WO2014077212A1 - 複合基板及びその製法 - Google Patents
複合基板及びその製法 Download PDFInfo
- Publication number
- WO2014077212A1 WO2014077212A1 PCT/JP2013/080398 JP2013080398W WO2014077212A1 WO 2014077212 A1 WO2014077212 A1 WO 2014077212A1 JP 2013080398 W JP2013080398 W JP 2013080398W WO 2014077212 A1 WO2014077212 A1 WO 2014077212A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- substrate
- composite
- piezoelectric
- composite substrate
- Prior art date
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 231
- 239000002131 composite material Substances 0.000 title claims abstract description 60
- 238000004519 manufacturing process Methods 0.000 title claims description 5
- WSMQKESQZFQMFW-UHFFFAOYSA-N 5-methyl-pyrazole-3-carboxylic acid Chemical compound CC1=CC(C(O)=O)=NN1 WSMQKESQZFQMFW-UHFFFAOYSA-N 0.000 claims abstract description 40
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 claims abstract description 16
- 239000013078 crystal Substances 0.000 claims abstract description 11
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 7
- 239000010703 silicon Substances 0.000 claims abstract description 7
- 230000007935 neutral effect Effects 0.000 claims description 10
- 238000000137 annealing Methods 0.000 claims description 8
- 238000005498 polishing Methods 0.000 claims description 6
- 238000001816 cooling Methods 0.000 claims description 3
- 238000003825 pressing Methods 0.000 claims description 3
- 238000001514 detection method Methods 0.000 claims description 2
- 230000001678 irradiating effect Effects 0.000 claims description 2
- 238000004458 analytical method Methods 0.000 description 16
- 238000000921 elemental analysis Methods 0.000 description 14
- 239000000203 mixture Substances 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 8
- 238000000034 method Methods 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000010884 ion-beam technique Methods 0.000 description 3
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 2
- 238000007517 polishing process Methods 0.000 description 2
- 229910052594 sapphire Inorganic materials 0.000 description 2
- 239000010980 sapphire Substances 0.000 description 2
- 238000010897 surface acoustic wave method Methods 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/50—Piezoelectric or electrostrictive devices having a stacked or multilayer structure
- H10N30/508—Piezoelectric or electrostrictive devices having a stacked or multilayer structure adapted for alleviating internal stress, e.g. cracking control layers
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/02—Details
- H03H9/02535—Details of surface acoustic wave devices
- H03H9/02543—Characteristics of substrate, e.g. cutting angles
- H03H9/02574—Characteristics of substrate, e.g. cutting angles of combined substrates, multilayered substrates, piezoelectrical layers on not-piezoelectrical substrate
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/01—Manufacture or treatment
- H10N30/07—Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
- H10N30/072—Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by laminating or bonding of piezoelectric or electrostrictive bodies
Definitions
- the present invention relates to a composite substrate and a method of manufacturing the same.
- SAW devices Surface acoustic wave devices
- a SAW element is manufactured, for example, using a composite substrate in which a piezoelectric substrate such as lithium tantalate (LT) or lithium niobate (LN) and a supporting substrate such as sapphire or silicon are joined.
- Piezoelectric substrates such as LT and LN are advantageous for achieving wide-band filter characteristics because of their large electromechanical coupling coefficient, but have the disadvantage of poor temperature stability.
- a supporting substrate such as sapphire or silicon is excellent in temperature stability, but has a disadvantage that the electromechanical coupling coefficient is small.
- a composite substrate in which both are joined has an advantage of having a large electromechanical coupling coefficient and excellent temperature stability.
- Patent Document 1 as such a composite substrate, after the bonding surface of a piezoelectric substrate and a support substrate is activated by an ion beam of inert gas or oxygen, a neutralization beam or plasma, both substrates are under normal temperature or 100 What was joined under the heat processing below ° C is disclosed. It is also disclosed that the bonding strength between both substrates is further improved by annealing at a relatively low temperature of 200 ° C. or lower after bonding. Furthermore, it is also disclosed that a composite substrate having an amorphous layer between the substrates is formed by activating the bonding surfaces of the two substrates with an irradiation beam of Ar atoms and then bonding the bonding surfaces of the two substrates. Such a composite substrate having an amorphous layer between the substrates is also disclosed in Patent Document 2.
- the amorphous layer is formed of only one layer or at most two layers, so there is a problem that the bonding strength between both substrates is not sufficiently high. there were.
- the present invention has been made to solve such problems, and it is a main object of the present invention to provide a composite substrate in which a piezoelectric substrate and a support substrate are joined, with the bond strength between the two substrates sufficiently high.
- the composite substrate of the present invention is A composite substrate in which a piezoelectric substrate which is a single crystal substrate of lithium tantalate or lithium niobate and a supporting substrate which is a single crystal substrate of silicon are joined via an amorphous layer containing Ar,
- the amorphous layer has a first layer, a second layer, and a third layer from the piezoelectric substrate to the composite substrate, and the first layer has the piezoelectric compared to the second layer and the third layer.
- the third layer contains a large amount of elements constituting the substrate, the third layer contains a large amount of elements constituting the support substrate as compared with the first layer and the second layer, and the second layer contains the first layer And contain a larger amount of Ar than the third layer.
- the bonding strength between both substrates can be sufficiently high.
- the three-layer structure of the amorphous layer containing Ar contributes to the bonding strength.
- the amorphous layer preferably has a thickness of 4 nm to 12 nm. This is because heat resistance of 400 ° C. or more can be secured.
- Ar contained in the amorphous layer is preferably 3 atm% to 14 atm%.
- the third layer is thicker than the first layer and the second layer.
- the composite substrate actually manufactured is considered to contribute to the improvement of the bonding strength since the third layer has a thicker structure than the first layer and the second layer.
- the third layer may be thicker than the sum of the thickness of the first layer and the thickness of the second layer.
- the Fe content is preferably equal to or less than the detection limit (less than 0.1 atm%). If Fe is mixed, it is not preferable because it may adversely affect devices such as SAW elements manufactured using a composite substrate. For example, when Fe is mixed, the electric field may leak and energy may be dissipated.
- a single crystal substrate of lithium tantalate or lithium niobate is used as the piezoelectric substrate.
- the size of the piezoelectric substrate is not particularly limited, and for example, the diameter is 50 mm to 150 mm, and the thickness is 10 ⁇ m to 50 ⁇ m.
- a supporting substrate a single crystal silicon substrate is used as a supporting substrate.
- the size of the supporting substrate is not particularly limited, and for example, the diameter is 50 mm to 150 mm, and the thickness is 100 ⁇ m to 500 ⁇ m.
- the amorphous layer has a first layer, a second layer, and a third layer from the piezoelectric substrate toward the composite substrate. The first to third layers all contain Ar.
- the first layer contains more elements (Ta, Nb, etc.) constituting the piezoelectric substrate than the second layer and the third layer, and the third layer has the supporting substrate compared to the first layer and the second layer.
- the second layer contains a large amount of Ar as compared with the first layer and the third layer.
- the process for producing the composite substrate of the present invention is (A) preparing a piezoelectric substrate which is a single crystal substrate of lithium tantalate or lithium niobate, and a supporting substrate which is a single crystal substrate of silicon; (B) irradiating a bonding surface of the piezoelectric substrate and a bonding surface of the support substrate with an Ar neutral atom beam in vacuum; (C) cooling the piezoelectric substrate and the support substrate; (D) bringing the beam-irradiated surface of the piezoelectric substrate into contact with the beam-irradiated surface of the support substrate and pressing the two substrates together; (E) polishing the piezoelectric substrate to a predetermined thickness after bonding, and annealing at a temperature exceeding 200 ° C .; Is included.
- the above-mentioned composite substrate of the present invention can be produced relatively easily.
- the piezoelectric substrate for example, a 36 ° rotated Y cut X propagation LT substrate, a 42 ° rotated Y cut X propagation LT substrate, an X cut 12.2.2 rotated Y propagation LT substrate, a 127.86 ° rotated Y
- a supporting substrate for example, a single crystal Si substrate manufactured by a Czochralski method or a floating zone method is prepared.
- step (b) an Ar neutral atom beam is used.
- the use of an Ar ion beam is not preferable because the material of the vacuum chamber (for example, Fe or Cr) may be mixed into the bonding surface or the amorphous layer may not have a three-layer structure.
- the piezoelectric substrate and the support substrate are cooled.
- the two substrates are bonded in a state of large thermal expansion difference, and therefore, they are easily peeled off after bonding. It is preferable to cool the piezoelectric substrate and the support substrate to 20 to 50.degree. C., and more preferably to 20 to 30.degree.
- the beam irradiation surface of the piezoelectric substrate and the beam irradiation surface of the support substrate are brought into contact with each other and pressed to bond the two substrates.
- the pressure at the time of pressurization may be appropriately set in consideration of the size of the substrate and the like.
- the piezoelectric substrate is polished to a predetermined thickness (for example, 10 to 50 ⁇ m), and then annealing is performed at a temperature exceeding 200 ° C. This reduces the occurrence of thermal stress. In addition, the bonding strength of both substrates is also improved.
- the annealing temperature is preferably 240 to 280 ° C., more preferably 250 to 270 ° C.
- annealing is preferably performed at a temperature of 80 ° C. or higher (preferably, a temperature of 80 to 110 ° C.) after polishing and before polishing. This will further improve the bonding strength.
- FIG. 6 is a graph of EDX of an LT substrate constituting the composite substrate of Example 1.
- 6 is a graph of EDX of an amorphous layer first layer constituting the composite substrate of Example 1.
- 6 is a graph of EDX of an amorphous layer second layer constituting the composite substrate of Example 1.
- 6 is a graph of EDX of the amorphous layer third layer constituting the composite substrate of Example 1.
- 6 is a graph of EDX of a Si substrate constituting the composite substrate of Example 1.
- FIG. 16 is a graph of EDX of LT substrate constituting the composite substrate of Comparative Example 1.
- 6 is a graph of EDX of an amorphous layer first layer constituting the composite substrate of Comparative Example 1.
- 6 is a graph of EDX of the second layer of the amorphous layer constituting the composite substrate of Comparative Example 1.
- 6 is a graph of EDX of a Si substrate constituting the composite substrate of Comparative Example 1. Explanatory drawing of a crack opening method.
- Example 1 A LT substrate having a thickness of 230 ⁇ m and a mirror surface on both sides, and a Si substrate having a thickness of 250 ⁇ m on both surface were prepared.
- a 42 ° rotated Y-cut X-propagated LT substrate (42 ° Y-X LT) rotated by 42 ° from the Y axis to the Z axis around the X axis that is the propagation direction of the surface acoustic wave was used. .
- the bonding surface of each substrate was cleaned to remove surface contamination, and then introduced into a vacuum chamber.
- each substrate was irradiated with a high-speed Ar neutral atom beam (accelerating voltage: 1 kV, Ar flow rate: 60 sccm) for 70 seconds in a vacuum of 10 ⁇ 6 Pa or so.
- Ar neutral atom beam accelerating voltage: 1 kV, Ar flow rate: 60 sccm
- each substrate was cooled to 26-28 ° C. by leaving it for 10 minutes.
- the beam irradiation surface of the LT substrate and the beam irradiation surface of the Si substrate were brought into contact with each other, the two substrates were bonded by pressing at 4.90 kN for 2 minutes.
- the LT substrate was polished to a thickness of 30 ⁇ m and then annealed at 260 ° C. to obtain a composite substrate.
- the composite substrate was cut and the cross section was observed with a TEM (transmission electron microscope).
- the results are shown in FIG. From FIG. 1, the thickness of the amorphous layer was 7 nm.
- the amorphous layer had a first layer, a second layer, and a third layer from the LT substrate to the Si substrate. Also, the third layer was thicker than the first and second layers.
- Composition analysis and elemental analysis were performed by EDX on the LT substrate, the first to third layers constituting the amorphous layer, and the Si substrate. The results of compositional analysis are shown in FIGS. In FIGS. 2 to 6, “point n” (n is an integer of 1 to 5) indicates the position of “* n” in FIG. This point is the same as in Table 1 described later.
- Example 2 A composite substrate was produced in the same manner as in Example 1 except that a high-speed Ar neutral atom beam was irradiated for 15 seconds, and a part thereof was cut and a cross section was observed by TEM. As a result, the thickness of the amorphous layer was about 2.5 nm.
- the amorphous layer had a first layer, a second layer, and a third layer from the LT substrate to the Si substrate. The third layer was thicker than the first and second layers.
- Composition analysis and elemental analysis were performed by EDX on the LT substrate, the first to third layers constituting the amorphous layer, and the Si substrate. Ar was detected in all of the first to third layers as a result of composition analysis.
- Example 3 A composite substrate was produced in the same manner as in Example 1 except that the high-speed Ar neutral atom beam was irradiated for 600 seconds, and a part of the composite substrate was cut and a cross section was observed with a TEM. As a result, the thickness of the amorphous layer was about 15 nm.
- the amorphous layer had a first layer, a second layer, and a third layer from the LT substrate to the Si substrate. The third layer was thicker than the first and second layers.
- Composition analysis and elemental analysis were performed by EDX on the LT substrate, the first to third layers constituting the amorphous layer, and the Si substrate. Ar was detected in all of the first to third layers as a result of composition analysis.
- Example 4 A composite substrate was produced in the same manner as in Example 1 except that the high-speed Ar neutral atom beam was irradiated for 25 seconds, and a part of the composite substrate was cut and a cross section was observed by TEM. As a result, the thickness of the amorphous layer was about 4 nm.
- the amorphous layer had a first layer, a second layer, and a third layer from the LT substrate to the Si substrate. The third layer was thicker than the first and second layers.
- Composition analysis and elemental analysis were performed by EDX on the LT substrate, the first to third layers constituting the amorphous layer, and the Si substrate. Ar was detected in all of the first to third layers as a result of composition analysis.
- the entire amorphous layer contained 4.0 atm% of Ar atoms.
- the first layer contains a larger amount of the element (Ta) constituting the piezoelectric substrate than the second and third layers, and the third layer is an element constituting the support substrate compared to the first and second layers. It contained a large amount of (Si).
- Example 5 A composite substrate was produced in the same manner as in Example 1 except that the high-speed Ar neutral atom beam was irradiated for 265 seconds, and a part thereof was cut and a cross section was observed by TEM. As a result, the thickness of the amorphous layer was about 12 nm.
- the amorphous layer had a first layer, a second layer, and a third layer from the LT substrate to the Si substrate. The third layer was thicker than the first and second layers.
- Composition analysis and elemental analysis were performed by EDX on the LT substrate, the first to third layers constituting the amorphous layer, and the Si substrate. Ar was detected in all of the first to third layers as a result of composition analysis.
- the first layer contains a larger amount of the element (Ta) constituting the piezoelectric substrate than the second and third layers
- the third layer is an element constituting the support substrate compared to the first and second layers. It contained a large amount of (Si).
- Example 6 A composite substrate was produced in the same manner as in Example 1 except that the LT substrate was replaced with the LN substrate, and a part of the composite substrate was cut and a cross section was observed by TEM. As a result, the thickness of the amorphous layer was about 5 nm.
- the amorphous layer had a first layer, a second layer, and a third layer from the LN substrate to the Si substrate. The third layer was thicker than the first and second layers.
- Composition analysis and elemental analysis were performed by EDX on the LN substrate, the first to third layers constituting the amorphous layer, and the Si substrate. Ar was detected in all of the first to third layers as a result of composition analysis.
- the composite substrate is manufactured by changing the irradiation time of Ar neutral atom beam variously, and a 2 mm square chip cut out from the manufactured composite substrate is heated on a hot plate to ensure heat resistance of 300 ° C. or higher. It has been found that it is effective to use three amorphous layers for the purpose, and that the heat resistance can be increased by setting the thickness to 4 nm to 12 nm. In addition, having heat resistance of 300 ° C. or more is a specification in practical use, and its significance is very large. In the entire amorphous layer at that time, the amount of Ar was 3 atm% to 14 atm%.
- the amorphous layer has the first layer, the second layer, and the third layer from the LT substrate to the Si substrate, and the third layer is more than the first layer or the second layer. It was thick. Further, the atm% of the Ar atom was higher in the second layer than in the first and third layers.
- Fe derived from the vacuum chamber was mixed in the amorphous layer by 30 atm% or more.
- the amorphous layer was formed to be divided into two layers.
- Comparative Example 1 A composite substrate in which an LT substrate and a Si substrate were joined via two amorphous layers was obtained, and in the same manner as in Example 1, a part thereof was cut and a cross section was observed with a TEM. The results are shown in FIG. From FIG. 7, the thickness of the amorphous layer was 5 nm. The amorphous layer had a first layer and a second layer from the LT substrate toward the Si substrate. Composition analysis and elemental analysis were performed by EDX on the LT substrate, and the first layer, the second layer, and the Si substrate constituting the amorphous layer. The results of compositional analysis are shown in FIGS. As apparent from the result of composition analysis, Ar was detected in both the first layer and the second layer.
- Example 7 a bonded substrate before the polishing process in Example 1 was heated (annealed) at 80 ° C. for 72 hours was used as a bonded substrate of Example 7.
- the bonding strength of the bonded substrate of this Example 7 was also evaluated by the same method. The bonding strength was measured at a plurality of locations for one bonded substrate. The results are shown in Table 3. As apparent from Table 3, it was found that the bonding strength of Examples 1 to 6 is higher than that of Comparative Example 1, and particularly, the bonding strength of Examples 1 to 4 is high. In addition, it was found that the bonding strength of Example 7 was higher than that of Example 1.
- the present invention is applicable to acoustic wave devices such as SAW elements.
Landscapes
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
Abstract
Description
タンタル酸リチウム又はニオブ酸リチウムの単結晶基板である圧電基板と、シリコンの単結晶基板である支持基板とが、Arを含有するアモルファス層を介して接合された複合基板であって、
前記アモルファス層は、前記圧電基板から前記複合基板に向かって第1層、第2層及び第3層を有し、前記第1層は、前記第2層及び前記第3層に比べて前記圧電基板を構成する元素を多く含有し、前記第3層は、前記第1層及び前記第2層に比べて前記支持基板を構成する元素を多く含有し、前記第2層は、前記第1層及び前記第3層に比べてArを多く含有するものである。
(a)タンタル酸リチウム又はニオブ酸リチウムの単結晶基板である圧電基板と、シリコンの単結晶基板である支持基板とを用意する工程と、
(b)前記圧電基板の接合面及び前記支持基板の接合面に真空中でAr中性原子ビームを照射する工程と、
(c)前記圧電基板及び前記支持基板を冷却する工程と、
(d)前記圧電基板のビーム照射面と前記支持基板のビーム照射面とを接触させ、加圧して両基板を接合する工程と、
(e)接合後、前記圧電基板を所定厚さになるまで研磨加工し、その後200℃を超える温度でアニールを行う工程と、
を含むものである。
両面が鏡面の厚み230μmのLT基板と、両面が鏡面の厚み250μmのSi基板を用意した。LT基板としては、弾性表面波の伝搬方向であるX軸を中心に、Y軸からZ軸に42°回転した、42°回転YカットX伝搬LT基板(42°Y-X LT)を用いた。それぞれの基板の接合面を洗浄して表面の汚れを取った後、真空チャンバーに導入した。10-6Pa台の真空中で、それぞれの基板の接合面に高速Ar中性原子ビーム(加速電圧1kV、Ar流量60sccm)を70sec間照射した。照射後、10分間そのまま放置して各基板を26~28℃に冷却した。ついでLT基板のビーム照射面とSi基板のビーム照射面とを接触させた後、4.90kNで2分間加圧して両基板を接合した。接合後、LT基板を厚みが30μmになるまで研磨加工し、その後260℃でアニールを行い、複合基板を得た。
高速Ar中性原子ビームを15sec間照射した以外は、実施例1と同様にして複合基板を作製し、その一部を切断しTEMで断面の観察を行った。その結果、アモルファス層の厚さは約2.5nmであった。アモルファス層は、LT基板からSi基板に向かって第1層、第2層、第3層を有していた。第3層は、第1層や第2層よりも厚かった。LT基板、アモルファス層を構成する第1~第3層及びSi基板について、EDXで組成分析、元素分析を行った。組成分析の結果、第1~第3層のいずれにもArが検出された。また、元素分析の結果、Ar原子は、第1層には1atm%、第2層には3atm%、第3層には0.4atm%含まれていた。また、Fe原子は、すべてにおいて全く検出されなかった。なお、アモルファス層全体では、Ar原子は2atm%含まれていた。第1層は、第2層及び第3層に比べて圧電基板を構成する元素(Ta)を多く含有し、第3層は、第1層及び第2層に比べて支持基板を構成する元素(Si)を多く含有していた。また、実施例1と同様にして2mm角のチップをホットプレート上で徐々に加熱したところ、300℃直後でLT基板が剥離した。
高速Ar中性原子ビームを600sec間照射した以外は、実施例1と同様にして複合基板を作製し、その一部を切断しTEMで断面の観察を行った。その結果、アモルファス層の厚さは約15nmであった。アモルファス層は、LT基板からSi基板に向かって第1層、第2層、第3層を有していた。第3層は、第1層や第2層よりも厚かった。LT基板、アモルファス層を構成する第1~第3層及びSi基板について、EDXで組成分析、元素分析を行った。組成分析の結果、第1~第3層のいずれにもArが検出された。また、元素分析の結果、Ar原子は、第1層には15atm%、第2層には21atm%、第3層には13atm%含まれていた。また、Fe原子は、すべてにおいて全く検出されなかった。なお、アモルファス層全体では、Ar原子は18atm%含まれていた。第1層は、第2層及び第3層に比べて圧電基板を構成する元素(Ta)を多く含有し、第3層は、第1層及び第2層に比べて支持基板を構成する元素(Si)を多く含有していた。また、実施例1と同様にして2mm角のチップをホットプレート上で加熱したところ、300℃直後でLT基板が剥離した。
高速Ar中性原子ビームを25sec間照射した以外は、実施例1と同様にして複合基板を作製し、その一部を切断しTEMで断面の観察を行った。その結果、アモルファス層の厚さは約4nmであった。アモルファス層は、LT基板からSi基板に向かって第1層、第2層、第3層を有していた。第3層は、第1層や第2層よりも厚かった。LT基板、アモルファス層を構成する第1~第3層及びSi基板について、EDXで組成分析、元素分析を行った。組成分析の結果、第1~第3層のいずれにもArが検出された。また、元素分析の結果、Ar原子は、第1層には2.2atm%、第2層には4.9atm%、第3層には1.0atm%含まれていた。また、Fe原子は、すべてにおいて全く検出されなかった。なお、アモルファス層全体では、Ar原子は4.0atm%含まれていた。第1層は、第2層及び第3層に比べて圧電基板を構成する元素(Ta)を多く含有し、第3層は、第1層及び第2層に比べて支持基板を構成する元素(Si)を多く含有していた。また、実施例1と同様にして2mm角のチップをホットプレート上で加熱したところ、400℃直後でLT基板が剥離した。
高速Ar中性原子ビームを265sec間照射した以外は、実施例1と同様にして複合基板を作製し、その一部を切断しTEMで断面の観察を行った。その結果、アモルファス層の厚さは約12nmであった。アモルファス層は、LT基板からSi基板に向かって第1層、第2層、第3層を有していた。第3層は、第1層や第2層よりも厚かった。LT基板、アモルファス層を構成する第1~第3層及びSi基板について、EDXで組成分析、元素分析を行った。組成分析の結果、第1~第3層のいずれにもArが検出された。また、元素分析の結果、Ar原子は、第1層には10.8atm%、第2層には16.3atm%、第3層には8.4atm%含まれていた。また、Fe原子は、すべてにおいて全く検出されなかった。なお、アモルファス層全体では、Ar原子は14.3atm%含まれていた。第1層は、第2層及び第3層に比べて圧電基板を構成する元素(Ta)を多く含有し、第3層は、第1層及び第2層に比べて支持基板を構成する元素(Si)を多く含有していた。また、実施例1と同様にして2mm角のチップをホットプレート上で加熱したところ、400℃直後でLT基板が剥離した。
LT基板をLN基板に代えた以外は、実施例1と同様にして複合基板を作製し、その一部を切断しTEMで断面の観察を行った。その結果、アモルファス層の厚さは約5nmであった。アモルファス層は、LN基板からSi基板に向かって第1層、第2層、第3層を有していた。第3層は、第1層や第2層よりも厚かった。LN基板、アモルファス層を構成する第1~第3層及びSi基板について、EDXで組成分析、元素分析を行った。組成分析の結果、第1~第3層のいずれにもArが検出された。また、元素分析の結果、Ar原子は、第1層には3.1atm%、第2層には6.3atm%、第3層には1.6atm%含まれていた。また、Fe原子は、すべてにおいて全く検出されなかった。なお、アモルファス層全体では、Ar原子は5.4atm%含まれていた。第1層は、第2層及び第3層に比べて圧電基板を構成する元素(Nb)を多く含有し、第3層は、第1層及び第2層に比べて支持基板を構成する元素(Si)を多く含有していた。また、実施例1と同様にして2mm角のチップをホットプレート上で加熱したところ、400℃直後でLN基板が剥離した。
LT基板とSi基板とが2層のアモルファス層を介して接合された複合基板を入手し、実施例1と同様にしてその一部を切断しTEMで断面の観察を行った。その結果を図7に示す。図7からアモルファス層の厚さは5nmであった。アモルファス層は、LT基板からSi基板に向かって第1層、第2層を有していた。LT基板、アモルファス層を構成する第1層、第2層及びSi基板について、EDXで組成分析、元素分析を行った。組成分析の結果を図8~図11に示す。組成分析の結果から明らかなように、第1層、第2層のいずれにもArが検出された。また、元素分析の結果を表2に示す。表2から明らかなように、Ar原子は、第1層には1atm%、第2層には3atm%含まれていた。また、Fe原子は、すべてにおいて全く検出されなかった。なお、アモルファス層全体では、Ar原子は2atm%含まれていた。また、この複合基板から切り出した2mm角のチップをホットプレート上で加熱したところ、280℃でLT基板が剥離した。
実施例1~6及び比較例1において、圧電基板と支持基板とを接合した貼り合わせ基板(研磨加工を行う前のもの)の接合強度を評価した。接合強度は、下記に示すクラックオープニング法(図12参照)により評価した。貼り合わせ基板の圧電基板と支持基板との接合界面に、厚み(tb)が100μmのブレードを挿入し、両基板の外周部を機械的に剥離させた。ブレード先端から最も剥離が進展した箇所までの距離(L)を測長し、以下の式を用いて表面エネルギー(γ)を算出し、これを接合強度とした。また、実施例1において研磨加工を行う前の貼り合わせ基板を80℃、72時間加熱(アニール)したものを、実施例7の貼り合わせ基板とした。この実施例7の貼り合わせ基板の接合強度も同じ手法により評価した。なお、1つの貼り合わせ基板につき、複数箇所で接合強度を測定した。その結果を表3に示す。表3から明らかなように、実施例1~6は比較例1に比べて接合強度が高く、特に実施例1,4~6が接合強度が高いことがわかった。また、実施例7は、実施例1よりも更に接合強度が高いことがわかった。
L:ブレード先端から最も剥離が進展した箇所までの距離
tw1:圧電基板の厚み
tw2:支持基板の厚み
E1:圧電基板のヤング率
E2:支持基板のヤング率
tb:ブレードの厚み
Claims (6)
- タンタル酸リチウム又はニオブ酸リチウムの単結晶基板である圧電基板と、シリコンの単結晶基板である支持基板とが、Arを含有するアモルファス層を介して接合された複合基板であって、
前記アモルファス層は、前記圧電基板から前記複合基板に向かって第1層、第2層及び第3層を有し、前記第1層は、前記第2層及び前記第3層に比べて前記圧電基板を構成する元素を多く含有し、前記第3層は、前記第1層及び前記第2層に比べて前記支持基板を構成する元素を多く含有し、前記第2層は、前記第1層及び前記第3層に比べてArを多く含有する、
複合基板。 - 前記アモルファス層は、厚さが4nm~12nmである、
請求項1に記載の複合基板。 - 前記第3層は、前記第1層及び前記第2層に比べて厚さが厚い、
請求項1又は2に記載の複合基板。 - Feの含有率が検出限界以下である、
請求項1~3のいずれか1項に記載の複合基板。 - (a)タンタル酸リチウム又はニオブ酸リチウムの単結晶基板である圧電基板と、シリコンの単結晶基板である支持基板とを用意する工程と、
(b)前記圧電基板の接合面及び前記支持基板の接合面に真空中でAr中性原子ビームを照射する工程と、
(c)前記圧電基板及び前記支持基板を冷却する工程と、
(d)前記圧電基板のビーム照射面と前記支持基板のビーム照射面とを接触させ、加圧して両基板を接合する工程と、
(e)接合後、前記圧電基板を所定厚さになるまで研磨加工し、その後200℃を超える温度でアニールを行う工程と、
を含む複合基板の製法。 - 前記工程(e)では、接合後研磨加工前に、80℃以上の温度でアニールを行う、
請求項5に記載の複合基板の製法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020147008533A KR101497888B1 (ko) | 2012-11-14 | 2013-11-11 | 복합 기판 및 그 제법 |
CN201380003307.0A CN103999366B (zh) | 2012-11-14 | 2013-11-11 | 复合基板及其制法 |
JP2014514653A JP5583875B1 (ja) | 2012-11-14 | 2013-11-11 | 複合基板及びその製法 |
EP13840125.2A EP2787637B1 (en) | 2012-11-14 | 2013-11-11 | Composite substrate and manufacturing method thereof |
US14/228,422 US8901803B2 (en) | 2012-11-14 | 2014-03-28 | Composite substrate and method for manufacturing the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012250070 | 2012-11-14 | ||
JP2012-250070 | 2012-11-14 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/228,422 Continuation US8901803B2 (en) | 2012-11-14 | 2014-03-28 | Composite substrate and method for manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014077212A1 true WO2014077212A1 (ja) | 2014-05-22 |
Family
ID=50731123
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/080398 WO2014077212A1 (ja) | 2012-11-14 | 2013-11-11 | 複合基板及びその製法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US8901803B2 (ja) |
EP (1) | EP2787637B1 (ja) |
JP (1) | JP5583875B1 (ja) |
KR (1) | KR101497888B1 (ja) |
CN (1) | CN103999366B (ja) |
WO (1) | WO2014077212A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160133823A1 (en) * | 2013-07-25 | 2016-05-12 | Ngk Insulators, Ltd. | Composite substrate and method of producing the same |
CN108702141A (zh) * | 2016-02-02 | 2018-10-23 | 信越化学工业株式会社 | 复合基板及复合基板的制造方法 |
WO2019159555A1 (ja) * | 2018-02-13 | 2019-08-22 | 日本碍子株式会社 | 圧電性材料基板と支持基板との接合体 |
JPWO2018180418A1 (ja) * | 2017-03-27 | 2020-02-06 | 住友電気工業株式会社 | 積層体およびsawデバイス |
JP2021508088A (ja) * | 2018-06-21 | 2021-02-25 | ジーナン ジンジョン エレクトロニクス カンパニー リミテッド | 複合単結晶薄膜 |
WO2021215466A1 (ja) * | 2020-04-21 | 2021-10-28 | 京セラ株式会社 | 接合基板 |
WO2021235496A1 (ja) * | 2020-05-20 | 2021-11-25 | 日本碍子株式会社 | 電気光学素子用複合基板 |
WO2024158037A1 (ja) * | 2023-01-27 | 2024-08-02 | 日本碍子株式会社 | 複合基板、複合基板の製造方法 |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6335831B2 (ja) | 2015-04-16 | 2018-05-30 | 信越化学工業株式会社 | 接合基板の製造方法 |
CN108028312B (zh) * | 2015-09-15 | 2021-03-26 | 日本碍子株式会社 | 复合基板的制造方法 |
TWI737811B (zh) * | 2016-11-25 | 2021-09-01 | 日商日本碍子股份有限公司 | 接合體 |
WO2018180827A1 (ja) * | 2017-03-31 | 2018-10-04 | 日本碍子株式会社 | 接合体および弾性波素子 |
CN110945786B (zh) * | 2017-08-25 | 2021-02-19 | 日本碍子株式会社 | 接合体及弹性波元件 |
WO2019130895A1 (ja) * | 2017-12-28 | 2019-07-04 | 日本碍子株式会社 | 圧電性材料基板と支持基板との接合体および弾性波素子 |
US11595019B2 (en) | 2018-04-20 | 2023-02-28 | Taiyo Yuden Co., Ltd. | Acoustic wave resonator, filter, and multiplexer |
WO2019220724A1 (ja) * | 2018-05-16 | 2019-11-21 | 日本碍子株式会社 | 圧電性材料基板と支持基板との接合体 |
WO2019220713A1 (ja) * | 2018-05-17 | 2019-11-21 | 日本碍子株式会社 | 圧電性単結晶基板と支持基板との接合体 |
FI3798718T3 (fi) | 2018-05-22 | 2023-07-12 | Ngk Insulators Ltd | Komposiittialusta sähköoptiselle elementille ja menetelmä saman valmistamiseksi |
CN118368964A (zh) * | 2024-06-19 | 2024-07-19 | 泉州市三安集成电路有限公司 | 复合基板及其制备方法、电子器件和模块 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004343359A (ja) | 2003-05-14 | 2004-12-02 | Fujitsu Media Device Kk | 弾性表面波素子の製造方法 |
JP2005252550A (ja) | 2004-03-03 | 2005-09-15 | Fujitsu Media Device Kk | 接合基板、弾性表面波素子および弾性表面波デバイス |
WO2009081651A1 (ja) * | 2007-12-25 | 2009-07-02 | Murata Manufacturing Co., Ltd. | 複合圧電基板の製造方法 |
JP2010232725A (ja) * | 2009-03-25 | 2010-10-14 | Ngk Insulators Ltd | 複合基板、それを用いた弾性波デバイス及び複合基板の製法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5192871A (en) * | 1991-10-15 | 1993-03-09 | Motorola, Inc. | Voltage variable capacitor having amorphous dielectric film |
US6563133B1 (en) * | 2000-08-09 | 2003-05-13 | Ziptronix, Inc. | Method of epitaxial-like wafer bonding at low temperature and bonded structure |
US6867134B2 (en) * | 2002-03-20 | 2005-03-15 | Jds Uniphase Corporation | Adherent all-gold electrode structure for lithium niobate based devices and the method of fabrication |
JP4553137B2 (ja) * | 2005-09-05 | 2010-09-29 | セイコーエプソン株式会社 | 複合酸化物積層体の製造方法 |
JP5588836B2 (ja) * | 2010-11-12 | 2014-09-10 | 太陽誘電株式会社 | 弾性波デバイス |
-
2013
- 2013-11-11 KR KR1020147008533A patent/KR101497888B1/ko active IP Right Grant
- 2013-11-11 WO PCT/JP2013/080398 patent/WO2014077212A1/ja active Application Filing
- 2013-11-11 CN CN201380003307.0A patent/CN103999366B/zh active Active
- 2013-11-11 EP EP13840125.2A patent/EP2787637B1/en active Active
- 2013-11-11 JP JP2014514653A patent/JP5583875B1/ja active Active
-
2014
- 2014-03-28 US US14/228,422 patent/US8901803B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004343359A (ja) | 2003-05-14 | 2004-12-02 | Fujitsu Media Device Kk | 弾性表面波素子の製造方法 |
JP2005252550A (ja) | 2004-03-03 | 2005-09-15 | Fujitsu Media Device Kk | 接合基板、弾性表面波素子および弾性表面波デバイス |
WO2009081651A1 (ja) * | 2007-12-25 | 2009-07-02 | Murata Manufacturing Co., Ltd. | 複合圧電基板の製造方法 |
JP2010232725A (ja) * | 2009-03-25 | 2010-10-14 | Ngk Insulators Ltd | 複合基板、それを用いた弾性波デバイス及び複合基板の製法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2787637A4 |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10211389B2 (en) * | 2013-07-25 | 2019-02-19 | Ngk Insulators, Ltd. | Composite substrate |
US20160133823A1 (en) * | 2013-07-25 | 2016-05-12 | Ngk Insulators, Ltd. | Composite substrate and method of producing the same |
TWI721091B (zh) * | 2016-02-02 | 2021-03-11 | 日商信越化學工業股份有限公司 | 複合基板及複合基板之製造方法 |
CN108702141A (zh) * | 2016-02-02 | 2018-10-23 | 信越化学工业株式会社 | 复合基板及复合基板的制造方法 |
JP2019169983A (ja) * | 2016-02-02 | 2019-10-03 | 信越化学工業株式会社 | 複合基板および複合基板の製造方法 |
CN108702141B (zh) * | 2016-02-02 | 2022-06-03 | 信越化学工业株式会社 | 复合基板及复合基板的制造方法 |
US11245377B2 (en) | 2016-02-02 | 2022-02-08 | Shin-Etsu Chemical Co., Ltd. | Composite substrate and method of manufacturing composite substrate |
JP7509185B2 (ja) | 2017-03-27 | 2024-07-02 | 住友電気工業株式会社 | 積層体およびsawデバイス |
JPWO2018180418A1 (ja) * | 2017-03-27 | 2020-02-06 | 住友電気工業株式会社 | 積層体およびsawデバイス |
JP7247885B2 (ja) | 2017-03-27 | 2023-03-29 | 住友電気工業株式会社 | 積層体およびsawデバイス |
KR102282238B1 (ko) | 2018-02-13 | 2021-07-27 | 엔지케이 인슐레이터 엘티디 | 압전성 재료 기판과 지지 기판의 접합체 |
DE112018006860B4 (de) | 2018-02-13 | 2022-06-30 | Ngk Insulators, Ltd. | Verbundener Körper aus einem Substrat aus einem piezoelektrischen Material und einem Trägersubstrat |
WO2019159555A1 (ja) * | 2018-02-13 | 2019-08-22 | 日本碍子株式会社 | 圧電性材料基板と支持基板との接合体 |
JPWO2019159555A1 (ja) * | 2018-02-13 | 2020-02-27 | 日本碍子株式会社 | 圧電性材料基板と支持基板との接合体 |
JP7210497B2 (ja) | 2018-02-13 | 2023-01-23 | 日本碍子株式会社 | 圧電性材料基板と支持基板との接合体 |
US10998878B2 (en) | 2018-02-13 | 2021-05-04 | Ngk Insulators, Ltd. | Joined body of piezoelectric material substrate and support substrate |
KR20200096987A (ko) * | 2018-02-13 | 2020-08-14 | 엔지케이 인슐레이터 엘티디 | 압전성 재료 기판과 지지 기판의 접합체 |
JP2020102856A (ja) * | 2018-02-13 | 2020-07-02 | 日本碍子株式会社 | 圧電性材料基板と支持基板との接合体 |
JP7124088B2 (ja) | 2018-06-21 | 2022-08-23 | ジーナン ジンジョン エレクトロニクス カンパニー リミテッド | 複合単結晶薄膜 |
JP2021508088A (ja) * | 2018-06-21 | 2021-02-25 | ジーナン ジンジョン エレクトロニクス カンパニー リミテッド | 複合単結晶薄膜 |
WO2021215466A1 (ja) * | 2020-04-21 | 2021-10-28 | 京セラ株式会社 | 接合基板 |
JPWO2021235496A1 (ja) * | 2020-05-20 | 2021-11-25 | ||
JP7199571B2 (ja) | 2020-05-20 | 2023-01-05 | 日本碍子株式会社 | 電気光学素子用複合基板 |
WO2021235496A1 (ja) * | 2020-05-20 | 2021-11-25 | 日本碍子株式会社 | 電気光学素子用複合基板 |
JP2023040025A (ja) * | 2020-05-20 | 2023-03-22 | 日本碍子株式会社 | 電気光学素子用複合基板 |
JP7401639B2 (ja) | 2020-05-20 | 2023-12-19 | 日本碍子株式会社 | 電気光学素子用複合基板 |
WO2024158037A1 (ja) * | 2023-01-27 | 2024-08-02 | 日本碍子株式会社 | 複合基板、複合基板の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
US20140210316A1 (en) | 2014-07-31 |
US8901803B2 (en) | 2014-12-02 |
JP5583875B1 (ja) | 2014-09-03 |
EP2787637A4 (en) | 2015-07-15 |
EP2787637A1 (en) | 2014-10-08 |
CN103999366B (zh) | 2016-07-06 |
KR101497888B1 (ko) | 2015-03-02 |
JPWO2014077212A1 (ja) | 2017-01-05 |
CN103999366A (zh) | 2014-08-20 |
KR20140093658A (ko) | 2014-07-28 |
EP2787637B1 (en) | 2016-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014077212A1 (ja) | 複合基板及びその製法 | |
WO2014077213A1 (ja) | 複合基板 | |
JP6549054B2 (ja) | 複合基板および複合基板の製造方法 | |
TWI635632B (zh) | 複合基板、彈性波裝置及彈性波裝置的製法 | |
KR102599962B1 (ko) | 산화물 단결정 박막을 구비한 복합 웨이퍼의 제조 방법 | |
KR102554056B1 (ko) | 산화물 단결정 박막을 구비한 복합 웨이퍼의 제조 방법 | |
JP2008301066A (ja) | タンタル酸リチウム(lt)又はニオブ酸リチウム(ln)単結晶複合基板 | |
TWI752264B (zh) | 彈性波元件及其製造方法 | |
KR20180014700A (ko) | 산화물 단결정 박막을 구비한 복합 웨이퍼의 제조 방법 | |
TW201935615A (zh) | 壓電性材料基板與支持基板的接合體 | |
KR20180014702A (ko) | 산화물 단결정 박막을 구비한 복합 웨이퍼의 제조 방법 | |
TWI787486B (zh) | 壓電性單晶基板與支持基板的接合體 | |
WO2020250490A1 (ja) | 複合基板、弾性波素子および複合基板の製造方法 | |
TWI762782B (zh) | 接合體及彈性波元件 | |
JP6761919B1 (ja) | 複合基板および弾性波素子 | |
WO2020250491A1 (ja) | 複合基板、弾性波素子および複合基板の製造方法 | |
WO2024158037A1 (ja) | 複合基板、複合基板の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2014514653 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20147008533 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013840125 Country of ref document: EP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13840125 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |