WO2014077003A1 - 成形性、溶接性に優れた電池ケース用アルミニウム合金板 - Google Patents

成形性、溶接性に優れた電池ケース用アルミニウム合金板 Download PDF

Info

Publication number
WO2014077003A1
WO2014077003A1 PCT/JP2013/069678 JP2013069678W WO2014077003A1 WO 2014077003 A1 WO2014077003 A1 WO 2014077003A1 JP 2013069678 W JP2013069678 W JP 2013069678W WO 2014077003 A1 WO2014077003 A1 WO 2014077003A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
aluminum alloy
alloy plate
weldability
less
Prior art date
Application number
PCT/JP2013/069678
Other languages
English (en)
French (fr)
Inventor
鈴木 健太
安志 大和田
堀 久司
圭治 金森
Original Assignee
日本軽金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本軽金属株式会社 filed Critical 日本軽金属株式会社
Priority to US14/412,327 priority Critical patent/US9885098B2/en
Priority to CN201380028049.1A priority patent/CN104321452B/zh
Priority to CA2872255A priority patent/CA2872255A1/en
Priority to EP13855078.5A priority patent/EP2868761A4/en
Priority to MX2014014184A priority patent/MX2014014184A/es
Priority to KR1020147032647A priority patent/KR101668173B1/ko
Publication of WO2014077003A1 publication Critical patent/WO2014077003A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/14Alloys based on aluminium with copper as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a high-strength aluminum alloy plate excellent in formability and laser weldability, which is used for a secondary battery container such as a lithium ion battery.
  • Al-Mn 3000 series alloys are relatively excellent in strength, formability, and laser weldability, and are therefore used as materials for manufacturing secondary battery containers such as lithium ion batteries. Yes. After forming into a desired shape, it is hermetically sealed by laser welding and used with a secondary battery container. Development has been made on an aluminum alloy plate for a secondary battery container, which is based on an existing 3000 series alloy as well as the 3000 series alloy and has further improved strength and formability.
  • the composition of the aluminum alloy plate is as follows: Si: 0.10 to 0.60 mass%, Fe: 0.20 to 0.60 mass%, Cu: 0.10 to 0.70 mass%, Mn : 0.60 to 1.50 mass%, Mg: 0.20 to 1.20 mass%, Zr: more than 0.12 and less than 0.20 mass%, Ti: 0.05 to 0.25 mass%, B : 0.0010 to 0.02% by mass, comprising the balance Al and inevitable impurities, and having a 45 ° ear ratio of 4 to 7% in the rolling direction in the cylindrical container deep drawing method An aluminum alloy plate for rectangular cross-section battery containers is described.
  • Patent Document 2 Mn: 0.8% by mass or more, 1.8% by mass or less, Mg: more than 0.6% by mass and 1.2% by mass or less, Cu: more than 0.5% by mass, and 1.5% by mass %
  • Fe as an impurity is regulated to 0.5 mass% or less
  • Si is regulated to 0.3 mass% or less
  • the composition consists of the balance Al and inevitable impurities, and the ⁇ 001 ⁇ ⁇ 100> orientation
  • the ratio (C / S) of the orientation density C of ⁇ 123 ⁇ ⁇ 634> orientation is 0.65 or more and 1.5 or less
  • the tensile strength after the final cold rolling is 250 MPa or more and 330 MPa.
  • an aluminum alloy plate for a rectangular battery container having an elongation of 1% or more is described.
  • Patent Document 3 describes an aluminum alloy material for pulse laser welding and a battery case capable of preventing the occurrence of abnormal parts by pulse laser welding of an A1000 series aluminum material and forming a uniform good weld part. .
  • Ti which has been added to suppress the coarsening of crystal grains in the casting process, has an adverse effect on the welded portion, and an abnormal portion is formed when A1000 series aluminum is welded by pulse laser welding.
  • Ti contained in pure aluminum should be regulated to less than 0.01% by mass.
  • Patent Document 4 describes an aluminum alloy plate excellent in laser weldability that does not generate irregular beads when laser welding an A1000 series aluminum material.
  • the aluminum alloy plate contains Si: 0.02 to 0.10% by mass, the Fe content is limited to 0.30% by mass or less, the balance is Al and inevitable impurities, and the equivalent circle diameter is 1
  • the number of intermetallic compound particles of 0.5 to 6.5 ⁇ m may be regulated to 1000 to 2400 / mm 2 .
  • the 1000 series has a high elongation value, excellent formability, and the number of abnormal beads in laser welding is reduced, so that the weldability is stabilized. Therefore, as the size of the lithium ion battery increases, it is expected that high strength characteristics are also required, and it is conceivable to apply a relatively thick 1000 series aluminum plate as it is. Incidentally, in recent years, it has become common for a lithium ion battery container made of an aluminum alloy and its lid to be joined by pulse laser welding. As described above, a relatively thick 1000-series plate has excellent formability and a reduced number of abnormal beads, but may have good thermal conductivity. It is necessary to perform bonding under harsher conditions, for example, by increasing the energy.
  • the present invention has been devised to solve such problems, has a thickness applicable to a large-sized lithium ion battery container, has excellent moldability, and is also laser weldable.
  • An object of the present invention is to provide an excellent 1000 series aluminum alloy plate.
  • the aluminum alloy plate for battery cases having excellent formability and weldability is an aluminum alloy plate manufactured from a DC cast slab in order to achieve the object, and includes Si: 0.01 to 0.4. Contains mass%, Fe: 0.01 to 0.5 mass%, Co: 0.002 to 0.3 mass%, consisting of balance Al and impurities, Cu as impurity is limited to less than 0.2 mass% And a metal structure in which the number of second phase particles having an equivalent circle diameter of 3 ⁇ m or more is less than 110 to 1000 particles / mm 2 . Those exhibiting an elongation value of 30% or more are preferred.
  • the aluminum alloy plate of the present invention has high thermal conductivity, excellent formability, and excellent laser weldability, a secondary battery container with excellent sealing performance can be manufactured at low cost. Can do.
  • Al-Co-Fe reaction diagram Al-Co-Fe ternary phase diagram (liquid phase diagram) Conceptual diagram explaining how to measure / evaluate the number of weld defects
  • Secondary batteries are manufactured by putting an electrode body in a container and then sealing it with a lid by welding or the like.
  • a secondary battery when charging, the temperature inside the container may rise and the pressure inside the container may increase. For this reason, if the strength of the material forming the container is low, there is a problem that the produced container is greatly swollen. Therefore, when a 1000 series aluminum alloy plate is selected as the material to be used, it is necessary to design a relatively thick container. Further, since a press method is generally used as a method for forming a container, the material itself is required to have excellent press formability.
  • a welding method is used as a method of sealing with a lid, it is also required to have excellent weldability.
  • a laser welding method is used as a welding method for manufacturing a secondary battery container or the like.
  • (1) stability of the weld bead width, stability of the penetration depth, and (2) suppression of generation of weld defects such as undercut and blowhole in the weld bead can be cited as problems.
  • the weld bead width is stable, and weld defects such as undercut and blowhole in the weld bead are reduced.
  • 1000 series aluminum alloy plates have good thermal conductivity, in order to perform pulsed laser welding of thick materials, the energy per pulse is increased, for example, under more severe conditions. Need to do.
  • the surface temperature of the weld bead during joining locally reaches a high temperature of 2000 ° C. or higher by irradiation with such a pulse laser.
  • Aluminum is considered to be a highly reflective material and reflects about 70% of the laser beam.
  • the second phase particles existing in the vicinity of the surface of the aluminum alloy plate for example, intermetallic compounds such as Al 3 Fe and Al—Fe—Si, have a specific heat and heat conduction even at room temperature as compared with the parent phase aluminum. The rate is small and the temperature rises preferentially. The thermal conductivity of these intermetallic compounds further decreases with increasing temperature, the light absorption rate thereof increases at an accelerated rate, and only the intermetallic compounds are rapidly heated and dissolved.
  • the irradiation time of one pulse of the pulse laser is a very short time of nanoseconds or femtoseconds. Therefore, when the ⁇ -Al in the matrix dissolves and transitions to the liquid phase, the intermetallic compounds such as Al 3 Fe and Al—Fe—Si rapidly reach the boiling point and evaporate. Inflates the volume.
  • the inventors of the present invention are due to the intermetallic compound generated when casting the original slab of the 1000 series aluminum alloy plate.
  • the present inventors succeeded in significantly reducing the number of welding defects in the weld bead by using a 1000 series aluminum alloy as a base and further containing Co: 0.002 to 0.3% by mass. Reached.
  • the inventors of the present invention have made extensive studies to obtain an aluminum alloy plate excellent in laser weldability through investigation of the number of undercuts and blowholes that are excellent in press formability, as well as laser weldability, and reached the present invention. .
  • the contents will be described below.
  • Fe 0.01 to 0.5% by mass Since Fe is an element constituting Al 3 Fe and Al—Fe—Si which are intermetallic compounds, it is desirable to reduce the content thereof as much as possible in order to reduce welding defects. However, when the Fe content is less than 0.01% by mass, a high-purity aluminum ingot is used, which is not preferable because the cost cannot be increased. When the Fe content exceeds 0.5% by mass, a coarse intermetallic compound of Al 3 Fe crystallizes during DC slab casting, and the formability in the final plate decreases, and this intermetallic compound becomes Al during laser welding.
  • the Fe content is in the range of 0.01 to 0.5% by mass.
  • a more preferable Fe content is in the range of 0.02 to 0.5% by mass.
  • a more preferable Fe content is in the range of 0.02 to 0.48 mass%.
  • Si 0.01 to 0.4 mass% Si is an element that lowers formability, and is easy to crystallize at the grain boundary as elemental Si, and is also an element that promotes crystallization of Al—Fe—Si during DC slab casting. Therefore, in order to reduce welding defects, it is desirable to reduce the content as much as possible.
  • Si content is less than 0.01% by mass, a high-purity aluminum ingot is used, and an increase in cost cannot be avoided.
  • the Si content exceeds 0.4% by mass, a coarse intermetallic compound of Al—Fe—Si crystallizes during DC slab casting, and the formability in the final plate decreases, and this intermetallic compound is produced during laser welding.
  • the Si content is in the range of 0.01 to 0.4 mass%.
  • a more preferable Si content is in the range of 0.02 to 0.4 mass%.
  • a more preferable Si content is in the range of 0.02 to 0.38 mass%.
  • Co 0.002 to 0.3% by mass
  • Co is an extremely important element because it forms very fine eutectic Al 9 Co 2 clusters in the liquid phase of the solidifying slab.
  • clusters of the eutectic Al 9 Co 2 is generated earlier than the eutectic Al 3 Fe, it is believed to act as nuclei for the eutectic Al 3 Fe. Therefore, Co, if the range of the initial concentration ratio of the appropriate Co / Fe, irrespective of the cooling rate during solidification, eutectic Al 3 Fe increases the density of the crystallization site of eutectic Al 3 There is an effect of miniaturizing Fe. When the Co content is less than 0.002% by mass, the above effects are not exhibited.
  • the Co content is in the range of 0.002 to 0.3% by mass.
  • a more preferable Co content is in the range of 0.003 to 0.3 mass%.
  • a more preferable Co content is in the range of 0.005 to 0.1% by mass.
  • the inventors have a transition element Co having a boiling point higher than that of Al, and by incorporating Co into a 1000 series aluminum alloy, for example, intermetallic compounds such as Al 3 Fe and Al—Fe—Si. It was assumed that a new intermetallic compound in which Fe, which is a transition element therein, was substituted with Co was generated as a metastable phase during casting solidification. And it was guessed that this new intermetallic compound that would have remained up to the final plate had a high boiling point and was difficult to vaporize during laser welding. However, the result of identification of the intermetallic compound by X-ray diffraction in the final plate completely denied this guess.
  • FIG. 2 shows the liquid phase surface of the Al—Co—Fe ternary system.
  • a eutectic reaction such as Al (L) ⁇ eutectic Al + Al 9 Co 2 occurs, and a eutectic structure composed of eutectic Al and Al 9 Co 2 is generated.
  • the composition Q in FIG. 2 schematically shows the case where the initial Co / Fe concentration ratio is 1, but the initial Co / Fe concentration ratio is smaller than 1, for example, 0.05.
  • the Co / Fe concentration ratio in the liquid phase after crystallization of the primary crystal ⁇ -Al gradually increases, but the (composition, temperature) of the liquid phase is the eutectic line ( It reaches the lower side (low temperature side) of Al (L) ⁇ eutectic Al + Al 9 Co 2 ). That is, even in the same supercooled state, eutectic Al 9 Co 2 is crystallized before eutectic Al 3 Fe.
  • eutectic Al 9 Co 2 is a very fine cluster at the initial stage of generation.
  • these clusters can be nuclei of the eutectic Al 3 Fe depending on the Co / Fe concentration ratio in the liquid phase. Therefore, the formation of fine eutectic Al 9 Co 2 clusters earlier in the supercooled state means homogeneous nucleation for eutectic Al 9 Co 2 , and in some cases for eutectic Al 3 Fe. It also means heterogeneous nucleation.
  • the eutectic Al 9 Co 2 clusters formed in the liquid phase are considered to act as homogeneous nuclei.
  • this cluster serves as a nucleus for eutectic Al within an appropriate initial concentration ratio of Co / Fe. 3 Fe crystallizes out, and as a result, eutectic Al 3 Fe is refined.
  • Co can be a refining agent for eutectic Al 3 Fe.
  • Cu as an inevitable impurity less than 0.2% by mass Cu as an inevitable impurity may be contained in an amount of less than 0.2% by mass.
  • the Cu content when the Cu content is in the range of less than 0.2% by mass, properties such as formability and laser weldability are not deteriorated. If the Cu content is 0.2% by mass or more, the number of welding defects at the time of laser welding increases and the weldability decreases, which is not preferable.
  • the second phase particle number of circle or equivalent diameter 3 ⁇ m in the metal structure in the weld bead 110 to 1000 / mm 2 lower than laser welding cut, in order to reduce the welding defects such as blow holes, made from DC cast slab It is necessary that the number of second phase particles having an equivalent circle diameter of 3 ⁇ m or more in the metal structure of the final plate is 110 to less than 1000 particles / mm 2 . If it has such a metal structure, the existence density of intermetallic compounds such as Al 3 Fe, which is relatively coarse in terms of probability, becomes low, and welding defects such as undercuts and blowholes in laser welding bead Can be reduced.
  • the number of second phase particles having an equivalent circle diameter of 3 ⁇ m or more in the metal structure of the final plate manufactured from the DC cast slab can be made to be less than 110 to less than 1000 particles / mm 2 .
  • Cold-rolled annealed material When applying a 1000 series aluminum alloy plate to a large-sized lithium ion battery container or the like at an elongation value of 30% or more, it has not only excellent laser weldability but also excellent formability. is necessary. The formability of the material can be known from the value of elongation during the tensile test. The details will be given in the description of Examples described later. As the 1000 series aluminum alloy plate of the present invention applied to a large-sized lithium ion battery container or the like, those having a characteristic that the elongation value is 30% or more are suitable.
  • the molten aluminum alloy melted in the melting furnace may be cast after it is once transferred to the holding furnace, but may be cast directly from the melting furnace.
  • a more desirable sedation time is 45 minutes or more.
  • in-line degassing or filtering may be performed.
  • In-line degassing is mainly of a type in which an inert gas or the like is blown into a molten aluminum from a rotating rotor, and hydrogen gas in the molten metal is diffused and removed in bubbles of the inert gas.
  • nitrogen gas is used as the inert gas, it is important to control the dew point to, for example, ⁇ 60 ° C. or lower.
  • the amount of hydrogen gas in the ingot is preferably reduced to 0.20 cc / 100 g or less.
  • the amount of hydrogen gas in the ingot is large, porosity is generated in the final solidified portion of the ingot. Therefore, the reduction rate per pass in the hot rolling process is restricted to, for example, 7% or more, and the porosity is crushed. There is a need.
  • hydrogen gas that is supersaturated in the ingot is deposited during laser welding after forming the final plate, depending on the conditions of the homogenization treatment before the hot rolling process, and a large number of blown gases are blown into the beads. In some cases, holes are generated. For this reason, the more preferable amount of hydrogen gas in the ingot is 0.15 cc / 100 g or less.
  • the cast ingot is manufactured by semi-continuous casting (DC casting).
  • DC casting semi-continuous casting
  • the solidification cooling rate at the center portion of the ingot is about 1 ° C./sec.
  • a relatively coarse intermetallic compound such as Al-Fe-Si is crystallized from the molten aluminum alloy at the center of the ingot.
  • the casting speed in semi-continuous casting depends on the width and thickness of the ingot, it is usually 50 to 70 mm / min in consideration of productivity.
  • the flow rate of molten aluminum depends on the degassing conditions such as the flow rate of the inert gas. The smaller the (supply amount), the better the degassing efficiency in the tank, and it is possible to reduce the amount of hydrogen gas in the ingot.
  • a more desirable casting speed is 30 to 40 mm / min.
  • productivity is lowered, which is not desirable.
  • Homogenization treatment is performed on an ingot obtained by casting by a semi-continuous casting method at 420 to 620 ° C. for 1 hour or longer .
  • the homogenization process is a process in which the ingot is kept at a high temperature to facilitate rolling, and casting segregation and elimination of residual stress inside the ingot are performed.
  • it is necessary to hold at a holding temperature of 420 to 620 ° C. for 1 hour or longer.
  • it is also a process for dissolving the transition elements constituting the intermetallic compound crystallized during casting to some extent in the matrix.
  • a more preferable homogenization temperature is 420 to 600 ° C.
  • the ingot held at a high temperature for a predetermined time in the hot rolling process is suspended by a crane after homogenization and brought to the hot rolling mill. Depending on the type of hot rolling mill, it is usually how many times. It is hot-rolled by such a rolling pass and wound around a coil as a hot-rolled sheet having a predetermined thickness, for example, about 4 to 8 mm.
  • the coil wound with the hot rolled sheet is passed through a cold rolling machine and usually subjected to several passes of cold rolling.
  • an intermediate annealing treatment is performed as necessary.
  • the intermediate annealing is also a softening treatment, so that depending on the material, a cold rolled coil may be inserted into the batch furnace and kept at a temperature of 300 to 450 ° C. for 1 hour or longer.
  • the holding temperature is lower than 300 ° C., softening is not promoted, and when the holding temperature exceeds 450 ° C., the processing cost increases.
  • the intermediate annealing can also serve as a solution treatment if it is kept within a temperature of 400 ° C. to 550 ° C. within 15 seconds by a continuous annealing furnace and then rapidly cooled.
  • the holding temperature is lower than 400 ° C., softening is not promoted, and when the holding temperature exceeds 550 ° C., there is a risk of swelling.
  • the final annealing performed after the final cold rolling may be, for example, a batch process in which an annealing furnace is maintained at a temperature of 300 to 500 ° C. for 1 hour or longer. If it is kept at a temperature of 550 ° C. within 15 seconds and then cooled rapidly, it can also serve as a solution treatment.
  • final annealing is not necessarily essential in the present invention, but it is desirable that the final plate has a certain degree of elongation in consideration of formability in normal DI molding. Considering the moldability in the mold forming process, it is desirable to use an annealed material or a solution treated material. When the mechanical strength is prioritized over the moldability, it is provided as a cold rolled material.
  • the final cold rolling rate is preferably in the range of 50 to 90%. If the final cold rolling rate is within this range, the average grain size of recrystallized grains in the final plate after annealing can be set to 20 to 100 ⁇ m, and the elongation value can be set to 30% or more. I can finish it neatly. A more preferable final cold rolling rate is in the range of 60 to 90%. On the other hand, the final cold rolling rate when the material is cold rolled without being subjected to final annealing is preferably in the range of 5 to 40%. If the ironing process increases during DI molding, it is necessary to provide a final plate that is slightly harder than the annealed material. A more preferable final cold rolling rate is in the range of 10 to 30%. An aluminum alloy plate for a secondary battery container can be obtained through the normal steps as described above.
  • the embodiment described below is constituted by “an embodiment using a die casting material” and “an embodiment using a DC casting material”.
  • evaluation of formability and laser weldability and measurement of the number of second phase particles were performed, respectively.
  • the evaluation results obtained by the two examples would coincide.
  • the dimensions of the DC cast slab and the die cast slab differ greatly, for example, the solidification cooling rate at the center of the slab is also different, and there is a large difference in the size of the second phase particles in the metal structure of the final plate.
  • the aluminum alloy plate of the present invention is intended for cold-rolled plates and cold-rolled annealed plates manufactured from DC cast slabs through a normal process. Therefore, the appropriate range of the component composition specified in this claim is determined based on the “Examples using the die casting material”, and the appropriate range of the metal structure is also determined based on the “Examples using the DC cast material”. did.
  • Example of mold casting material Preparation of Final Plate Various predetermined ingots were weighed and blended, and 6 kg each (total 8 test materials) of ingots were inserted and loaded into a # 20 crucible coated with a release material. These crucibles are inserted into an electric furnace and melted at 780 ° C. to remove the soot, and then the molten metal temperature is maintained at 760 ° C. Then, a lance is inserted into the molten metal, and N 2 gas is supplied at a flow rate of 1 Degassing treatment was performed by blowing at 10 L / min for 10 minutes.
  • the ingot was chamfered by 2 mm on each side after cutting the hot water to a thickness of 26 mm.
  • This ingot is inserted into an electric heating furnace, heated to 430 ° C. at a temperature rising rate of 100 ° C./hr, homogenized at 430 ° C. ⁇ 1 hour, and subsequently heated to a thickness of 6 mm with a hot rolling mill. It hot-rolled until it became.
  • the hot-rolled sheet was cold-rolled without subjecting it to an intermediate annealing treatment to obtain a 1 mm cold-rolled sheet.
  • the final cold rolling rate in this case was 83%.
  • this cold-rolled sheet was inserted into an annealer, and after annealing at 390 ° C. for 1 hour, the cold-rolled sheet was taken out from the annealer and air-cooled.
  • the final plate (each sample material) thus obtained was evaluated for formability and laser weldability and measured for the number of second phase particles.
  • Evaluation of formability Evaluation of formability of the obtained final plate was performed by elongation (%) of a tensile test. Specifically, a JIS No. 5 test piece is collected so that the tensile direction is parallel to the rolling direction, and a tensile test is performed according to JISZ2241, to obtain tensile strength, 0.2% proof stress, and elongation (breaking elongation). It was.
  • test material having an elongation value of 30% or more was considered as good formability ( ⁇ ), and the test material that was less than 30% was considered as poor formability ( ⁇ ). did.
  • Tables 3 and 4 show the moldability evaluation results.
  • Laser welding conditions The final plate obtained was subjected to pulsed laser irradiation to evaluate laser weldability. Using LUMONICS YAG laser welder JK701, frequency 37.5Hz, welding speed 400mm / min, energy per pulse 9.0J, pulse width 1.5msec, shield gas (nitrogen) flow rate 15 (L / min) Under the conditions, two plates of the same test material were butted without gaps between the ends, and pulse laser welding having a total length of 100 mm was performed along the portion.
  • a black defect portion was detected by image editing software, and the area of the black portion defect was calculated by image analysis software.
  • the number of particles corresponding to each equivalent circle diameter was calculated from the black part defect area.
  • the number of black part defects having an equivalent circle diameter of 0.4 mm or more was less than 10, and the number of weld defects was evaluated as good ( ⁇ ), and the equivalent circle diameter of 0.4 mm.
  • the test material in which the number of black part defects as described above was 10 or more was determined as poor weld defect number evaluation (x).
  • the evaluation results of laser weldability are shown in Tables 3 and 4.
  • test materials of Examples 1 to 13 are within the range of the alloy composition of the present invention, and the number of welding defects sufficiently satisfies the standard of less than 10, so that the laser weldability is excellent. It was. Moreover, since the elongation value in the tensile test is 30% or more, the moldability was also excellent.
  • the test materials of Comparative Examples 1 to 3 and 6 to 8 were within the range of the standard composition for elements such as Si, Fe, and Cu, but all had a low Co content of less than 0.001% by mass. Since it was out of the composition range, the number of welding defects was 10 or more, and the laser weldability was poor.
  • the Co content was within the range of the standard composition, but the content of any element of Si, Fe, and Cu was outside the range of the standard composition. Therefore, the number of welding defects was 10 or more, and the laser weldability was inferior.
  • the test material of Comparative Example 4 had an Fe content of 0.70 mass%, which was too high, so the number of welding defects was 24 and the laser weldability was poor.
  • the sample material of Comparative Example 5 had a Si content of 0.42% by mass, so the number of welding defects was 17, and the laser weldability was poor.
  • the test material of Comparative Example 9 had an Fe content of 0.68% by mass and was therefore inferior in laser weldability with 22 welding defects.
  • the sample material of Comparative Example 10 had an Si content of too high, 0.51% by mass, so the number of welding defects was 21 and the laser weldability was poor.
  • the sample material of Comparative Example 11 had a Cu content as high as 0.32% by mass, so the number of welding defects was 19, and the laser weldability was poor.
  • the specimen of Comparative Example 12 had a Cu content that was too high at 0.30% by mass, so the number of welding defects was 18, and the laser weldability was poor.
  • the specimen of Comparative Example 13 had a Cu content of too high, 0.70% by mass, so the number of welding defects was 28 and the laser weldability was poor.
  • the number of second phase particles having an equivalent circle diameter of 3 ⁇ m or more was less than 100 / mm 2 in Examples 1 to 13, and the evaluation was good.
  • the number of second phase particles having an equivalent circle diameter of 3 ⁇ m or more was 100 particles / mm 2 or more, which was poor in evaluation.
  • the evaluation results of the image analysis of the second phase particles in the metal structure of the final plate manufactured from these mold castings coincided with the above-described evaluation results of the laser weldability.
  • Example of DC casting material Preparation of the final plate Predetermined various ingots and scrap materials were weighed and blended and put into a melting furnace and holding furnace. When melted at 800 ° C., 2 kg of degassing flux was charged, and then the molten aluminum in the furnace was sufficiently stirred with a stirring rod. After further sedation for 30 minutes, the soot that floated on the surface of the molten metal was removed with a stir bar, and various ingots and the like were added to the missing components, and the molten metal was further stirred. Thereafter, the sample was further sedated for 40 minutes, and a disk sample was collected with a spoon into a component analysis mold.
  • the molten metal was poured from the outlet to the bowl, and when the molten metal surface reached a predetermined position of the bowl, pouring from the dip tube into the mold was started.
  • the lower mold started to be lowered.
  • the lower mold lowering speed was 50 mm / min in a steady state.
  • a disk sample was collected in a mold for component analysis with a spoon of the molten metal flowing in the bowl during casting. In this way, an ingot having a width of 1350 mm, a thickness of 560 mm, and a length of 3500 mm was cast.
  • Each disk sample was subjected to composition analysis by emission spectroscopic analysis. The final result of the molten metal component analysis is shown in Table 5.
  • the ingot was cut at the front end and rear end, and then the ingot was double-sided by 10 mm on one side with a mill.
  • the ingot was inserted into a homogenization furnace, heated at a temperature increase rate of 30 ° C./hr, and held at 500 ° C. for 1 hour to perform a homogenization process. Thereafter, the ingot was hung with a crane, moved from the homogenization furnace to a hot rolling mill table, hot rolled with a hot rolling mill, and wound around a coil to a thickness of 6 mm. Thereafter, this coil was cold-rolled without intermediate annealing to obtain a cold-rolled sheet having a final thickness of 1.0 mm. Further, the coil was inserted into a batch furnace, held at 400 ° C. for 1 hour, and subjected to a final annealing treatment to obtain a cold-rolled annealing plate.
  • each sample material thus obtained was evaluated for formability and laser weldability and measured for the number of second phase particles.
  • the description is omitted.
  • the number of black part defects having a circle-equivalent diameter of 0.4 mm or more was less than 15 and the number of weld defects was good ( ⁇ ).
  • the test material in which the number of black part defects having a circle-equivalent diameter of 0.4 mm or more was 15 or more was regarded as poor weld defect number evaluation (x). Table 6 shows the evaluation results of formability and laser weldability.
  • the final determination of the number of second phase particles having an equivalent circle diameter of 3 ⁇ m or more was performed by employing the average value of the measurement values at each of the measurement points a to c.
  • the evaluation was good (O).
  • the evaluation was evaluated as defective ( ⁇ ).
  • Table 7 shows the image analysis results and the evaluation results.
  • test materials of Examples 14 and 15 were within the alloy composition range of the present invention, and the number of welding defects sufficiently satisfied less than the standard of 15, and thus were excellent in laser weldability. . Moreover, since the elongation value in the tensile test is 30% or more, the moldability was also excellent.
  • the test materials of Comparative Examples 14 and 15 were within the range of the standard composition for elements such as Si, Fe, and Cu, but the Co content was as low as less than 0.001% by mass, and was outside the range of the standard composition Therefore, the number of welding defects was 15 or more, and the laser weldability was inferior.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Laser Beam Processing (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 大型リチウムイオン電池容器に適用可能な高強度を有しており、しかも成形性にも優れ、さらにレーザー溶接性にも優れた1000系アルミニウム合金板を提供する。 DC鋳造スラブから製造されたアルミニウム合金板であって、Si:0.01~0.4質量%、Fe:0.01~0.5質量%、Co:0.002~0.3質量%を含有し、残部Alおよび不純物からなり、不純物としてのCuが0.2質量未満%に制限された成分組成と、円相当径3μm以上の第2相粒子数が110~1000個/mm未満である金属組織を有するアルミニウム合金板。 その冷延焼鈍板は、30%以上の伸びの値を呈する。

Description

成形性、溶接性に優れた電池ケース用アルミニウム合金板
 本発明は、リチウムイオン電池などの二次電池用容器に用いられる、成形性、レーザー溶接性に優れた高強度のアルミニウム合金板に関するものである。
 Al-Mn系の3000系合金は、強度、成形性及びレーザー溶接性が比較的優れているため、リチウムイオン電池などの二次電池用容器を製造する際の素材として使用されるようになっている。所望形状に成形後にレーザー溶接によって封止密封して二次電池用容器と使用とするものである。前記3000系合金とともに既存の3000系合金をベースとして、さらに強度及び成形性を高めた二次電池容器用アルミニウム合金板に関する開発もなされてきた。
 例えば特許文献1では、アルミニウム合金板の組成として、Si:0.10~0.60質量%、Fe:0.20~0.60質量%、Cu:0.10~0.70質量%、Mn:0.60~1.50質量%、Mg:0.20~1.20質量%、Zr:0.12を超え0.20質量%未満、Ti:0.05~0.25質量%、B:0.0010~0.02質量%を含有し、残部Alと不可避的不純物とからなり、円筒容器深絞り成形法で圧延方向に対する45°耳率が4~7%であることを特徴とする矩形断面電池容器用アルミニウム合金板が記載されている。
 一方、最近では、電池ケースとして十分な強度と絞り‐しごき加工性、クリープ特性を有し、レーザー溶接性に優れ、充放電サイクル時のケース厚さ増加を抑制できる角型リチウムイオン電池ケース用アルミニウム合金板も開発されている。特許文献2では、Mn:0.8質量%以上、1.8質量%以下、Mg:0.6質量%を超え1.2質量%以下、Cu:0.5質量%を超え1.5質量%以下を含有し、不純物としてのFeを0.5質量%以下、Siを0.3質量%以下に規制し、残部Alおよび不可避的不純物からなる組成を有し、{001}<100>方位の方位密度Cと{123}<634>方位の方位密度Sとの比(C/S)が0.65以上1.5以下であり、さらに最終冷間圧延後の引張強さが250MPa以上330MPa以下、伸びが1%以上である角型電池容器用アルミニウム合金板が記載されている。
 しかしながら、3000系合金をベースとしてその組成を改良したアルミニウム合金板では、異常ビードが発生する場合があり、レーザー溶接性に問題があることが知られている。
 そこで、1000系をベースとしたレーザー溶接性に優れる二次電池容器用アルミニウム合金板も開発されている。特許文献3では、A1000系アルミニウム材をパルスレーザー溶接により、異常部の発生が防止され、均一に良好な溶接部を形成することができるパルスレーザー溶接用アルミニウム合金材及び電池ケースが記載されている。これによると、従来、鋳造過程における結晶粒の粗大化を抑制するために添加されていたTiが溶接部に悪影響を与えており、パルスレーザー溶接によりA1000系アルミニウムを溶接した時の異常部の形成を防止するためには、純アルミニウム中に含まれるTiを0.01質量%未満に規制すればよいとのことである。
 さらに特許文献4では、A1000系アルミニウム材をレーザー溶接する際、とくに不揃いビードが発生しない、レーザー溶接性に優れたアルミニウム合金板が記載されている。これによると、アルミニウム合金板においてSi:0.02~0.10質量%を含有し、Fe含有量を0.30質量%以下に制限し、残部Alおよび不可避的不純物からなり、円相当直径1.5~6.5μmの金属間化合物粒子の個数を1000~2400個/mmに規制すればよいとのことである。
特許第4001007号公報 特開2010-126804号公報 特開2009-127075号公報 特開2009-256754号公報
 確かに、1000系では伸びの値が高く、成形性に優れ、レーザー溶接における異常ビード数が少なくなるため溶接性が安定する。そこで、リチウムイオン電池の大型化が進む中で、高強度特性も要求されることが予想され、比較的厚肉の1000系のアルミニウム板材をそのまま適用することも考えられる。
 ところで、近年では、アルミニウム合金製のリチウムイオン電池用容器とその蓋は、パルスレーザー溶接により接合されることが一般的となっている。前述のように、比較的厚肉の1000系の板材では、成形性に優れ、異常ビード数は低下するが、熱伝導性が良好なこともあり、パルスレーザー溶接するためには、1パルス当たりのエネルギーを高くする等して、より過酷な条件で接合を行う必要がある。しかしながら、1000系の板材であっても、このように過酷な条件下でレーザー溶接を行うと、溶接ビードにアンダーカット、ブローホールと呼ばれる溶接欠陥が発生することが問題となる。
 本発明は、このような課題を解決するために案出されたものであり、大型リチウムイオン電池容器に適用可能な厚みを有しており、しかも成形性にも優れ、さらにレーザー溶接性にも優れた1000系アルミニウム合金板を提供することを目的とするものである。
 本発明の成形性、溶接性に優れた電池ケース用アルミニウム合金板は、その目的を達成するために、DC鋳造スラブから製造されたアルミニウム合金板であって、Si:0.01~0.4質量%、Fe:0.01~0.5質量%、Co:0.002~0.3質量%を含有し、残部Alおよび不純物からなり、不純物としてのCuが0.2質量未満%に制限された成分組成と、円相当径3μm以上の第2相粒子数が110~1000個/mm未満である金属組織を有することを特徴とする。
 30%以上の伸びの値を呈するものが好ましい。
 本発明のアルミニウム合金板は、高い熱伝導性を有するとともに成形性にも優れ、しかも優れたレーザー溶接性を備えているので、密閉性能に優れた二次電池用容器を低コストで製造することができる。
Al-Co-Fe反応図 Al-Co-Fe三元系状態図(液相面図) 溶接欠陥数の測定/評価方法を説明する概念図
 二次電池は、容器に電極体を入れた後に、溶接等により蓋を付けて密封することによって製造されている。このような二次電池を携帯電話などに使用すると、充電する際、容器内部の温度が上昇して、容器内部の圧力が増加することがある。このため、容器を形作っている材料の強度が低いと製造された容器に大きな膨れが生じるという問題がある。したがって、用いる材料として1000系のアルミニウム合金板を選択する場合、比較的厚肉の容器を設計する必要がある。
 また、容器を形作る方法としてプレス法が用いられるのが一般的であるから、用いる材料自身に優れたプレス成形性を有することが要求される。
 しかも、蓋を付けて密封する方法として溶接法が用いられるので、溶接性に優れることも要求される。そして、二次電池用容器等を製造の際の溶接法としてレーザー溶接法が用いられる場合が多い。
 ところで、レーザー溶接性に関しては、(1)溶接ビード幅の安定性、溶け込み深さの安定性や(2)溶接ビードにおけるアンダーカット、ブローホール等の溶接欠陥生成の抑制、が課題として挙げられる。
 一般的には、容器の材料として1000系のアルミニウム合金板を用いると、溶接ビード幅が安定性し、溶接ビードにおけるアンダーカット、ブローホール等の溶接欠陥が少なくなることが判っている。
 また、1000系のアルミニウム合金板は、熱伝導性が良好であるため、肉厚の材料をパルスレーザー溶接するためには、1パルス当たりのエネルギーを高くする等して、より過酷な条件で接合を行う必要がある。
 このようなパルスレーザーの照射によって、接合中の溶接ビードの表面温度は、局部的に2000℃以上の高温に達すると推測されている。アルミニウムは、高反射材料とされ、レーザービームの約7割を反射するとされている。一方、アルミニウム合金板の表面近傍に存在していた第2相粒子、例えば、AlFe、Al-Fe-Si等の金属間化合物は、母相のアルミニウムに比べ、室温においても比熱、熱伝導率が小さく、優先的に温度が上昇する。これら金属間化合物の熱伝導率は温度上昇とともにさらに低くなり、その光吸収率は加速度的に上昇して、金属間化合物のみが急激に加熱溶解される。
 パルスレーザーの1回のパルスの照射時間は、ナノ秒、フェムト秒という非常に短い時間である。したがって、マトリックスのα-Alが溶解して液相に相転移する頃には、AlFe、Al-Fe-Si等の金属間化合物は、先に沸点に達して蒸発することにより、急激に体積を膨張させる。
 このように局所的に金属間化合物が蒸発することによって、溶接ビードにアンダーカット、ブローホールと呼ばれる溶接欠陥が生じ、容器の気密性の低下を招くことになる。そこで本発明者らは、以上のようなアンダーカット、ブローホールの生成メカニズムを踏まえた上で鋭意検討した結果、1000系アルミニウム合金板の元スラブを鋳造する際に生成した金属間化合物が原因であることをつきとめ、組成として1000系アルミニウム合金をベースとし、さらにCo:0.002~0.3質量%を含有させることにより、溶接ビードにおける溶接欠陥数を著しく低下させることに成功し、本発明に到達した。
 本発明者等は、プレス成形性に優れるとともに、溶接部に発生したアンダーカット、ブローホール数の調査を通じてレーザー溶接性にも優れたアルミニウム合金板を得るべく鋭意検討を重ね、本発明に到達した。
 以下にその内容を説明する。
 まず、本発明の二次電池容器用アルミニウム合金板に含まれる各元素の作用、適切な含有量等について説明する。
Fe:0.01~0.5質量%
 Feは、金属間化合物であるAlFe、Al-Fe-Siを構成する元素であるため、溶接欠陥を低減するためには、できるだけその含有量を減らすことが望ましい。しかしながら、Fe含有量が0.01質量%未満であると、高純度のアルミニウム地金を使用することとなり、コストアップを免れないため、好ましくない。
 Fe含有量が0.5質量%を超えると、DCスラブ鋳造時にAlFeの粗大な金属間化合物が晶出して、最終板における成形性が低下するとともに、この金属間化合物はレーザー溶接時にAlマトリックスに比べ蒸発しやすく、アンダーカット、ブローホール等の溶接欠陥数が増加して溶接性が低下するため、好ましくない。
 したがって、Fe含有量は、0.01~0.5質量%の範囲とする。より好ましいFe含有量は、0.02~0.5質量%の範囲である。さらに好ましいFe含有量は、0.02~0.48質量%の範囲である。
Si:0.01~0.4質量%
 Siは成形性を低下させる元素であり、単体Siとして粒界に晶析出しやすく、DCスラブ鋳造時にAl-Fe-Siの晶出を促進する元素でもある。したがって、溶接欠陥を低減するためには、できるだけその含有量を減らすことが望ましい。しかしながら、Si含有量が0.01質量%未満であると、高純度のアルミニウム地金を使用することとなり、コストアップを免れないため、好ましくない。
 Si含有量が0.4質量%を超えると、DCスラブ鋳造時にAl-Fe-Siの粗大な金属間化合物が晶出し、最終板における成形性が低下するとともに、この金属間化合物はレーザー溶接時にAlマトリックスに比べ蒸発しやすく、アンダーカット、ブローホール等の溶接欠陥数が増加して溶接性が低下するため、好ましくない。
 したがって、Si含有量は、0.01~0.4質量%の範囲とする。より好ましいSi含有量は、0.02~0.4質量%の範囲である。さらに好ましいSi含有量は、0.02~0.38質量%の範囲である。
Co:0.002~0.3質量%
 Coは、凝固中のスラブの液相において、非常に微細な共晶AlCoのクラスターを生成させるため、極めて重要な元素である。適切なCo/Feの初期濃度比の範囲内で、この共晶AlCoのクラスターは共晶AlFeよりも先に生成して、共晶AlFeの核として作用すると考えられる。このため、Coは、適切なCo/Feの初期濃度比の範囲内であれば、凝固時の冷却速度によらず、共晶AlFeの晶出サイトの密度を増加させて共晶AlFeを微細化させる効果がある。
 Co含有量が0.002質量%未満であると上記のような効果が発現しない。Co含有量が0.3質量%を超えると、単に製造コストが増加するため、好ましくない。したがって、Co含有量は、0.002~0.3質量%の範囲とする。より好ましいCo含有量は、0.003~0.3質量%の範囲である。さらに好ましいCo含有量は、0.005~0.1質量%の範囲である。
 当初、本発明者らは、遷移元素であるCoは、Alよりも沸点が高く、1000系アルミニウム合金にCoを含有させることによって、例えば、AlFe、Al-Fe-Si等の金属間化合物中の遷移元素であるFeがCoと置換された新たな金属間化合物が鋳造凝固時に準安定相として生成しているのではないかと仮定していた。そして、最終板まで残存したであろうこの新たな金属間化合物の沸点が高く、レーザー溶接時に気化し難いのではないかと推察した。しかしながら、最終板におけるX線回折による金属間化合物同定の結果は、この上記推察を完全に否定するものであった。
 次に、本発明者らが、現時点で最も可能性の高いと考えるメカニズムについて述べる。まず、図1に示すAl-Co-Fe反応図を考える。この反応図において、液相のAl-Co-Fe合金溶湯中に存在し得る晶出物は、Co濃度、Fe濃度にもよるが、AlFe及びAlCoであることが示されている。もちろん、本発明のAl合金組成は、Co、Fe双方について亜共晶組成であるため、鋳造凝固の初期は、初晶としてα-Alが晶出することになる。
 ところで、Al-Co系二元合金系における共晶温度は657℃であり、Al-Fe系二元合金系における共晶温度は655℃である。ここでは、説明を単純化するため、Si等他の元素の影響を考慮せず、Al-Co-Fe3元系合金の相変態について考察する。図2にAl-Co-Fe三元系の液相面を示す。正確な予測は困難であるが、要するに準平衡状態であれば、組成QのAl-Co-Fe合金溶湯が冷却されてAl液相面よりも低温になると、Al固相面における対応組成のα-Alが晶出し、液相側の組成は、温度低下に伴いAl液相面上を例えば矢印に沿うように変化し、Al-Co共晶線と交わるのである。
 つまり、Al(L)→ 共晶Al+AlCoのような共晶反応が起こり、共晶AlとAlCoとからなる共晶組織が生成する。この共晶反応によって、凝固潜熱が発生するが、相律によると大気圧下(圧力一定の場合)で、自由度(F=C-P+1)は、C=3、P=3であるからF=1となり、この領域の温度は一定ではなく、温度可変である。この共晶反応が終了するまで、この領域の組成は共晶線に沿って変化し、温度は徐々に降下する。もちろん、実際の凝固過程では、非平衡であるから過冷却となり、液相の(組成、温度)の軌跡は、平衡状態図におけるAl液相面よりも下側(低温側)を通過し、さらに共晶線よりも下側(低温側)に到達し、Al(L)→ 共晶Al+AlCoのような共晶反応が起こる。
 注意すべき点は、特に初晶α-Alの晶出温度直下において、α-Al相へのCoの固溶限は、α-Al相へのFeの固溶限よりも小さいことである。つまり、Al-Co-Fe合金溶湯の固液界面におけるCoの平衡分配係数(k=Cs/C)がFeの平衡分配係数に比べて小さいために、非平衡の場合であっても液相中へのCo濃縮がFe濃縮に比べてより速く進むと推定される。この結果、液相中のCo/Feの初期濃度比に比べて、初晶α-Alが晶出した後の液相中のCo/Fe濃度比は、高くなると考えられる。
 したがって、図2における組成Qでは、Co/Feの初期濃度比が1の場合を模式的に示しているが、Co/Feの初期濃度比が1よりも小さい値、例えば、0.05のような場合であっても、初晶α-Alが晶出した後の液相中のCo/Fe濃度比は、除々に高くなりながら、液相の(組成、温度)は、前記共晶線(Al(L)→ 共晶Al+AlCo)の下側(低温側)に到達する。すなわち、同じ過冷却の状態であっても、共晶AlFeよりも先に共晶AlCoが晶出する。
 ところで、共晶AlCoは、その生成初期は非常に微細なクラスターであると考えられる。このような微細な共晶AlCoのクラスターが冷却中の液相に存在する場合に、液相中のCo/Fe濃度比によっては、これらクラスターが共晶AlFeの核となり得る。したがって、過冷却の状態で先に微細な共晶AlCoのクラスターが生成することは、共晶AlCoについての均質核生成を意味し、場合によっては共晶AlFeについての不均質核生成をも意味する。もちろん、図2に示すようにCo/Feの初期濃度比が1の場合、液相中のCo/Fe濃度比は1よりも高くなり、共晶AlFeの晶出は熱力学的に抑制されるとともに、液相中に生成する共晶AlCoのクラスターは均質核として作用すると考えられる。いずれにしても、液相における微細な共晶AlCoのクラスターは均一かつ高密度に生成するため、適切なCo/Feの初期濃度比の範囲内で、このクラスターを核として共晶AlFeが晶出し、結果的に共晶AlFeが微細化される。換言するならば、Coは共晶AlFeの微細化剤になり得る。
 以上が、Co存在下における共晶AlFeの晶出抑制及び微細化のメカニズムである。また、本発明者らは、共晶AlFeよりも共晶AlCoの方が遥かに微細であり、レーザー溶接の際に蒸発し難く、溶接欠陥の原因とはなり難いものと推定している。本発明の合金組成範囲において、0.002~0.3質量%のCoを含有させることにより、共晶AlFeの晶出抑制及び微細化を達成することが可能となり、レーザー溶接の溶接ビードにおけるアンダーカット、ブローホール等の溶接欠陥を低減することができる。
不可避的不純物としてのCu:0.2質量未満%
 不可避的不純物としてのCuは0.2質量%未満含有していてもよい。本発明において、Cu含有量が0.2質量%未満の範囲であれば、成形性及びレーザー溶接性等の特性について低下することはない。Cu含有量が0.2質量%以上であれば、レーザー溶接時の溶接欠陥数が増加して溶接性が低下するため、好ましくない。
その他の不可避的不純物
 不可避的不純物は原料地金、返り材等から不可避的に混入するもので、それらの許容できる含有量は、例えば、Ni、Mo、Zrの各0.1質量%未満、Mn、Mg、Zn、Ti、B、Ga及びVの各0.01質量%未満、Pb、Bi、Sn、Na、Ca、Sr、Nbについては、それぞれ0.005質量%未満、その他各0.02質量%未満であって、この範囲で管理外元素を含有しても本発明の効果を妨げるものではない。
金属組織における円相当径3μm以上の第2相粒子数が110~1000個/mm 未満
 レーザー溶接の溶接ビードにおけるアンダーカット、ブローホール等の溶接欠陥を低減するためには、DC鋳造スラブから製造された最終板の金属組織における円相当径3μm以上の第2相粒子数が110~1000個/mm未満とする必要がある。このような金属組織を有していれば、確率的に見て比較的粗いAlFe等の金属間化合物の存在密度が低くなり、レーザー溶接の溶接ビードにおけるアンダーカット、ブローホール等の溶接欠陥を低減することができる。
 本発明の合金組成範囲において、組成として1000系アルミニウム合金をベースとし、さらにCo:0.002~0.3質量%を含有させることにより、共晶AlFeの微細化を達成することが可能となり、DC鋳造スラブから製造された最終板の金属組織における円相当径3μm以上の第2相粒子数を110~1000個/mm未満とすることができる。
冷延焼鈍材:伸びの値が30%以上
 ところで、1000系アルミニウム合金板を大型リチウムイオン電池容器等に適用するに当たっては、優れたレーザー溶接性を有するだけでなく、成形性にも優れることが必要である。材料の成形性は引張り試験時の伸びの値で知ることができる。
 詳細は後記の実施例の記載に譲るとして、大型リチウムイオン電池容器等に適用する本発明の1000系アルミニウム合金板としては、伸びの値が30%以上なる特性を有するものが好適である。
 次に、上記のような二次電池容器用アルミニウム合金板を製造する方法について簡単に紹介する。
溶解・溶製
 溶解炉に原料を投入し、所定の溶解温度に到達したら、フラックスを適宜投入して攪拌を行い、さらに必要に応じてランス等を使用して炉内脱ガスを行った後、鎮静保持して溶湯の表面から滓を分離する。
 この溶解・溶製では、所定の合金成分とするため、母合金等再度の原料投入も重要ではあるが、前記フラックス及び滓がアルミニウム合金溶湯中から湯面に浮上分離するまで、鎮静時間を十分に取ることが極めて重要である。鎮静時間は、通常30分以上取ることが望ましい。
 溶解炉で溶製されたアルミニウム合金溶湯は、場合によって保持炉に一端移湯後、鋳造を行なうこともあるが、直接溶解炉から出湯し、鋳造する場合もある。より望ましい鎮静時間は45分以上である。
 必要に応じて、インライン脱ガス、フィルターを通してもよい。
 インライン脱ガスは、回転ローターからアルミニウム溶湯中に不活性ガス等を吹き込み、溶湯中の水素ガスを不活性ガスの泡中に拡散させ除去するタイプのものが主流である。不活性ガスとして窒素ガスを使用する場合には、露点を例えば-60℃以下に管理することが重要である。鋳塊の水素ガス量は、0.20cc/100g以下に低減することが好ましい。
 鋳塊の水素ガス量が多い場合には、鋳塊の最終凝固部にポロシティが発生するため、熱間圧延工程における1パス当たりの圧下率を例えば7%以上に規制してポロシティを潰しておく必要がある。
 また、鋳塊に過飽和に固溶している水素ガスは、熱間圧延工程前の均質化処理の条件にもよるが、最終板の成形後のレーザー溶接時に析出して、ビードに多数のブローホールを発生させる場合もある。このため、より好ましい鋳塊の水素ガス量は、0.15cc/100g以下である。
鋳造
 鋳塊は、半連続鋳造(DC鋳造)によって製造する。通常の半連続鋳造の場合は、鋳塊の厚みが一般的には400~600mm程度であるため、鋳塊中央部における凝固冷却速度が1℃/sec程度である。このため、特にFe、Siの含有量が高いアルミニウム合金溶湯を半連続鋳造する場合には、鋳塊中央部にはAl-Fe-Si等の比較的粗い金属間化合物がアルミニウム合金溶湯から晶出する傾向がある。
 半連続鋳造における鋳造速度は鋳塊の幅、厚みにもよるが、通常は生産性も考慮して、50~70mm/minである。しかしながら、インライン脱ガスを行なう場合、脱ガス処理槽内における実質的な溶湯の滞留時間を考慮すると、不活性ガスの流量等脱ガス条件にもよるが、アルミニウム溶湯の流量(単位時間当たりの溶湯供給量)が小さいほど槽内での脱ガス効率が向上し、鋳塊の水素ガス量を低減することが可能である。鋳造の注ぎ本数等にもよるが、鋳塊の水素ガス量を低減するために、鋳造速度を30~50mm/minと規制することが望ましい。さらに望ましい鋳造速度は、30~40mm/minである。勿論、鋳造速度が30mm/min未満であると、生産性が低下するため望ましくない。
均質化処理:420~620℃×1時間以上
 半連続鋳造法により鋳造して得た鋳塊に均質化処理を施す。
 均質化処理は、圧延を容易にするために鋳塊を高温に保持して、鋳造偏析、鋳塊内部の残留応力の解消を行なう処理である。本発明において、保持温度420~620℃で1時間以上保持することが必要である。この場合、鋳造時に晶出した金属間化合物を構成する遷移元素等をマトリックスにある程度固溶させるための処理でもある。この保持温度が低すぎ、或いは保持温度が短い場合には、上記遷移元素等の固溶が進まず、再結晶粒が粗くなり、DI成形後の外観肌が綺麗に仕上がらない虞がある。また、保持温度が高すぎると、鋳塊の水素量にもよるが、膨れを起こすおそれがある。より好ましい均質化処理温度は、420~600℃である。
熱間圧延工程
 所定時間高温に保持された鋳塊は、均質化処理後そのままクレーンで吊るされて、熱間圧延機に持ち来たされ、熱間圧延機の機種にもよるが、通常何回かの圧延パスによって熱間圧延されて所定の厚み、例えば4~8mm程度の熱延板としてコイルに巻き取る。
冷間圧延工程
 熱間圧延板を巻き取ったコイルは、冷延機に通され、通常何パスかの冷間圧延が施される。この際、冷間圧延によって導入される塑性歪により加工硬化が起こるため、必要に応じて、中間焼鈍処理が行なわれる。通常中間焼鈍は軟化処理でもあるので、材料にもよるがバッチ炉に冷延コイルを挿入し、300~450℃の温度で、1時間以上の保持を行なってもよい。保持温度が300℃よりも低いと、軟化が促進されず、保持温度が450℃をこえると、処理コストの増大を招く。また、中間焼鈍は、連続焼鈍炉によって例えば400℃~550℃の温度で15秒以内保持し、その後急速に冷却すれば、溶体化処理を兼ねることもできる。保持温度が400℃よりも低いと、軟化が促進されず、保持温度が550℃をこえると、膨れを起こすおそれがある。
最終焼鈍
 本発明において、最終冷間圧延の後に行なわれる最終焼鈍は、例えば焼鈍炉によって温度300~500℃で1時間以上保持するバッチ処理であってもよいが、連続焼鈍炉によって例えば400℃~550℃の温度で15秒以内保持し、その後急速に冷却すれば、溶体化処理を兼ねることもできる。
 いずれにしても、本発明において最終焼鈍は必ずしも必須ということではないが、通常のDI成形における成形性を考慮すると、最終板はある程度の伸びを有することが望ましい。金型成形工程における成形性も考慮すると、焼鈍材、若しくは溶体化処理材としておくことが望ましい。
 成形性よりも機械的強度を優先する場合には冷延まま材で提供する。
最終冷延率
 最終焼鈍を施す場合の最終冷延率は、50~90%の範囲であることが好ましい。最終冷延率がこの範囲であれば、焼鈍後の最終板における再結晶粒の平均粒径を20~100μmにして、伸びの値を30%以上にすることができ、成形後の外観肌を綺麗に仕上げることができる。さらに好ましい最終冷延率は、60~90%の範囲である。
 一方、最終焼鈍を施さずに冷延まま材とするときの最終冷延率は、5~40%の範囲とすることが好ましい。DI成形時にしごき加工が多くなる場合には、焼鈍材よりも若干硬い最終板を提供する必要がある。さらに好ましい最終冷延率は、10~30%の範囲である。
 以上のような通常の工程を経ることにより、二次電池容器用アルミニウム合金板を得ることができる。
 以下に述べる実施例は、「金型鋳造材による実施例」と「DC鋳造材による実施例」とによって構成されている。ここでは、2つの実施例によって得られた最終板(供試材)について、それぞれ成形性、レーザー溶接性の評価および第2相粒子数の測定を行なった。
 成形性、レーザー溶接性の評価については、2つの実施例によって得られた評価結果は一致することが予想された。しかしながら、DC鋳造スラブと金型鋳造スラブの寸法が大きく異なることから、例えば、スラブ中央部における凝固冷却速度も異なり、最終板の金属組織における第2相粒子のサイズについては、大きな差がある。前述のように、本発明のアルミニウム合金板は、DC鋳造スラブから通常の工程を経て製造される冷延板、冷延焼鈍板を対象としている。したがって、本請求項で規定する成分組成の適正範囲については「金型鋳造材による実施例」に基づいて、同じく金属組織の適正範囲については「DC鋳造材による実施例」に基づいて定めることとした。
金型鋳造材による実施例
最終板の作成
 所定の各種インゴットを計量、配合して、離型材を塗布した#20坩堝に6kgずつ(合計8つの供試材)のインゴットを挿入装填した。これら坩堝を電気炉内に挿入して、780℃で溶解して滓を除去し、その後、溶湯温度を760℃に保持し、次いで、溶湯中にランスを挿入して、Nガスを流量1.0L/minで10分間吹き込んで脱ガス処理を行なった。その後30分間の鎮静を行なって溶湯表面に浮上した滓を攪拌棒にて除去し、さらにスプーンで成分分析用鋳型にディスクサンプルを採取した。
 次いで、治具を用いて順次坩堝を電気炉内から取り出し、予熱しておいた金型(250mm×200mm×30mm)にアルミニウム溶湯を鋳込んだ。各供試材のディスクサンプルは、発光分光分析によって、組成分析を行なった。その結果を表1、表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 鋳塊は、押し湯を切断後、両面を2mmずつ面削して、厚み26mmとした。この鋳塊を電気加熱炉に挿入して、100℃/hrの昇温速度で430℃まで加熱し、430℃×1時間の均質化処理を行い、続いて熱間圧延機にて6mm厚さとなるまで熱間圧延を施した。
 次に、前記熱間圧延板に中間焼鈍処理を施すことなく冷間圧延を施して、1mmの冷延板を得た。この場合の最終冷延率は83%であった。最終焼鈍処理として、この冷延板をアニーラーに挿入して、390℃×1時間焼鈍後、アニーラーから冷延板を取り出して空冷した。
 次に、このようにして得られた最終板(各供試材)について、成形性、レーザー溶接性の評価および第2相粒子数の測定を行なった。
成形性の評価
 得られた最終板の成形性評価は、引張り試験の伸び(%)によって行った。
 具体的には、引張り方向が圧延方向と平行になるようにJIS5号試験片を採取し、JISZ2241に準じて引張り試験を行って、引張強度、0.2%耐力、伸び(破断伸び)を求めた。
 冷延後に焼鈍を施した最終板において、伸びの値が30%以上であった供試材を成形性良好(○)とし、30%未満であった供試材を成形性不良(×)とした。成形性の評価結果を表3、表4に示す。
レーザー溶接条件
 得られた最終板について、パルスレーザー照射を行なって、レーザー溶接性の評価を行なった。LUMONICS社製YAGレーザー溶接機JK701を用いて、周波数37.5Hz、溶接速度400mm/min、パルス当たりのエネルギー9.0J、パルス幅1.5msec、シールドガス(窒素)流量15(L/min)の条件にて、同供試材の2枚の板を端部同士隙間なく、突き合わせて当該部分に沿って全長100mm長さのパルスレーザー溶接を行なった。
レーザー溶接性の評価
溶接欠陥数の測定/評価
 次に、レーザー溶接性の評価として、溶接部に発生した溶接欠陥数を測定した。まず、上記100mm長さの溶接線のうち、溶接スタート部の20mm長さの溶接線を除く、残りの80mm長さの領域を測定領域として決めた。溶接スタート近傍部は不安定なため除いたのである。
 そして、図3に示すように80mm長さの溶接線に沿って形成された溶接ビード断面をX線CT検査によって、溶接線に平行な板厚断面におけるX線CT画像を得た。さらにこのX線CT画像を基にして画像編集ソフトによって黒色欠陥部を検出し、画像解析ソフトにより黒色部欠陥の面積を算出した。この黒色部欠陥面積から各円相当径に対応する粒子数を算出した。
 金型鋳造材による実施例においては、円相当径0.4mm以上である黒色部欠陥の個数が10未満であった供試材を溶接欠陥数評価良好(○)とし、円相当径0.4mm以上である黒色部欠陥の個数が10以上であった供試材を溶接欠陥数評価不良(×)とした。レーザー溶接性の評価結果を、表3、表4に示す。
金属組織の第2相粒子数の測定
 得られた最終板の圧延方向に平行な縦断面(LT方向に垂直な断面)を切り出して、熱可塑性樹脂に埋め込んで鏡面研磨し、フッ化水素酸水溶液にてエッチングを施して、金属組織観察を行った。ミクロ金属組織を光学顕微鏡にて写真撮影し(1視野当たりの面積;0.0334mm、各試料15視野撮影)、写真の画像解析を行い、単位面積(1mm)当たりの円相当径3μm以上の第2相粒子数を測定した。金型鋳造材による実施例においては、円相当径3μm以上の第2相粒子数が100個/mm未満である場合、評価を良好とし、円相当径3μm以上の第2相粒子数100個/mm以上である場合、評価を不良とした。画像解析結果を表3、表4に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
各供試材の評価
 実施例1~13の供試材は、本発明の合金組成の範囲内であり、溶接欠陥の個数も基準の10未満を十分に満足するため、レーザー溶接性に優れていた。しかも、引張り試験における伸びの値も30%以上であるため、成形性にも優れていた。
比較例1~3、6~8の供試材は、Si、Fe、Cu等の元素について規格組成の範囲内であったが、いずれもCo含有量が0.001質量%未満と低く、規格組成の範囲外であったため、溶接欠陥の個数が10以上であり、レーザー溶接性に劣っていた。
 比較例4、5、9~13の供試材は、Co含有量が規格組成の範囲内であったが、Si、Fe、Cuのうち、いずれかの元素の含有量が規格組成の範囲外であったため、溶接欠陥の個数が10以上であり、レーザー溶接性に劣っていた。
 具体的には、比較例4の供試材は、Fe含有量が0.70質量%と高すぎたため、溶接欠陥の個数が24でレーザー溶接性に劣っていた。
 比較例5の供試材は、Si含有量が0.42質量%と高すぎたため、溶接欠陥の個数が17でレーザー溶接性に劣っていた。
 比較例9の供試材は、Fe含有量が0.68質量%と高すぎたため、溶接欠陥の個数が22でレーザー溶接性に劣っていた。
 比較例10の供試材は、Si含有量が0.51質量%と高すぎたため、溶接欠陥の個数が21個でレーザー溶接性に劣っていた。
 比較例11の供試材は、Cu含有量が0.32質量%と高すぎたため、溶接欠陥の個数が19でレーザー溶接性に劣っていた。
 比較例12の供試材は、Cu含有量が0.30質量%と高すぎたため、溶接欠陥の個数が18でレーザー溶接性に劣っていた。
 比較例13の供試材は、Cu含有量が0.70質量%と高すぎたため、溶接欠陥の個数が28でレーザー溶接性に劣っていた。
 各供試材の金属組織における第2相粒子の画像解析の結果、実施例1~13について円相当径3μm以上の第2相粒子数が100個/mm未満であり、評価良好であった。これらに対して、比較例1~13について、円相当径3μm以上の第2相粒子数が100個/mm以上であり、評価不良であった。これら金型鋳造材から製造された最終板の金属組織における第2相粒子の画像解析の評価結果は、前述のレーザー溶接性の評価結果と一致した。
DC鋳造材による実施例
最終板の作成
 所定の各種インゴットおよびスクラップ材を計量、配合して、溶解炉兼保持炉内に投入した。800℃溶解したところで、脱滓用フラックス1kgを2個投入し、次いで、撹拌棒によって、炉内のアルミニウム溶湯を十分に撹拌した。さらに30分間の鎮静を行った後、溶湯表面に浮上した滓を攪拌棒にて除去し、不足している成分について、各種インゴット等を投入添加し、さらに溶湯を撹拌した。その後、さらに40分間の鎮静を行ってスプーンで成分分析用鋳型にディスクサンプルを採取した。
 炉内溶湯の成分分析値の確認の後、出湯口から樋に溶湯を流し、湯面が樋の所定位置まで到達したときに、ディップチューブから鋳型内に注湯を開始した。全ての鋳型において湯面が鋳型の所定位置に達した際に下型を下げ始めた。下型の降下速度は、定常状態で50mm/minであった。鋳造中に樋を流れる溶湯をスプーンで成分分析用鋳型にディスクサンプルを採取した。
このようにして、幅1350mm×厚さ560mm×長さ3500mmの鋳塊を鋳造した。各ディスクサンプルは、発光分光分析によって、組成分析を行なった。その最終的な溶湯成分分析の結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 鋳塊は、先端、後端を切断後、フライスで鋳塊を片面10mmずつ両面面削を施した。
この鋳塊を均質化処理炉に挿入して、30℃/hrの昇温速度で加熱し、500℃で1時間保持して、均質化処理を施した。その後、鋳塊をクレーンで吊して均質化処理炉から熱間圧延機のテーブルに移動させ、熱間圧延機にて熱間圧延を施して、厚さ6mmとしてコイルに巻き取った。その後、このコイルに中間焼鈍を施すことなく、冷間圧延を施して最終厚み1.0mmの冷延板を得た。さらに、コイルをバッチ炉に挿入して、400℃で1時間保持して、最終焼鈍処理を施し、冷延焼鈍板を得た。
 次に、このようにして得られた最終板(各供試材)について、成形性、レーザー溶接性の評価および第2相粒子数の測定を行なった。成形性、レーザー溶接性の評価については、上述の金型鋳造材による実施例の場合と、同様の条件で試験を行い、ほぼ同様の評価を行ったので、その説明を割愛する。
 ただし、DC鋳造材による実施例においては、レーザー溶接性の評価について、円相当径0.4mm以上である黒色部欠陥の個数が15未満であった供試材を溶接欠陥数評価良好(○)とし、円相当径0.4mm以上である黒色部欠陥の個数が15以上であった供試材を溶接欠陥数評価不良(×)とした。成形性、レーザー溶接性の評価結果を表6に示す。
金属組織の第2相粒子数の測定
 得られた最終板の圧延方向に平行な縦断面(LT方向に垂直な断面)を切り出して、熱可塑性樹脂に埋め込んで鏡面研磨し、フッ化水素酸水溶液にてエッチングを施して、金属組織観察を行った。ミクロ金属組織を光学顕微鏡にて写真撮影し(1視野当たりの面積;0.0334mm、各試料15視野撮影)、写真の画像解析を行い、単位面積(1mm)当たりの円相当径3μm以上の第2相粒子数を測定した。なお、DC鋳造材による実施例においては、このような測定を1水準の供試材について、測定箇所a~cを変えて3回繰り返して行った。
 DC鋳造材による実施例においては、円相当径3μm以上の第2相粒子数の最終判定について、a~cの各測定箇所における測定値の平均値を採用して行った。円相当径3μm以上の第2相粒子数が110~1000個/mm未満である場合、評価を良好(○)とした。また、円相当径3μm以上の第2相粒子数が1000個/mm以上である場合、評価を不良(×)とした。画像解析結果およびその評価結果を表7に示す。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
各供試材の評価
 実施例14、15の供試材は、本発明の合金組成範囲内であり、溶接欠陥の個数も基準の15未満を十分に満足するため、レーザー溶接性に優れていた。しかも、引張り試験における伸びの値も30%以上であるため、成形性にも優れていた。比較例14、15の供試材は、Si、Fe、Cu等の元素について規格組成の範囲内であったが、いずれもCo含有量が0.001質量%未満と低く、規格組成の範囲外であったため、溶接欠陥の個数が15以上であり、レーザー溶接性に劣っていた。
 各供試材の金属組織における第2相粒子の画像解析の結果、実施例14、15については、円相当径3μm以上の第2相粒子数が110~1000個/mm未満であり、評価良好(○)であった。これらに対して、比較例14、15については、円相当径3μm以上の第2相粒子数が1000個/mm以上であり、評価不良(×)であった。これらDC鋳造スラブから製造された最終板の金属組織における第2相粒子の画像解析の評価結果は、前述のレーザー溶接性の評価結果と一致した。

Claims (2)

  1.  DC鋳造スラブから製造されたアルミニウム合金板であって、Si:0.01~0.4質量%、Fe:0.01~0.5質量%、Co:0.002~0.3質量%を含有し、残部Alおよび不純物からなり、不純物としてのCuが0.2質量未満%に制限された成分組成と、円相当径3μm以上の第2相粒子数が110~1000個/mm未満である金属組織を有することを特徴とする成形性、溶接性に優れた電池ケース用アルミニウム合金板。
  2.  伸びの値が30%以上あることを特徴とする請求項1に記載の成形性、溶接性に優れた電池ケース用アルミニウム合金板。
PCT/JP2013/069678 2012-11-15 2013-07-19 成形性、溶接性に優れた電池ケース用アルミニウム合金板 WO2014077003A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US14/412,327 US9885098B2 (en) 2012-11-15 2013-07-19 Aluminum alloy plate for battery cases, which has excellent moldability and weldability
CN201380028049.1A CN104321452B (zh) 2012-11-15 2013-07-19 成形性、焊接性优良的电池壳体用铝合金板
CA2872255A CA2872255A1 (en) 2012-11-15 2013-07-19 Aluminum alloy plate for battery cases, which has excellent moldability and weldability
EP13855078.5A EP2868761A4 (en) 2012-11-15 2013-07-19 ALUMINUM ALLOY PLATE FOR BATTERY BOXES THAT HAVE EXCELLENT MOLDABILITY AND EXCELLENT WELDABILITY
MX2014014184A MX2014014184A (es) 2012-11-15 2013-07-19 Placa de aleacion de aluminio para carcasas de baterias, que tienen la capacidad de moldeo excelente y soldabilidad.
KR1020147032647A KR101668173B1 (ko) 2012-11-15 2013-07-19 성형성, 용접성이 우수한 전지 케이스용 알루미늄 합금판

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012250905A JP5954128B2 (ja) 2012-11-15 2012-11-15 成形性、溶接性に優れた電池ケース用アルミニウム合金板の製造方法
JP2012-250905 2012-11-15

Publications (1)

Publication Number Publication Date
WO2014077003A1 true WO2014077003A1 (ja) 2014-05-22

Family

ID=50730928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069678 WO2014077003A1 (ja) 2012-11-15 2013-07-19 成形性、溶接性に優れた電池ケース用アルミニウム合金板

Country Status (9)

Country Link
US (1) US9885098B2 (ja)
EP (1) EP2868761A4 (ja)
JP (1) JP5954128B2 (ja)
KR (1) KR101668173B1 (ja)
CN (1) CN104321452B (ja)
CA (1) CA2872255A1 (ja)
MX (1) MX2014014184A (ja)
TW (1) TWI516608B (ja)
WO (1) WO2014077003A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6536885B2 (ja) * 2015-06-15 2019-07-03 トヨタ自動車株式会社 電池容器の製造方法および電池容器
JP6974957B2 (ja) * 2017-03-31 2021-12-01 日本ケミコン株式会社 アルミ材のレーザキーホール溶接構造及びレーザキーホール溶接方法
JP6831968B1 (ja) * 2020-04-20 2021-02-24 エコ・システム有限会社 冷却曲線からの結晶粒微細化判定方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4926804B1 (ja) * 1970-12-18 1974-07-12
JPH041007B2 (ja) 1982-01-05 1992-01-09 Toyo Tire & Rubber Co
JPH04218636A (ja) * 1990-04-06 1992-08-10 Nippon Light Metal Co Ltd 着色酸化皮膜形成用アルミニウム合金展伸材及びその製造方法
JP2009127075A (ja) 2007-11-21 2009-06-11 Kobe Steel Ltd パルスレーザ溶接用アルミニウム合金材及び電池ケース
JP2009256754A (ja) 2008-04-21 2009-11-05 Sumitomo Light Metal Ind Ltd レーザー溶接性に優れた電池ケース用アルミニウム板
JP2010126804A (ja) 2008-12-01 2010-06-10 Sumitomo Light Metal Ind Ltd 角型容器用アルミニウム合金板
WO2012169412A1 (ja) * 2011-06-07 2012-12-13 日本軽金属株式会社 成形性、溶接性に優れた電池ケース用アルミニウム合金板

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6047342B2 (ja) 1978-07-21 1985-10-21 住友アルミニウム製錬株式会社 廷性のすぐれた衝撃押出用アルミニウム基合金
JP3032548B2 (ja) 1990-04-18 2000-04-17 オーエム機器株式会社 発泡樹脂充填パネルの製造方法および装置
EP0695647B1 (en) * 1994-08-05 1999-01-20 Fuji Photo Film Co., Ltd. Aluminum alloy support for planographic printing plate and method for producing the same
JPH11269591A (ja) 1998-03-19 1999-10-05 Furukawa Electric Co Ltd:The アルミニウム合金フィン材
US6808864B2 (en) * 2001-09-12 2004-10-26 Fuji Photo Film Co., Ltd. Support for lithographic printing plate and presensitized plate
JP4001007B2 (ja) 2002-12-19 2007-10-31 日本軽金属株式会社 矩形断面電池容器用アルミニウム合金板
FR2862894B1 (fr) 2003-11-28 2007-02-16 Pechiney Rhenalu Bande en alliage d'alluminium pour brasage
JP4218636B2 (ja) 2004-12-20 2009-02-04 株式会社日立製作所 可搬メディアを収納する記憶装置
JP4926804B2 (ja) 2007-04-20 2012-05-09 株式会社日立プラントテクノロジー 移載装置
JP4880664B2 (ja) * 2007-12-28 2012-02-22 株式会社神戸製鋼所 パルスレーザ溶接用アルミニウム合金材及び電池ケース
CN101974709B (zh) 2010-09-21 2011-12-14 安徽欣意电缆有限公司 特软铝合金导体及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4926804B1 (ja) * 1970-12-18 1974-07-12
JPH041007B2 (ja) 1982-01-05 1992-01-09 Toyo Tire & Rubber Co
JPH04218636A (ja) * 1990-04-06 1992-08-10 Nippon Light Metal Co Ltd 着色酸化皮膜形成用アルミニウム合金展伸材及びその製造方法
JP2009127075A (ja) 2007-11-21 2009-06-11 Kobe Steel Ltd パルスレーザ溶接用アルミニウム合金材及び電池ケース
JP2009256754A (ja) 2008-04-21 2009-11-05 Sumitomo Light Metal Ind Ltd レーザー溶接性に優れた電池ケース用アルミニウム板
JP2010126804A (ja) 2008-12-01 2010-06-10 Sumitomo Light Metal Ind Ltd 角型容器用アルミニウム合金板
WO2012169412A1 (ja) * 2011-06-07 2012-12-13 日本軽金属株式会社 成形性、溶接性に優れた電池ケース用アルミニウム合金板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2868761A4

Also Published As

Publication number Publication date
EP2868761A1 (en) 2015-05-06
KR20140148497A (ko) 2014-12-31
JP2014098193A (ja) 2014-05-29
CA2872255A1 (en) 2014-05-22
CN104321452B (zh) 2016-08-24
US9885098B2 (en) 2018-02-06
US20150159243A1 (en) 2015-06-11
KR101668173B1 (ko) 2016-10-20
JP5954128B2 (ja) 2016-07-20
EP2868761A4 (en) 2016-04-13
CN104321452A (zh) 2015-01-28
MX2014014184A (es) 2015-02-12
TWI516608B (zh) 2016-01-11
TW201418479A (zh) 2014-05-16

Similar Documents

Publication Publication Date Title
JP5725344B2 (ja) 成形性、溶接性に優れた電池ケース用アルミニウム合金板
JP6780686B2 (ja) 一体型円形防爆弁成形用の電池蓋用アルミニウム合金板及びその製造方法
JP5846032B2 (ja) 成形性、溶接性に優れた電池ケース用アルミニウム合金板
JP5954099B2 (ja) 成形性、放熱性及び溶接性に優れた電池ケース用アルミニウム合金板
JP5725345B2 (ja) 成形性、溶接性に優れた電池ケース用アルミニウム合金板
JP6780679B2 (ja) 一体型防爆弁成形用の電池蓋用アルミニウム合金板およびその製造方法
JP6614305B1 (ja) 一体型防爆弁成形用の電池蓋用アルミニウム合金板及びその製造方法
JP6780680B2 (ja) 一体型防爆弁成形用の電池蓋用アルミニウム合金板およびその製造方法
JP5929855B2 (ja) 成形性、放熱性及び溶接性に優れた電池ケース用アルミニウム合金板
JP5954128B2 (ja) 成形性、溶接性に優れた電池ケース用アルミニウム合金板の製造方法
JP6780685B2 (ja) 一体型防爆弁成形用の電池蓋用アルミニウム合金板及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13855078

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2013855078

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013855078

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2872255

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20147032647

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2014/014184

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 14412327

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE