。図9に示すビーム強度プロファイルでは、ビーム強度が+10%変動した場合、100μmのスティープネス部を有するビーム強度プロファイルでは、溶融閾値領域の短軸幅が両端でそれぞれ3%増大してしまう。これにより非単結晶半導体での溶融幅が変動するため前記盛り上がり部の高さや間隔の乱れが生じ照射ムラとなって現れる。
 本発明は、上記事情を背景としてなされたものであり、レーザの出力エネルギーの変動による影響を軽減することができるレーザアニール方法およびレーザアニール装置を提供することを目的とする。
 すなわち、本発明のレーザアニール方法のうち第1の本発明は、非単結晶半導体膜上に、ビーム断面形状をラインビームとしたパルスレーザを前記ラインビームの短軸方向に走査しつつ照射するレーザアニール方法において、
 前記ラインビームが、ビーム強度プロファイルにおいて、短軸方向端部に位置するスティープネス部を有し、前記スティープネス部が前記ビーム強度プロファイルにおける最大強度の10%以上90%以下の強度を有する領域であり、
 前記スティープネス部のうち走査方向後方側に位置する前記スティープネス部の短軸方向幅が前記非単結晶半導体膜の照射面上で50μm以下になるようにして前記照射を行うことを特徴とする。
 第2の本発明のレーザアニール方法は、前記第1の本発明において、前記パルスレーザの波長が400nm以下であることを特徴とする。
 第3の本発明のレーザアニール方法は、前記第1または第2の本発明において、前記パルスレーザの照射面上におけるパルス半値幅が200ns以下であることを特徴とする。
 第4の本発明のレーザアニール方法は、前記第1~第3の本発明のいずれかにおいて、前記パルスレーザは、照射面上において前記ビーム強度プロファイルにおける最大強度の値が250~500mJ/cmであることを特徴とする。
 第5の本発明のレーザアニール方法は、前記第1~第4の本発明のいずれかにおいて、前記非単結晶半導体がシリコンであることを特徴とする。
 第6の本発明のレーザアニール方法は、前記第1~第5の本発明のいずれかにおいて、前記パルスレーザは、ビーム強度プロファイルにおいて、短軸方向に平坦部を有し、前記最大強度は、前記平坦部における強度の平均値で与えられることを特徴とする。
 第7の本発明のレーザアニール方法は、前記第1~第6の本発明のいずれかにおいて、前記パルスレーザは、ビーム強度プロファイルにおいて、両端部のいずれか一方または両方に局所的に強度が上昇する強度突部を有する場合、前記強度突部を除いた範囲で前記最大強度が与えられることを特徴とする。
 第8の本発明のレーザアニール方法は、前記第6または第7の本発明において、前記ラインビームは、前記非単結晶半導体膜の照射面上で、前記最大強度の96%以上の領域の短軸方向幅が100~500μmであることを特徴とする。
 第9の本発明のレーザアニール装置は、
パルスレーザを出力するレーザ光源と、
前記パルスレーザの透過率を調整するアテニュエータと、
前記パルスレーザのビーム断面形状を整形するとともに整形されたパルスレーザを非単結晶半導体膜の照射面上に導く光学系と、を有し、
 前記光学系は、前記パルスレーザのビーム断面形状をビーム強度プロファイルにおいて所定の強度以上の高強度領域を有するラインビームに整形する光学部材と、前記ラインビームの短軸方向端部に位置するスティープネス部のうち少なくとも走査方向後方側の短軸方向幅を前記非単結晶半導体膜の照射面上で50μm以下になるように急峻にする光学部材とを備えることを特徴とする。
 第10の本発明のレーザアニール装置は、前記第9の本発明において、前記スティープネス部を急峻にする光学部材が、前記パルスレーザの光路に配置され、前記パルスレーザのビーム断面の一部を遮蔽する遮蔽部であることを特徴とする。
 第11の本発明のレーザアニール装置は、前記第10の本発明において、前記遮蔽部が、前記高強度領域の短軸方向端よりも外側で前記パルスレーザのビーム断面の一部を遮蔽するものであることを特徴とする。
 第12の本発明のレーザアニール装置は、前記第9~第11の本発明のいずれかにおいて、前記レーザ光源は、波長が400nm以下の前記パルスレーザを出力するものであることを特徴とする。
 第13の本発明のレーザアニール装置は、前記第9~第12の本発明のいずれかにおいて、前記レーザ光源は、半値幅が200ns以下の前記パルスレーザを出力するものであることを特徴とする。
 第14の本発明のレーザアニール装置は、前記第9~第13の本発明のいずれかにおいて、前記光学系は、前記パルスレーザを、強度が最大強度の96%以上である前記高強度領域と端部に位置するスティープネス部とを有するビーム強度プロファイルに強度調整する光学部材を備えることを特徴とする。
 第15の本発明のレーザアニール装置は、前記第9~第14の本発明のいずれかにおいて、前記アテニュエータは、非単結晶半導体膜の照射面上における前記パルスレーザのビーム強度プロファイルにおける最大強度を250~500mJ/cmに調整することを特徴とする。
 すなわち、本発明によれば、スティープネス部を急峻にすることで、パルスレーザの出力変動による照射ムラが軽減される。例えば、所定回数のオーバーラップ照射では、適正とされる照射エネルギー密度があるが、そのエネルギー密度にはある程度の許容範囲がある。しかし、スティープネス部の幅が従来のように大きい(例えば70μm以上)と、適正な照射エネルギー密度幅内の変動であっても、照射ムラとして現れる。
 なお、スティープネス部は、エネルギー強度が外側に向かって減少していく部分であって、短軸方向のビーム強度プロファイルにおける最大強度の10%以上90%以下の強度を有する領域をいう。
 スティープネス部の幅を小さく(50μm以下)した本願発明では、エネルギー変動による影響が大幅に小さくなり、その結果、照射ムラを小さくすることができる。
 なお、スティープネス部の幅は、同様の理由でさらに45μm以下とするのが望ましい。
 本発明のアニール処理は、非単結晶半導体を対象として、非晶質のものを結晶化したり、結晶質のものを改質したりする。改質には、多結晶のものを単結晶化したり、結晶性の改善を図るものが含まれる。非単結晶半導体としては、代表的にはシリコンが挙げられるが、本発明としてはこれに限定されるものではない。
 パルスレーザは、本発明としては特定のものに限定されないが、例えば、波長400nm以下、半値幅200ns以下のものが例示される。またパルスレーザの種類も特に限定されないが、例えばエキシマレーザが挙げられる。
 パルスレーザは、シリンドリカルレンズなどの各種光学部材を用いてラインビームに整形される。ラインビームの形状は特定のものに限定されるものではなく、短軸に対し、長軸が大きい比率を有するものであればよい。例えば、その比が10以上のものが挙げられる。長軸側の長さ、短軸側の長さは本発明としては特定のものに限定されないが、例えば、長軸側の長さが370~1300mm、短軸側の長さが100μm~500μmのものが挙げられる。また、パルスレーザは、ホモジナイザ、シリンドリカルレンズなどの光学部材によって、ビーム強度プロファイルにおいて、例えば最大強度の96%以上の強度を有する高強度領域(好適には平坦部を主とする)を主とし、端部に位置する最大強度の10~90%のスティープネス部を有するプロファイルとすることができる。高強度領域とスティープネス部間は、強度が変化する遷移部分となっており、その幅は僅かである。
 なお、高強度領域は、前記した平坦部の他、短軸方向で強度が傾斜傾向を有するものや強度が曲線状分布となるものなどが挙げられ、その間に最大強度を有している。
 スティープネス部の急峻化(走査方向後方側において幅50μm以下)は、例えばビームの端部を遮蔽可能な遮蔽部を用いて行うことができる。遮蔽はビーム透過を遮断するものや透過率を小さくすることによって行うことができる。遮蔽部は、非単結晶半導体膜に近い位置に配置することでスティープネス部の幅を小さくすることができ、この場合、より耐熱性の高い材料を使用することができる。また、遮蔽部を光路に沿って多段に配置することで、遮蔽部へのダメージを小さくした上でスティープネス部の短軸方向幅を小さくすることができる。
 この遮蔽部は、前記高強度領域の短軸方向端よりも外側で前記パルスレーザのビーム断面の一部を遮蔽するのが望ましい。パルスレーザビームの一部を遮蔽した場合、回折現象により透過部分の端部で強度が高まり、強度突部が形成されるのは前記したとおりである。この現象を利用して高強度領域の外側で強度が低下し始めている部分で遮蔽を行うと、強度突部が生じないか、ごく小さいものにすることができる。ただ、あまりに外側で遮蔽すると、高強度領域の外側で強度が一旦低下し、その外側で強度が上昇する強度プロファイルになるので、適宜強度の位置で遮蔽を行うのが望ましい。例えば、最大強度に対し70~90%となる強度範囲の位置で遮蔽を行うのが望ましい。
 また、スティープネス部の急峻化(幅50μm以下)は、例えば光学部材の調整などによって行うことができる。例えば、シリンドリカルレンズによる結像位置に対するシリコン膜位置の調整や、シリンドリカルレンズとして、より結像性能の良い組レンズを使用することなどにより実現できる。
 パルスレーザは、オーバーラップ回数によっても異なるが、例えば250~500mJ/cmのエネルギー密度で非単結晶半導体に照射するものが挙げられる。オーバーラップ回数としては、8~50回を例示することができ、この際に走査速度としては1~100mm/秒を挙げることができる。
 すなわち、本発明によれば、スティープネス部が急峻化され、エネルギー出力が変動した際の影響を軽減して照射ムラを小さくすることができ、結果として高品質の半導体デバイスを提供することができる。
本発明の一実施形態におけるレーザアニール装置を示す概略図である。 同じく、遮蔽部の形状を示す図である。 同じく、遮蔽部を経る際のビーム強度プロファイルの変化を示す図である。 同じく、照射面上におけるビーム強度プロファイルを示す図である。 同じく、レーザ出力変動時の照射面上におけるビーム強度プロファイルの変化を示す図である。 本発明の他の実施形態におけるレーザアニール装置を示す概略図である。 本発明の実施例における照射ムラ評価結果を示す図面代用写真である。 従来の平坦部端に突部が形成されたビーム強度プロファイルを示す図である。 従来の照射面上におけるビーム強度プロファイルを示す図である。
 以下に、本発明のレーザアニール装置1を添付図面に基づいて説明する。
 レーザアニール装置1は、処理室2を備えており、処理室2内にX-Y方向に移動可能な走査装置3を備え、その上部に基台4を備えている。基台4上には、ステージとして基板配置台5が設けられている。走査装置3は、図示しないモータなどによって駆動される。
また、処理室2には、外部からパルスレーザを導入する導入窓6が設けられている。
 アニール処理時には、該基板配置台5上に非単結晶半導体の半導体膜として非晶質のシリコン膜100などが設置される。シリコン膜100は、図示しない基板上に、例えば40~100nm厚(具体的には例えば50nm厚)で形成されている。該形成は常法により行うことができ、本発明としては半導体膜の形成方法が特に限定されるものではない。
 なお、本実施形態では、非晶質膜をレーザ処理により結晶化するレーザ処理に関するものとして説明するが、本発明としてはレーザ処理の内容がこれに限定されるものではなく、例えば、非単結晶の半導体膜を単結晶化したり、結晶半導体膜の改質を行うものであってよい。
 処理室2の外部には、パルス発振レーザ光源10が設置されている。該パルス発振レーザ光源10は、エキシマレーザ発振器で構成されており、波長400nm以下、繰り返し発振周波数1~1200Hzのパルスレーザを出力可能になっており、該パルス発振レーザ光源10では、フィードバック制御によってパルスレーザの出力を所定範囲内に維持するように制御することができる。
 該パルス発振レーザ光源10でパルス発振されて出力されるパルスレーザ15は、アテニュエータ11でエネルギー密度が調整され、ホモジナイザー12a、反射ミラー12b、シリンドリカルレンズ12cなどの光学部材によって構成される光学系12でラインビーム形状への整形や偏向、平坦部とスティープネス部とを有するビーム強度プロファイル形状への強度分布調整などがなされ、パルスレーザ150として、処理室2に設けた導入窓6を通して処理室2内の非晶質シリコン膜100に照射される。なお、光学系12を構成する光学部材は上記に限定されるものではなく、各種レンズ(ホモジナイザー、シリンドリカルレンズなど)、ミラー、導波部などを備えることができる。
 また、処理室2内には遮蔽部20が配置されている。遮蔽部20は、パルスレーザ150の相対的なビーム走査方向に対する短軸方向後端部を遮蔽可能な位置に配置される。なお、遮蔽部では、対となる2つの遮蔽板を互いの間隙量を設けて配置し、パルスレーザの走査方向両端部を遮蔽するように配置してもよい。
 次に、上記レーザアニール装置1の動作について説明する。
 パルス発振レーザ光源10においてパルス発振されて出力されるパルスレーザ15は、例えば、波長400nm以下、パルス半値幅が200ns以下のものとされる。ただし、本発明としてはこれらに限定されるものではない。
 パルスレーザ15は、アテニュエータ11でパルスエネルギー密度が調整される。アテニュエータ11は所定の減衰率に設定されており、シリコン膜100への照射面上で所定の照射パルスエネルギー密度が得られるように、減衰率が調整される。例えば非晶質のシリコン膜100を結晶化するなどの場合、その照射面上において、エネルギー密度が150~500mJ/cm、望ましくは、250~500mJ/cmとなるように調整することができる。
 アテニュエータ11を透過したパルスレーザ15は、光学系12でラインビーム形状に整形され、さらに光学系12のシリンドリカルレンズ12cを経て短軸幅を集光して、処理室2に設けた導入窓6に導入される。
 パルスレーザ150は、図3に示すように、最大エネルギー強度に対し平坦部151を含む96%以上となる高強度領域と、長軸方向の両端部に位置し、前記平坦部151よりも小さいエネルギー強度を有し、外側に向けて次第にエネルギー強度が低下するスティープネス部152とを有している。スティープネス部は、最大強度の10%~90%の範囲の領域である。
 パルスレーザ150は導入窓6を透過して処理室2内に導入され、さらに進行して遮蔽部20に至る。遮蔽部20は、パルスレーザ150に対し、短軸方向両端のスティープネス部152を遮蔽するように、ビーム強度プロファイルにおける最大強度の70~90%の位置に配置されている。これにより、遮蔽部20を透過した際に高強度領域の端に形成される強度突部の大きさが小さくなる、または消滅するようにコントロールすることができる。
 スティープネス部152を低減したパルスレーザ150は、図3、4に示すように、遮蔽部20を通過することで、回折などによってビーム走査方向における短軸方向後端部にスティープネス部153が形成される。但し、遮蔽部20を経たスティープネス部153は、遮蔽部20通過前のスティープネス部152を遮蔽して形成されるものであるため、遮蔽部20を透過する前のスティープネス部152に比べて拡がり幅は相当に小さくなっている。なお、ビーム走査方向における短軸方向前端部のスティープネス部152は、そのままでも支障はない。なお、図3、4では、ビームの相対的な走査方向を示している(以降の図5も図示)。
 また、遮蔽部20は、平坦部の強度よりも低い強度位置でパルスレーザ150を遮蔽するため、平坦部を遮蔽する場合よりもシリコン膜100に近い位置に設置しても遮蔽部に対するダメージが少ない。シリコン膜100に近い位置に設置することでスティープネス部153の拡がりをより少なくすることができ、その短軸幅を照射面上で50μm以下にすることができる。この点で、平坦部において遮蔽を行う従来のマスクやスリットに対し、特異性を有している。
 遮蔽部20を通過したパルスレーザ150では、図3、4に示すように、拡がりが小さくなったスティープネス部153が得られ、該スティープネス部の幅が照射面上で50μm以下、さらに望ましくは45μm以下に低減される。
 走査装置3でシリコン膜100を移動させることでパルスレーザ150をシリコン膜100に対し相対的に走査しつつシリコン膜100に照射する。なお、本発明としては前記走査の速度が特定のものに限定されるものではない。照射ピッチは5~65μmとすることができる。
 パルスレーザ150は、上記のようにスティープネス部153の幅が50μm以下に小さくなっており、仮に、パルスレーザ15の出力が変動した場合でも、溶融閾値以上の領域の幅の大きさの変動率を小さく抑えることができる。例えば、図5に示すように、出力エネルギーが10%増加した場合でもスティープネス部153の幅が50μm以下の場合、溶融閾値以上の領域の幅の変動を0.95%以下に抑えることができる。
 図6は、他の実施形態のレーザアニール装置1aを示すものであり、遮蔽部を多段(この例では2段)に設置したものである。なお、前記実施形態と同様の構成については同一の符号を付してその説明を省略または簡略化している。
 集光レンズであるシリンドリカルレンズ12cと導入窓6との間には、第1の遮蔽部に相当する第1遮蔽部21が配置されており、処理室2内には第2の遮蔽部に相当する第2遮蔽部22が配置されている。図6に示すように、第1遮蔽部21は、パルスレーザ150のビーム走査方向における短軸方向後端部を遮蔽可能な位置に配置される。また、第2遮蔽部22も同様に、パルスレーザ150のビーム走査方向における短軸方向後端部を遮蔽可能な位置に配置される。
 なお、第1遮蔽部21、第2遮蔽部22では、対となる2つの遮蔽板を互いの間隙量を設けて配置し、パルスレーザの走査方向両端部を遮蔽するように配置してもよい。
 第1遮蔽部21でスティープネス部152を低減したパルスレーザ150は、第1遮蔽部21を通過することで、回折などによって走査方向における短軸方向後端部にスティープネス部153が形成される。但し、スティープネス部153は、スティープネス部152を遮蔽して形成されるため、スティープネス部152に比べて拡がり幅は相当に小さくなっている。
 この第1遮蔽部21では、高強度領域の短軸方向端よりも外側で前記パルスレーザのビーム断面の一部を遮蔽するのが望ましく、さらにビーム強度プロファイルにおける最大強度の70~90%の位置に配置されているのが望ましい。
 さらに、スティープネス部153を有するパルスレーザ150は、導入窓6を透過して処理室2内に導入され、さらに進行して、第2遮蔽部22に至る。第2遮蔽部22では、第1遮蔽部21で低減されたスティープネス部153が位置する。このため、第2遮蔽部22では、短軸方向内側のスティープネス部の一部を除いて残部のスティープネス部が遮蔽される。第2遮蔽部22を通過したパルスレーザ150では、回折などによってスティープネス部が形成されるものの、第2透過部22を至る前のスティープネス部に比べて拡がり幅はさらに小さくなっており、スティープネス部がより低減される。
 この第2遮蔽部22では、高強度領域の短軸方向端よりも外側で前記パルスレーザのビーム断面の一部を遮蔽するのが望ましく、第1遮蔽部21を通過後のビーム強度プロファイルにおける最大強度の70~90%の位置に配置されているのが望ましい。
 なお、上記各実施形態では、光路上に遮蔽部を配置することで、走査方向における短軸方向後端のスティープネス部幅を低減したが、例えば、シリンドリカルレンズ12cによる結像位置に対するシリコン膜位置の調整や、シリンドリカルレンズ12cとして、より結像性能の良い組レンズを使用することなどによってもスティープネス部幅低減を実現でき、遮蔽部と組み合わせて行うこともできる。
 次に、本発明の実施例について説明する。
 50nm厚のアモルファスシリコン膜が形成された基板を用意し、図1の実施形態のレーザ処理装置において、パルス発振レーザ光源をエキシマレーザ発振器(商品名:LSX540C)とし、波長308nmのパルスレーザをパルス周波数300Hzで出力するものとした。
 光学系によってビームサイズを370mm×0.4mmのラインビームに整形し、マスクによってビーム走査方向における短軸方向後端部のスティープネス部の幅を40μmとした。また、比較のため、マスクをアモルファスシリコン膜に対し高位置に配置し、短軸方向のスティープネス部の幅を70μmとしたものを用意した。
 オーバラップ回数は20回とした。この条件で、結晶化に最適な照射エネルギー密度は310~330mJ/cmの範囲となる。なお、この条件において走査ピッチは20μmになる。
 さらに、アテニュエータの調整によって照射エネルギー密度を310、320、330、340、350、360、370mJ/cmで変更した照射試験を行い、結晶性を評価した。この例の結晶化に際しての最適エネルギー密度範囲(OED)は310~340mJ/cmであったが、エネルギー密度の変動による影響をより顕著にするため、350mJ/cmの試験例について、光学顕微鏡により表面観察を行い、暗視野観察で得られた表面像を図7に示した。
 その結果、発明例では、ショット毎の短軸方向溶融領域端部の盛り上がりの間隔が一定の値すなわち20μmとなっているため照射ムラとして認識されなかった。
 比較例では、レーザショット毎のシリコン膜の機械的移動量が20μmであるにも拘らず、実際の溶融幅が広くなって短軸方向溶融領域端部の盛り上がりが大きくなっている部分が生じていた。この部分を照射した際のレーザのパルスエネルギーが相対的に高い値で推移していたことが原因であり、照射ムラとして認識された。
 以上、本発明について、上記実施形態に基づいて説明を行ったが、本発明は上記説明の内容に限定されるものではなく、本発明の範囲を逸脱しない限りは適宜の変更が可能である。
  1  レーザアニール装置
  1a レーザアニール装置
  2  処理室
  3  走査装置
  5  基板配置台
  6  導入窓
 10  パルス発振レーザ光源
 11  アテニュエータ
 12  光学系
 12c シリンドリカルレンズ
 20  遮蔽部
 21  第1遮蔽部
 22  第2遮蔽部
100  シリコン膜

Claims (15)

  1.  非単結晶半導体膜上に、ビーム断面形状をラインビームとしたパルスレーザを前記ラインビームの短軸方向に走査しつつ照射するレーザアニール方法において、
     前記ラインビームが、ビーム強度プロファイルにおいて、短軸方向端部に位置するスティープネス部を有し、前記スティープネス部が前記ビーム強度プロファイルにおける最大強度の10%以上90%以下の強度を有する領域であり、
     前記スティープネス部のうち走査方向後方側に位置する前記スティープネス部の短軸方向幅が前記非単結晶半導体膜の照射面上で50μm以下になるようにして前記照射を行うことを特徴とするレーザアニール方法。
  2.  前記パルスレーザの波長が400nm以下であることを特徴とする請求項1記載のレーザアニール方法。
  3.  前記パルスレーザの照射面上におけるパルス半値幅が200ns以下であることを特徴とする請求項1または2に記載のレーザアニール方法。
  4.  前記パルスレーザは、照射面上において前記ビーム強度プロファイルにおける最大強度の値が250~500mJ/cmであることを特徴とする請求項1~3のいずれかに記載のレーザアニール方法。
  5.  前記非単結晶半導体がシリコンであることを特徴とする請求項1~4のいずれかに記載のレーザアニール方法。
  6.  前記パルスレーザは、ビーム強度プロファイルにおいて、短軸方向に平坦部を有し、前記最大強度は、前記平坦部における強度の平均値で与えられることを特徴とする請求項1~5のいずれかに記載のレーザアニール方法。
  7.  前記パルスレーザは、ビーム強度プロファイルにおいて、両端部のいずれか一方または両方に局所的に強度が上昇する強度突部を有する場合、前記強度突部を除いた範囲で前記最大強度が与えられることを特徴とする請求項1~6のいずれかに記載のレーザアニール方法。
  8.  前記ラインビームは、前記非単結晶半導体膜の照射面上で、前記最大強度の96%以上の領域の短軸方向幅が100~500μmであることを特徴とする請求項6または7に記載のレーザアニール方法。
  9.  パルスレーザを出力するレーザ光源と、
    前記パルスレーザの透過率を調整するアテニュエータと、
    前記パルスレーザのビーム断面形状を整形するとともに整形されたパルスレーザを非単結晶半導体膜の照射面上に導く光学系と、を有し、
     前記光学系は、前記パルスレーザのビーム断面形状をビーム強度プロファイルにおいて所定の強度以上の高強度領域を有するラインビームに整形する光学部材と、前記ラインビームの短軸方向端部に位置するスティープネス部のうち少なくとも走査方向後方側の短軸方向幅を前記非単結晶半導体膜の照射面上で50μm以下になるように急峻にする光学部材とを備えることを特徴とするレーザアニール装置。
  10.  前記スティープネス部を急峻にする光学部材が、前記パルスレーザの光路に配置され、前記パルスレーザのビーム断面の一部を遮蔽する遮蔽部であることを特徴とする請求項9記載のレーザアニール装置。
  11.  前記遮蔽部が、前記高強度領域の短軸方向端よりも外側で前記パルスレーザのビーム断面の一部を遮蔽するものであることを特徴とする請求項10記載のレーザアニール装置。
  12.  前記レーザ光源は、波長が400nm以下の前記パルスレーザを出力するものであることを特徴とする請求項9~11のいずれかに記載のレーザアニール装置。
  13.  前記レーザ光源は、半値幅が200ns以下の前記パルスレーザを出力するものであることを特徴とする請求項9~12のいずれかに記載のレーザアニール装置。
  14.  前記光学系は、前記パルスレーザを、強度が最大強度の96%以上である前記高強度領域と端部に位置するスティープネス部とを有するビーム強度プロファイルに強度調整する光学部材を備えることを特徴とする請求項9~13のいずれかに記載のレーザアニール装置。
  15.  前記アテニュエータは、非単結晶半導体膜の照射面上における前記パルスレーザのビーム強度プロファイルにおける最大強度を250~500mJ/cmに調整することを特徴とする請求項9~14のいずれかに記載のレーザアニール装置。
PCT/JP2013/079231 2012-11-20 2013-10-29 レーザアニール方法およびレーザアニール装置 WO2014080727A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380060413.2A CN104798180B (zh) 2012-11-20 2013-10-29 激光退火方法以及激光退火装置
KR1020157010386A KR102108028B1 (ko) 2012-11-20 2013-10-29 레이저 어닐링 방법 및 레이저 어닐링 장치
SG11201503917UA SG11201503917UA (en) 2012-11-20 2013-10-29 Laser annealing method and laser annealing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-254282 2012-11-20
JP2012254282A JP5907530B2 (ja) 2012-11-20 2012-11-20 レーザアニール方法およびレーザアニール装置

Publications (1)

Publication Number Publication Date
WO2014080727A1 true WO2014080727A1 (ja) 2014-05-30

Family

ID=50775914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/079231 WO2014080727A1 (ja) 2012-11-20 2013-10-29 レーザアニール方法およびレーザアニール装置

Country Status (6)

Country Link
JP (1) JP5907530B2 (ja)
KR (1) KR102108028B1 (ja)
CN (1) CN104798180B (ja)
SG (1) SG11201503917UA (ja)
TW (1) TWI605493B (ja)
WO (1) WO2014080727A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6803189B2 (ja) 2016-10-06 2020-12-23 株式会社日本製鋼所 レーザ照射装置及び半導体装置の製造方法
CN112864040A (zh) * 2019-11-26 2021-05-28 上海微电子装备(集团)股份有限公司 激光退火装置
CN115903940A (zh) * 2023-01-06 2023-04-04 成都莱普科技股份有限公司 应用于激光退火系统的温度控制方法和激光退火系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08213629A (ja) * 1995-02-07 1996-08-20 Sony Corp 薄膜半導体装置の製造方法
JPH1074697A (ja) * 1996-08-29 1998-03-17 Toshiba Corp 多結晶シリコン膜、多結晶シリコンの製造方法、薄膜トランジスタの製造方法、液晶表示装置の製造方法、及びレーザアニール装置
JP2000058835A (ja) * 1998-07-31 2000-02-25 Semiconductor Energy Lab Co Ltd 薄膜トランジスタおよびその作製方法
JP2002353142A (ja) * 2001-03-21 2002-12-06 Sharp Corp 半導体装置およびその製造方法
JP2003037063A (ja) * 2001-05-15 2003-02-07 Sharp Corp 半導体装置及びその製造方法
JP2009018335A (ja) * 2007-07-13 2009-01-29 Sharp Corp ビーム照射装置、ビーム照射方法および機能素子の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2808220B2 (ja) 1992-10-31 1998-10-08 株式会社半導体エネルギー研究所 光照射装置
TW305063B (ja) * 1995-02-02 1997-05-11 Handotai Energy Kenkyusho Kk
JPH09321310A (ja) 1996-05-31 1997-12-12 Sanyo Electric Co Ltd 半導体装置の製造方法
JP4583004B2 (ja) * 2003-05-21 2010-11-17 株式会社 日立ディスプレイズ アクティブ・マトリクス基板の製造方法
JP5046778B2 (ja) * 2007-07-31 2012-10-10 住友重機械工業株式会社 多結晶膜の製造方法及びレーザ加工装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08213629A (ja) * 1995-02-07 1996-08-20 Sony Corp 薄膜半導体装置の製造方法
JPH1074697A (ja) * 1996-08-29 1998-03-17 Toshiba Corp 多結晶シリコン膜、多結晶シリコンの製造方法、薄膜トランジスタの製造方法、液晶表示装置の製造方法、及びレーザアニール装置
JP2000058835A (ja) * 1998-07-31 2000-02-25 Semiconductor Energy Lab Co Ltd 薄膜トランジスタおよびその作製方法
JP2002353142A (ja) * 2001-03-21 2002-12-06 Sharp Corp 半導体装置およびその製造方法
JP2003037063A (ja) * 2001-05-15 2003-02-07 Sharp Corp 半導体装置及びその製造方法
JP2009018335A (ja) * 2007-07-13 2009-01-29 Sharp Corp ビーム照射装置、ビーム照射方法および機能素子の製造方法

Also Published As

Publication number Publication date
CN104798180B (zh) 2017-09-29
TW201423839A (zh) 2014-06-16
SG11201503917UA (en) 2015-06-29
TWI605493B (zh) 2017-11-11
JP5907530B2 (ja) 2016-04-26
KR102108028B1 (ko) 2020-05-07
CN104798180A (zh) 2015-07-22
JP2014103247A (ja) 2014-06-05
KR20150087195A (ko) 2015-07-29

Similar Documents

Publication Publication Date Title
US7429760B2 (en) Variable mask device for crystallizing silicon layer
DE60027820T2 (de) Vorrichtung mit einem optischen System zur Laserwärmebehandlung und ein diese Vorrichtung verwendendes Verfahren zur Herstellung von Halbleiteranordnungen
KR101325520B1 (ko) 레이저 어닐링 방법 및 레이저 어닐링 장치
JP5717146B2 (ja) レーザラインビーム改善装置およびレーザ処理装置
US20080030877A1 (en) Systems and methods for optimizing the crystallization of amorphous silicon
WO2014080727A1 (ja) レーザアニール方法およびレーザアニール装置
JP5725518B2 (ja) レーザ光遮蔽部材、レーザ処理装置およびレーザ光照射方法
JP5214662B2 (ja) 多結晶シリコン薄膜の製造方法
JP5366023B2 (ja) レーザアニール方法及び装置
KR102108024B1 (ko) 결정 반도체막의 제조방법 및 제조장치
JP5999694B2 (ja) レーザアニール方法および装置
WO2014080728A1 (ja) レーザ処理方法およびレーザ処理装置
JP5030524B2 (ja) レーザアニール方法及びレーザアニール装置
KR100990251B1 (ko) 레이저 빔 프로파일 변형 필터를 포함하는 레이저 광학계
JP5435590B2 (ja) アモルファス膜結晶化装置およびその方法
JP6687497B2 (ja) 結晶半導体膜製造方法、結晶半導体膜製造装置および結晶半導体膜製造装置の制御方法
TWI435390B (zh) 結晶質膜的製造方法以及製造裝置
JP2004152887A (ja) レーザを用いた多結晶膜の製造方法
JP2007242803A (ja) 半導体薄膜の製造方法および半導体薄膜の製造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13856311

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157010386

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13856311

Country of ref document: EP

Kind code of ref document: A1