WO2014077662A1 - Procédé permettant de produire un précurseur de matière active d'anode pour batterie secondaire au sodium en utilisant une technique de coprécipitation et précurseur de matière active d'anode pour batterie secondaire au sodium produite ainsi - Google Patents

Procédé permettant de produire un précurseur de matière active d'anode pour batterie secondaire au sodium en utilisant une technique de coprécipitation et précurseur de matière active d'anode pour batterie secondaire au sodium produite ainsi Download PDF

Info

Publication number
WO2014077662A1
WO2014077662A1 PCT/KR2013/010520 KR2013010520W WO2014077662A1 WO 2014077662 A1 WO2014077662 A1 WO 2014077662A1 KR 2013010520 W KR2013010520 W KR 2013010520W WO 2014077662 A1 WO2014077662 A1 WO 2014077662A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
active material
sodium secondary
material precursor
cathode active
Prior art date
Application number
PCT/KR2013/010520
Other languages
English (en)
Korean (ko)
Inventor
선양국
오승민
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Priority to CN201380068776.0A priority Critical patent/CN104885265B/zh
Priority claimed from KR1020130140907A external-priority patent/KR101570125B1/ko
Publication of WO2014077662A1 publication Critical patent/WO2014077662A1/fr
Priority to US14/716,362 priority patent/US20150333325A1/en
Priority to US15/993,174 priority patent/US10781110B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing a cathode active material precursor for a sodium secondary battery using a coprecipitation method and a cathode active material precursor for a sodium secondary battery produced thereby.
  • a lithium ion secondary battery using a nonaqueous electrolyte solution in which an electrolyte salt is dissolved in a nonaqueous solvent and moving lithium ions between a positive electrode and a negative electrode so that charge and discharge is performed is widely used.
  • Lithium ion batteries using an intercalation reaction of lithium ions using lithium transition metal oxides are commercially available as positive electrode materials.
  • lithium included in the lithium ion battery is expensive, there is a need for a battery having a lower cost and a higher capacity.
  • Japanese Unexamined Patent Application Publication No. 2007-287661 has a positive electrode made of a composite metal oxide obtained by firing a raw material having a composition ratio of Na, Mn and Co (Na: Mn: Co) of 0.7: 0.5: 0.5 and a negative electrode made of sodium metal. Secondary batteries are described in detail. Further, Japanese Patent Laid-Open No. 2005-317511 discloses ⁇ -NaFeO 2 having a hexagonal crystal (layered rock salt) crystal structure as a sum metal oxide, specifically, by mixing Na 2 O 2 and Fe 3 O 4 . This composite metal oxide was obtained by baking at 600-700 degreeC in air. However, the conventional sodium secondary battery cannot be said to have sufficient lifespan characteristics, that is, a discharge capacity retention rate when repeated charging and discharging.
  • the most common manufacturing method for producing a cathode active material of a lithium secondary battery or a sodium secondary battery is a solid phase reaction method, which is performed by mixing and firing powders of the carbonate or hydroxide of each element several times.
  • the solid-phase reaction method has a disadvantage in that it is difficult to form a solid solution of solid phases and inflow of impurities during mixing, it is difficult to control the size of the particles uniformly, and high temperature and manufacturing time are long in manufacturing.
  • the coprecipitation method of wet method has the advantage that the element can be controlled to the atomic range, and the spherical metal composite carbonate can be produced.
  • a solid state reaction method was mainly applied, and a method of manufacturing a cathode active material of a sodium secondary battery by applying a coprecipitation method has not been studied.
  • An object of the present invention is to provide a method for producing a cathode active material precursor for sodium secondary batteries using a coprecipitation method in order to solve the problems of the prior art as described above.
  • Another object of the present invention is to provide a cathode active material precursor for a sodium secondary battery of a novel composition prepared by the manufacturing method of the present invention and having improved life characteristics.
  • the present invention to solve the above problems
  • It provides a method for producing a cathode active material precursor for a sodium secondary battery using a coprecipitation method comprising a.
  • the first pH adjusting agent in the step (a) is characterized in that the aqueous ammonia solution or ammonium sulfate solution.
  • the second pH adjusting agent in step (b) is characterized in that selected from the group consisting of ammonium oxalate, KOH, and NaOH.
  • the pH in the reactor is adjusted to 9 to 11 when KOH or NaOH is added as the second pH adjusting agent.
  • the pH in the reactor is adjusted to 6.5 to 11.
  • the nickel salt in the step (c) is selected from the group consisting of nickel sulfate, nickel nitrate, nickel chloride, nickel fluoride, nickel acetate and nickel hydroxide.
  • the iron salt is selected from the group consisting of iron sulfate, iron nitrate, iron chloride, iron fluoride, iron acetate, and iron hydroxide
  • the manganese salt is manganese sulfate, manganese nitrate, manganese chloride, manganese fluoride, manganese acetate, and manganese hydroxide It is characterized by being selected from the group consisting of.
  • the complexing agent in the step (c) is an aqueous ammonia solution (NH 4 OH), ammonium sulfate ((NH 4 ) 2 SO 4 ), ammonium nitrate ( NH 4 NO 3 ) and first ammonium phosphate ((NH 4 ) 2 HPO 4 ).
  • the ratio of the concentration of the complexing agent in the step (c) and the concentration of the aqueous solution of the transition metal compound is characterized in that 0.8 to 1.2.
  • the present invention also provides a cathode active material precursor for a sodium secondary battery, which is prepared by the production method of the present invention, and has a spherical particle size of 5 to 15 ⁇ m and a particle size distribution of a monodisperse type.
  • the positive electrode active material precursor according to the invention is characterized by represented by Ni x Fe y Mn 1-xy (OH) 2 (0.1 ⁇ x ⁇ 0.3, 0.2 ⁇ y ⁇ 0.7, 0.1 ⁇ 1-xy ⁇ 0.5) do.
  • the positive electrode active material precursor according to the invention is characterized by represented by Ni x Fe y Mn 1-xy C 2 O 4 (0.1 ⁇ x ⁇ 0.3, 0.2 ⁇ y ⁇ 0.7, 0.1 ⁇ 1-xy ⁇ 0.5) do.
  • the positive electrode active material precursor according to the invention is characterized in that which is represented by [Ni x Fe y Mn 1- xy] 3 O 4 (0.1 ⁇ x ⁇ 0.3, 0.2 ⁇ y ⁇ 0.7, 0.1 ⁇ 1-xy ⁇ 0.5) It is done.
  • the present invention also provides a cathode active material for sodium secondary battery prepared using the cathode active material precursor for sodium secondary battery according to the present invention and a sodium secondary battery comprising the same.
  • the method for preparing a cathode active material precursor for a sodium secondary battery using the coprecipitation method according to the present invention may provide a cathode active material precursor for a sodium secondary battery having a new composition having improved life characteristics by appropriately adjusting the type and pH of the complexing agent while using the coprecipitation method. Can be.
  • 1 to 4 show SEM pictures of the precursor prepared in the embodiment of the present invention.
  • 5 to 8 show the results of measuring the particle size distribution of the precursor prepared in the embodiment of the present invention.
  • Figure 11 shows the results of measuring the particle size distribution of the precursor prepared in the embodiment of the present invention.
  • 16 to 21 show the results of XRD measurements on the positive electrode active material prepared in one embodiment of the present invention.
  • NiSO 4 ⁇ 6H 2 O, FeSO 4 ⁇ 7H 2 O, MnSO 4 ⁇ 5H 2 O as an aqueous solution of a transition metal compound were mixed in an equivalent ratio, and introduced into the reactor together with NH 4 OH as a complexing agent, as shown in Table 1 below.
  • a precursor of the composition was prepared.
  • Example 1 Ni 0.25 Fe 0.25 Mn 0.5 (OH) 2
  • Example 2 Ni 0.25 Fe 0.35 Mn 0.4 (OH) 2
  • Example 3 Ni 0.25 Fe 0.5 Mn 0.25 (OH) 2
  • Example 4 Ni 0.15 Fe 0.35 Mn 0.5 (OH) 2
  • Example 5 Ni 0.25 Fe 0.5 Mn 0.25 C 2 O 4
  • Example 6 Ni 0.2 Fe 0.6 Mn 0.2 C 2 O 4
  • Example 7 Ni 0.17 Fe 0.66 Mn 0.17 C 2 O 4
  • Example 8 Ni 0.2 Fe 0.55 Mn 0.25 C 2 O 4
  • Example 9 Ni 0.3 Fe 0.45 Mn 0.25 C 2 O 4
  • Example 10 Ni 0.35 Fe 0.4 Mn 0.25 C 2 O 4
  • Example 11 Ni 0.4 Fe 0.35 Mn 0.25 C 2 O 4
  • Example 12 Ni 0.45 Fe 0.3 Mn 0.25 C 2 O 4, Example 13 (Ni 0.25 Fe 0.5 Mn 0.25 ) 3 O 4
  • Example 14 (Ni 0.25 Fe 0.25 Mn 0.5 ) 3 O 4
  • the particle size distribution of the precursors prepared in Examples 1 to 4 was measured and shown in FIGS. 5 to 8. 5 to 8 it can be seen that the particle size distribution of the precursor particles prepared according to the embodiment of the present invention is monodisperse.
  • Example 1 As in Example 1, except that the pH inside the reactor was adjusted to 7 using an aqueous ammonia solution as the first pH adjusting agent, and the pH inside the reactor was adjusted to 7 using an aqueous 0.5M ammonium oxalate solution as the second pH adjusting agent.
  • Example 1 To prepare a precursor of Examples 5 to 12 of the composition as shown in Table 1.
  • XRDs of the precursors prepared in Examples 5 to 7 were measured and shown in FIG. 9.
  • XRD of the precursors prepared in Examples 5 and 8 to 12 were measured and shown in FIG. 10.
  • Particle size distribution of the precursors prepared in Examples 5 to 7 was measured and shown in FIG. 11.
  • Example 13 As in Example 1, except that the pH inside the reactor was adjusted to 7 using an aqueous ammonia solution as the first pH regulator, and the pH inside the reactor was adjusted to 9.2 by adding 4 M NaOH as the second pH regulator (The precursors of Examples 13 and 14 represented by Ni 0.25 Fe 0.5 Mn 0.25 ) 3 O 4 and (Ni 0.25 Fe 0.25 Mn 0.5 ) 3 O 4 were prepared.
  • Particle size distribution of the precursors prepared in Examples 8 and 9 were measured and shown in FIGS. 14 and 15. It can be seen from FIG. 14 and FIG. 15 that the particle size distribution is monodisperse.
  • FIGS. 16 to 21 XRD of the cathode active materials prepared in Examples 15 to 28 is shown in FIGS. 16 to 21.
  • FIG. 22 shows XRD results of the cathode active materials prepared in Examples 19 and 22 to 26.
  • the composite metal oxide and acetylene black are sufficiently mixed with an agate mortar, and N-methyl-2-pyrrolidone (NMP: manufactured by Tokyo Kasei Kogyo Co., Ltd.) is appropriately added to the mixture, followed by addition.
  • PVDF was added to the mixture to make it uniform and slurryed.
  • FEC Fluoro Ethylene Carbonate
  • a polypropylene porous membrane thinness 20 ⁇ m
  • Table 2 shows the results of measuring the charge and discharge characteristics of the sodium secondary battery including the active material of Examples 15 to 22 made of the precursors of Examples 1 to 8.
  • Example 15 Ni 0.25 Fe 0.25 Mn 0.5 (OH) 2 Precursor / Na 95%, sintered at 970 ° C / 24h, 4.3V 155.5 mAh / g 94.1%
  • Example 2 Ni 0.25 Fe 0.35 Mn 0.4 (OH) 2 Precursor / Na 98%, 900 ° C / 24h Sintered, 4.3V 180.1 mAh / g 101.2% Ni 0.25 Fe 0.35 Mn 0.4 (OH) 2 Precursor / Na 98%, 930 ° C / 24h Sintered, 4.3V 176.3 mAh / g 100.9% Ni 0.25 Fe 0.35 Mn 0.4 (OH) 2 Precursor / Na 98%, Sintered at 970 ° C / 24h, 4.3V 166.2 mAh / g 95.4%
  • Example 3 Example 17 Ni 0.25 Fe 0.5 Mn 0.25 (OH) 2 Precursor / Na 95%, sintered at 970 ° C / 24h, 4.3V 166.2 mAh
  • the battery containing the active material prepared using the sodium battery cathode active material precursor prepared according to the present invention can be seen that the initial charge and discharge efficiency is 90% or more.
  • Table 3 shows the results of measuring the charge and discharge characteristics of the sodium secondary battery including the active materials of Examples 15 to 18 and Example 22 prepared by using the precursors prepared in Examples 1 to 4, and Example 8.
  • Example 15 155.5 mAh / g 130.2 mAh / g 83.7% 106.9 mAh / g 96.0 mAh / g 89.8%
  • Example 2 Example 16 180.1 mAh / g 141.3 mAh / g 78.5% 125.6 mAh / g 117.5 mAh / g 93.6% 176.3 mAh / g 140.5 mAh / g 76.7% 125.9 mAh / g 117.8 mAh / g 93.6% 166.2 mAh / g 124.6 mAh / g 75.0% 107.7 mAh / g 95.1 mAh / g 88.3%
  • Example 3 Example 17 130.7 mAh / g 122.0 mAh / g 93.3% 114.3 mAh / g 105.4 mAh / g 92
  • the method for preparing a cathode active material precursor for a sodium secondary battery using the coprecipitation method according to the present invention may provide a cathode active material precursor for a sodium secondary battery having a new composition having improved life characteristics by appropriately adjusting the type and pH of the complexing agent while using the coprecipitation method. Can be.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

La présente invention concerne un procédé permettant de produire un précurseur de matière active d'anode pour une batterie secondaire au sodium en utilisant une technique de coprécipitation et un précurseur de matière active d'anode pour une batterie secondaire au sodium produite ainsi. Le procédé permettant de produire un précurseur de matière active d'anode pour une batterie secondaire au sodium en utilisant une technique de coprécipitation selon la présente invention peut fournir un précurseur de matière active d'anode, présentant des caractéristiques de durée de vie améliorées et une nouvelle composition, pour une batterie secondaire au sodium en adaptant de manière appropriée les types d'agents complexants tout en utilisant une technique de coprécipitation.
PCT/KR2013/010520 2012-11-19 2013-11-19 Procédé permettant de produire un précurseur de matière active d'anode pour batterie secondaire au sodium en utilisant une technique de coprécipitation et précurseur de matière active d'anode pour batterie secondaire au sodium produite ainsi WO2014077662A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380068776.0A CN104885265B (zh) 2012-11-19 2013-11-19 利用共沉淀法的钠二次电池用正极活性材料前驱体的制备方法及由此制备的钠二次电池用正极活性材料前驱体
US14/716,362 US20150333325A1 (en) 2012-11-19 2015-05-19 Manufacturing method of positive active material precursor for sodium rechargeable batteries, positive active material precursor for sodium rechargeable batteries made by the same, and manufacturing method of positive active material for sodium rechargeable batteries, positive active material for sodium rechargeable batteries made by the same
US15/993,174 US10781110B2 (en) 2012-11-19 2018-05-30 Manufacturing method of positive active material precursor for sodium rechargeable batteries, positive active material precursor for sodium rechargeable batteries made by the same, and manufacturing method of positive active material for sodium rechargeable batteries, positive active material for sodium rechargeable batteries made by the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20120130824 2012-11-19
KR10-2012-0130824 2012-11-19
KR10-2013-0140907 2013-11-19
KR1020130140907A KR101570125B1 (ko) 2012-11-19 2013-11-19 공침법을 이용한 나트륨 이차전지용 양극활물질 전구체의 제조 방법 및 이에 의하여 제조된 나트륨 이차전지용 양극활물질 전구체

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/010521 Continuation-In-Part WO2014077663A1 (fr) 2012-11-19 2013-11-19 Matériau actif d'anode pour pile secondaire au sodium et son procédé de fabrication

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/716,362 Continuation-In-Part US20150333325A1 (en) 2012-11-19 2015-05-19 Manufacturing method of positive active material precursor for sodium rechargeable batteries, positive active material precursor for sodium rechargeable batteries made by the same, and manufacturing method of positive active material for sodium rechargeable batteries, positive active material for sodium rechargeable batteries made by the same

Publications (1)

Publication Number Publication Date
WO2014077662A1 true WO2014077662A1 (fr) 2014-05-22

Family

ID=50731492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/010520 WO2014077662A1 (fr) 2012-11-19 2013-11-19 Procédé permettant de produire un précurseur de matière active d'anode pour batterie secondaire au sodium en utilisant une technique de coprécipitation et précurseur de matière active d'anode pour batterie secondaire au sodium produite ainsi

Country Status (1)

Country Link
WO (1) WO2014077662A1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017017944A1 (fr) * 2015-07-24 2017-02-02 Sharp Kabushiki Kaisha Composés d'oxydes de métaux de transition à base de sodium pour batteries na-ion
US10781110B2 (en) 2012-11-19 2020-09-22 Iucf-Hyu(Industry-University Cooperation Foundation Hanyang University) Manufacturing method of positive active material precursor for sodium rechargeable batteries, positive active material precursor for sodium rechargeable batteries made by the same, and manufacturing method of positive active material for sodium rechargeable batteries, positive active material for sodium rechargeable batteries made by the same
CN114920306A (zh) * 2022-06-29 2022-08-19 荆门市格林美新材料有限公司 正极材料前驱体、正极材料、其制备方法和钠离子电池
CN114956202A (zh) * 2022-04-28 2022-08-30 南通金通储能动力新材料有限公司 一种钠离子正极材料的前驱体、制备方法及正极材料
CN115196691A (zh) * 2022-07-18 2022-10-18 宿迁市翔鹰新能源科技有限公司 一种钠离子电池用镍铁锰三元前驱体及其制备方法和应用
CN116102078A (zh) * 2022-11-11 2023-05-12 泾河新城陕煤技术研究院新能源材料有限公司 高振实钠电前驱体的制备方法
CN116375111A (zh) * 2023-06-06 2023-07-04 宜宾锂宝新材料有限公司 一种钠离子电池及其正极材料与前驱体和制备方法
CN116621234A (zh) * 2023-07-20 2023-08-22 宜宾光原锂电材料有限公司 一种钠离子正极材料前驱体及制备方法和正极材料

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0903796A1 (fr) * 1996-12-25 1999-03-24 Mitsubishi Denki Kabushiki Kaisha Materiau anodique actif, son procede de fabrication et pile secondaire aux ions lithium mettant en application ce materiau
KR20050058968A (ko) * 2003-12-12 2005-06-17 니폰 가가쿠 고교 가부시키가이샤 리튬 망간 니켈 복합 산화물의 제조 방법
US20100248001A1 (en) * 2007-11-09 2010-09-30 Sumitomo Chemical Company, Limited Mixed metal oxide and sodium secondary battery
US20110159345A1 (en) * 2008-08-27 2011-06-30 Sumitomo Chemical Company, Limited Electrode active material and method for producing same
WO2012111681A1 (fr) * 2011-02-15 2012-08-23 住友化学株式会社 Électrode de batterie secondaire au sodium et batterie secondaire au sodium

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0903796A1 (fr) * 1996-12-25 1999-03-24 Mitsubishi Denki Kabushiki Kaisha Materiau anodique actif, son procede de fabrication et pile secondaire aux ions lithium mettant en application ce materiau
KR20050058968A (ko) * 2003-12-12 2005-06-17 니폰 가가쿠 고교 가부시키가이샤 리튬 망간 니켈 복합 산화물의 제조 방법
US20100248001A1 (en) * 2007-11-09 2010-09-30 Sumitomo Chemical Company, Limited Mixed metal oxide and sodium secondary battery
US20110159345A1 (en) * 2008-08-27 2011-06-30 Sumitomo Chemical Company, Limited Electrode active material and method for producing same
WO2012111681A1 (fr) * 2011-02-15 2012-08-23 住友化学株式会社 Électrode de batterie secondaire au sodium et batterie secondaire au sodium

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10781110B2 (en) 2012-11-19 2020-09-22 Iucf-Hyu(Industry-University Cooperation Foundation Hanyang University) Manufacturing method of positive active material precursor for sodium rechargeable batteries, positive active material precursor for sodium rechargeable batteries made by the same, and manufacturing method of positive active material for sodium rechargeable batteries, positive active material for sodium rechargeable batteries made by the same
WO2017017944A1 (fr) * 2015-07-24 2017-02-02 Sharp Kabushiki Kaisha Composés d'oxydes de métaux de transition à base de sodium pour batteries na-ion
CN114956202B (zh) * 2022-04-28 2023-11-14 南通金通储能动力新材料有限公司 一种钠离子正极材料的前驱体、制备方法及正极材料
CN114956202A (zh) * 2022-04-28 2022-08-30 南通金通储能动力新材料有限公司 一种钠离子正极材料的前驱体、制备方法及正极材料
CN114920306A (zh) * 2022-06-29 2022-08-19 荆门市格林美新材料有限公司 正极材料前驱体、正极材料、其制备方法和钠离子电池
CN114920306B (zh) * 2022-06-29 2024-03-26 荆门市格林美新材料有限公司 正极材料前驱体、正极材料、其制备方法和钠离子电池
CN115196691A (zh) * 2022-07-18 2022-10-18 宿迁市翔鹰新能源科技有限公司 一种钠离子电池用镍铁锰三元前驱体及其制备方法和应用
CN116102078A (zh) * 2022-11-11 2023-05-12 泾河新城陕煤技术研究院新能源材料有限公司 高振实钠电前驱体的制备方法
CN116102078B (zh) * 2022-11-11 2023-08-18 泾河新城陕煤技术研究院新能源材料有限公司 高振实钠电前驱体的制备方法
CN116375111A (zh) * 2023-06-06 2023-07-04 宜宾锂宝新材料有限公司 一种钠离子电池及其正极材料与前驱体和制备方法
CN116375111B (zh) * 2023-06-06 2023-09-01 宜宾锂宝新材料有限公司 一种钠离子电池及其正极材料与前驱体和制备方法
CN116621234B (zh) * 2023-07-20 2023-11-07 宜宾光原锂电材料有限公司 一种钠离子正极材料前驱体及制备方法和正极材料
CN116621234A (zh) * 2023-07-20 2023-08-22 宜宾光原锂电材料有限公司 一种钠离子正极材料前驱体及制备方法和正极材料

Similar Documents

Publication Publication Date Title
WO2014077662A1 (fr) Procédé permettant de produire un précurseur de matière active d'anode pour batterie secondaire au sodium en utilisant une technique de coprécipitation et précurseur de matière active d'anode pour batterie secondaire au sodium produite ainsi
WO2014077663A1 (fr) Matériau actif d'anode pour pile secondaire au sodium et son procédé de fabrication
WO2013002457A1 (fr) Matière active d'électrode positive, électrode incluant la matière active d'électrode positive et batterie électrochimique au lithium
WO2019112279A2 (fr) Matériau actif de cathode pour batterie secondaire au lithium, son procédé de fabrication et batterie secondaire au lithium comprenant une cathode comprenant ce matériau actif
WO2016052820A1 (fr) Matériau actif d'électrode positive pour batterie rechargeable au lithium et batterie rechargeable au lithium le comprenant
WO2016021791A1 (fr) Matériau actif d'électrode positive pour batterie rechargeable au lithium et batterie rechargeable au lithium le comprenant
WO2016039511A1 (fr) Matériau actif d'électrode positive pour pile rechargeable au lithium et pile rechargeable au lithium le comprenant
WO2014126312A1 (fr) Procédé de production d'un matériau composite d'anode pour batterie secondaire au lithium, procédé de fabrication d'une électrode utilisant celle-ci, et procédé de charge et de décharge d'électrode
WO2014010970A1 (fr) Matière active d'anode à densité élevée et son procédé de préparation
WO2014133370A1 (fr) Materiau actif de cathode pour batterie secondaire au lithium
WO2012115411A2 (fr) Matière active d'électrode positive ayant des caractéristiques de puissance fournie améliorées, et accumulateur au lithium la comprenant
KR20140119621A (ko) 리튬 과량 양극활물질 제조용 전구체 및 이에 의하여 제조된 리튬 과량 양극활물질
WO2015105225A1 (fr) Procédé de préparation d'un précurseur composite de nickel-cobalt-manganèse
WO2014104811A1 (fr) Procédé de fabrication de matériau actif de cathode pour batterie secondaire au lithium, et matériau actif de cathode pour batterie secondaire au lithium produit ainsi
WO2011126182A1 (fr) Procédé de production de matériau actif de cathode pour batterie secondaire comprenant un oxyde métallique composite, et matériau actif de cathode pour batterie secondaire comprenant un oxyde métallique composite produit au moyen dudit procédé
WO2012064053A2 (fr) Oxyde composite de lithium et de manganèse et procédé pour sa préparation
WO2019240496A1 (fr) Matériau actif d'anode pour batterie secondaire au lithium et batterie secondaire au lithium le comprenant
KR20160056319A (ko) 나트륨 이차전지용 양극활물질 및 이의 제조 방법
WO2014168286A1 (fr) Procédé de fabrication de précurseur de matériau actif de cathode pour batterie secondaire au lithium, procédé de fabrication d'un matériau actif de cathode pour batterie secondaire au lithium, cathode comprenant le matériau actif de cathode et batterie secondaire au lithium
WO2018155746A1 (fr) Procédé de production de précurseur de complexe de nickel-cobalt-manganèse à surface spécifique élevée
KR20150078672A (ko) 리튬 이차 전지용 복합금속 전구체, 그 제조방법, 이로부터 형성된 리튬 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지
KR20140064680A (ko) 공침법을 이용한 나트륨 이차전지용 양극활물질 전구체의 제조 방법 및 이에 의하여 제조된 나트륨 이차전지용 양극활물질 전구체
WO2015041415A1 (fr) Catalyseur de cathode d'accumulateur métal-air, son procédé de fabrication et accumulateur métal-air le comprenant
WO2013002559A2 (fr) Matériau actif de cathode, batterie secondaire au lithium contenant le matériau actif de cathode et procédé d'activation électrochimique d'une batterie secondaire au lithium
WO2022014858A1 (fr) Matériau actif d'électrode positive pour batterie secondaire au lithium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13854663

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13854663

Country of ref document: EP

Kind code of ref document: A1