WO2014079125A1 - 一种三电平电压源型变换器模型预测控制方法 - Google Patents

一种三电平电压源型变换器模型预测控制方法 Download PDF

Info

Publication number
WO2014079125A1
WO2014079125A1 PCT/CN2012/087219 CN2012087219W WO2014079125A1 WO 2014079125 A1 WO2014079125 A1 WO 2014079125A1 CN 2012087219 W CN2012087219 W CN 2012087219W WO 2014079125 A1 WO2014079125 A1 WO 2014079125A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
value
time
voltage
phase
Prior art date
Application number
PCT/CN2012/087219
Other languages
English (en)
French (fr)
Inventor
夏长亮
何湘宁
李瑞来
张策
王志强
Original Assignee
天津大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津大学 filed Critical 天津大学
Publication of WO2014079125A1 publication Critical patent/WO2014079125A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/487Neutral point clamped inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
    • H02M7/53876Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output based on synthesising a desired voltage vector via the selection of appropriate fundamental voltage vectors, and corresponding dwelling times

Definitions

  • the invention relates to a control method of a midpoint clamp type three-level voltage source type converter, belonging to the field of power electronic converter control. Background technique
  • PC Neutral point clamped
  • the control strategy of a three-level voltage source converter usually includes a current inner loop control strategy.
  • the main goal of current inner loop control is to quickly track current commands to sin the input current. Since the model predictive control has fast dynamic response and steady-state tracking performance, the current linear controller and the PWM modulation module are omitted, the control idea is simple, and it is easy to implement on the digital signal processing chip, so the current loop in the three-level converter The application is applied in the control.
  • the midpoint potential balance problem is also an inherent problem of the three-level voltage source converter, which is also solved in the conventional model predictive control method.
  • the traditional predictive control principle of the three-level voltage source converter model is to first establish a system discrete mathematical model, and then calculate the current predicted value and the midpoint potential offset predicted value according to the mathematical model, and finally select the predicted value and the command value. The difference is used as a function of value, and the switching signal corresponding to a set of current space vectors of the minimum value of the preferred index function is used as the switching signal of the next sampling period.
  • this method has the following problems: (1) Due to the large number of switching vectors of the three-level converter, the value function is more complicated, which makes the program calculation amount larger, which limits the improvement of the sampling frequency of the control system and restricts the whole.
  • An object of the present invention is to solve the problems in the prior art and to provide an improved three-level voltage source type converter model predictive control method.
  • the method is simple in calculation, not only can effectively reduce the program calculation amount, improve the sampling frequency of the system, and can avoid the excessive amplitude jump of the AC side phase voltage and the line voltage when the switch state is switched.
  • a three-level voltage source converter model predictive control method includes the following aspects:
  • r s is the system sampling period
  • +2) and 1 ⁇ 4A+2) are the AC side current predicted values in the two-phase stationary coordinate system at time t k+1 ;
  • e a + l) and +1) are the a-axis and ⁇ -axis components of the grid voltage at time t k+1 ;
  • f/ck ⁇ +l is the DC side voltage predicted value at time t k+1 ;
  • S, (k+ ⁇ ), & +1) and & +1) are three-phase switching states that may be employed during the A+1 period;
  • ⁇ dc (k + 2) [& 2 (k + 1) (k + 1) S (k + l)] , b ( l) + ⁇ U dc (k + l) where ⁇ / +2) Is the difference between the upper and lower capacitor voltages on the DC side;
  • ⁇ ⁇ +1) is the difference between the upper and lower capacitor voltages on the DC side at time t k+1 ;
  • C is the DC side capacitance value
  • U is a union operator; the three-phase switch state calculated by this formula also considers whether the constraint condition is satisfied, that is, each phase state can only be limited to between -1 and 1; if the condition is not satisfied, it is discarded;
  • the invention changes the switching state selection method of the traditional three-level voltage source converter model predictive control algorithm Into, a subset of all switching states of the three-level converter is obtained by simple addition and subtraction operations, and the switching state is only selected from the subset each time.
  • the method is beneficial to reduce the calculation amount of the three-level converter model predictive control algorithm, improve the system sampling frequency, thereby improving the overall performance of the three-level converter predictive control, so that the current harmonic distortion rate is reduced, and the dynamic response speed is fast.
  • the method is based on the constraint of considering the switching state of the three-level converter switching state, so it can effectively avoid the amplitude of the phase voltage and the line voltage on the AC side of the three-level converter when the switching state is switched. Too high jump.
  • Figure 1 is a diagram showing the main circuit topology of a three-level voltage source converter operating in a controlled rectification state.
  • Figure 2 shows a three-level voltage source converter space vector diagram.
  • Figure 3 is a model prediction control execution diagram.
  • Figure 4 is a block diagram of the predictive control of the three-level voltage source converter model.
  • Figure 5 is a flow chart of a three-level voltage source converter model predictive control algorithm. detailed description
  • the present invention is directed to the problems existing in the prior art and proposed improvements.
  • the present invention will be further described in terms of a three-level converter discrete mathematical model, a control system design, a switch state subset determination, and the like in conjunction with the accompanying drawings.
  • Figure 1 is a topological view of a three-level voltage source converter circuit operating in a controlled rectification state.
  • e a , e b , and e c are the three-phase grid phase voltages respectively;
  • a , 4 are the grid side currents;
  • Q is the midpoint current;
  • d and C 2 are the DC bus capacitors;
  • L and R are the AC side reactances. equivalent resistance and inductance;
  • U dcl, f / de2 are the upper and lower DC bus capacitor voltage, the DC link circuit of FIG using KVL may obtain
  • ⁇ ⁇ , M B . And ⁇ are the potentials of the AC side of the converter, the b and c points, and the dc point of the DC side;
  • Hey. ⁇ is the potential of the midpoint of the three-phase voltage of the converter on the DC side of the converter
  • the spatial voltage phasors corresponding to the 27 switching states of the three-level voltage source converter are as shown in Fig. 2.
  • the equation (5) can be brought into the equation (4).
  • the relationship between the switching state and the current is established, which provides a theoretical basis for realizing the sinusoidal current and reducing the harmonics by rationally selecting the switching state.
  • the mathematical model of the three-level converter current is converted from a three-phase abc stationary coordinate system to a two-phase ⁇ stationary coordinate system, as follows
  • the DC side midpoint potential balance problem is a unique problem of the three-level voltage source converter structure. Therefore, it needs to be solved in the model predictive control method. Therefore, it is necessary to establish the relationship between the midpoint potential offset value and the switch state. , the relationship is as follows dU dc2 )
  • Model predictive control requires the Euler approximation of the circuit model to establish a discrete model of the system. It can be seen from Fig. 3 that since the model prediction control program calculation time cannot be ignored with respect to the sampling cycle time, the control delay problem occurs. Therefore, it is necessary to predict the switching state of the next cycle in the current cycle, that is, the first cycle k to tk + needs to predict the effect of the switching state adopted in the A+1 cycle, and it is necessary to know the current value at the time of it +2 . Perform a forward Euler approximation for equation (8).
  • +2) and 1 ⁇ 4A+2) are the AC side current predicted values in the two-phase stationary coordinate system at time t k+1 ;
  • Ma +1) and ⁇ ⁇ +1) are the AC side voltage calculated according to the switching state used in the sampling period, and the calculation formula is formula (6);
  • the value can be obtained from (10) to the back-step, as shown in the following equation
  • Ma ) and (k) are the AC side voltage calculated according to the switching state adopted in the k-1th sampling period, and the calculation formula is formula (6);
  • the midpoint potential offset at ⁇ 2 is calculated as follows 4( ⁇ ) ⁇
  • ⁇ U dc (k + 2) ⁇ [S a 2 (k + 1) S b 2 (k + 1) S c 2 ( i)] ' b ( i) + AU dc (k + l)
  • Af / d . + 2) is the predicted value of the voltage difference between the upper and lower capacitors on the DC side of the converter at time ⁇ 2 ;
  • S a 2 ( ⁇ + 1) , S b 2 ( ⁇ + 1) and SC + 1) are the three bridge arm states that may be employed in the A+1th cycle;
  • +1) and +1) are the predicted values of the three-phase current at time t k+l , and the values can be based on and 1 ⁇ 4 +1)
  • the value of the two-phase coordinate system can be transformed into a three-phase coordinate system, that is,
  • Af/ d . + l is the predicted value of the voltage difference between the upper and lower capacitors on the DC side of the time converter, which can be calculated by the following formula
  • MJ ⁇ is the detected value of the voltage difference between the upper and lower capacitors on the DC side of the time converter, ie
  • the command value of the input current at the end of the control cycle can be derived from the current reference value at the first few moments. Considering the calculation time limit, the predicted value can be obtained by the second-order extrapolation method.
  • the design point of the present invention is based on analyzing the switching state constraints of the three-level voltage source converter. There is a subset of the switching states, and the next cycle only needs to select the optimal switching state from the corresponding subset of the current switching states. To prevent excessive amplitude transitions, the phase change of each phase can only be changed from -1 to 0, 0 to 1 or 1 to 0, 0 to -1. Therefore, a subset of all switching states of the three-level converter can be obtained by superimposing the two-level circuit switching state group on the basis of the current time switching state, that is, on the space vector plane, adjacent to the current time switching state.
  • the set of states, the calculation of the subset of switch states is as follows
  • ⁇ ( ⁇ ) is the optimal switching state used in the sampling period
  • each switch state There are 7 optional addition or subtraction variations for each switch state, but the three-level switch state is limited to between -1 and 1, so the actual selectable change is less than 7, the subset of states
  • the switch state in ⁇ +1) may be less than 14.
  • the results can be divided into two categories.
  • the first type is that each phase of the obtained output voltage vector is within the allowable range. For example, the current cycle state is 00-1, and the superposition change amount is 001. 000, if it meets the conditions, join the subset.
  • the second type is that the calculated state has a phase outside the allowable range. If the initial state is 00-1 and the decreasing amount is 001, the resulting amount is 00-2. If the condition is not met, the value is discarded.
  • the above process can be obtained by offline calculation and a subset database corresponding to each switch state is established.
  • control block diagram of the method is shown in Figure 4.
  • the difference between the DC side voltage setpoint and the actual value is proportionally integrated by the PI regulator to obtain the current command value, which is input to the inner loop controller.
  • the current inner loop adopts a predictive control algorithm, and the switch state with the smallest value function is selected to act on the three-level voltage source converter.
  • the abc- ⁇ coordinate transformation module is used to obtain the grid-side grid voltages e a ( ⁇ ), ep(k) and input currents ( ip(k) in the two-phase stationary ⁇ coordinate system; detecting the DC-side upper and lower capacitors of the three-level converter Voltage f / del ( ⁇ and f / de2 ( ⁇ , calculate DC side voltage f / de (A:) and upper and lower capacitor voltage difference A f / dc (A:) ;
  • step (3) From the subset of switch states 4+1) determined in step (3), select the switch state into equation (10), and calculate the current value ⁇ +2) and 1 ⁇ 4A+2) at time i +2 .
  • the calculated current value is substituted into the value function (12), and the value function value corresponding to all the switch states in the switch subset 4+1) is calculated.
  • the method for selecting the switching state of the present invention reduces the amount of calculation of the program compared to the conventional method, so that the system can obtain a higher sampling frequency, thereby further improving the static and dynamic performance of the system;
  • the switching state subset is selected in consideration of the switching state switching constraint condition, so that the three-level converter does not exhibit excessive amplitude jump of the AC side phase voltage and the line voltage when the switching state is switched.
  • the method of the invention has simple algorithm and is easy to implement, and can also be adopted in a higher level converter, and has versatility.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)
  • Inverter Devices (AREA)

Abstract

一种三电平电压源型变换器模型预测控制方法,包括:(1)建立三电平电压源型变换器交流侧电流与开关函数的关系模型;(2)建立直流侧电容电压偏移量与开关函数的关系模型;(3)电流指令值由电压外环获得,下一时刻的电流指令值可由前几个时刻的电流指令值推算获得;(4)设定三电平电压源型变换器模型预测控制算法的价值函数;(5)计算开关状态子集;(6)实现实时预测控制。该方法算法简单,易于实现,在更高电平变换器中也可采用。

Description

一种三电平电压源型变换器模型预测控制方法 技术领域
本发明涉及一种中点箝位型三电平电压源型变换器的控制方法, 属于电力电子变换器控 制领域。 背景技术
中点箝位型 (neutral point clamped, PC) 三电平电压源型变换器以其功率可以双向流 动、 电网侧可实现单位功率因数运行、 输入电流正弦度好、 谐波畸变小、 器件承压低、 开关 频率低、 ch /dt小等诸多优点, 在大功率交流调速、 高压直流输电及新能源发电等领域获得了 广泛的应用。
三电平电压源型变换器的控制策略, 通常含有电流内环控制策略。 电流内环控制的主要 目标是快速跟踪电流指令, 使输入电流正弦。 由于模型预测控制具有快速的动态响应和稳态 跟踪性能, 省去了电流线性控制器以及 PWM调制模块, 控制思想简单, 易于在数字信号处 理芯片上实现, 因此在三电平变换器电流内环控制中得到了应用。 中点电位平衡问题也是三 电平电压源型变换器固有的问题, 其在传统模型预测控制方法中也得到了解决。
三电平电压源型变换器模型传统预测控制原理是首先建立系统离散数学模型, 然后根据 数学模型计算所有开关状态下的电流预测值和中点电位偏移预测值, 最后选取预测值和指令 值之差作为价值函数, 以该优选指标函数取最小值的一组电流空间矢量对应的开关信号作为 下一个采样周期的开关信号。 然而这种方法存在以下几方面的问题: (1)由于三电平变换器的 开关矢量繁多, 价值函数比较复杂, 使得程序运算量比较大, 从而限制了控制系统采样频率 的提高, 制约了整体控制性能的提升; (2)开关状态切换时, 相电压和线电压产生幅值的过高 跳变, 单管承受全部母线电压或负载端承受过高电压冲击因此, 针对以上问题, 需要对传统 模型预测控制方法加以改进, 使得计算量减少, 并且在开关状态切换时不会出现线电压或相 电压幅值的过高跳变。 发明内容
本发明的目的在于解决现有技术中存在的问题, 提出一种改进的三电平电压源型变换器 模型预测控制方法。 该方法计算简单, 不仅能够有效减少程序计算量, 提高系统的采样频率, 而且能够避免开关状态切换时交流侧相电压、 线电压的过高幅值跳变。
为了实现上述目的, 本发明采取以下技术方案:
一种三电平电压源型变换器模型预测控制方法, 包括下列几个方面:
(1) 建立三电平电压源型变换器交流侧电流与开关函数的关系模型, 如下 ia (k + 2) = (l + l) +
Figure imgf000003_0001
j- . [(ea (k + l) - ua (k + 1)] (k + 2) = (l - ¾ p (k + l) + ^ . [(e k + l) - u, (k + 1)] 式中, J和 R分别为交流侧电抗器电感和线路等效电阻;
rs是系统采样周期;
+2)和 ¼A+2)为 tk+1时刻两相静止坐标系下的交流侧电流预测值;
^+1)和 为 时刻两相静止坐标系下的交流侧电流预测值;
ea +l)和 +1)是 tk+1时刻电网电压的 a轴和 β轴分量;
Μα +1)和 Μβ +1)是 tk+l时刻两相静止坐标系下变换器交流侧电压的计算值, 且计算式如 ua(k + \)=Udc<k + V) (2Sa(k + l)-Sb(k + \)-Sc(k + \))
6
u, (k+\) = ^Udf + l) (Sh (k+l)- Sc (k + 1》
式中, f/ck^+l)是 tk+1时刻的直流侧电压预测值;
S,(k+\), & +1)和& +1)是在第 A+l周期内可能采用的三相开关状态;
(2) 建立直流侧电容电压偏移量与开关函数的关系模型, 如下
dc (k + 2) = [&2 (k + 1) (k + 1) S (k + l)] ,b( l) + ^ Udc(k + l) 式中, Δί/ +2)是 时刻直流侧上下电容电压的差值;
Δ ε +1)是 tk+1时刻直流侧上下电容电压的差值;
C是直流侧电容值;
b +l)和 (^+1)分别是 tk+1时刻的三相交流侧电流;
(3) 电流给定值:和 由电压外环获得, 其中 时刻的电流给定值可由前几个时刻的电 流值计算获得, 计算式如下
;;(^ + 2) = 3;;(^ + 1)-3;;(^) + ;;(^-1)
( 2) = 21; (k + Y)- 31; (k) + 1; (k― 1) 式中, i: (k+l)和 (^+l)是 tk+1时刻电流给定值; (k)和 是 tk时刻电流给定值; (k-i)和 ( -1)是 tw时刻电流给定值;
(4) 设定三电平电压源型变换器模型预测控制算法的价值函数, 如下
g = |C (k + )- ia (k + 2)| + 1/; (k + 2)-卩 (k + 2)| + dc ψΑΛ (k+2) -UAcl (k+2)) 式中, 。为直流侧上下电容电压差值的权重因子; (k + 2)和 ( + 2)是 时刻输入电流的指令值;
; (k)和 (k)是 tk时刻输入电流的指令值; ; (k - 1)和 !; 1)是 t 时刻输入电流的指令值。 (5) 计算开关状态子集
S(k+l)=(Smm(k)+M)J(Smm(k)-M)
式中, 5mln(^)是第 采样周期采用的开关状态;
M是两电平电路开关状态组, M=[001, 010, 011, 100, 101, 110, 111] ; A+1)是计算所得开关状态子集;
U是并集运算符; 由该式计算得出的三相开关状态还要考虑是否满足限制条件, 即每相状态只能限制在 -1 到 1 之间, 不满足条件的则舍掉;
(6) 在进行实时预测控制时, 采用下面的步骤:
( a) 检测当前时刻即 A时刻的三相电网电压 ea(A:)、 eb(A:)、 和网侧三相输入电流 iJJ()、 ib(k), ic(k), 分别经 abc-αβ坐标变换模块得到两相静止 αβ坐标系下的网侧电网电 压 ea(k、 和输入电流 lk、、 ip(k); 检测三电平变换器直流侧上下电容的电压 f/dclW和 Udc2<^, 计算直流侧电压 f/de(A:)及上下电容电压的差值 A f/dc(A:);
(b ) 给定直流侧电压参考值 f^, 计算其与直流侧电压 的差值, 经过比例积分 ΡΙ 控制器调节得到电流指令值 + 1)和 ^ + 1), 并根据 (3 ) 推算 时刻电流给定 ί1 + 2)和 + 2) ;
( c) 对于 (5 ) 中所确定的开关状态子集所包含的所有开关状态, 代入 (1 ) 和 (2 ) 中 给出的交流侧电流、 直流侧电容电压偏移量这两者与开关函数的关系模型,计算得 到 i +2时刻电流值 +2)和 ¼^+2)、 中点电位偏移值 Af/(^+2)。 将计算所得电流 预测值和直流侧电容电压偏移量的预测值代入电流预测值, 计算开关状态对应的 价值函数值;
( d) 将 (b ) 中计算所得电流给定值和 (c ) 中计算所得电流预测值和直流侧电容电压 偏移量的预测值, 代入 (4 ) 中的价值函数中进行运算;
( e) 对 (d) 中计算所得价值函数值进行比较, 选取最小的价值函数值所对应的开关 状态作为输出, 用于控制三电平电压源型变换器中开关管的通断。 本发明的有益效果如下:
本发明是对传统三电平电压源型变换器模型预测控制算法的开关状态选择方法进行了改 进, 通过简单的加减运算获得三电平变换器所有开关状态的一个子集, 每次只需从子集中选 取开关状态。 本方法有利于减少三电平变换器模型预测控制算法实现时的计算量, 提高系统 采样频率, 从而提高三电平变换器预测控制的整体性能, 使得电流谐波畸变率降低, 动态响 应速度快; 本方法是在考虑三电平变换器开关状态切换的约束条件基础上进行的改进, 所以 它能有效避免在开关状态切换时, 在三电平变换器交流侧相电压和线电压出现幅值的过高跳 变。 附图说明
图 1为三电平电压源型变换器工作于可控整流状态时的主电路拓扑结构图。
图 2为三电平电压源型变换器空间矢量图。
图 3为模型预测控制执行图。
图 4为三电平电压源型变换器模型预测控制框图。
图 5为三电平电压源型变换器模型预测控制算法流程图。 具体实施方式
本发明是针对现有技术中存在的问题, 提出的改进方法。 下面结合附图, 从三电平变换 器离散数学模型、 控制系统设计、 开关状态子集确定等方面对本发明进一步说明。
图 1为三电平电压源型变换器电路工作于可控整流状态的拓扑结构图。 图中, ea、 eb、 ec 分别为三相电网相电压; a、 4、 是网侧电流; Q是中点电流; d、 C2是直流母线电容; L 和 R为交流侧电抗器电感和等效电阻; Udcl、 f/de2分别是直流母线上下电容电压, 直流母线电 对图中的电路利用基尔霍夫电压定律, 可得
:ea- dt
L ■eb-Rib-(ubo+uoN) :ec—Wc—(Mco+MoN) (1)
dt
式中: ΜΆΟ、 MB。和 Με。分别是变换器交流侧&、 b和 c点对直流侧 ο点的电位;
Μ。ν是变换器直流侧 ο点对交流侧三相电压中点 Ν的电位;
在三相三线系统中, 三相电网电压之和为零, 三相电流之和为零, 因此对 (1)式运算可得
Mao +Mbo +Mc,
ΜοΝ =
3
(2)
将 (2)式带入 (1)式, 可得 。 。
3
2Mb。+ Mco
= eb 3
(3) 为分析变换器的运行特性, 必需建立开关状态与变换器交流侧电压之间的关系, 首先需 要建立开关函数, 如下 =^ O a'b' c)
(4)
+
+ s 。
Figure imgf000007_0001
式中, T 1、 Τ 2、 1 和1 代表对应第 ' (./=a,b,c) 相桥臂的四个开关;
为第 ' =a,b,c) 相桥臂的开关状态。
由 (5)式和 (6)式可知, 三相三电平电压源型变换器有 33=27种开关状态, 对应 27种电压 状态组合, 定义空间电压矢量 为
Figure imgf000007_0002
(6)
则在 αβ坐标系平面上, 三电平电压源型变换器的 27个开关状态对应的空间电压相量如 图 2所示。
为计算三电平电压源型变换器开关状态与交流侧电流的关系, 可将式 (5)带入式 (4), 得
Figure imgf000007_0003
通过 (7)式, 建立起了开关状态与电流的关系, 这就为通过合理选用开关状态来实现电流 正弦性及减少谐波提供了理论基础。为计算方便,将三电平变换器电流的数学模型由三相 abc 静止坐标系转换到两相 αβ静止坐标系, 如下
Figure imgf000008_0001
直流侧中点电位平衡问题是三电平电压源型变换器结构所特有的问题, 为此需要在模型 预测控制方法中加以解决, 为此, 需要建立中点电位偏移值和开关状态的关系, 其关系式如 下 dU dc2)
C S.2 S
df
(9)
模型预测控制需要对电路模型进行欧拉近似离散化, 建立系统的离散模型。 由图 3可知, 由于模型预测控制程序计算时间相对于采样周期时间不能忽略, 从而会出现控制延时问题。 因此必须在当前周期预测下一周期的开关状态, 即第 周期 k 〜tk+ 需要预测第 A+1周期 采用的开关状态的作用效果, 为此需要知道 it+2时刻电流值。 对式 (8)进行前向欧拉近似处理, 得
2) = (1 - 1) + [(ea 1) - Ma 1)]
Ύ
H (k + 2) = (l- -^);β 1) +† [(ep (A + 1) (k + 1)]
(10)
式中, +2)和 ¼A+2)为 tk+1时刻两相静止坐标系下的交流侧电流预测值;
ea +l)和 (^+1)为 时刻两相静止坐标系下电网电压预测值, 当电网电压稳定, 采样 频率远远高于电网基波频率时,可以认为相邻时刻电网电压几乎不变,即 ea +l) a(;A:;), (^+2)
Ma +1)和 Μβ +1)是根据第 采样周期内采用的开关状态所计算出来的交流侧电压, 计算 式为公式 (6);
^+1)和 为 时刻两相静止坐标系下的交流侧电流预测值, 其值可由 (10)式向后 -步获得, 即如下式所示
(^+1) = (1- - (k) + -r Kea (k)-ua (k)]
T
i, ( 1) = ( β (k) + f [(¾ (k) - Μβ (k)]
(11)
式中, ( 和 为 h时刻两相静止坐标系下的交流侧电流检测值;
ea(^和 为 it时刻两相静止坐标下的电网电压检测值;
Ma )和 (k)为 是根据第 k-1采样周期内采用的开关状态所计算出来的交流侧电压, 计 算式为公式 (6);
在^ 2时刻的中点电位偏移量计算式如下 4( ι)·
^Udc (k + 2) = ^ [Sa 2 (k + 1) Sb 2 (k + 1) Sc 2 ( i)] 'b( i) + AUdc(k + l)
c
(12)
式中, Af/d+ 2)为^ 2时刻的变换器直流侧上下电容电压差的预测值;
Sa 2(^ + 1) 、 Sb 2(^ + 1)和 SC + 1)是在第 A+1周期可能采用的三个桥臂开关状态;
+1)和 +1)是 tk+l时刻的三相电流预测值, 其值可以根据 和 ¼ +1)
的值经过两相坐标系到三相坐标系坐标变换即可, 即
'β( ι)
Af/d+ l)是^时刻变换器直流侧上下电容电压差的预测值, 可通过下式计算得出
AUdc(k + \) = -^[Sa 2(k) Sb 2(k)Si
C
(13)
式中, 1122 11
MJ^ 为 时刻变换器直流侧上下电容电压差的检测值, 即
Af dcW = f dc )- t dc2w。
为了快速跟踪参考电流及平衡中点电位, 设定三电平变换器价值函数 g如下
g = | * ( 2) ia (k + 2)1 + |/β* (k + 2)- /β (k + 2)| +Adc {Udc2 (k+2)-Udcl(k+2))
(14) 式中, 为直流侧上下电容电压差值的权重因子, 通过设置不同 值, 可调整电流控 制和中点平衡控制的优先权;
/;^ + 2)和^ + 2)是 1控制周期结束时输入电流的指令值,可由前几个时刻的电流参考 值出来, 考虑到计算时间限制, 预测值可由二阶外推法获得。
+ 2) = 3 + 1)— 3» + — 1)
(k + 2) = (k + l)- (k) + 1; (k - 1)
(15) 在确定三电平电压源型变换器预测模型和价值函数后, 只需将三电平变换器所有状态代 入计算并从中选取最优值即可。 然而三电平变换器预测控制模型复杂, 开关状态繁多, 当去 计算所有开关状态对应的价值函数时, 程序计算量会比较大。 而且在采用计算得出的开关状 态时, 可能会导致交流侧相电压或线电压在相邻周期开关状态切换时出现幅值跳变过高。
本发明的设计要点是在分析三电平电压源型变换器开关状态约束条件的基础上, 确定所 有开关状态的一个子集, 下一周期只需从当前开关状态对应子集中选取最优开关状态。 为防 止幅值过高跳变, 则每相开关状态变化只能由 -1到 0, 0到 1或 1到 0, 0到 -1。 因此, 可以 在当前时刻开关状态基础上, 通过叠加两电平电路开关状态组来获得三电平变换器所有开关 状态的一个子集, 即在空间矢量平面上, 与当前时刻开关状态相邻的状态的集合, 开关状态 子集的计算式如下所示
S (k + \) = (Smin (k) + M) ^ (Snan (k) - M)
(16)
式中, ιη(^)是第 采样周期采用的最优开关状态;
M是两电平电路开关状态组, M=[001, 010, 011, 100, 101, 110, 111];
A+1)是) HI周期的开关状态子集。
每个开关状态有 7个可选的相加或相减的变化量, 但是三电平开关状态被限制在 -1到 1 之间, 因此实际可选的变化量要小于 7个, 状态子集 ^^+1)中的开关状态可能小于 14个。 经 过相加或相减计算, 结果可分为两类, 第 1类是所得输出电压矢量的各相都在允许范围内, 例如当前周期状态为 00-1, 叠加变化量 001, 所的量为 000, 符合条件, 则加入子集中。 第二 类是计算所得状态有的相超出允许范围, 如初始状态为 00-1, 递减变化量 001, 则所得量为 00-2, 不符合条件, 则舍去。 上述过程可以通过离线计算获得, 并建立对应每个开关状态的 子集数据库。
因此, 本方法的控制框图如图 4所示, 直流侧电压给定值与实际值的差值经过比例积分 PI调节器控制得到电流指令值, 输入到内环控制器。 电流内环采用预测控制算法, 选取时价 值函数最小的开关状态作用于三电平电压源型变换器。
经过以上分析, 本发明所提出的控制方法的最佳实施方式可以系统地表示为图 5, 具体 包括如下步骤:
(1) 检测当前时刻, 即 A时刻的三相电网电压 ea(A:)、 eb(k) , 和网侧三相输入电流 a(A:)、b(^) (k) ,分别经 abc-αβ坐标变换模块得到两相静止 αβ坐标系下的网侧电网电压 ea(^)、 ep(k) 和输入电流 ( 、 ip(k) ; 检测三电平变换器直流侧上下电容电压 f/del( ^和 f/de2(^, 计算直流 侧电压 f/de(A:)和上下电容电压差值 A f/dc(A:);
(2) 给定直流侧电压参考值 ,与步骤 (1)直流侧电压 f/dcW相减后的差值输入 PI控制器 调节, 其输出值经过坐标变换作为模型预测控制的指令电流值 + 和/ ρ + 1)。 (3) 根 据式 (14)确定开关状态子集, 由该式计算得出的三相开关状态还要考虑是否满足限制条件, 即每相状态只能限制在 -1到 1之间, 不满足条件的则舍掉。
(4) 从步骤 (3)中确定的开关状态子集 4+1)中选取开关状态代入式 (10)中,计算得到 i +2时 刻电流值 ^+2)和 ¼A+2)。 将计算所得电流值代入价值函数 (12)中, 计算开关子集 4+1)中 所有开关状态对应的价值函数值。
(5) 对步骤 (4)中计算得出的价值函数值进行比较, 使得价值函数值最小的开关状态作为 输出。 综上所述, 本发明开关状态的选取方法相比于传统方法, 减少了程序的计算量, 这样可 以使系统获得更高的采样频率, 从而进一步提高系统的静态和动态性能; 而且, 本文方法是 在充分考虑开关状态切换约束条件提出上, 选取的开关状态子集, 这样使得三电平变换器在 开关状态切换时, 其交流侧相电压和线电压不会出现幅值的过高跳变。本发明方法算法简单, 易于实现, 在更高电平变换器中也可采用, 具有通用性。

Claims

权利要求 一种三电平电压源型变换器模型预测控制方法, 包括下列几个方面:
(1) 建立三电平电压源型变换器交流侧电流与开关函数的关系模型, 如下 (k + 2) = (l- (k + l) + j-.[(ea(k + l)- ua (k + 1)] i,(k + 2) = (\-^)i,(k + \) + ^-[(e,(k + \)-u,(k + \ \ 式中, J和 R分别为交流侧电抗器电感和线路等效电阻;
7是系统采样周期;
+2)和 ¼A+2)为 tk+1时刻两相静止坐标系下的交流侧电流预测值;
^+1)和 为 时刻两相静止坐标系下的交流侧电流预测值;
ea +l)和 +1)是 tk+1时刻电网电压的 a轴和 β轴分量;
Μα +1)和 Μβ +1)是 tk+l时刻两相静止坐标系下整流器交流侧电压的计算值, 且计算式如 ua(k + l) = ^—— ^(2Sa(^ + l)-Sb(^ + l)-Sc(t + l))
6
(k + V) = ^Ud + l)(Sh(k + l)- Sc (k + 1》
式中, ^^+1)是 tk+1时刻的直流侧电压预测值;
S,(k+\), & +1)和& +1)是在第 A+l周期内可能采用的三相开关状态;
(2) 建立直流侧电容电压偏移量与开关函数的关系模型, 如下
dc (k + 2) = -^[Sa 2 (k + 1) (k + 1) &2 (k + l) (^+1) + ^ Udc(k + \) c 式中, Δί/ +2)是 tk+1时刻直流侧上下电容电压的差值;
Δ ε +1)是 tk+1时刻直流侧上下电容电压的差值;
C是直流侧电容值;
b +l)和 (^+1)分别是 tk+1时刻的三相交流侧电流;
(3) 电流给定值:和 ζ由电压外环获得, 其中 时刻的电流给定值可由前几时刻的电 值计算获得, 计算式如下
|;;(^ + 2) = 3;;(^ + 1)-3;;(^) + ;;(^-1)
(k + 2) = (k + Y)- 3; (k) + 1; (k― 1) 式中, i: (k+\)和 (^+l)是 tk+l时刻电流给定值;
是 时刻电流给定值; C(k-\)和 ( -1)是 tkA时刻电流给定值;
(4) 设定三电平电压源型变换器模型预测控制算法的价值函数, 如下
g =
Figure imgf000013_0001
(k + 2)|+4 (f dc2 {k+2)-UM (k+2)) 式中, 。为直流侧上下电容电压差值的权重因子; (k + 2)和 i; ( + 2)是 tk+2时刻输入电流的指令值; ζ (k)和!; (k)是 tk时刻输入电流的指令值; ; (k - 1)和!; 1)是 t 时刻输入电流的指令值。
(5) 计算开关状态子集
S(k+l)=(Smm(k)+M)J(Smm(k)-M)
式中, ^^( 是第 A采样周期采用的开关状态;
M是两电平电路开关状态组, M=[001, 010, 011, 100, 101, 110, 111]; A+1)是计算所得开关状态子集;
U是并集运算符; 由该式计算得出的三相开关状态还要考虑是否满足限制条件, 即每相状态只能限制在 -1 之间, 不满足条件的则舍掉;
(6) 在进行实时预测控制时, 采用下面的步骤:
(a) 检测当前时刻即 k时刻的三相电网电压 ea(A:;)、 eh(k), 和网侧三相输入电流 iJJ()、 ib(k), ic(k), 分别经 abc-αβ坐标变换模块得到两相静止 αβ坐标系下的网侧电网电 压 ea(k、 和输入电流 lk、、 ip(k); 检测三电平变换器直流侧上下电容的电压 f/dclW和 Udc2<^, 计算直流侧电压 f/de(A:)及上下电容电压的差值 Af/dc(A:);
(b) 给定直流侧电压参考值 f^, 计算其与直流侧电压 的差值, 经过比例积分 ΡΙ 控制器调节得到电流指令值 + 和 ί(Α + 1), 并根据 (3) 推算 时刻电流给 定值 (Α + 2)和 p + 2);
(c) 对于 (5) 中所确定的开关状态子集所包含的所有开关状态, 代入 (1) 和 (2) 中 给出的交流侧电流、 直流侧电容电压偏移量这两者与开关函数的关系模型,计算得 到 i+2时刻电流值 +2)和 ¼^+2)、 中点电位偏移值 Af/(^+2)。 将计算所得电流 预测值和直流侧电容电压偏移量的预测值代入电流预测值, 计算开关状态对应的 价值函数值;
( d) 将 (b ) 中计算所得电流给定值和 (c) 中计算所得电流预测值和直流侧电容电压 偏移量的预测值, 代入 (4) 中的价值函数中进行运算;
( e) 对 (d) 中计算所得价值函数值进行比较, 选取最小的价值函数值所对应的开关状 态作为输出, 用于控制三电平电压源型变换器中开关管的通断。
PCT/CN2012/087219 2012-11-26 2012-12-22 一种三电平电压源型变换器模型预测控制方法 WO2014079125A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210494610.2 2012-11-26
CN201210494610.2A CN103036460B (zh) 2012-11-26 2012-11-26 一种三电平电压源型变换器模型预测控制方法

Publications (1)

Publication Number Publication Date
WO2014079125A1 true WO2014079125A1 (zh) 2014-05-30

Family

ID=48023023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/087219 WO2014079125A1 (zh) 2012-11-26 2012-12-22 一种三电平电压源型变换器模型预测控制方法

Country Status (2)

Country Link
CN (1) CN103036460B (zh)
WO (1) WO2014079125A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2632890A1 (es) * 2016-03-15 2017-09-15 Gamesa Innovation & Technology S.L. Un sistema de conversión de energía trifásica de media tensión para aplicaciones de lazo cerrado

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103546051A (zh) * 2013-11-13 2014-01-29 国网上海市电力公司 一种三相四桥臂变流器直流侧电压控制方法
AT513776B1 (de) * 2014-04-08 2015-09-15 Avl List Gmbh Verfahren und Regler zur modellprädiktiven Regelung eines mehrphasigen DC/DC-Wandlers
CN104716856B (zh) * 2015-03-17 2017-06-13 上海交通大学 模块化多电平变流器模型预测控制方法
CN104811069B (zh) * 2015-05-13 2017-07-21 山东大学 一种模块化多电平逆变器的预测控制方法
CN104852382B (zh) * 2015-06-08 2017-04-05 中国矿业大学 一种直流侧电压自适应调节的apf电流预测控制算法
CN105071678B (zh) * 2015-07-17 2017-12-15 苏州大学 一种有限开关状态模型预测控制方法及装置
CN105529731B (zh) * 2015-11-11 2019-04-30 长沙理工大学 基于柔性直流输电系统换流站级改进型控制策略
CN105322818A (zh) * 2015-11-30 2016-02-10 华南理工大学 一种基于新型模型预测控制的三相pwm整流的控制方法
CN106208737B (zh) * 2016-08-24 2019-06-18 中南大学 基于三次谐波注入矩阵变换器的模型预测电流控制方法
CN106655937B (zh) * 2016-11-15 2019-05-28 西安理工大学 双级矩阵变换器驱动的同步磁阻电机模型预测控制方法
CN106549400B (zh) * 2016-12-10 2018-11-02 三峡大学 一种基于电压预测的配电静止同步补偿器的控制方法
CN106787662B (zh) * 2017-03-15 2019-04-26 郑州轻工业学院 一种双向ac/dc变换器故障容错模型及其控制方法
CN106887964B (zh) * 2017-04-24 2019-01-25 电子科技大学 一种t型三电平逆变器共模电压消除方法
CN107769595B (zh) * 2017-11-21 2019-11-22 中国矿业大学 一种三电平pwm整流器模型预测控制方法
CN108599605B (zh) * 2018-05-14 2019-10-18 华南理工大学 基于两矢量合成的三电平逆变器模型预测功率控制方法
CN109980971B (zh) * 2019-03-06 2020-04-28 同济大学 考虑电位平衡和谐波抑制的三电平牵引逆变器控制方法
CN110829466B (zh) * 2019-11-04 2021-08-31 郑州轻工业学院 组合开关状态的npc三电平模型预测不平衡治理方法
CN110912431B (zh) * 2019-12-12 2021-10-29 福州大学 基于模型预测虚拟电压矢量控制的逆变器环流抑制方法
CN111416539B (zh) * 2020-04-24 2021-08-06 山东大学 一种针对三电平并网变流器的模型预测控制方法及系统
CN112260294A (zh) * 2020-11-04 2021-01-22 河南九域恩湃电力技术有限公司 一种三相四线不平衡治理模型预测优化控制方法
CN112886843A (zh) * 2020-11-12 2021-06-01 湖南恒信电气有限公司 去权重系数的三相八开关模型预测控制方法和装置
CN112532094A (zh) * 2020-11-27 2021-03-19 江苏科技大学 一种t型三电平npc逆变器的复合控制方法
CN112713831A (zh) * 2020-12-23 2021-04-27 合肥显龙新能源有限公司 一种基于模型预测的三相四开关逆变器永磁同步电机系统的电压控制方法
CN112910297B (zh) * 2021-01-21 2022-02-15 山东大学 三电平snpc变流器系统及两段式模型预测控制方法
CN112994498A (zh) * 2021-02-08 2021-06-18 山东大学 一种七电平逆变电路、逆变器及控制方法
CN113328622B (zh) * 2021-06-04 2022-07-29 江南大学 一种飞跨电容型三电平直流降压变换器的控制方法
CN113922689B (zh) * 2021-12-09 2022-02-22 希望森兰科技股份有限公司 一种二极管箝位型三电平变换器高性能模型预测控制算法
CN116780929B (zh) * 2023-05-04 2024-01-30 东莞市海柯电子有限公司 基于SiWBG级联H桥变换器的变权重预测控制方法
CN116865532B (zh) * 2023-09-05 2023-11-24 国网山西省电力公司临汾供电公司 一种采用模型预测控制的交直变换器的控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1691483A (zh) * 2004-04-19 2005-11-02 英特赛尔美国股份有限公司 线性预测控制器
CN101917118A (zh) * 2010-08-23 2010-12-15 东南大学 开关式dc-dc变换器的数字预测控制系统与方法
CN102280898A (zh) * 2006-06-30 2011-12-14 Abb技术有限公司 控制高压直流系统中的电压源变换器的方法和变换器站
CN102361409A (zh) * 2011-10-14 2012-02-22 天津大学 一种三电平变换器中点电压平衡控制方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5910892A (en) * 1997-10-23 1999-06-08 General Electric Company High power motor drive converter system and modulation control
CN102638186A (zh) * 2012-05-18 2012-08-15 上海三一精机有限公司 一种三相电压型整流器及其控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1691483A (zh) * 2004-04-19 2005-11-02 英特赛尔美国股份有限公司 线性预测控制器
CN102280898A (zh) * 2006-06-30 2011-12-14 Abb技术有限公司 控制高压直流系统中的电压源变换器的方法和变换器站
CN101917118A (zh) * 2010-08-23 2010-12-15 东南大学 开关式dc-dc变换器的数字预测控制系统与方法
CN102361409A (zh) * 2011-10-14 2012-02-22 天津大学 一种三电平变换器中点电压平衡控制方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GAO, CHAO: "A Novel Multi-Level Single-Phase Boost Power Factor Correction Switching Converter Based on Predictive Control Technology", LOW VOLTAGE APPARATUS, 2007, pages 8 - 12 *
LIU, SHUXI ET AL.: "Direct Torque Predictive Control System Supplied by Three-Level Inverter Based on a Fast SVPWM Algorithm", TRANSACTIONS OF CHINA ELECTROTECHNICAL SOCIETY, vol. 24, no. 2, February 2009 (2009-02-01), pages 35 - 41 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2632890A1 (es) * 2016-03-15 2017-09-15 Gamesa Innovation & Technology S.L. Un sistema de conversión de energía trifásica de media tensión para aplicaciones de lazo cerrado

Also Published As

Publication number Publication date
CN103036460B (zh) 2014-10-22
CN103036460A (zh) 2013-04-10

Similar Documents

Publication Publication Date Title
WO2014079125A1 (zh) 一种三电平电压源型变换器模型预测控制方法
CN107317490B (zh) 一种基于三相Vienna整流器的无差拍预测直接功率控制方法
Song et al. Predictive duty cycle control of three-phase active-front-end rectifiers
Xia et al. Robust model predictive current control of three-phase voltage source PWM rectifier with online disturbance observation
Arif et al. Grid parameter estimation using model predictive direct power control
CN103595069B (zh) 不平衡电压下光伏发电系统网侧变换器模型预测控制方法
CN105429484B (zh) 基于任意周期延时的pwm整流器预测功率控制方法及系统
CN109245571B (zh) 一种基于优化参数及注入阻尼的无源控制系统及方法
JP6326832B2 (ja) インバータ制御方法および電圧型インバータ
CN109245570B (zh) 基于扩张状态观测器的pwm整流器控制方法与装置
CN102916599A (zh) 不平衡电压下三相pwm整流器的模型预测控制方法
CN109787491A (zh) 基于虚拟磁链的三相Vienna整流器预测直接功率控制方法
CN110460089B (zh) 一种基于多变量预测的lcl并网逆变器fcs-mpc控制方法
CN103684031A (zh) 一种pwm整流器电流滞环控制数字实现系统
Zhou et al. Time delay compensation-based fast current controller for active power filters
CN105762789B (zh) 一种无电压传感器的三相变流器模型预测控制方法
Zhang et al. Model predictive current control with optimal duty cycle for three-phase grid-connected AC/DC converters
CN104393773B (zh) 一种三相电压型脉冲宽度调制整流器预测电流控制方法
Yongchang et al. Comparative study of model predictive current control and voltage oriented control for PWM rectifiers
CN109301823B (zh) 基于有限状态模型预测控制策略的电能质量扰动补偿方法
WO2024082730A1 (zh) 一种llcl型电池储能变换器的有限集模型预测控制方法
Wrona et al. Sensorless operation of an active front end converter with LCL filter
Zhou et al. Hybrid prediction-based deadbeat control for a high-performance shunt active power filter
KR101527446B1 (ko) 모델예측제어 기법을 이용한 출력제어방식을 적용한 무정전 전원장치 및 그 제어방법
Izadinia et al. Optimized current control of vienna rectifier using finite control set model predictive control

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12888904

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12888904

Country of ref document: EP

Kind code of ref document: A1