WO2015105225A1 - Procédé de préparation d'un précurseur composite de nickel-cobalt-manganèse - Google Patents

Procédé de préparation d'un précurseur composite de nickel-cobalt-manganèse Download PDF

Info

Publication number
WO2015105225A1
WO2015105225A1 PCT/KR2014/000458 KR2014000458W WO2015105225A1 WO 2015105225 A1 WO2015105225 A1 WO 2015105225A1 KR 2014000458 W KR2014000458 W KR 2014000458W WO 2015105225 A1 WO2015105225 A1 WO 2015105225A1
Authority
WO
WIPO (PCT)
Prior art keywords
precursor
cobalt
prepared
nickel
particle size
Prior art date
Application number
PCT/KR2014/000458
Other languages
English (en)
Korean (ko)
Inventor
권순모
권오상
문창준
강동구
Original Assignee
주식회사 이엔드디
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 이엔드디 filed Critical 주식회사 이엔드디
Publication of WO2015105225A1 publication Critical patent/WO2015105225A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention is to prepare a Ni x Co y Mn 1-xy (OH) 2 (hereinafter abbreviated as "NCM-based precursor") which is a nickel-cobalt-manganese composite precursor used as a cathode material by mixing with lithium in a lithium secondary battery, etc.
  • NCM-based precursor Ni x Co y Mn 1-xy (OH) 2
  • the present invention relates to a technique capable of producing a precursor having a smaller particle size and uniformity and a higher sphericity than a precursor prepared by a conventional coprecipitation method.
  • a lithium secondary battery is a battery in which carbon such as graphite is used as a negative electrode active material, a metal oxide containing lithium is used as a positive electrode active material, and a nonaqueous solvent is used as an electrolyte.
  • Lithium is a metal that has a high tendency to ionize and is a material that is attracting attention in a battery having high energy density because it can express high voltage.
  • Lithium transition metal oxides containing lithium are mainly used as positive electrode active materials for lithium secondary batteries, and layered lithium transition metal oxides such as cobalt-based, nickel-based, and ternary divisions in which cobalt, nickel, and manganese coexist. More than% are used.
  • Li 2 CO 3 and an NCM precursor are mixed and plasticized to be used as a cathode material.
  • Particle size and specific surface area of the NCM-based precursor has a great influence on the realization of high power of the medium-large lithium battery for electric vehicles (HEV, PHEV, EV).
  • HEV, PHEV, EV medium-large lithium battery for electric vehicles
  • the specific surface area increases, and the diffusion distance of lithium ions is shortened to facilitate the diffusion and entry of lithium ions smoothly and quickly. In order to minimize the particle size of the precursor is necessary.
  • NCM-based precursors are prepared by coprecipitation, and nickel, manganese, and cobalt salts are dissolved in distilled water, and then precipitated in a reactor with aqueous ammonia solution (chelating agent) and aqueous NaOH solution (basic solution).
  • aqueous ammonia solution chelating agent
  • aqueous NaOH solution basic solution
  • the present invention comprises a first coprecipitation step (1) for producing Ni x Co y Mn 1-xy (OH) 2 by the coprecipitation method;
  • Ni x Co y Mn 1-xy (OH) 2 was prepared by coprecipitation with a mixed aqueous solution of nickel, cobalt and manganese together with Ni x Co y Mn 1-xy (OH) 2 pulverized in step (2).
  • Ni x Co y Mn 1- characterized in that the pulverized Ni x Co y Mn 1-xy (OH) of the step (2) to act as a seed (seed) in a second stage co-precipitation
  • a process for preparing xy (OH) 2 Provided is a process for preparing xy (OH) 2 .
  • the mechanical grinding of the step (2) is preferably performed by a ball mill.
  • the particle size of Ni x Co y Mn 1-xy (OH) 2 finely granulated by mechanical grinding in step (2) is preferably 0.5 to 2 ⁇ m.
  • the step (3) is preferably nickel, cobalt and sulfuric acid using nickel sulfate, cobalt sulfate and manganese sulfate, respectively.
  • the step (3) is preferably made at a temperature condition of 50 ⁇ 70 °C, pH 9.5 ⁇ 10.5.
  • Ni x Co y Mn 1-xy (OH) 2 particles having a small size, for example, 3 ⁇ m or less, which cannot be prepared by conventional coprecipitation, and have a uniform particle size. High sphericity can be produced.
  • the Ni x Co y Mn 1-xy (OH) 2 having a size of 9 ⁇ m manufactured by the conventional coprecipitation method is made into particles having a small size, for example, 1.4 ⁇ m through mechanical grinding, and then again the 1.4 ⁇ m size of the Ni x Co y Mn 1-xy (OH) through the co-precipitation and then a mixture of a 1.4 ⁇ m size of the Ni x Co y Mn 1-xy (OH) 2, nickel, cobalt and manganese made of an aqueous solution 2
  • the seed may be grown as Ni x Co y Mn 1-xy (OH) 2 having a size of 3 ⁇ m.
  • Ni x Co y Mn 1-xy (OH) 2 since it was grown with a small size of crushed Ni x Co y Mn 1-xy (OH) 2 as a seed, Ni x Co y Mn 1-xy (OH) made into a small size by simple mechanical grinding. Unlike 2 , the particle size is uniform and the degree of sphericity is very high, so it is used together with lithium in the anode device to show excellent electrical properties.
  • FIG. 1A and 1B are SEM photographs measured at different magnifications of a Ni 0.5 Co 0.2 Mn 0.3 (OH) 2 precursor prepared by a conventional coprecipitation method
  • FIG. 1C is a particle size distribution diagram.
  • FIG. 2 is a particle size distribution diagram of a Ni 0.5 Co 0.2 Mn 0.3 (OH) 2 precursor prepared by a conventional coprecipitation method after grinding for 10 hours using a ball mill.
  • FIG. 3A and 3B are SEM photographs taken at different magnifications of the Ni 0.5 Co 0.2 Mn 0.3 (OH) 2 precursor prepared by the method of the present invention
  • FIG. 3C is a particle size distribution diagram.
  • Figure 4a is a SEM measurement of the cathode material to which the precursor prepared by the method of the present invention is applied
  • Figure 4b is a SEM measurement of the cathode material to which the precursor prepared by a conventional coprecipitation method as a comparative example
  • Figure 4c is the anode of Figure 4a The charge and discharge test results of the ash
  • Figure 4d is a charge and discharge test results of the positive electrode material of the comparative example of Figure 4b.
  • precursor means Ni x Co y Mn 1-xy (OH) 2 precursor, wherein 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1.
  • precursor particle size means median value.
  • an object of the present invention is to provide a precursor manufacturing method that is used as an anode element while making the precursor small particles to have excellent electrical output performance.
  • the present invention proposes the following method to realize the above object.
  • the present invention comprises a first coprecipitation step (1) for producing Ni x Co y Mn 1-xy (OH) 2 by the coprecipitation method; A mechanical grinding step (2) of grinding the Ni x Co y Mn 1-xy (OH) 2 prepared in the step (1) to a size smaller than the step (1) by mechanical means; And producing a pulverized Ni x Co y Mn 1-xy (OH) Ni x Co y Mn 1-xy (OH) by a mixed aqueous solution of nickel, cobalt and manganese with 2 Coprecipitation Method 2 of Step (2) It comprises a second co-precipitation step (3).
  • a Ni x Co y Mn 1-xy (OH) 2 precursor is prepared using a conventional coprecipitation method. Such precursors are typically 8-9 ⁇ m in size and have poor sphericity.
  • the precursor (generally 8-9 ⁇ m in size) made by the coprecipitation method is pulverized small by a physical method. This milling is possible via various mechanical milling means, but in the following experiments milling was carried out via a ball mill. For example, if the target mean particle size of the precursor produced via secondary coprecipitation is 3 ⁇ m, the precursor must be ground to 3 ⁇ m or less in the mechanical grinding step. At this time, the pulverized precursor has a very low sphericity and cannot be used as an anode device because the size of the particles is not uniform.
  • the target size of the precursor prepared through the secondary coprecipitation described below is 3 to 5 ⁇ m or less
  • the size of the precursor to be crushed through the mechanical grinding step (2) is 0.5 to 2 ⁇ m is suitable, but is not limited thereto. no.
  • Reprecipitation is performed but co-precipitation is performed by including the pulverized precursor in a co-precipitation solution of nickel, cobalt and manganese to seed the pulverized precursor.
  • the precursor pulverized in the reprecipitation step serves as a seed so that the particles grow from the precursor pulverized in the reprecipitation step.
  • the size of the precursor is naturally larger than that of the precursor acting as a seed through the second coprecipitation step (3), in the pulverization step (2), the precursor particles, which are not uniform in size and shape, grow to be uniform in size and spherical in shape. This results in small particles, spheronization and homogenization of the precursors.
  • Precursors prepared by the method of the present invention are small particles to have a large specific surface area, as well as a high sphericity, which is used as a positive electrode device to exhibit high output characteristics.
  • FIG. 1A and 1B are SEM photographs taken at different magnifications of a Ni 0.5 Co 0.2 Mn 0.3 (OH) 2 precursor prepared by a conventional coprecipitation method
  • FIG. 1C is a particle size distribution diagram.
  • the size of the Ni 0.5 Co 0.2 Mn 0.3 (OH) 2 precursor before the ball mill was about 8.9 ⁇ m.
  • the particle size distribution of the Ni 0.5 Co 0.2 Mn 0.3 (OH) 2 precursor of Experimental Example 1 after grinding for 10 hours using a ball mill was as shown in FIG. 2.
  • the Ni 0.5 Co 0.2 Mn 0.3 (OH) 2 precursor was about 1.4 ⁇ m in size by pulverization by a ball mill.
  • the particle size distribution was very wide, and thus the size was not constant. That is, the particle size can be reduced by pulverization, but it was found that it is not suitable as a positive electrode device of a lithium secondary battery due to its low sphericality and uniformity.
  • Nickel sulfate, cobalt sulfate, and manganese sulfate were mixed in a molar ratio of 0.5: 0.2: 0.3 to prepare a 2.5M metal solution, and 2L of a 30-40% sodium hydroxide solution was prepared.
  • the aqueous metal solution was pumped continuously to the reactor with a metering pump at 0.48 L / hr, which was mixed with 2 L / m of N 2 gas and introduced into the reactor.
  • the aqueous sodium hydroxide solution was used to adjust the pH atmosphere during the reaction, the pH was pumped into the reactor in conjunction with the pump through the control equipment to maintain a pH of 9.5 ⁇ 10.5. The reaction proceeded for 3 hours.
  • the three-component transition metal precursor obtained was washed with distilled water several times by a filtering method, and dried in a constant temperature dryer for 20 hours to obtain Ni 0.5 Co 0.2 Mn 0.3 (OH) 2, which is a nickel-cobalt-manganese three-component precursor. .
  • 3A and 3B are SEM photographs taken at different magnifications of the precursors prepared by the coprecipitation-> milling-> coprecipitation prepared by the method of the present invention, and the result of measuring the particle size distribution is FIG. 3C.
  • the precursor prepared by the method of the present invention has a particle size of about 3 ⁇ m, unlike the precursor prepared by the conventional method, the particle size is uniform, and the specific surface area is large due to the small particle size. It can be seen that the increase.
  • Cathode material Li (Ni 0.5 Co 0.2 Mn 0.3 ) of Comparative Example prepared by mixing a precursor having an average particle size of about 9 ⁇ m manufactured by conventional coprecipitation with Li 2 Co 3 and then firing at 900 ° C. for 20 hours using a firing furnace.
  • O 2 and the precursor of Experimental Example 3, prepared by the coprecipitation method of the present invention, were mixed with Li 2 Co 3, and then calcined at 900 ° C. for 20 hours using a firing furnace, thereby obtaining the cathode material Li (Ni 0.5 Co 0.2). Mn 0.3 ) O 2 was prepared.
  • FIG. 4A is a SEM measured picture of the cathode material of the present invention
  • FIG. 4B is a SEM measured picture of the cathode material of the comparative example.
  • FIG. 4c is a charge and discharge test results of the positive electrode material of the present invention
  • Figure 4d is a charge and discharge test results of the positive electrode material of the comparative example.
  • the initial capacity (mAh / g) was 162.1, but in the cathode material to which the precursor prepared by the conventional coprecipitation method was applied, the initial capacity was 153.5, indicating that the cathode material of the present invention was excellent.
  • the output efficiency (2C / 0.1C) it was found that the positive electrode material of the present invention is 83.74 and 64.51 for the positive electrode material of the comparative example is excellent in the positive electrode material of the present invention.
  • This invention relates to the precursor which can be used as a positive electrode material of a secondary battery.
  • the present invention relates to a method for producing a nickel-cobalt-manganese composite precursor which is mixed with nickel and used as a cathode material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

La présente invention concerne un procédé de préparation de NixCoyMn1-x-y(OH)2, qui est un précurseur composite de nickel-cobalt-manganèse utilisé en tant que matériau d'électrode positive en étant mélangé avec du lithium dans une batterie secondaire au nickel ou similaire, et plus spécifiquement, une technique permettant de préparer un précurseur qui a une taille de particule plus faible et plus uniforme et une surface spécifique plus élevée par rapport à un procédé de co-précipitation de l'art antérieur.
PCT/KR2014/000458 2014-01-09 2014-01-16 Procédé de préparation d'un précurseur composite de nickel-cobalt-manganèse WO2015105225A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0002752 2014-01-09
KR1020140002752A KR101547972B1 (ko) 2014-01-09 2014-01-09 니켈―코발트―망간 복합 전구체 제조 방법

Publications (1)

Publication Number Publication Date
WO2015105225A1 true WO2015105225A1 (fr) 2015-07-16

Family

ID=53524043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/000458 WO2015105225A1 (fr) 2014-01-09 2014-01-16 Procédé de préparation d'un précurseur composite de nickel-cobalt-manganèse

Country Status (2)

Country Link
KR (1) KR101547972B1 (fr)
WO (1) WO2015105225A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115924987A (zh) * 2021-10-06 2023-04-07 芯量科技股份有限公司 制备成分均匀正极材料前驱物的方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018155745A1 (fr) * 2017-02-27 2018-08-30 주식회사 이엔드디 Procédé d'application d'une couche hétéroatomique sur un précurseur composite nickel-cobalt-manganèse
KR101950202B1 (ko) * 2017-02-27 2019-02-21 주식회사 이엔드디 고비표면적의 니켈―코발트―망간 복합전구체의 제조 방법
FI3728134T3 (fi) 2017-12-22 2023-10-03 Umicore Nv Positiivinen elektrodimateriaali ladattavia litiumioniakkuja varten ja niiden valmistusmenetelmiä
EP3759753B1 (fr) 2018-03-02 2023-06-14 Umicore Matériau d'électrode positive pour batteries rechargeables au lithium-ion
WO2019185349A1 (fr) 2018-03-29 2019-10-03 Umicore Procédé de préparation de matériau d'électrode positive pour batteries rechargeables au lithium-ion
HUE062392T2 (hu) 2018-10-24 2023-11-28 Umicore Nv Újratölthetõ lítiumion-akkumulátor pozitívelektródaanyagának prekurzora
KR102658590B1 (ko) 2019-02-20 2024-04-17 유미코아 높은 열 안정성을 갖는 충전식 리튬 이온 고체 전지용 고체 전해질을 포함하는 양극 물질
CN114258600B (zh) 2019-07-03 2024-05-24 尤米科尔公司 作为用于可再充电锂离子电池的正电极活性材料的锂镍锰钴复合氧化物
KR20230033480A (ko) 2021-09-01 2023-03-08 삼성에스디아이 주식회사 리튬이차전지용 양극 활물질, 그 제조방법, 이를 포함한 양극을 함유한 리튬이차전지
WO2024128534A1 (fr) * 2022-12-16 2024-06-20 포스코홀딩스 주식회사 Précurseur de matériau actif d'électrode positive pour batterie secondaire au lithium, matériau actif d'électrode positive et batterie secondaire au lithium le comprenant

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040108394A (ko) * 2003-06-17 2004-12-24 한국전기연구원 수산화물을 이용한 금속산화물의 제조방법
JP2008195608A (ja) * 2000-11-06 2008-08-28 Tanaka Chemical Corp 高密度コバルトマンガン共沈水酸化ニッケル及びその製造法
KR20100020412A (ko) * 2008-08-12 2010-02-22 주식회사 이엠따블유 저투자손실을 가지는 니켈 망간 코발트 스피넬 페라이트 제조 방법 및 이에 의해 제조된 니켈 망간 코발트 스피넬 페라이트
JP2011057518A (ja) * 2009-09-11 2011-03-24 Kansai Shokubai Kagaku Kk 高密度ニッケル・コバルト・マンガン共沈水酸化物及びその製造方法
KR20120098631A (ko) * 2009-10-22 2012-09-05 도다 고교 가부시끼가이샤 니켈?코발트?망간계 화합물 입자 분말 및 그의 제조 방법, 리튬 복합 산화물 입자 분말 및 그의 제조 방법, 및 비수전해질 이차 전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008195608A (ja) * 2000-11-06 2008-08-28 Tanaka Chemical Corp 高密度コバルトマンガン共沈水酸化ニッケル及びその製造法
KR20040108394A (ko) * 2003-06-17 2004-12-24 한국전기연구원 수산화물을 이용한 금속산화물의 제조방법
KR20100020412A (ko) * 2008-08-12 2010-02-22 주식회사 이엠따블유 저투자손실을 가지는 니켈 망간 코발트 스피넬 페라이트 제조 방법 및 이에 의해 제조된 니켈 망간 코발트 스피넬 페라이트
JP2011057518A (ja) * 2009-09-11 2011-03-24 Kansai Shokubai Kagaku Kk 高密度ニッケル・コバルト・マンガン共沈水酸化物及びその製造方法
KR20120098631A (ko) * 2009-10-22 2012-09-05 도다 고교 가부시끼가이샤 니켈?코발트?망간계 화합물 입자 분말 및 그의 제조 방법, 리튬 복합 산화물 입자 분말 및 그의 제조 방법, 및 비수전해질 이차 전지

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115924987A (zh) * 2021-10-06 2023-04-07 芯量科技股份有限公司 制备成分均匀正极材料前驱物的方法

Also Published As

Publication number Publication date
KR20150083232A (ko) 2015-07-17
KR101547972B1 (ko) 2015-08-27

Similar Documents

Publication Publication Date Title
WO2015105225A1 (fr) Procédé de préparation d'un précurseur composite de nickel-cobalt-manganèse
WO2016188477A2 (fr) Matériau d'électrode positive ternaire revêtu de carbone, son procédé de préparation, et batterie au lithium-ion
WO2016052820A1 (fr) Matériau actif d'électrode positive pour batterie rechargeable au lithium et batterie rechargeable au lithium le comprenant
WO2015122554A1 (fr) Procédé de préparation continue d'un précurseur de composite nickel-cobalt-manganèse par utilisation d'un réacteur de couette-taylor
WO2019112279A2 (fr) Matériau actif de cathode pour batterie secondaire au lithium, son procédé de fabrication et batterie secondaire au lithium comprenant une cathode comprenant ce matériau actif
WO2016021791A1 (fr) Matériau actif d'électrode positive pour batterie rechargeable au lithium et batterie rechargeable au lithium le comprenant
WO2013002457A1 (fr) Matière active d'électrode positive, électrode incluant la matière active d'électrode positive et batterie électrochimique au lithium
CN111435744B (zh) 无钴层状正极材料及其制备方法、正极片和锂离子电池
WO2019103522A2 (fr) Méthode de préparation de matériau actif de cathode
WO2014077662A1 (fr) Procédé permettant de produire un précurseur de matière active d'anode pour batterie secondaire au sodium en utilisant une technique de coprécipitation et précurseur de matière active d'anode pour batterie secondaire au sodium produite ainsi
WO2014104811A1 (fr) Procédé de fabrication de matériau actif de cathode pour batterie secondaire au lithium, et matériau actif de cathode pour batterie secondaire au lithium produit ainsi
CN110034274B (zh) 改性三元正极材料、其制备方法及锂离子电池
WO2018155746A1 (fr) Procédé de production de précurseur de complexe de nickel-cobalt-manganèse à surface spécifique élevée
WO2014116064A1 (fr) Procédé de production de nanoparticules d'oxyde de fer
WO2014168286A1 (fr) Procédé de fabrication de précurseur de matériau actif de cathode pour batterie secondaire au lithium, procédé de fabrication d'un matériau actif de cathode pour batterie secondaire au lithium, cathode comprenant le matériau actif de cathode et batterie secondaire au lithium
WO2015093725A1 (fr) Matériau non aqueux de cathode à capacité élevée pour batterie secondaire au lithium et son procédé de préparation
WO2015027826A1 (fr) Matériau d'électrode positive pour batterie au lithium-ion et son procédé de préparation
WO2012033369A2 (fr) Matériau actif d'électrode positive pour un accumulateur au lithium et procédé de préparation de ce matériau
WO2013085306A1 (fr) Procédé de fabrication d'un matériau actif de cathode destiné à une batterie secondaire au lithium
WO2016035985A1 (fr) Procédé de préparation de matériau d'électrode positive pour batterie rechargeable
CN108511749B (zh) 掺杂铜镍酸锂正极材料及其制备方法和锂离子电池
WO2019013587A1 (fr) Méthode de production d'un matériau actif de cathode
CN115180608A (zh) 一种高振实密度球形磷酸锰铁锂的制备方法
WO2013081369A2 (fr) Procédé de préparation d'un oxyde composite de lithium-nickel-cobalt-aluminium et oxyde composite de lithium-nickel-cobalt-aluminium préparé par le procédé et batterie secondaire au lithium le comprenant
WO2020130181A1 (fr) Procédé de fabrication d'un précurseur composite nickel-cobalt-manganèse de haute densité

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14878110

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14878110

Country of ref document: EP

Kind code of ref document: A1