WO2014079047A1 - 用于构造磁共振成像超导磁体的方法 - Google Patents

用于构造磁共振成像超导磁体的方法 Download PDF

Info

Publication number
WO2014079047A1
WO2014079047A1 PCT/CN2012/085176 CN2012085176W WO2014079047A1 WO 2014079047 A1 WO2014079047 A1 WO 2014079047A1 CN 2012085176 W CN2012085176 W CN 2012085176W WO 2014079047 A1 WO2014079047 A1 WO 2014079047A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
magnetic field
magnet
carrying
feasible
Prior art date
Application number
PCT/CN2012/085176
Other languages
English (en)
French (fr)
Inventor
张国庆
朱自安
赵玲
侯治龙
杨欢
周谨
马文彬
王克祥
Original Assignee
中国科学院高能物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院高能物理研究所 filed Critical 中国科学院高能物理研究所
Priority to CN201280076000.9A priority Critical patent/CN104685584B/zh
Priority to PCT/CN2012/085176 priority patent/WO2014079047A1/zh
Publication of WO2014079047A1 publication Critical patent/WO2014079047A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/381Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets
    • G01R33/3815Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets with superconducting coils, e.g. power supply therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/048Superconductive coils

Definitions

  • the invention belongs to the field of applied superconducting technology, in particular to the construction of magnetic resonance imaging (Magnetic
  • Magnetic resonance imaging (MRI) is a high-tech technique that uses the magnetic resonance properties of a magnetic core (mainly a hydrogen nucleus) of a living body to perform imaging in a magnetic field.
  • Magnetic resonance imaging (MRI) equipment consists mainly of a main magnet, a scanning bed, a gradient coil, a radio frequency coil, a spectrometer system, a control cabinet, a console for human-machine dialogue, a computer, and an image processor.
  • the main magnet is the main component of the MRI equipment and is used to generate a uniform static magnetic field that determines the image quality and efficiency of the MRI equipment.
  • the main magnet is also the part of MRI equipment that has the highest manufacturing costs and the highest operating costs.
  • MRI has strict requirements on the strength, uniformity and stability of the magnetic field. These three are the most important indicators of the main magnet. Compared to permanent magnets, superconducting magnets produce magnetic fields with higher strength, uniformity, and stability, so they are used to obtain sharper images.
  • a magnetic field of the order of 10 Gauss may cause some electronic devices to malfunction and make the patient with a pacemaker live. Danger, a magnetic field of the order of 100 Gauss may cause the computer system to work abnormally, so it is necessary to limit the range of stray fields of the superconducting magnet in consideration of the limitation of the leakage magnetic field in some places.
  • the magnetic field shielding methods of the MRI main magnet include passive shielding and active shielding.
  • the passive shielding method it is necessary to place a ferromagnetic material around the magnet to shield the leakage magnetic field.
  • the structure is simple, but the volume and weight are large, and the uniformity of the magnetic field is also affected.
  • the active shielding method is generally adopted, that is, the stray field outside the magnet is reduced by adding a shield coil that reverses current to the outside of the main coil, thereby narrowing the stray field range of the magnet.
  • a large number of clinical experiments have shown that patients in the narrow space generally show nervousness, restlessness and other claustrophobia. Therefore, in recent years, short-chamber, self-shielding MRI system design has become a new trend.
  • the electromagnetic design indicators of high uniformity magnetic resonance imaging magnets are mainly:
  • Imaging area (Diameter Sensitive Volume, DSV for short), generally It is a spherical area of diameter D.
  • Central field B refers to the value of the magnetic induction at the center of the imaging area.
  • Bmax and Bmi n are the maximum and minimum values of magnetic induction in DSV, respectively.
  • the range of stray fields generally refers to the area surrounded by the 5Gs equipotential line of the magnetic field generated by the working current.
  • Magnetic resonance imaging The optimal design of superconducting magnets is the basis for magnet fabrication and plays an important role in imaging quality and production cost control of the entire MRI device.
  • the methods for constructing MRI superconducting magnets can be summarized into two categories.
  • One is the direct optimization method. This method can globally optimize the entire feasible space without giving the initial value of the coil structure.
  • the working current and the basic coil structure of the superconducting magnet may also be pre-selected, and the structural parameters of the magnet are independent variables, the magnetic field uniformity in the imaging region, the range of the stray field, the spatial volume of the superconducting magnet, the energy of the magnet, etc. are constraints or
  • the objective function uses a nonlinear optimization algorithm such as simulated annealing algorithm or genetic algorithm to locally select the structural parameters of the superconducting magnet to obtain the final magnet structure.
  • Another type of function method is the introduction of linear programming algorithms. Firstly, the magnet structure is simplified, a regular rectangular grid is divided in the feasible current-carrying region of the superconducting magnet, and the MRI superconducting magnet design problem is equivalent to a linear programming model to obtain the initial current density distribution of the superconducting magnet. Then, the basic structure and positional parameters of the magnet coil are determined according to the initial current density distribution, and then the first type of nonlinear optimization algorithm is used to obtain the final rectangular magnet coil structure. However, the initial current density distribution is used to determine the basic structure of the magnet. There is still some subjective blindness in the selection of the number of magnet coils and the shape of the cross-section, and it is not easy to find the global optimal result.
  • the object of the present invention is to provide a method for constructing a magnetic resonance co-resonance to form an image super-superconducting magnetic body, which is used for In order to solve the problem of the magnetic resonance co-resonance vibration imaging method of the super-superconducting magnetic body, the actual method of winding the magnetic body is practically required.
  • the wire coil circle size will be taken into the discrete dispersing treatment, and the alignment position and the semi-radius diameter will be performed. Take the whole, after taking the whole and the discrete dispersion, the uniformity of the magnetic body, etc., the indexing of the indicator usually has a clear and significant drop, so that the design The result of the design is deviated from the best optimal
  • the method for constructing a magnetic resonance co-resonance vibration imaging image super-superconducting magnetic body includes: determining the ultra-superconducting wire material, , the operation of the electric current flow and the feasible flow of the carrier flow region;; with the central center of the magnetic body as the original point, the establishment of a vertical cylindrical column coordinate coordinate system ((rr,, zz,, aa )) , , where rr is the radial distance from the radial distance, and the zz axis is high, "for the azimuth angle, magnetic
  • the axial direction of the magnet body axis is the axial direction of the zz axis;; the division of the feasible flow carrying stream region is divided into a plurality of mesh grids, and the pair of feasible rows can be carried.
  • the number of radial radial layers in the inner grid of the inner area and the axial axial direction of the ⁇ 1100 are separately taken and fetched, and a plurality of rectangular rectangular mesh grids are obtained.
  • the rectangular rectangular mesh grid number nn is obtained, and the coordinates of the space between the empty spaces in the rectangular grid mesh of each of the rectangles are obtained as (( , , ZZii , aa dd ;
  • the field strength of the center center, the uniformity of the magnetic field, and the stray field are Constraining the condition of the bundle, the advantage of using the integer integer linearity linearity plan to calculate the cost-effective algorithm for the feasible flow of the current-carrying flow zone, and obtaining the initial guidance of the magnetic magnet body Distributing the area of the patch in each of the sets of the wire;
  • the uniformity of the magnetic field is uniform according to the illumination
  • the degree of influence of the influence of the shadow is from large to small, and the minimum amount of the line is used to optimize the target, the center-center field strength, and the magnetic field.
  • the average uniformity of the average and the stray field are constrained by the bundle condition, and the distribution algorithm is used to calculate the distribution area of the episodes by using the integer integer linearity linearity plan.
  • the region is further rectangularized; and the number of parameters of the coil of the superconducting magnetic core is obtained. .
  • the innermost layer can be optimized by minimizing the amount of the wire.
  • the 2200 magnetic magnet body coil coil is compressed and contracted from the automatic moving inward inner portion, so as to constrain the bundle condition condition with the stray field field as the constraint, the outer outer layer coil coil can be self-automatically oriented.
  • the outer and outer parts are compressed and contracted, and the rectangular grid mesh of the carrier current can be formed into a relatively tight and tight guide after being obtained by the integer integer linear linearity plan.
  • the distribution area of the distribution area can be obtained, and the most optimal solution of the whole global office can be obtained, and the result of the design calculation is an integer.
  • the number of layers and sums effectively avoiding the elimination of the normal error method in the usual method. .
  • FIG. 11 is a schematic view showing a schematic embodiment of a method for constructing an ultra-superconducting magnetic body by using a magnetic-magnetic resonance resonating imaging structure as shown in FIG. 11; ;
  • Figure 22 is a schematic view showing a flowable region of a feasible flow
  • Figure 33 is a diagram showing the distribution of the regional distribution of the central region of the initial initial conduction wire set
  • Figure 5 is a uniformity distribution of the magnetic field of the imaging zone
  • Figure 6 shows the 5Gs equipotential diagram of the stray field of the magnet.
  • FIG. 1 is a schematic view showing an embodiment of a magnetic resonance imaging structure superconducting magnet according to the present invention, as shown in Fig. 1:
  • Step 1 Estimate the maximum range of the feasible current-carrying zone of the magnet coil, including the minimum inner radius of the feasible current-carrying zone and the maximum outer radius. Determine the superconducting wire according to the magnetic field design requirements, the space constraints, and the maximum magnetic induction intensity of the feasible current-carrying zone. And determine the operating current lop;
  • Step 2 Taking the center of the magnet as the origin, establish a cylindrical coordinate system (r, z, "), where r is the radial distance and the z-axis is high, "for the azimuth angle, the axial direction of the magnet is the z-axis direction; Select the size of the superconducting wire, divide the feasible current-carrying area into multiple meshes, and make the geometrical size of each mesh equal to the size of the cross-section of the selected superconducting wire, and the radial layer of the mesh in the feasible current-carrying zone The number and the number of axial turns are respectively rounded to form a plurality of rectangular grids, and the boundaries of each feasible current-carrying zone are adjusted accordingly, and the number of rectangular grids n and each of the feasible current-carrying zones of the magnet coil are obtained.
  • the spatial coordinates of the center of the rectangular grid are (ri, Z i, d.
  • Step 3 Using the minimum line quantity as the optimization target, the central field strength, the magnetic field uniformity and the stray field as constraints, the integer linear programming algorithm is used to plan the feasible current-carrying area, and the concentrated distribution areas of the initial wires of the magnet are obtained. If the concentrated distribution of the wires that meet the design requirements or the concentrated distribution of the conductors is not easy to carry out the next rectangularization, return to step 1;
  • Step 3 can be specifically:
  • the rectangular grid under the running current lop can be equivalent to a current loop at the center of the rectangular grid.
  • a single wire, and the cross-sectional area of the wire is zero, and the current flowing through is the operating current Iop. Then the z-direction component of the magnetic field generated by the current loop at the point of investigation ( rj , Zj ) is: among them,
  • L 2k1 ⁇ 4 n is the number of rectangular grids in the feasible current-carrying zone, and I is equal to the operating current Iop.
  • the minimum inner radius of the feasible current-carrying region of the magnet coil is limited by the reserved room temperature hole dewar structure and the magnet skeleton, and a certain amount needs to be reserved during design; the maximum outer radius of the magnet coil and the axial direction of the magnet
  • the length is limited by the volume of the magnet, the weight of the Dewar, the user experience, etc. They also affect the magnetic field quality of the magnet, which affects the rationality, practicability and economy of the final optimization result.
  • the inner layer magnet coil can be automatically compressed internally by using the minimum amount of the line as the optimization target.
  • the outer layer coil can be automatically compressed to the outside under the constraint of the stray field, and the integer linear programming is obtained.
  • the current-carrying rectangular grid can form a tightly distributed area of the conductors for the next step of optimization of the magnet.
  • Step 5 according to the degree of influence of the concentrated distribution regions on the uniformity of the magnetic field, according to the magnetic
  • the degree of field uniformity is from large to small, with the minimum amount of line as the optimization target, the central field strength, the magnetic field uniformity and the stray field as constraints, and the centralized distribution area is rectangularized by an integer linear programming algorithm. Obtaining a minimum magnet structure with a line amount;
  • the rectangularization is to use the integer linear programming algorithm to plan the concentrated distribution areas.
  • the method for determining the degree of influence of the concentrated distribution area on the uniformity of the magnetic field may be as follows: In the concentrated distribution area of the initial conductor of the magnet obtained by the -1-0-1 integer linear programming, the uniformity of the magnetic field uniformity of each of the separated concentrated distribution areas is considered. The degree of influence, find the one with the strongest influence, and then fix the other concentrated distribution area, and then rectangleize the concentrated distribution area; after obtaining the result of satisfying the condition, use the same method to rectangleize the next centralized distribution area. At the end of the rectangularization, the final cross-section parameters of the superconducting magnet coil are obtained, and the optimized design of the magnet is completed.
  • each of the concentrated distribution regions is rectangularized in order to obtain the minimum magnet structure with the line amount:
  • the implementation algorithm of the step of rectangleizing the concentrated distribution regions is:
  • the respective concentrated distribution regions under the operating current are again subjected to rectangular mesh division, and the new feasible current-carrying region in the feasible current-carrying region is determined according to the concentrated distribution regions, and the grid of the new feasible current-carrying region is determined.
  • the number of radial layers and the number of axial turns are respectively rounded, the boundary of the new feasible current-carrying zone is adjusted, and the spatial coordinates of the center of each rectangular grid and the total rectangular grid number nl in the new feasible current-carrying zone are obtained.
  • the plurality of rectangular grids are equivalent to a current loop located at the center of the rectangular grid.
  • the current of the current loop is equal to the running current, and the current loop is at the point of investigation (rj, Z j , and the z-component of the magnetic field generated at the magnetic field is :
  • the factor ei is -1, 0 or 1.
  • the concentrated distribution region does not contribute to the magnetic field;
  • the concentrated distribution contributes to the magnetic field negatively, corresponding to the reverse coil of the superconducting magnet; then the z-direction component of the magnetic field of each investigation point is:
  • the length of the superconducting wire contained in each of the concentrated distribution regions is calculated by the following formula;
  • nl is the total number of grids of the new feasible current-carrying zone, and I is equal to the operating current.
  • Step 6 determine whether the parameters of the final design can be realized and meet the requirements of superconducting wire
  • Step 7. Output parameters and calculate relevant parameters, including: structure diagram of the output coil, magnetic field distribution and equipotential line of the magnetic field in the uniform region, maximum magnetic field of the magnet current carrying region, and range of 5 Gaussian lines.
  • Step 1 According to the magnetic field design requirements and space constraints, set the feasible current-carrying area of the short-cavity self-shielding superconducting magnet coil, select the appropriate superconducting wire and determine the operating current Iop.
  • Figure 2 is a schematic diagram of a feasible current carrying zone.
  • Cross section of superconducting wire used The dimensions are 1. 80 X 1. 20mm 2 and the operating current is 400A.
  • Step 2 Divide the feasible current-carrying area into multiple rectangular grids.
  • the size of the selected superconducting wire divide the feasible current-carrying area into a plurality of rectangular grids, so that the geometric size of the rectangular grid is equal to the size of the selected superconducting wire, round the rectangular grid and adjust the feasible current-carrying area accordingly.
  • the boundary is obtained by the number n of rectangular grids of the possible current-carrying area of the magnet coil, and then the spatial coordinates of the center of each rectangular grid are determined.
  • Step 3 Calculate the contribution of each rectangular grid to the magnetic field and the length of the superconducting wire contained.
  • the point of investigation ( rj , Zj , « produces the z-direction component of the magnetic field.
  • the length of the superconducting wire contained in each rectangular grid is calculated by:
  • the length of the superconducting wire contained in each rectangular grid can be calculated by:
  • Step 4 Optimize the concentrated distribution of the conductors of the magnet using the -1-0-1 integer linear programming method.
  • the central field, the magnetic field uniformity of the imaging area and the range of the stray field are the constraints, and the -1-0-1 integer linear programming method is used to optimize the concentrated distribution of the conductors of the magnet.
  • Step 5 Rectify the concentrated area of the wire to obtain the final optimization result of the magnet.
  • 4 is a schematic structural view of a rectangular magnet, wherein the black frames 1, 2, 3, and 4 represent currents as forward coils, that is, factors e 2 , e 3 , and e 4 are 1, white frames 5, 6 and 7 represents the current as the reverse coil, and the factors e 5 , e 6 and e 7 are -1.
  • the length of the magnet is 1.29m, and the total length of the superconducting wire used is 63. 6km.
  • Table 1 shows the coil parameters designed for the present example.
  • Step 6 Determine whether the final design parameters can be engineered and meet the JC (B) characteristics of the superconducting wire. If it is satisfied, the optimization is terminated. If not, return to step 1.
  • Figure 5 is a uniformity distribution of the magnetic field of the imaged area
  • the maximum magnetic field of the magnet current carrying region Bmax 6. 07T
  • the magnetic field uniformity distribution of the imaging area is shown in Figure 5. It is shown that the unit is meter (m), and it can be seen that in the spherical region with a diameter of 50 cm, the design index with uniformity less than 10 ppm is satisfied.
  • Figure 6 shows the 5Gs equipotential diagram of the stray field of the magnet. The unit is meters (m). The distance of the 5Gs equipotential line from the center of the magnet is less than 3. 5m in the radial direction and less than 4m in the axial direction.
  • Step 7 Output the parameters and calculate the relevant parameters, including: the structure diagram of the output coil, the magnetic field distribution and the equipotential line of the magnetic field in the uniform region, the maximum magnetic field of the magnet current carrying region, and the range of the 5 Gaussian line.
  • the method for constructing a magnetic resonance imaging superconducting magnet of the present invention divides the feasible current-carrying region of the magnet coil by a mesh, and the geometrical size of the mesh is the selected strip size, and comprehensively considers the amount of wire and magnetic Inductive strength, magnetic field uniformity, stray field range and other indicators, using the -1-0-1 integer linear programming algorithm to obtain the initial wire concentration region distribution of the magnet coil, and then rectangularizing the initial wire concentration distribution area of the magnet in a certain order. Final optimization results.
  • the above embodiment of the present invention is an example of a -1-0-1 integer linear programming algorithm. In fact, an integer linear programming algorithm such as 0-1 may be used. Since the implementation principle is similar to the above embodiment, those skilled in the art may refer to The above embodiment is implemented, so it will not be described here.
  • the inner layer magnet coil can be automatically compressed internally by using the minimum amount of the line as the optimization target, and the outer layer coil can be automatically compressed to the outside by the stray field constraint.
  • the current-carrying rectangular grid obtained by integer linear programming can form a tightly distributed concentrated area of the conductor, and can obtain a global optimal solution that meets the design requirements.
  • the design result is an integer layer and ⁇ , effectively avoiding the rounding in the usual method. error.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

一种用于构造磁共振成像超导磁体的方法,包括:确定超导线材、运行电流以及可行载流区;将可行载流区划分为多个矩形网格,对边界处矩形网格进行取整,调整可行载流区的边界并获取可行载流区的矩形网格数;以磁体的中心为原点,建立一坐标系,得到每个矩形网格中心的空间坐标;以用线量最少为优化目标,中心场强度、磁场均匀度及杂散场为约束条件,利用整数线性规划算法对可行载流区进行规划,得到磁体初始的导线的各集中分布区域;根据各集中分布区域对磁场均匀度的影响程度,按照对磁场均匀度的影响程度从大到小,以用线量最少为优化目标,中心场强度、磁场均匀度及杂散场为约束条件,利用整数线性规划算法对各集中分布区域进行矩形化;以及取得超导磁体线圈的参数。

Description

用于构造磁共振成像超导磁体的方法 技术领域
本发明属于应用超导技术领域, 尤其涉及构造磁共振成像 (Magnetic
Resonance Imaging, 简称 MRI ) 超导磁体的方法。 背景技术
磁共振成像 (MRI ) 是利用生物体的磁性核 (主要是氢核) 在磁场中 所表现出的核磁共振特性来进行成像的高新技术。 磁共振成像 (MRI ) 设 备主要由主磁体、 扫描床、 梯度线圈、 射频线圈、 谱仪系统、 控制柜、 人 机对话的操作台、 计算机和图像处理器等构成。
主磁体是 MRI 设备的主要构成部分, 用于产生均匀静磁场, 决定着 MRI设备的图像质量和工作效率。 同时, 主磁体也是 MRI设备中制造成本 最大, 运行费用最高的部分。 MRI对磁场的强度、 均匀度和稳定度有严格 要求, 这三项是主磁体最重要的指标。 相对永磁体来说, 超导磁体可以产 生强度、均匀度和稳定度都更高的磁场,所以被用来获取更加清晰的图像。
由于分布于超导磁体系统之外的漏磁场会对周围环境带来不利的影 响, 如 10高斯数量级的磁场就有可能导致一些电子设备不能正常工作, 并使带心脏起搏器的病人有生命危险, 100高斯数量级的磁场就可能会使 计算机系统工作异常, 因此考虑到某些场所对漏磁场的限制, 需要限制超 导磁体的杂散场范围。
MRI主磁体的磁场屏蔽方式包括被动屏蔽和主动屏蔽两类。采取被动 屏蔽方式时, 需要在磁体周围安置铁磁材料来屏蔽漏磁场, 结构简单, 但 体积和重量都很大,且对磁场的均匀性也会产生影响。 目前一般采用主动 屏蔽方式,即通过在主线圈的外部增加通反向电流的屏蔽线圈来降低磁体 外部的杂散场,从而缩小磁体的杂散场范围。同时由于传统 MRI系统的长 度较长,大量临床实验表明患者在狭长的空间中普遍表现出紧张、不安等 幽闭症现象,因此近年来,短腔、自屏蔽 MRI系统设计成为一种新的趋势。
高均匀度磁共振成像磁体的电磁设计指标主要有:
( 1 ) 成像区域 (Diameter Sensitive Volume, 简称 DSV), 一般定 义为直径为 D的球形区域。
( 2 ) 中心场 B。, 指成像区域中心点处的磁感应强度值。
( 3 ) 磁场均匀度 n (峰峰值), 计算公式为:
η = 腿 _ min x l O6 (ppm)
Bo
其中, Bmax和 Bmi n分别为 DSV中磁感应强度的最大值和最小值。
( 4 ) 杂散场范围, 一般指磁体通以工作电流时所产生磁场的 5Gs等 位线包围的区域。
磁共振成像 (MRI ) 超导磁体的优化设计是磁体制作的基础, 并且对 整个 MRI设备的成像质量及生产成本控制起到非常重要的作用。
以往的构造 MRI超导磁体的方法一般可以归结为两大类,一类是直接 寻优法,这类方法既可以在不给定磁体线圈结构初始值的情况下,对整个 可行空间进行全局择优,也可以预先选定超导磁体的工作电流和基本线圈 结构, 以磁体的结构参数为自变量,成像区域内磁场均匀度、杂散场范围、 超导磁体空间体积、磁体能量等为约束条件或目标函数,使用非线性优化 算法如模拟退火算法或遗传算法对超导磁体的结构参数进行局部选优,得 到最终的磁体结构。但由于 MRI超导磁体设计是一个多参数、多目标的结 构优化问题, 使得该类方法计算量大, 效率较低, 尤其变量较多时更为明 显, 如果约束条件的选择及给定的初值不合理时, 将很难得到最优解。
另一类为函数方法是线性规划算法的引入。先将磁体结构简化,在超 导磁体的可行载流区内划分规则的矩形网格,把 MRI超导磁体设计问题等 效成一线性规划模型进行求解,得到该超导磁体的初始电流密度分布, 再 根据初始电流密度分布确定磁体线圈的基本结构和位置参数,然后利用第 一类非线性寻优算法,得到最终的矩形化磁体线圈结构.但由初始电流密 度分布来确定磁体基本结构的方法,在磁体线圈个数和截面形状的选择上 仍然具有一定的主观盲目性, 也不易寻到全局最优结果。
而且在上述两种方法的最后阶段, 实际绕制磁体时, 需要考虑超导线材 截面尺寸, 将线圈尺寸进行离散化处理, 并对位置和半径进行取整, 在取整 和离散后,磁体的均匀性等指标通常会有明显下降,使设计结果偏离最优解。 发明内容 本本发发明明的的目目的的在在于于提提供供一一种种用用于于构构造造磁磁共共振振成成像像超超导导磁磁体体的的方方法法,, 用用于于 解解决决现现有有的的磁磁共共振振成成像像超超导导磁磁体体的的方方法法,, 实实际际绕绕制制磁磁体体时时,, 需需要要考考虑虑超超导导线线 材材截截面面尺尺寸寸,, 将将线线圈圈尺尺寸寸进进行行离离散散化化处处理理,, 并并对对位位置置和和半半径径进进行行取取整整,, 在在取取 整整和和离离散散后后,, 磁磁体体的的均均匀匀性性等等指指标标通通常常会会有有明明显显下下降降,, 使使设设计计结结果果偏偏离离最最优优
55 解解的的问问题题。。
本本发发明明的的用用于于构构造造磁磁共共振振成成像像超超导导磁磁体体的的方方法法,, 包包括括:: 确确定定超超导导线线材材、、 运运行行电电流流以以及及可可行行载载流流区区;; 以以磁磁体体的的中中心心为为原原点点,, 建建立立一一圆圆柱柱坐坐标标系系 ((rr,, zz,, aa )) ,, 其其中中 rr为为径径向向距距离离,, zz轴轴为为高高,, 《《为为方方位位角角度度,, 磁磁体体轴轴向向为为 zz轴轴方方向向;; 将将该该可可行行载载流流区区划划分分为为多多个个网网格格,, 对对可可行行载载流流区区内内网网格格的的径径向向层层数数及及轴轴向向匝匝 1100 数数分分别别进进行行取取整整,, 得得到到多多个个矩矩形形网网格格,, 调调整整可可行行载载流流区区的的边边界界并并获获取取可可行行载载 流流区区的的矩矩形形网网格格数数 nn,, 获获得得每每个个该该矩矩形形网网格格中中心心的的空空间间坐坐标标为为 (( ,, ZZii,, aa dd ;; 以以用用线线量量最最少少为为优优化化目目标标,, 中中心心场场强强度度、、 磁磁场场均均匀匀度度及及杂杂散散场场为为约约束束条条件件,, 利利用用整整数数线线性性规规划划算算法法对对可可行行载载流流区区进进行行规规划划,, 得得到到磁磁体体初初始始的的导导线线的的各各集集 中中分分布布区区域域;;
1155 根根据据该该各各集集中中分分布布区区域域对对磁磁场场均均匀匀度度的的影影响响程程度度,, 按按照照对对磁磁场场均均匀匀度度的的 影影响响程程度度从从大大到到小小,, 以以用用线线量量最最少少为为优优化化目目标标,, 中中心心场场强强度度、、 磁磁场场均均匀匀度度及及 杂杂散散场场为为约约束束条条件件,,利利用用整整数数线线性性规规划划算算法法对对该该各各集集中中分分布布区区域域进进行行矩矩形形化化;; 以以及及取取得得超超导导磁磁体体线线圈圈的的参参数数。。
本本发发明明对对磁磁体体进进行行优优化化设设计计时时,,以以用用线线量量最最少少为为优优化化目目标标可可以以使使内内层层
2200 磁磁体体线线圈圈自自动动向向内内部部压压缩缩,,以以杂杂散散场场为为约约束束条条件件可可以以使使外外层层线线圈圈自自动动向向外外 部部压压缩缩,,经经过过整整数数线线性性规规划划得得到到的的载载流流矩矩形形网网格格能能够够形形成成较较为为紧紧密密的的导导线线 集集中中分分布布区区域域,, 能能够够得得到到满满足足设设计计要要求求的的全全局局最最优优解解,, 设设计计结结果果为为整整数数层层 和和匝匝,, 有有效效地地避避免免了了通通常常方方法法中中的的取取整整误误差差。。
2255 附附图图说说明明
图图 11 所所示示为为本本发发明明磁磁共共振振成成像像构构造造超超导导磁磁体体的的方方法法一一实实施施例例的的示示意意 图图;;
图图 22为为可可行行载载流流区区示示意意图图;;
图图 33所所示示为为初初始始导导线线集集中中区区域域分分布布图图;;
Figure imgf000005_0001
图 5是成像区磁场的均匀度分布;
图 6所示为磁体杂散场的 5Gs等位线图。 具体实施方式
图 1所示为本发明磁共振成像构造超导磁体的方法一实施例的示意 图, 如图 1所示:
步骤 1, 估计磁体线圈的可行载流区的最大范围, 包括可行载流区的 最小内半径以及最大外半径,根据磁场设计要求、空间约束以及可行载流 区的最大磁感应强度, 确定超导线材并确定运行电流 lop;
步骤 2, 以磁体的中心为原点, 建立一圆柱坐标系 (r, z, 《) , 其中 r 为径向距离, z轴为高, 《为方位角度, 磁体轴向为 z轴方向; 根据所选超导 线材的尺寸, 把可行载流区划分为多个网格, 使每个网格的几何尺寸等于所 选超导线材的截面的尺寸, 对可行载流区内网格的径向层数及轴向匝数分别 进行取整, 形成多个矩形网格, 并相应调整每个可行载流区的边界, 并得到 该磁体线圈的可行载流区的的矩形网格数 n及每个该矩形网格中心的空间坐 标为 (ri, Z i, d。
步骤 3, 以用线量最少为优化目标, 中心场强度、 磁场均匀度及杂散场 为约束条件, 利用整数线性规划算法对可行载流区进行规划, 得到磁体初始 的导线的各集中分布区域, 如果得不到满足设计要求的导线集中分布或导线 集中分布区域不易进行下一步的矩形化, 则返回步骤 1 ;
其中步骤 3具体可以为:
计算每个矩形网格通以运行电流 lop时对各考察点的磁场轴向分量的贡 献, 及每个矩形网格所含超导线材的长度:
在运行电流 lop 下的矩形网格可以等效为位于矩形网格中心位置的电 流环, 其电流为 I=Iop, 即将矩形网格中有截面大小的电流等效成处于矩形 网格中心处的单一导线, 且该导线的截面积为零, 通的电流为运行电流 Iop。 则电流环在考察点坐标 (rj, Zj)处产生的磁场 z向分量为:
Figure imgf000006_0001
其中,
Figure imgf000007_0001
斯拉 *米/安培)
Figure imgf000007_0002
引入因子 e i=- l , 0, 1, 得到 Bzi = e^l, 该式表示当 e i=0时该矩形网 格为虚, 即对磁场无贡献; 当 e i= l或 - 1时该矩形网格为实, 对磁场贡献 为正或负, 分别对应超导磁体的正向线圈和反向
则各 的磁场为:
Figure imgf000007_0003
每个矩形网格所含超导; ;材的长度可由下式计;
L = 2k¼
Figure imgf000007_0004
n为可行载流区的矩形网格数, I等于运行电流 Iop。
其中, 本发明中,磁体线圈可行载流区的最小内半径受到预留室温孔 杜瓦结构和磁体骨架的限制, 设计时需要预留一定的量; 磁体线圈的 最大外半径和磁体的轴向长度受到磁体体积、杜瓦重量、用户体验等问题 的限制, 它们也会影响到磁体的磁场质量, 从而影响到最终优化结果的合 理性、 实用性及经济性, 所以对这两个变量要进行合理限制;
使用本方法对磁体进行优化设计时, 以用线量最少为优化目标可以 使内层磁体线圈自动向内部压缩,以杂散场为约束条件可以使外层线圈自 动向外部压缩,经过整数线性规划得到的载流矩形网格能够形成较为紧密 的导线集中分布区域, 以便对磁体进行下一步的优化。
步骤 5, 根据该各集中分布区域对磁场均匀度的影响程度, 按照对磁 场均匀度的影响程度从大到小, 以用线量最少为优化目标, 中心场强度、 磁场均匀度及杂散场为约束条件,利用整数线性规划算法对该各集中分布 区域进行矩形化, 以得到用线量最小磁体结构;
其中,矩形化即为利用整数线性规划算法对该各集中分布区域进行规 划。各集中分布区域对磁场均匀度的影响程度的判定方式可以为: 考察经 过 -1-0-1 整数线性规划得到的磁体初始导线集中分布区域中, 各个分离 的各集中分布区域对磁场均匀度的影响程度, 找到影响程度最强的一个, 然后固定其他集中分布区域不变,对该集中分布区域进行矩形化; 得到满 足条件的结果后, 再对下一个集中分布区域利用同样的方法进行矩形化; 矩形化结束时,得到超导磁体线圈的最终截面参数,完成磁体的优化设计; 更优的一种选择是, 综合考虑所得初始导线各集中分布区域, 各集中 分布区域的形状接近矩形的程度和其对磁场均匀度的影响程度,按顺序对 每个集中分布区域进行矩形化, 以得到用线量最小磁体结构:
判断是否存在尚未进行矩形化的该磁体初始的导线的各集中分布区 域, 如果完成, 则执行步骤取得超导磁体线圈的截面参数, 否则返回对该 各集中分布区域进行矩形化的步骤;
对该各集中分布区域进行矩形化的步骤的实现算法为:
将在该运行电流下的该各集中分布区域再次进行矩形网格划分,根据 该各集中分布区域确定该可行载流区内的新可行载流区,并对新可行载流 区内网格的径向层数及轴向匝数分别进行取整,调整新可行载流区的边界 并获得每个矩形网格中心的空间坐标及新可行载流区内的总矩形网格数 nl, 将该多个矩形网格等效为位于矩形网格中心位置的电流环, 该电流 环的电流等于该运行电流, 电流环在考察点坐标(rj, Z j, « 处产生的磁 场轴向 z分量为:
B-. =
其中,
Figure imgf000008_0001
X 10" 7T 2
Figure imgf000009_0001
因子 ei为 -1、 0或 1, 当 e i=0时该集中分布区域对磁场无贡献; ei=l 时该集中分布区域对磁场贡献为正, 对应超导磁体的正向线圈, ei=-i时该集中分布区域对磁场贡献为负,对应超导磁体的反向线圈; 则各考察点的磁场 z向分量为:
Figure imgf000009_0002
每个该集中分布区域所含超导线材的长度由下式计;
L; = 2k¼
( 7 )
磁体用 :则表示为
Figure imgf000009_0003
其中, nl为新可行载流区的总网格数, I等于该运行电流。
步骤 6, 判断最终设计的参数是否能够工程实现及满足超导线材的
JC (B)特性, 若满足则优化终止, 若不满足则返回步骤 1。
步骤 7, 输出参数并计算相关参量, 包括: 输出线圈的结构图、 磁场 在均匀区内的磁场分布和等位线、磁体载流区的最大磁场以及 5高斯线的 范围。
下面结合附图 1以及前述的构造磁共振成像超导磁体的方法,来进一 步说明本发明的原理和具体的实施方式。
如图 1所示, 其基本步骤可以如下:
步骤 1.根据磁场设计要求和空间约束, 设定短腔自屏蔽超导磁体线 圈的可行载流区, 选择合适的超导线材并确定运行电流 Iop。
图 2为可行载流区示意图。 磁体关于 Z轴对称, 并关于 Z=0平面对 称, 所以图 2所示部分为可行载流区的 1/4截面。磁体线圈的可行载流区 内半径 RfO m, 外半径 R2=0. 92m, 长度 L=0. 645m。 所用超导线材的截面 尺寸为 1. 80 X 1. 20mm2, 运行电流为 400A。
步骤 2.把可行载流区划分为多个矩形网格。
根据所选超导线材的尺寸, 把可行载流区划分为多个矩形网格, 使 矩形网格的几何尺寸等于所选超导线材尺寸,对矩形网格取整并相应调整 可行载流区的边界, 得到磁体线圈可行载流区的矩形网格数 n, 然后确定 每个矩形网格中心的空间坐标。
步骤 3.计算每个矩形网格对磁场的贡献及所含超导线材长度。
把每个矩形网格等效为位于其中心位置的电流环, 其运行电流为 I=Iop, 每个该矩形网格中心的空间坐标为(ri, Z i, 计算每个电流 环在各个磁场考察点(rj, Zj, « 产生的磁场 z向分量。
每个矩形网格所含超导线材长度则由下式算出:
4. = 2
其中, 如果考虑象限关于 z=o平面对称, 则可以将每个矩形网格所含 超导线材长度则由下式算出:
4. = 4^.
步骤 4.使用 -1-0-1整数线性规划方法对磁体的导线集中分布进行优 化计算。
以最少用线量为优化目标, 中心场、成像区磁场均匀度以及杂散场范 围等为约束条件, 利用 -1-0-1 整数线性规划方法对磁体的导线集中分布 进行优化计算, 图 3所示为初始导线集中区域分布图, 其中, 黑色框 1、 2、 3和 4体代表电流为正向线圈, 即因子 ei, e2, e3和 e4为 1, 白色框体 5、 6和 7代表电流为反向线圈,因子 e5、 e6和 e7为- 1。
步骤 5.对导线集中区域进行矩形化, 得到磁体的最终优化结果。 图 4是矩形化后的磁体结构示意图, 其中, 黑色框 1、 2、 3和 4体代 表电流为正向线圈, 即因子 e2, e3和 e4为 1, 白色框体 5、 6和 7代表 电流为反向线圈,因子 e5、 e6和 e7为 -1。
磁体长度为 1. 29m,所用超导线材总长为 63. 6km,表 1为本实施案例 设计完成的线圈参数。
表 1 内 径 内恻边缘中 轴
半径 /m 向层数 心距 /m 向匝数
0. 5
18 0 16
030
0. 5
20 30 ffl 2线 000
0. 5
32 0. 2972 41 ffl 3线 000
0. 5
76 0. 5614 46 ffl 4线 000
0. 5
6 O 0. 2171 12 ffl 5线 010
0. 5 寸
o
24 0. 4375 37 ffl 6线 000
0. 9
m 7 m 18 0. 4414 101
000 步骤 6, 判断最终设计的参数是否能够工程实现及满足超导线材的 JC (B)特性, 若满足则优化终止, 若不满足则返回步骤 1 。
图 5 是成像区磁场的均匀度分布, 本实施例中所得的磁体中心场 B0=1. 5T, 磁体载流区的最大磁场 Bmax=6. 07T,成像区的磁场均匀度分布 如图 5所示, 单位为米 (m), 可以看出, 在直径为 50cm的球形区域内, 满足均匀度小于 lOppm的设计指标。如图 6所示为磁体杂散场的 5Gs等位 线图, 单位为米 (m), 5Gs 等位线距磁体中心的距离, 径向小于 3. 5m, 轴向小于 4m。
歩骤 7. 输出参数并计算相关参量, 包括: 输出线圈的结构图、 磁场 在均匀区内的磁场分布和等位线、磁体载流区的最大磁场以及 5高斯线的 范围。
本发明用于构造磁共振成像超导磁体的方法通过把磁体线圈的可行 载流区划分网格, 网格的几何尺寸为所选带材尺寸, 综合考虑用线量、 磁 感应强度、 磁场均匀度、 杂散场范围等指标, 利用 -1-0-1 整数线性规划 算法得到磁体线圈的初始导线集中区域分布,再按一定顺序把磁体的初始 导线集中分布区域进行矩形化得到最终优化结果。上述用于构造磁共振成 像超导磁体的方法不仅可以进行传统的 MRI超导磁体设计,也适用于内层 分布有反向电流线圈的短腔 MRI超导磁体设计、非对称螺线管线圈系统以 及开放式双平面线圈系统的 MRI超导磁体设计等, 另外, 根据具体的设计 坐标系的建立和对称关系可以灵活进行设置,例如,对于上述的 MRI超导 磁体设计如果是非对称结构, 则坐标系不需关于 Z=0平面对称。本发明上 述实施例是以 -1-0-1 整数线性规划算法为例, 实际上还可以采用如 0-1 整数线性规划算法等, 由于实现原理与上述实施例类似, 本领域技术人员 可参考上述实施例实现, 故在此不做赘述。
综上所述, 本发明中对磁体进行优化设计时, 以用线量最少为优化目 标可以使内层磁体线圈自动向内部压缩,以杂散场为约束条件可以使外层 线圈自动向外部压缩,经过整数线性规划得到的载流矩形网格能够形成较 为紧密的导线集中分布区域, 能够得到满足设计要求的全局最优解, 设计 结果为整数层和匝, 有效地避免了通常方法中的取整误差。
虽然已参照几个典型实施例描述了本发明, 但应当理解, 所用的术语是 说明和示例性、 而非限制性的术语。 由于本发明能够以多种形式具体实施而 不脱离本发明的精神或实质, 所以应当理解, 上述实施例不限于任何前述的 细节, 而应在所附权利要求所限定的精神和范围内广泛地解释, 因此落入权 利要求或其等效范围内的全部变化和改型都应为所附权利要求所涵盖。

Claims

权利要求
1. 一种用于构造磁共振成像超导磁体的方法, 其特征在于, 包括: 确定超导线材、 运行电流以及可行载流区;
以磁体的中心为原点, 建立一圆柱坐标系 (r, z, 《) , 其中 r为径向 距离, z轴为高, 《为方位角度, 磁体轴向为 z轴方向, 将该可行载流区划分 为多个网格, 对可行载流区内网格的径向层数及轴向匝数分别进行取整, 得 到多个矩形网格, 调整可行载流区的边界并获取可行载流区的矩形网格数 n, 获得每个该矩形网格中心的空间坐标为 ( , Z i, a d ;
以用线量最少为优化目标, 中心场强度、 磁场均匀度及杂散场为约束条 件, 利用整数线性规划算法对可行载流区进行规划, 得到磁体初始的导线的 各集中分布区域;
根据该各集中分布区域对磁场均匀度的影响程度, 按照对磁场均匀度的 影响程度从大到小, 以用线量最少为优化目标, 中心场强度、 磁场均匀度及 杂散场为约束条件,利用整数线性规划算法对该各集中分布区域进行矩形化; 以及取得超导磁体线圈的参数。
2.如权利要求 1所述的方法,其特征在于,该可行载流区关于 Z轴对称, 并关于 Z=0平面对称。
3.如权利要求 1所述的方法,其特征在于,该整数线性规划算法为 -1-0-1 整数线性规划算法。
4. 如权利要求 3所述的方法, 其特征在于, 以用线量最少为优化目标, 中心场强度、 磁场均匀度及杂散场为约束条件, 利用整数线性规划算法对可 行载流区进行规划, 实现算法为:
将该多个矩形网格等效为位于矩形网格中心位置的电流环, 该电流环的 电流等于该运行电流, 电流环在考察点坐标 ( , Zj, « 处产生的磁场轴向 z 分量为: 其中,
Figure imgf000013_0001
μ0 = 4π X 10 7Τ · m/A, ( 2)
Figure imgf000014_0001
i \ - k sin
Figure imgf000014_0002
( 5 )
因子 ei为 -1、 0或 1, 当 ei=0时该矩形网格对磁场无贡献; 当 ei=l时该 矩形网格对磁场贡献为正, 对应超导磁体的正向线圈,当 ei=_l时该矩形网格 对磁场贡献为负,对应超导磁体的反向线圈;
则各 分量为:
Figure imgf000014_0003
每个矩形网格所含超导线材的长度由下式计算:
4 = .|^. ( 7 )
为:
Figure imgf000014_0004
其中, i为可行载流区的矩形网格数, I等于该运行电流, (4) 式为第 一椭圆积分, (5 ) 式为第二椭圆积分。
5. 如权利要求 1所述的方法, 其特征在于, 利用整数线性规划算法对该 各集中分布区域进行规划具体包括:
对该各集中分布区域进行矩形化的步骤, 包括: 计算经过该整数线性规 划得到的该磁体初始的导线的各集中分布区域对磁场均匀度的影响程度, 找 到影响程度最强的一个, 然后固定其他集中分布区域不变, 对该集中分布区 域进行矩形化;
判断是否存在尚未进行矩形化的该磁体初始的导线的各集中分布区域, 如果完成, 则执行步骤取得超导磁体线圈的截面参数, 否则返回对该各集中 分布区域进行矩形化的步骤。
6. 如权利要求 5所述的方法, 其特征在于, 对该各集中分布区域进行矩 形化的步骤的实现算法为:
将在该运行电流下的该各集中分布区域再次进行矩形网格划分, 根据该 各集中分布区域确定该可行载流区内的新可行载流区, 并对新可行载流区内 网格的径向层数及轴向匝数分别进行取整, 调整新可行载流区的边界并获得 每个矩形网格中心的空间坐标及新可行载流区内的总矩形网格数 nl, 将该多 个矩形网格等效为位于矩形网格中心位置的电流环, 该电流环的电流等于该 运行电流, 电流环在考察点坐标 ( , Zj, « 处产生的磁场轴向 z分量为:
B = e^.I
其中
Figure imgf000015_0001
μο 4π 10 7T · m/A, ( 2 )
Figure imgf000015_0002
( 5 )
因子 ei为 -1、 0或 1, 当 ei=0时该集中分布区域对磁场无贡献; 当 ei=l 该集中分布区域对磁场贡献为正, 对应超导磁体的正向线圈,当 ei=_l时该 中分布区域对磁场贡献为负,对应超导磁体的反向线圈;
则各考察点的磁场 z向分量为:
n\
=∑e' ( 6 ) 每个该集中分布区域所含超导线材的长度由下式计算:
4 = .|^. (7)
磁体用线总量则表示为:
Figure imgf000015_0003
其中, 11为该新可行载流区的总网格数, I等于该运行电流。
7. 如权利要求 1所述的方法, 其特征在于, 取得超导磁体线圈的最终截 面参数后还包括, 判断最终设计的参数是否能够工程实现及满足超导线材的 特性, 若满足则设计完成, 若不满足则返回确定超导线材、 运行电流以及可 行载流区的步骤, 并调整超导线材、 运行电流以及可行载流区。
8. 如权利要求 1所述的方法, 其特征在于, 该截面参数包括: 输出线圈 的结构图、 磁场在均匀区内的磁场分布和等位线、 磁体载流区的最大磁场以 及 5高斯线的范围。
9. 如权利要求 1所述的方法, 其特征在于, 如果得不到满足设计要求的 导线集中分布或导线集中分布区域不易进行下一步的矩形化, 则返回确定超 导线材、 运行电流以及可行载流区的步骤, 并调整超导线材、 运行电流以及 可行载流区。
10. 如权利要求 1所述的方法, 其特征在于, 构造磁共振成像超导磁体 的方法适用于内层分布有反向电流线圈的短腔 MRI超导磁体设计以及非对称 螺线管线圈系统以及开放式双平面线圈系统的 MRI超导磁体设计。
PCT/CN2012/085176 2012-11-23 2012-11-23 用于构造磁共振成像超导磁体的方法 WO2014079047A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280076000.9A CN104685584B (zh) 2012-11-23 2012-11-23 用于构造磁共振成像超导磁体的方法
PCT/CN2012/085176 WO2014079047A1 (zh) 2012-11-23 2012-11-23 用于构造磁共振成像超导磁体的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/085176 WO2014079047A1 (zh) 2012-11-23 2012-11-23 用于构造磁共振成像超导磁体的方法

Publications (1)

Publication Number Publication Date
WO2014079047A1 true WO2014079047A1 (zh) 2014-05-30

Family

ID=50775418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/085176 WO2014079047A1 (zh) 2012-11-23 2012-11-23 用于构造磁共振成像超导磁体的方法

Country Status (2)

Country Link
CN (1) CN104685584B (zh)
WO (1) WO2014079047A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108491623A (zh) * 2018-03-21 2018-09-04 南京磁升超导技术有限公司 一种降低高场超导磁体线圈应力的方法
CN109765510A (zh) * 2019-02-20 2019-05-17 中国科学院电工研究所 一种带有圆角的径向超导匀场线圈及其设计方法
CN110287588A (zh) * 2019-06-24 2019-09-27 国网上海市电力公司 一种高温超导电缆内部带材磁场的计算方法
CN113496077A (zh) * 2020-04-07 2021-10-12 中国航天科工飞航技术研究院(中国航天海鹰机电技术研究院) 一种交变磁场下超导磁体感应电压计算方法
CN113971349A (zh) * 2021-12-22 2022-01-25 华中科技大学 一种螺线管形超导磁体线圈数目和初始位置的获取方法
CN114896725A (zh) * 2022-04-29 2022-08-12 西安交通大学 镜像法的单相电力变压器的漏磁场及绕组振动处理方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107831462A (zh) * 2017-10-24 2018-03-23 中国计量大学 基于0‑1整数规划的纵向梯度线圈
CN108802645B (zh) * 2017-10-24 2021-06-11 中国计量大学 基于0-1整数规划的永磁型纵向梯度线圈设计方法
CN109657386B (zh) * 2018-12-27 2023-04-07 燕山大学 长方形亥姆霍兹线圈的设计方法
CN109859924A (zh) * 2019-04-04 2019-06-07 苏州八匹马超导科技有限公司 一种磁共振磁体结构及线圈、补偿磁极尺寸优化算法
CN110780245B (zh) 2019-11-29 2021-04-27 中国科学院电工研究所 用于平面超导磁共振系统的屏蔽梯度线圈设计方法及其梯度线圈
CN113744949B (zh) * 2021-08-11 2024-04-12 中国科学院上海光学精密机械研究所 产生均匀磁场和四极磁场的复合线圈及其制备方法
CN113889313B (zh) * 2021-10-18 2024-03-19 中国科学院电工研究所 高场全身磁共振成像主动屏蔽超导磁体及设计方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004036230A2 (en) * 2002-10-21 2004-04-29 Bbms Ltd. Method and apparatus for magnetic resonance analysis
CN102176368A (zh) * 2011-01-24 2011-09-07 中国科学院高能物理研究所 一种用于磁共振成像超导磁体的优化设计方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101339580B (zh) * 2008-06-11 2011-05-11 清华大学 一种用于磁共振成像超导磁体设计的离散优化方法
CN102707250B (zh) * 2012-05-11 2014-04-02 中国科学院电工研究所 一种磁共振成像超导磁体系统的设计方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004036230A2 (en) * 2002-10-21 2004-04-29 Bbms Ltd. Method and apparatus for magnetic resonance analysis
CN102176368A (zh) * 2011-01-24 2011-09-07 中国科学院高能物理研究所 一种用于磁共振成像超导磁体的优化设计方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG: "Guoqing; 0-1 integer linear programming for actively shielded magnetic resonance image (MRI) superconducting magnet design", ACTA PHYSICA SINICA, vol. 61, no. 22, 28 September 2012 (2012-09-28), pages 228701-1 - 228701-6 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108491623A (zh) * 2018-03-21 2018-09-04 南京磁升超导技术有限公司 一种降低高场超导磁体线圈应力的方法
CN108491623B (zh) * 2018-03-21 2023-05-12 南京磁升超导技术有限公司 一种降低高场超导磁体线圈应力的方法
CN109765510A (zh) * 2019-02-20 2019-05-17 中国科学院电工研究所 一种带有圆角的径向超导匀场线圈及其设计方法
CN109765510B (zh) * 2019-02-20 2021-04-27 中国科学院电工研究所 一种带有圆角的径向超导匀场线圈设计方法
CN110287588A (zh) * 2019-06-24 2019-09-27 国网上海市电力公司 一种高温超导电缆内部带材磁场的计算方法
CN110287588B (zh) * 2019-06-24 2022-12-27 国网上海市电力公司 一种高温超导电缆内部带材磁场的计算方法
CN113496077A (zh) * 2020-04-07 2021-10-12 中国航天科工飞航技术研究院(中国航天海鹰机电技术研究院) 一种交变磁场下超导磁体感应电压计算方法
CN113496077B (zh) * 2020-04-07 2024-05-03 中国航天科工飞航技术研究院(中国航天海鹰机电技术研究院) 一种交变磁场下超导磁体感应电压计算方法
CN113971349A (zh) * 2021-12-22 2022-01-25 华中科技大学 一种螺线管形超导磁体线圈数目和初始位置的获取方法
CN113971349B (zh) * 2021-12-22 2022-04-08 华中科技大学 一种螺线管形超导磁体线圈数目和初始位置的获取方法
CN114896725A (zh) * 2022-04-29 2022-08-12 西安交通大学 镜像法的单相电力变压器的漏磁场及绕组振动处理方法
CN114896725B (zh) * 2022-04-29 2024-02-09 西安交通大学 镜像法的单相电力变压器的漏磁场及绕组振动处理方法

Also Published As

Publication number Publication date
CN104685584B (zh) 2017-07-18
CN104685584A (zh) 2015-06-03

Similar Documents

Publication Publication Date Title
WO2014079047A1 (zh) 用于构造磁共振成像超导磁体的方法
CN102176368B (zh) 一种用于磁共振成像超导磁体的优化设计方法
WO2013166810A1 (zh) 磁共振成像超导磁体系统及其结构参数的获取方法与装置
US5463364A (en) Magnet system for NMR tomography
US20120235685A1 (en) Gradient coil, magnetic resonance imaging device, and method for designing coil pattern
JP2021527459A (ja) 常伝導電磁石システム
US7196603B2 (en) Magnetic coil design using optimization of sinusoidal coefficients
Wang et al. Spiral gradient coil design for use in cylindrical MRI systems
CN101852843B (zh) 一种超导磁体外磁屏蔽线圈的优化设计方法
WO2021104337A1 (zh) 用于平面超导磁共振系统的高屏蔽梯度线圈设计方法及其梯度线圈
Liu et al. Flanged-edge transverse gradient coil design for a hybrid LINAC–MRI system
JP4043946B2 (ja) 低漏洩磁場マグネットおよびシールドコイルアセンブリ
JP3967505B2 (ja) 磁場補正コイルの設計方法
Sanchez et al. Gradient-coil design: A multi-objective problem
Wu et al. An optimized design approach for 14 T actively shielded MRI magnets
Zhang et al. A spiral, bi-planar gradient coil design for open magnetic resonance imaging
JP2005144187A (ja) 特定の磁場を生成するための二次元コイルアセンブリ
CN105223527B (zh) 一种利用元线圈阵列对霍尔巴赫磁体进行匀场的方法
Chen et al. Simulation and analysis of irregular multicoil B 0 shimming in C-type permanent magnets using genetic algorithm and simulated annealing
Wang et al. An actively shielded gradient coil design for use in planar MRI systems with limited space
US20150137814A1 (en) Gradient magnetic field coil device and magnetic resonance imaging device
Hu et al. Optimization magnetic resonance imaging shim coil using second derivative discretized stream function
CN114519289A (zh) 用于磁共振成像的锥形阵列梯度线圈及其设计方法和应用
US9513353B2 (en) Arrangement of coils for MRI apparatus
Tieng et al. Minimum stored energy high-field MRI superconducting magnets

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12888742

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12888742

Country of ref document: EP

Kind code of ref document: A1