WO2014076832A1 - 蓄電池制御装置及び蓄電地制御方法 - Google Patents

蓄電池制御装置及び蓄電地制御方法 Download PDF

Info

Publication number
WO2014076832A1
WO2014076832A1 PCT/JP2012/079894 JP2012079894W WO2014076832A1 WO 2014076832 A1 WO2014076832 A1 WO 2014076832A1 JP 2012079894 W JP2012079894 W JP 2012079894W WO 2014076832 A1 WO2014076832 A1 WO 2014076832A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage battery
power
charge
discharge
battery control
Prior art date
Application number
PCT/JP2012/079894
Other languages
English (en)
French (fr)
Inventor
民則 冨田
靖子 志賀
石田 隆張
道樹 中野
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2012/079894 priority Critical patent/WO2014076832A1/ja
Priority to JP2014546819A priority patent/JP5905118B2/ja
Priority to CN201280075468.6A priority patent/CN104584358B/zh
Priority to US14/426,307 priority patent/US9793723B2/en
Publication of WO2014076832A1 publication Critical patent/WO2014076832A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00007Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using the power network as support for the transmission
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00022Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using wireless data transmission
    • H02J13/00026Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using wireless data transmission involving a local wireless network, e.g. Wi-Fi, ZigBee or Bluetooth
    • H02J13/0075
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/10The dispersed energy generation being of fossil origin, e.g. diesel generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/30The power source being a fuel cell
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • H02J3/383
    • H02J3/387
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/50Energy storage in industry with an added climate change mitigation effect
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/123Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/14Energy storage units
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/121Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using the power network as support for the transmission
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/126Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using wireless data transmission

Definitions

  • the present invention relates to a storage area control device and a storage area control method.
  • a so-called microgrid system has been proposed in which a distributed power source is installed in a power system in a specific area to cover much of the power demand in that area.
  • a technology is known that includes a power storage facility and controls charging and discharging of a storage battery according to a power flow from the power system (Patent Document 1). ).
  • Patent Document 2 a technique for switching whether the power generation from the solar power generation apparatus is sold to the grid side or stored in the energy storage apparatus according to the voltage suppression situation that has occurred in the past on the grid side.
  • the above-described useless charging / discharging causes deterioration of the performance of the storage battery and may shorten the life of the storage battery.
  • An object of the present invention is to provide a storage battery control device and a storage battery control method capable of suppressing useless charging / discharging between a plurality of storage batteries provided in an electric power system.
  • a storage battery control device is a device for controlling charge / discharge of a storage battery, and is installed in each of a plurality of storage batteries connected to an electric power system, and connected to a network to control other storage batteries. It has a function of communicating with the device, a function of controlling charging and discharging of each storage battery, and a function of acquiring information on a power system interconnection point flow.
  • the storage battery control device acquires the charge / discharge power amount of each of the storage batteries connected to the power system and the data of the connection point power flow, and based on the charge / discharge power amount and the connection point power flow data, Power demand can be estimated.
  • the storage battery control device compares the power demand with a mode determination threshold prepared in advance for determining the mode of charge / discharge operation of the storage battery based on the power demand, so that the storage battery is in the charge mode or the discharge mode. It is also possible to select which mode to operate, generate predetermined control information including the mode selected from the charge mode or the discharge mode, and control the storage location.
  • At least a part of the configuration of the present invention can be realized as a computer program or a hardware circuit.
  • the computer program can be distributed, for example, via a communication medium such as the Internet, a recording medium such as a hard disk or a flash memory device.
  • charging / discharging between a plurality of storage batteries provided in the power system can be suppressed.
  • power loss during charging, power transmission, and discharging can be reduced and energy can be used effectively.
  • movement is shown.
  • the structural example (2nd Example) of the table for managing an electric power charge is shown.
  • the storage battery control module 110 of this embodiment is connected to an electric power system and includes a storage battery 112 and a storage battery control device 111 as described in detail below.
  • the storage battery control device 111 calculates a power demand in a predetermined consumer 1 provided with a communication unit that transmits / receives data via a network and a storage battery module, and charges / discharges the storage battery 112 based on the power demand in the consumer 1
  • the charging / discharging control part which controls this is provided, and control of the charging / discharging electric energy of a storage battery is possible.
  • FIG. 1 shows a configuration of a power system on the low voltage system side in a predetermined customer 1.
  • a consumer 1 such as a general private house, an apartment house, a commercial building, an office building, or a factory includes a storage battery module 110, an equipment load 20, and a distributed power source 30.
  • the storage battery module 110, the equipment load 20, and the distributed power supply 30 are connected to the low-voltage power system 41 via a consumer distribution line 42.
  • the low-voltage power system 41 is connected to a transformer such as a pole transformer 40, for example.
  • the equipment load 20 is a device that consumes electric power.
  • a lighting device for example, in the case of a house or the like, a lighting device, an air conditioner, a refrigerator, a washing machine, a television device, an audio device, a water heater, and the like are included.
  • a factory or the like for example, a machine tool, an electric motor, a robot, an elevator, or the like.
  • a distributed power source is a device that generates power.
  • a solar power generation device a fuel cell, a cogeneration system, a diesel private power generation device, and the like can be given.
  • the system connection point wattmeter 120 measures the power value at the connection point between the distribution line 42 of the customer 1 and the low voltage side system 41.
  • the grid connection point wattmeter 120 is connected to the network CN1 and transmits the measured connection point power measurement value to the storage battery module 110.
  • a power meter (including a smart meter) installed in the consumer 1 by the power company may be used.
  • the storage battery control module 110 is a device in which a storage battery, a power storage control device that manages charge / discharge of the storage battery, and a communication unit that communicates with the outside are set. In the present embodiment, it is assumed that a plurality of storage battery modules 110 (1) to 110 (3) are connected to the consumer distribution line 42. The storage battery modules 110 (1) to 110 (3) are connected to each other via the communication network CN1.
  • the storage battery modules 110 (1) to 110 (3) are shown, but the customer 1 may have two, four, or five or more storage battery modules. Unless otherwise distinguished, the storage battery modules 110 (1) to 110 (3) are referred to as the storage battery module 110.
  • the communication unit 1111 is a circuit for communicating with other storage battery modules and the like via the communication network CN1.
  • the communication network CN1 is a network for each storage battery module 110 to communicate with, for example, a wireless communication network, PLC (Power Line Communications), wireless or wired LAN (Local Area Network), PHS (Personal Handy-phone System). And so on.
  • the communication unit 1111 receives later-described storage battery charge / discharge information from each of the other storage battery modules 110 via the communication network CN1. Further, the communication unit 1111 receives the connection point power measurement value from the system connection point power meter 120 via the communication network CN1. The communication unit 1111 passes the received connection point power measurement value to the charge / discharge control unit 1112. Moreover, the communication part 1111 acquires storage battery charging / discharging information from the charging / discharging control part 1112, and transmits storage battery charging / discharging information with respect to each other storage battery module via communication network CN1. Furthermore, the communication part 1111 can also transmit the below-mentioned charge remaining amount (electric storage amount) etc. to the other storage battery module 110 via the communication network CN1.
  • the storage battery 112 is configured by connecting a plurality of cells having electrodes and electrolytes.
  • the storage battery 112 can be composed of, for example, a lithium ion storage battery, a lead storage battery, a nickel / hydrogen storage battery, or a sodium / sulfur storage battery.
  • the storage battery module 110 may include a device such as an electric double tank capacitor or a lithium ion capacitor.
  • the charge / discharge control unit 1112 is a control circuit for controlling charging to the storage battery 112 and discharging from the storage battery 112.
  • the charge / discharge control unit 112 can include, for example, an inverter circuit and a microcomputer circuit.
  • the charging / discharging control unit 1112 converts the AC power from the low-voltage side system 41 into DC power and charges the storage battery 112.
  • the charge / discharge control unit 1112 converts the DC power of the storage battery 112 into AC power and supplies it to the low-voltage side system 41.
  • the charge / discharge control unit 1112 measures the amount of charge power to the storage battery 112 and the amount of power supplied to the low-voltage side system 41 (discharge power amount of the storage battery 112) as storage battery charge / discharge information, and measures the measured storage battery charge / discharge.
  • Information can be transmitted from the communication unit 1111 to the other storage battery modules 110 (1) to (3) via the network CN1.
  • the charge / discharge control unit 1112 charges or discharges the storage battery 112 according to the storage battery charge / discharge information of another storage battery module received from the communication unit 1111 and the connection point power measurement value of the system connection point power meter.
  • the charge / discharge control unit 1112 manages the storage amount of the storage battery 112 (current battery remaining amount, SoC (State (of Charge)).
  • the communication part 1111 acquires the charge / discharge electric energy of each other storage battery module 110 (S201). This process is periodically executed at a predetermined cycle.
  • the communication unit 1111 transmits the acquired charge / discharge power amount of each storage battery module 110 to the charge / discharge control unit 1112.
  • the charging / discharging electric energy of each storage battery module 110 treats charging power as a negative value and discharging power as a positive value.
  • As a method of acquiring the charge / discharge power amount from each storage battery module 110 there is a method in which the storage battery module 110 transmits the charge / discharge power amount at a predetermined time interval and the communication unit 1111 receives the charge / discharge power amount.
  • the charge / discharge power amount is the charge / discharge power amount of the storage battery that is planned or implemented at a predetermined time point.
  • the storage battery module 110 transmits the charge / discharge power amount at a predetermined time interval, the actual charge / discharge power amount at the time of transmission is transmitted.
  • the communication unit 1111 acquires the power measurement value of the system connection point from the system connection point wattmeter 120, and transmits the acquired system connection point power to the charge / discharge control unit 1112 (S202).
  • the charge / discharge control unit 1112 calculates the total value of the charge / discharge power amount of each storage battery module acquired in step S201 and the grid connection point power amount acquired in step S202 (S203). This total value is a value (power value) of actual power demand consumed or generated by the customer 1.
  • This actual power value is called estimated actual demand in this embodiment.
  • the estimated actual demand is a positive value
  • the power consumption amount in the customer 1 exceeds the power generation amount, indicating that the power is insufficient.
  • the estimated actual demand is a negative value
  • the power generation amount in the customer 1 exceeds the consumption amount, indicating that the power is surplus.
  • the value of the estimated actual demand is zero, the power consumption amount and the power generation amount in the customer 1 are the same amount, and the power supply and demand are in agreement.
  • the charge / discharge control unit 1112 determines whether the estimated actual demand is greater than 0 (S204). When the estimated actual demand is greater than 0 (S204: Yes), the process proceeds to step S205. When the estimated actual demand is not greater than 0 (S204: No), the process proceeds to step S206.
  • the “discharge mode” is selected (S205).
  • the “charging mode” is selected (S206).
  • the discharge mode is a mode in which the discharge control of the storage battery 112 is possible.
  • the charging mode is a mode in which charging of the storage battery 112 can be controlled. More specifically, the discharge mode is a mode in which charge control of the storage battery 112 is prohibited and discharge control or control without charge / discharge is possible.
  • the charge mode is a mode in which discharge control of the storage battery 112 is prohibited and charge control or control without charge / discharge is possible.
  • the discharge mode can be defined as a mode for prohibiting charging, and the charge mode can be defined as a mode for prohibiting discharge.
  • the charge / discharge control unit 1112 performs charge / discharge control of each storage battery 112 according to the storage battery control mode selected in step S205 or step S206 (S207).
  • FIG. 3 is a flowchart showing the operation of the storage battery module 110. Although this process is performed by the charge / discharge control unit 1112 of the storage battery control device 111, the main component of the operation will be described as the storage battery module 110 for easy understanding.
  • the storage battery module 110 acquires the SoC of the storage battery 112 (S302).
  • the storage battery module 110 determines the control of the storage battery 112 based on the storage battery control mode and the SoC with reference to the charge / discharge operation management table T301 stored in advance (S303).
  • the charge / discharge operation management table T301 is a table for determining the charge / discharge operation of the storage battery 112, and includes, for example, a mode column C301, an SoC column C302, and an operation column C303.
  • the mode column C301 stores the value of the charge / discharge control mode. As already described, the mode value includes a charge mode or a discharge mode.
  • the SoC column C302 the SoC of the storage battery 112 is stored.
  • the operation of the storage battery 112 is stored in the operation column C303.
  • the operation of the storage battery includes charging, discharging, and doing nothing (“-” is set when nothing is done).
  • the storage battery control mode is the charge mode
  • the storage battery 112 does nothing. In this case, since the storage battery 112 has already stored sufficient electric energy, it is not necessary to charge it. Further, since the charging mode is designated, the storage battery 112 is prohibited from discharging. Therefore, when the charging mode is designated and the SoC is higher than the predetermined value, the storage battery module 110 stands by without being charged or discharged.
  • the storage battery control mode is the charging mode
  • the storage battery 112 performs a charging operation if the SoC is equal to or less than a predetermined value. This is because charging is permitted in the charging mode, and sufficient electric energy is not stored in the storage battery 112. Therefore, the storage battery module 110 stores the power generated by the distributed power supply 30 or the power from the low-voltage side system 41 in the storage battery 112.
  • the storage battery control mode is the discharge mode
  • the SoC is higher than a predetermined value
  • the storage battery 112 is discharged. This is because discharging is permitted in the discharge mode, and the storage battery 112 stores sufficient electrical energy.
  • the electric power discharged from the storage battery 112 is supplied to the equipment load 20.
  • the storage battery control mode is the discharge mode, if the SoC is less than or equal to a predetermined value, the storage battery 112 stands by without being charged or discharged. This is because, in the discharge mode, discharge is permitted, but the storage battery 112 does not store sufficient electrical energy.
  • the storage battery module 110 estimates the actual demand of the customer 1, selects the storage battery control mode, selects the charging mode when power is surplus, and if the power is insufficient Select the discharge mode. And storage battery 112 is controlled according to storage battery control mode and SoC.
  • the storage battery control mode is “discharge mode”
  • the storage battery module 110 that is charging the storage battery 112 stops charging. Therefore, in the consumer 1, there are only the storage battery module 110 that is being discharged and the storage battery module 110 that is neither being charged nor discharged. Therefore, it is possible to suppress the occurrence of a situation in which charging and discharging are simultaneously performed between the storage battery modules 110 (1) to 110 (3) connected to the common customer distribution line 42.
  • the storage battery module 110 that is discharging the storage battery 112 stops discharging. Therefore, in the consumer 1, the storage battery module 110 that is charging and the storage battery module that is neither charged nor discharged. Only 110. Therefore, it is possible to suppress the occurrence of a situation in which charging and discharging are performed simultaneously between the storage battery modules 110 (1) to 110 (3) connected to the common customer distribution line 42.
  • the present embodiment it is possible to suppress generation of useless power transfer in which the electric power discharged from one storage battery module 110 is charged to the other storage battery module 110, and to effectively use the storage battery module 110. Can be used, and usability increases. Furthermore, in this embodiment, useless charging / discharging can be suppressed, so that the life of the storage battery modules 110 (1) to 110 (2) can be suppressed from decreasing.
  • each storage battery module 110 generates the storage battery control mode when the value of the charge / discharge power changes in any of the storage battery modules 110 (1) to 110 (3). It is good also as composition which performs.
  • the storage battery control device 111 records the amount of charge / discharge power transmitted last by each of the storage battery modules 110 (1) to 110 (3) in the memory. And when the charging / discharging electric energy which one certain storage battery module 110 transmitted is received, the process of FIG. 2 is started with the reception as a trigger. During the processing, the total value of the latest charge / discharge power amount received from one storage battery module 110 and the charge / discharge power amount (value stored in the memory) of other storage battery modules 110 is used as the total battery power. Can be used.
  • Each storage battery module 110 may transmit the charge / discharge power amount to another storage battery module 110 at different periods. Therefore, using the memory for storing the last charge / discharge power amount received from each of the storage battery modules 110 (1) to 110 (3), any one of the storage battery modules 110 has transmitted the latest charge / discharge power amount. The charge / discharge control information is generated at the same timing.
  • the second embodiment will be described with reference to FIGS.
  • Each of the following embodiments including this embodiment corresponds to a modification of the first embodiment. Therefore, the difference from the first embodiment will be mainly described.
  • the charge / discharge operation can be determined with reference to the power charge.
  • Electricity charges may be set to different values depending on, for example, the time of day or season.
  • a fee is set for each time zone, and evaluation is performed when the fee is high and when the fee is low.
  • FIG. 5 is an example of a power rate management table T501 used in the storage battery control device 111 of the present embodiment.
  • the power rate management table T501 includes, for example, a time zone column C501, a rate column C502, and an evaluation column C503.
  • the time zone column C501 stores a time zone in which power is consumed.
  • the charge column C502 stores a power charge unit price in the time zone.
  • the evaluation column C503 stores the evaluation result of the power rate.
  • the case where the evaluation result indicates that the charge is high is a state where the power charge is higher than a predetermined reference charge.
  • the case where the charge is low is a state where the power charge is equal to or less than a predetermined reference charge.
  • the evaluation when the reference charge is 15 yen / kWh is as shown in C503.
  • the determination process of the charge / discharge operation (S303) )
  • the evaluation of the power rate at the time when the charge / discharge operation is determined is determined with reference to the power rate management table T501.
  • the above fee evaluation is merely an example, and a case where the fee is classified into two states, that is, a high case and a low case, has been described.
  • FIG. 4 is an example of the charge / discharge operation management table T401 used in the storage battery control device 111 of this embodiment.
  • the storage battery control device 111 can determine the operation of the storage battery 112 based on the mode value specified in the storage battery control mode, the power rate evaluation, and the SoC of the storage battery 112.
  • the charge / discharge operation management table T401 includes, for example, a mode column C401, an SoC column C402, an electricity bill column C403, and an operation column C404.
  • the mode column C401 stores the value of the storage battery control mode.
  • the mode value includes a charge mode or a discharge mode.
  • the SoC of the storage battery 112 is stored.
  • SoC is managed by distinguishing it into four states.
  • the first state (F) is a state in which 80% or more of electrical energy (electric power) is stored in the storage battery 112, for example.
  • the second state (H) is a state in which electrical energy is stored in the storage battery 112 in a range of, for example, 50% to less than 80%.
  • the third state (L) is a state where electrical energy is stored in the storage battery 112, for example, less than 50% to 20% or more.
  • the fourth state (E) is a state where electrical energy is stored in the storage battery 112, for example, less than 20%.
  • the above numerical range is only an example and is not limited to the above numerical range. Although the case of distinguishing between four states has been described, a configuration in which the state is managed by distinguishing three or more states may be used.
  • the evaluation of the corresponding charge is stored in the electricity charge evaluation column C403.
  • it evaluates to two states, when an electricity bill is high and when it is low.
  • the operation of the storage battery 112 is stored in the operation column C404.
  • the operation of the storage battery includes charging, discharging, and doing nothing (“-” is set when nothing is done). Further, in the case of a charging operation, it is possible to specify how far to charge. In the case of a discharge operation, it is possible to specify how far to discharge. “Charging (up to F)” in FIG. 4 means charging until the SoC changes from the current state to the first state (F). “Discharge (up to E)” means that the SoC discharges from the current state to the fourth state (E).
  • the storage battery 112 waits without being charged or discharged regardless of the electric charge level. This is because the storage battery 112 has already stored sufficient electric energy.
  • the storage battery 112 waits without doing anything.
  • the storage battery 112 can be charged, but the charge for electricity is high, so the charging is postponed.
  • the storage battery 112 is charged to the first state (F).
  • the storage battery 112 waits without doing anything. Yes, if you want to recharge, but because of the high electricity bill, you will not see it.
  • the storage battery 112 When the charging mode is designated and the SoC is in the third state (L) and the electricity charge is low, the storage battery 112 is charged until it reaches the first state (F). Store as much electricity as possible with low electricity bills.
  • the storage battery 122 is charged until it reaches the third state (L). Since electricity charges are high, only the minimum necessary electricity is stored.
  • the storage battery 122 is charged until the first state (F) is reached. This is to save as much electricity as possible with low electricity charges.
  • the storage battery 112 When the discharge mode is designated and the SoC is in the first state (F), the storage battery 112 is discharged until it reaches the fourth state (E) regardless of the electric charge level.
  • the storage battery 112 is discharged until it reaches the fourth state (E). As described above, while the electricity bill is high, the amount of power purchased from the grid is reduced as much as possible to reduce the economic burden on the user.
  • the storage battery 112 stands by without doing anything. Discharge is possible because it stores a relatively sufficient amount of electrical energy. It is economically beneficial for the user to discharge at a time when electricity charges are high.
  • the storage battery 112 is discharged to the fourth state (E). This is to reduce the economic burden on the user by discharging as much as possible while the electricity bill is high.
  • the storage battery 112 does nothing. Similarly to the above, it is because it is more economical for the user to discharge in a time zone with a higher electricity rate than in a time zone with a lower electricity rate.
  • the storage battery 112 does nothing regardless of the electric charge. This is because the charging operation is prohibited in the discharge mode, and the remaining amount of the storage battery 112 is hardly left.
  • each storage battery control device 111 can determine the operation of the storage battery 112 in consideration of the electricity bill, so that the user convenience is improved.
  • a third embodiment will be described with reference to FIG.
  • a value other than 0 is used as the mode discrimination threshold DP used for selecting either the charge mode or the discharge mode.
  • FIG. 6 is a flowchart showing a storage battery charge / discharge control process according to this embodiment.
  • the estimated actual demand is compared with the mode discrimination threshold DP.
  • the mode discrimination threshold DP for example, a moving average value of past actual values of the customer 1 can be used.
  • the discharge mode is selected (S205), and when the estimated actual demand is not larger than the threshold DP (S204A: No), the charging mode is selected. (S206).
  • the power value of the grid connection point of the customer can be controlled near the threshold value DP.
  • the mode value is selected depending on whether or not the estimated actual demand in the customer 1 is greater than zero.
  • the storage battery module 110 is operated in the always discharge mode.
  • this can be dealt with by setting a value other than 0 to the threshold DP for determining which of the charging mode and the discharging mode is selected. For example, when a certain threshold value such as 10 kWh is set, the grid connection point power close to the threshold value DP can be controlled by charging / discharging the storage battery 112. Preferably, if the moving average value of the past actual value of the estimated actual demand is used as the threshold value DP, it is possible to control such that power fluctuation at the grid connection point is reduced.
  • the value of the mode discrimination threshold DP is controlled according to the amount of power generated by the distributed power supply 30.
  • FIG. 7 is a flowchart showing a storage battery charge / discharge control process according to this embodiment.
  • the storage battery control device 111 determines whether the power generation amount of the distributed power supply 30 exceeds the power generation amount threshold Th (S208). Although illustration is omitted, the storage battery control device 111 is configured to be able to acquire the power generation amount of the distributed power supply 30 directly or indirectly.
  • the storage battery control device 111 sets the value of the mode discrimination threshold DP to 0 (S209).
  • the storage battery control device 111 sets a predetermined value W1 (> 0) as the value of the mode determination threshold DP (S210).
  • This embodiment which is configured in this way, also has the same operational effects as the second embodiment. Furthermore, in this embodiment, when the power generation amount of the distributed power source 30 exceeds the threshold Th, the value of the mode determination threshold DP is set to 0, and when the power generation amount of the distributed power source 30 does not exceed the threshold Th, The mode discrimination threshold DP is set to W1.
  • the distributed power source 30 when the distributed power source 30 is provided and the power generation exceeds the threshold Th, the distributed power source 30 is not provided, or the distributed power source 30 cannot sufficiently generate power.
  • the charge / discharge control of the storage battery module 110 can be changed.
  • the distributed power source 30 is easily affected by the weather, such as a solar power generation device or a wind power generation device, the plurality of storage battery modules 120 can be appropriately managed.
  • the distributed power source 30 is a fuel cell, a cogeneration system, or a diesel in-house power generation device, each storage battery module 110 is appropriately controlled even when the power generation capacity is reduced or lost due to fuel exhaustion or failure. Can do.
  • the storage battery modules 10A, 10B respectively possessed by the plurality of consumers 1A, 1B are managed as the same group so that the charge / discharge operation can be controlled.
  • FIG. 8 shows two consumers 1A and 1B, but it can also handle three or more consumers.
  • the customer 1A includes, for example, an equipment load 20A, a distributed power source 30A, a storage battery module 10A, and a smart meter 130A.
  • the smart meter 130A means a power meter having at least a communication function.
  • the other consumer 1B also includes an equipment load 20B, a distributed power source 30B, a storage battery module 10B, and a smart meter 130B.
  • Each customer 1 ⁇ / b> A, 1 ⁇ / b> B is connected to the pole transformer 51 via the low voltage distribution system 52 and connected to the high voltage distribution system 50 via the pole transformer 51.
  • the storage battery modules 10A, 10B installed in each customer are connected via a communication network CN3 so as to be capable of bidirectional communication.
  • the smart meters 130A and 130B are connected to the smart meter server 131 via the communication network CN2.
  • the smart meter server 131 collects the power consumption of each customer measured by the smart meters 130A and 130B of each customer, and further uses the power consumption of each customer to the storage battery module of each customer via the communication network CN3.
  • the communication networks CN2 and CN3 may be configured by, for example, a wireless LAN, PLC, optical communication, the Internet, or the like.
  • each consumer has one storage battery module, but may have a configuration having two or more storage battery modules.
  • the smart meter server 131 is provided, for example, for the electric power company to collect the amount of electric power used by each consumer in order to calculate the electric power charge.
  • the communication network CN2 is a private network or communication network of the electric power company.
  • CN3 is configured by the Internet.
  • Storage battery modules 10A and 10B include communication units 101A and 101B, charge and discharge control units 102A and 102B, and storage batteries 103A and 103B, respectively.
  • the communication units 101A and 101B are circuits for communicating with other storage battery modules and the like via the communication network CN2.
  • the communication network CN2 is a network through which each storage battery module communicates.
  • a wireless communication network for example, a PLC (Power Line Communications), a wireless or wired LAN (Local Area Network), a PHS (Personal Handy-phone System), etc. It is configured as follows.
  • the communication units 101A and 101B receive storage battery charge / discharge information described later via the communication network CN2. Further, the communication unit receives the power consumption measurement value of the consumer from the smart meter server 131 via the communication network CN2. The communication units 101A and 101B pass the received consumer power consumption measurement values to the charge / discharge control units 102A and 102B. Moreover, communication part 101A, 101B acquires storage battery charging / discharging information from charging / discharging control part 102A, 102B, and transmits storage battery charging / discharging information with respect to another storage battery module via communication network CN2.
  • the storage batteries 103A and 103B are storage batteries capable of charging and discharging electric power having the same function as the storage battery 112 described in FIG.
  • the charge / discharge control units 102A and 102B have the same functions as the charge / discharge control unit 1112 described in FIG. 1, and control for controlling charging to the storage batteries 103A and 103B and discharging from the storage batteries 103A and 103B. Circuit.
  • the charge / discharge control units 102A and 102B can be configured to include, for example, an inverter circuit and a microcomputer circuit.
  • the charging / discharging control units 102A and 102B convert the AC power from the low-voltage side system 51 into DC power and charge the storage batteries 103A and 103B.
  • the charge / discharge control units 102A and 102B convert the DC power of the storage batteries 103A and 103B into AC power and supply the AC power to the low-voltage system 51.
  • the charge / discharge control units 102A and 102B measure the amount of charge power to the storage batteries 103A and 103B and the amount of power supplied to the low-voltage system 51 (discharge power amount of the storage batteries 102A and 102B) as storage battery charge / discharge information.
  • the measured storage battery charge / discharge information can be transmitted from the communication units 101A and 101B to the other storage battery modules 10B and 10A via the network CN2.
  • the charge / discharge control units 102A and 102B are connected to the storage batteries 103A and 103B according to the storage battery charge / discharge information of other storage battery modules received from the communication units 101A and 101B and the total consumer power consumption transmitted from the smart meter server described later. Charge or discharge.
  • the charge / discharge control units 102A and 102B manage the amount of electricity stored in the storage batteries 103A and 103B (current battery level, SoC (State of Charge)).
  • the smart meter server 131 receives the power consumption amount of each customer transmitted from the smart meters 130A and 130B installed in each customer 1A and 1B via the communication network CN2, and the consumption of each customer received.
  • the total consumer power consumption which is the total value of power, is calculated, and the value is transmitted to the storage battery module of each consumer via the network CN3.
  • the charge / discharge control units 102A and 102B use the difference obtained by subtracting the charge / discharge power of each storage battery module from the total consumer power consumption as the estimated actual demand, determine the charge / discharge mode of the storage battery, and perform the charge / discharge control of the storage battery. .
  • the method of charge / discharge control of the storage battery is the same as in the first embodiment, for example.
  • This embodiment controls the charging / discharging operation of each storage battery module 103 provided in a different consumer, as in the first embodiment. Thereby, in a present Example, a some storage battery module can be appropriately controlled between the consumers in a group.
  • a sixth embodiment will be described with reference to FIG.
  • a plurality of storage battery modules 10A and 10B distributed among consumers can be grouped to control the charge / discharge operation.
  • the smart meter server 131 calculates the total power consumption of the customer after obtaining the power consumption of the customers 1A and 1B from the smart meters 130A and 130B provided in the consumers 1A and 1B. The value was transmitted to the storage battery modules 10A and 10B of each consumer.
  • the storage battery modules 10A and 10B also calculate the estimated actual demand by transmitting the storage battery charge / discharge information to the other storage battery modules 10B and 10A.
  • the actual demand is calculated in the consumers 1A and 1B, the actual demand is transmitted to the storage battery modules 10B and 10A, and the actual demand of each consumer is totaled to obtain the total actual demand. calculate.
  • the smart meter 130A is removed from the customer 1A, and the actual demand processing unit 140A is newly provided. Similarly, the smart meter 130B is removed from the consumer 1B, and an actual demand processing unit 140B is provided.
  • the actual demand processing units 140A and 140B transmit the actual demand of the consumers 1A and 1B to the storage battery modules 10A and 10B via the communication network CN3.
  • the actual demand is a value obtained by subtracting the storage battery charge / discharge power of the storage battery module of the consumer from the power used by the consumer.
  • Actual demand processing units 140A and 140B receive storage battery charge / discharge power from storage battery modules 10A and 10B, and further receive power usage from wattmeter PM (signed only on consumer 1B side).
  • the power meter PM measures the power used by each consumer 1A, 1B and transmits the measured power used to the actual demand processing units 140A, 140B.
  • Each storage battery module 10A, 10B does not transmit the storage battery charge / discharge power to the other storage battery modules 10B, 10B via the network CN3, but to the actual demand processing units 140A, 140B installed in each consumer 1A, 1B.
  • the transmission point is different from the fifth embodiment.
  • Actual demand processing units 140A and 140B are provided for each customer 1A and 1B.
  • the actual demand processing units 140A and 140B calculate the actual demand by subtracting the storage battery charge / discharge power from the power used by the installed consumers, and transmit it to the storage battery modules 10A and 10B via the network CN3.
  • each of the storage battery modules 10A and 10B determines the charge / discharge mode of the storage battery by using the total actual demand that is the sum of the actual demand of each consumer, and charges the storage battery.
  • Implement discharge control The method of charge / discharge control of the storage battery is the same as in the first embodiment, for example.
  • This embodiment which is configured in this way, also exhibits the same operational effects as the fifth embodiment. Further, in the present embodiment, since the actual demand processing units 140A and 140B are provided in the consumers 1A and 1B, the storage battery module in the consumer is controlled even in an environment without a so-called smart meter or smart meter server. Is possible.
  • 1, 1A, 1B Customer 20, 20A, 20B: Equipment load 30, 30A, 30B: Distributed power supply 111: Storage battery control device 110, 10A, 10B: Storage battery module 1112, 102A, 102B: Charge / discharge control unit 140A, 140B : Actual demand processing department

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

 複数の蓄電池の動作を管理できるようにして、電力効率を高めること。 複数の蓄電池モジュール110は、相互に通信可能な蓄電池制御装置111を備え、複数の蓄電池モジュール110の設けられる所定の需要家1における電力需要を取得し、各蓄電池制御装置は、当該蓄電池の充放電電力を相互に送受信し、 所定の需要家1における電力需要に基づいて、複数の蓄電池モジュール110それぞれの充放電を制御する。

Description

蓄電池制御装置及び蓄電地制御方法
 本発明は、蓄電地制御装置及び蓄電地制御方法に関する。
 近年では、特定領域の電力系統に分散型電源を設置し、その領域の電力需要の多くをまかなう、いわゆるマイクログリッドと呼ばれるシステムが提案されている。そのようなシステムでは、電力の供給と需要のバランスを維持するために、蓄電設備を備え、電力系統からの潮流に応じて蓄電池の充電および放電を制御する技術が知られている(特許文献1)。
 また、他の従来技術として、太陽光発電装置からの発電を系統側に売電するか、またはエネルギー蓄積装置に蓄積するかを、系統側に過去に発生した電圧抑制の状況に応じて切り替える技術も知られている(特許文献2)。
特開2008-99527号公報 特開2011-172334号公報
 所定のエリアに複数の蓄電池が設置されている場合において、一方の蓄電池での放電と他方の蓄電池での充電とが、同時に同量だけ発生した場合を検討する。この場合、一方の蓄電池から他方の蓄電池に単に電力量が移動するだけのように見えるが、実際には、充電時、送電時、放電時のそれぞれにおいて、電力損失が発生する。例えば、直交変換時の損失、送電時の損失、交直変換時の損失、充電時に蓄電池の内部抵抗で生じる損失である。これら電力損失の分だけエネルギーが無駄に消費されることになる。
 さらに、上述した無駄な充放電は、蓄電池の性能劣化の原因となり、蓄電池の寿命を縮める可能性がある。
 本発明の目的は、電力系統に設けられた複数の蓄電池間での無駄な充放電を抑制できるようにした蓄電池制御装置および蓄電池制御方法を提供することにある。
 上記課題を解決すべく、本発明に係る蓄電池制御装置は、蓄電池の充放電を制御する装置であって、電力系統に接続される複数の蓄電池それぞれに設置され、ネットワーク接続して他の蓄電池制御装置と通信する機能と、各蓄電池の充電や放電を制御する機能と、電力系統の連系点潮流の情報を取得する機能を備える。
 蓄電池制御装置は、電力系統に接続された前記各蓄電池の充放電電力量と、前記連系点潮流のデータを取得し、充放電電力量と連系点潮流データとに基づいて、電力系統内の電力需要を推定することができる。
 また、蓄電池制御装置は、電力需要に基づいて、蓄電池の充放電動作のモードを判別するために予め用意されるモード判別用閾値と、電力需要とを比較することで、蓄電池が充電モードまたは放電モードのいずれで動作すべきかを選択し、充電モードまたは放電モードのうち選択したモードを含む所定の制御情報を生成し、蓄電地を制御することもできる。
 本発明の構成の少なくとも一部は、コンピュータプログラムまたはハードウェア回路として実現できるであろう。コンピュータプログラムは、例えば、インターネットのような通信媒体、ハードディスクまたはフラッシュメモリデバイスのような記録媒体を介して、配布することができる。
 本発明により、電力系統に設けられた複数の蓄電池間での充放電を抑制することができる。これにより、充電時、送電時、放電時のそれぞれにおける電力損失が軽減できエネルギーの有効利用が可能になる。
蓄電池制御装置のシステム全体構成図である。 蓄電池の制御モードを決定する処理のフローチャートである。 蓄電池の充放電動作を決定する処理のフローチャートである。 充放電動作を管理するためのテーブルの構成例(第2実施例)を示す。 電力料金を管理するためのテーブルの構成例(第2実施例)を示す。 蓄電池の制御モードを決定する処理のフローチャート(第3実施例)である。 蓄電池の制御モードを決定する処理のフローチャート(第4実施例)である。 蓄電池制御システムの全体構成図(第5実施例)である。 蓄電池制御システムの全体構成図(第6実施例)である。
 以下、図面に基づいて、本発明の実施の形態を説明する。本実施形態の蓄電池制御モジュール110は、以下に詳述するように、電力系統に接続され、蓄電池112と蓄電池制御装置111を備えている。蓄電池制御装置111は、ネットワーク経由でデータの送受信を行う通信部と、蓄電池モジュールの設けられる所定の需要家1における電力需要を算出し、需要家1における電力需要に基づいて、蓄電池112の充放電を制御する充放電制御部を備え、蓄電池の充放電電力量の制御が可能となっている。
 図1~図3を参照して第1実施例を説明する。図1は、所定の需要家1における低圧系統側の電力系統の構成を示す。
 例えば、一般個人住宅、集合住宅、商業ビル、オフィスビル、工場などの需要家1は、蓄電池モジュール110と、設備負荷20と、分散電源30とを備える。それら蓄電池モジュール110、設備負荷20および分散電源30は、需要家内配電線42を介して低圧側電力系統41に接続される。低圧側電力系統41は、例えば柱上変圧器40のような変圧器に接続されている。
 設備負荷20は、電力を消費する機器である。例えば、住宅等の場合は、照明装置、空調装置、冷蔵庫、洗濯機、テレビジョン装置、音響装置、温水器などが該等する。工場などの場合は、例えば工作機、電動モータ、ロボット、エレベータなどが該等する。
 分散電源は、電力を生成する機器である。例えば、太陽光発電装置、燃料電池、コージェネレーションシステム、ディーゼル自家発電装置などを挙げることができる。
 系統接続点電力計120は需要家1の配電線42と低圧側系統41との接続点の電力値を測定するものである。また、系統接続点電力計120は、ネットワークCN1に接続され、測定した、接続点電力測定値を蓄電池モジュール110に送信する。系統接続点電力計120として、電力会社が需要家1に設置する電力計(スマートメーターを含む)を用いてもよい。
 蓄電池制御モジュール110は、蓄電池とその蓄電池の充放電を管理する蓄電制御制御装置と、外部との通信を行う通信部がセットになった機器である。本実施例では、需要家配電線42には複数の蓄電池モジュール110(1)~110(3)が接続されることを想定する。それら蓄電池モジュール110(1)~110(3)は通信ネットワークCN1を介して相互に接続される。
 図中では、3個の蓄電池モジュール110(1)~110(3)を示すが、2個、4個、または5個以上の蓄電池モジュールを需要家1が有する構成でもよい。特に区別しない場合、蓄電池モジュール110(1)~110(3)を蓄電池モジュール110と呼ぶことにする。
 通信部1111は、通信ネットワークCN1を介して、他の蓄電池モジュールなどと通信するための回路である。通信ネットワークCN1は、各蓄電池モジュール110が通信するためのネットワークであり、例えば、無線通信ネットワーク、PLC(Power Line Communications)、無線または有線のLAN(Local Area Network),PHS(Personal Handy-phone System)などのように構成される。
 通信部1111は、他の各蓄電池モジュール110から通信ネットワークCN1を介して、後述の蓄電池充放電情報を受信する。また、通信部1111は、系統接続点電力計120から、通信ネットワークCN1を介して、接続点電力測定値を受信する。通信部1111は、受信した接続点電力測定値を充放電制御部1112に渡す。また、通信部1111は、充放電制御部1112から、蓄電池充放電情報を取得し、通信ネットワークCN1を介して、他の各蓄電池モジュールに対して蓄電池充放電情報を送信する。さらに、通信部1111は、通信ネットワークCN1を介して他の蓄電池モジュール110に、後述の充電残量(蓄電量)等を送信することもできる。
 蓄電池112は、電極及び電解質を有するセルを複数個接続して構成される。蓄電池112は、例えば、リチウムイオン蓄電池、鉛蓄電池、ニッケル・水素蓄電池、ナトリウム・硫黄蓄電池から構成することができる。さらに、蓄電池モジュール110は、蓄電池112のほかに、電気二重槽コンデンサまたはリチウムイオンキャパシタ等の装置を備えてもよい。
 充放電制御部1112は、蓄電池112への充電、及び、蓄電池112からの放電を制御するための制御回路である。充放電制御部112は、例えば、インバータ回路とマイクロコンピュータ回路等を含んで構成することができる。
 充電時に、充放電制御部1112は、低圧側系統41からの交流電力を直流電力に変換して蓄電池112に充電する。放電時に、充放電制御部1112は、蓄電池112の直流電力を交流電力に変換して、低圧側系統41に供給する。
 また、充放電制御部1112は、蓄電池112への充電電力量や、低圧側系統41への供給電力量(蓄電池112の放電電力量)を、蓄電池充放電情報として計測し、計測した蓄電池充放電情報は、通信部1111からネットワークCN1を介して他の蓄電池モジュール110(1)~(3)に送信することができる。
 充放電制御部1112は、通信部1111から受信する他の蓄電池モジュールの蓄電池充放電情報と、系統接続点電力計の接続点電力測定値に従って、蓄電池112に充電または放電させる。充放電制御部1112は、蓄電池112の蓄電量(現在の電池残量、SoC(State of Charge))を管理している。
 図2を用いて充放電制御部1112が蓄電池112の充放電を制御する処理を説明する。
 通信部1111は、他の各蓄電池モジュール110の充放電電力量を取得する(S201)。この処理は、所定の周期で定期的に実行される。通信部1111は、取得した各蓄電池モジュール110の充放電電力量を、充放電制御部1112に送信する。 なお、各蓄電池モジュール110の充放電電力量は、充電電力をマイナスの値、放電電力をプラスの値として取り扱う。充放電電力量を各蓄電池モジュール110から取得する方法としては、蓄電池モジュール110が所定の時間間隔で充放電電力量を送信し、それを通信部1111が受信する方式などがある。充放電電力量は、所定の時点において予定、もしくは実施されている、当該蓄電池の充放電の電力量である。
本実施例では、例えば、前記蓄電池モジュール110が所定の時間間隔で充放電電力量を送信する方式の場合は、送信実行時の、実際の充放電電力量を送信する。
 通信部1111は、系統接続点電力計120から系統接続点の電力測定値を取得し、取得した系統接続点電力を、充放電制御部1112に送信する(S202)。
 ここで、低圧側系統41から需要家1側に電力が供給される、いわゆる順潮流の場合をプラス値とし、これとは逆に、需要家1側から低圧側系統41に電力が供給される、いわゆる逆潮流の場合をマイナス値として取り扱う。
 充放電制御部1112は、ステップS201で取得した各蓄電池モジュールの充放電電力量と、ステップS202で取得した系統接続点電力量との合計値を計算する(S203)。この合計値は、需要家1が消費もしくは発電している実際の電力需要の値(電力値)である。
 この実際の電力値を、本実施例では推定実需要と呼ぶことにする。推定実需要がプラス値の場合は、需要家1内の電力消費量が発電量を上回っており、電力が不足している状態であることを示す。推定実需要がマイナス値の場合は、需要家1内の発電量が消費量を上回っており、電力が余剰の状態を示す。推定実需要の値がゼロの場合は、需要家1内の電力消費量と発電量とが同量で、電力の需給が一致している状態を示す。
 充放電制御部1112は、推定実需要が0より大きいか判定する(S204)。推定実需要が0よりも大きい場合(S204:Yes)、ステップS205に移る。推定実需要が0よりも大きくない場合(S204:No)、ステップS206に遷移する。
 推定実需要が0よりも大きい場合は、需要家1内で電力が不足している(負荷がある)状態であるため、「放電モード」を選択する(S205)。これに対し、推定実需要が0よりも大きくない場合は、需要家1内で電力が足りているか、もしくは電力が余っている状態であるため、「充電モード」を選択する(S206)。
 ここで放電モードとは、蓄電池112の放電制御可能なモードである。充電モードとは、蓄電池112の充電制御可能なモードである。さらに詳しくは、放電モードとは、蓄電池112の充電制御を禁止し、放電制御もしくは充放電をしない制御が可能なモードである。
充電モードとは、蓄電池112の放電制御を禁止し、充電制御もしくは充放電をしない制御が可能なモードである。放電モードとは、充電を禁止するモードであると定義可能であり、充電モードとは、放電を禁止するモードであると定義可能である。
 充放電制御部1112は、ステップS205、もしくはステップS206で選択した蓄電池制御モードに従って、各蓄電池112の充放電制御を行う(S207)。
 図3は、蓄電池モジュール110の動作を示すフローチャートである。本処理は、蓄電池制御装置111の充放電制御部1112により実行されるが、理解の容易のために、動作の主体を蓄電池モジュール110として説明する。
 蓄電池モジュール110は、蓄電池制御装置111の充放電制御部1112にて蓄電池制御モードが決定されると(S301)、蓄電池112のSoCを取得する(S302)。
 蓄電池モジュール110は、予め記憶している充放電動作管理テーブルT301を参照して、蓄電池制御モードとSoCとに基づいて、蓄電池112の制御を決定する(S303)。
 充放電動作管理テーブルT301は、蓄電池112の充放電動作を決定するためのテーブルであり、例えば、モード欄C301と、SoC欄C302と、動作欄C303を備える。モード欄C301は、充放電制御モードの値を記憶する。すでに述べたようにモード値には、充電モードまたは放電モードがある。SoC欄C302には、蓄電池112のSoCが記憶される。動作欄C303には、蓄電池112の動作が記憶される。蓄電池の動作には、充電、放電、何もしない(何もしない場合は「-」が設定される)がある。
 蓄電池制御モードが充電モードの場合において、SoCが所定値よりも高いならば、蓄電池112は何もしない。この場合、蓄電池112は十分な電気エネルギーを既に蓄えているため、充電する必要はない。また、充電モードが指定されているので、蓄電池112は放電が禁じられている。従って、蓄電池モジュール110は、充電モードが指定された場合において、SoCが所定値よりも高いときは、蓄電池112は充電も放電もしないで待機する。 蓄電池制御モードが充電モードの場合において、SoCが所定値以下ならば、蓄電池112は充電動作を行う。充電モードでは充電が許可されており、かつ、蓄電池112には、十分な電気エネルギーが蓄積されていないためである。そこで、蓄電池モジュール110は、分散電源30で発電された電力または低圧側系統41からの電力を、蓄電池112に蓄える。
 蓄電池制御モードが放電モードの場合において、SoCが所定値よりも高いならば、蓄電池112は放電する。放電モードでは放電が許可されており、かつ、蓄電池112は十分な電気エネルギーを蓄えているためである。蓄電池112から放電された電力は、設備負荷20に供給される。
 蓄電池制御モードが放電モードの場合において、SoCが所定値以下ならば、蓄電池112は充電も放電もしないで待機する。放電モードでは、放電が許可されているが、蓄電池112は十分な電気エネルギーを蓄えていないためである。
 本実施例では、以上述べたように、蓄電池モジュール110は、需要家1の実需要を推定し、蓄電池制御モードを、電力が余っている場合は充電モードを選択し、電力が足りない場合は放電モードを選択する。そして、蓄電池制御モードとSoCに従って、蓄電池112を制御する。
 蓄電池制御モードが「放電モード」の場合、蓄電池112を充電中の蓄電池モジュール110は充電を停止する。従って、需要家1内には、放電中の蓄電池モジュール110と、充放電どちらもしていない蓄電池モジュール110だけになる。このため、共通の需要家配電線42に接続された各蓄電池モジュール110(1)~110(3)間で、充電と放電とが同時に行われるという事態の発生を抑制できる。
 蓄電池制御モードが「充電モード」の場合、蓄電池112を放電中の蓄電池モジュール110は放電を停止するため、需要家1内には、充電中の蓄電池モジュール110と、充放電どちらもしていない蓄電池モジュール110だけになる。このため、共通の需要家配電線42に接続された蓄電池モジュール110(1)~110(3)間で、充電と放電が同時に行われるという事態の発生を抑制できる。
 従って、本実施例によれば、一方の蓄電池モジュール110から放電された電力が他方の蓄電池モジュール110に充電されるという無駄な電力移動の発生を抑制することができ、蓄電池モジュール110を有効に使用することができ、使い勝手が高まる。さらに、本実施例では、無駄な充放電を抑制できるため、蓄電池モジュール110(1)~110(2)の寿命が低下するのを抑制できる。
 なお、本実施例では、蓄電性制御モードを生成する処理(図2)を、所定の周期で行う場合を説明した。これに代えて、各蓄電池モジュール110の蓄電池制御装置111は、各蓄電池モジュール110(1)~110(3)のいずれかで充放電電力量の値が変化した場合に、蓄電池制御モードの生成処理を行う構成としてもよい。
 つまり、蓄電池制御装置111は、各蓄電池モジュール110(1)~110(3)が最後に送信した充放電電力量をメモリに記録しておく。そして、或る一つの蓄電池モジュール110が送信した充放電電力量を受信した場合、その受信をトリガにして、図2の処理を開始する。その処理に際して、或る一つの蓄電池モジュール110から受信した最新の充放電電力量と、それ以外の蓄電池モジュール110の充放電電力量(メモリに記憶された値)との合計値を蓄電池総電力として用いることができる。
 このように構成すると、蓄電池モジュール110毎に処理周期が異なる場合でも、蓄電池制御モードを生成することができる。
各蓄電池モジュール110は、それぞれ別々の周期で、充放電電力量を他の蓄電池モジュール110に送信する可能性がある。従って、各蓄電池モジュール110(1)~110(3)から受信した最後の充放電電力量を記憶するためのメモリを用い、各蓄電池モジュール110のうちいずれかが最新の充放電電力量を送信してきたタイミングで、充放電制御情報を生成する。
 図4、図5を参照して第2実施例を説明する。本実施例を含む以下の各実施例は、第1実施例の変形例に相当する。従って、第1実施例との差異を中心に説明する。本実施例では、電力料金も参考にして充放電動作を決定できるようにした。
 電気料金は、例えば、時間帯または季節などに応じて異なる値に設定される場合がある。本実施例では、説明の便宜上、時間帯毎に料金が設定され、料金が高い場合と、料金が低い場合に評価される例を挙げる。
 図5は、本実施例の蓄電池制御装置111で使用される電力料金管理テーブルT501の例である。電力料金管理テーブルT501は、例えば、時間帯欄C501と、料金欄C502と、評価欄C503を備える。時間帯欄C501は、電力が消費される時間帯を記憶する。料金欄C502は、当該時間帯における電力料金単価を記憶する。評価欄C503には当該電力料金の評価結果を記憶する。ここで評価結果が、料金が高い場合とは、電力料金が事前に決められた基準料金よりも高い状態である。同様に、料金が低い場合とは、電力料金が事前に決められた基準料金以下である状態である。したがって、C501に示す時間帯料金において、たとえば前記基準料金を15円/kWhとした場合の評価は、C503に示すようになる
 本実施例の蓄電池制御装置111では、充放電動作の決定処理(S303)において、電力料金管理テーブルT501を参照して充放電動作を決定する時刻の電力料金の評価を決定する。以上の料金の評価は一例に過ぎず、高い場合、低い場合の2つの状態に区別する場合を述べたが、3つ以上の状態に区別して管理する構成でもよい。
 図4は、本実施例の蓄電池制御装置111で使用される充放電動作管理テーブルT401の例である。蓄電池制御装置111は、蓄電池制御モードで指定されるモード値と電力料金評価と、蓄電池112のSoCと、に基づいて、蓄電池112の動作を決定することができる。
 充放電動作管理テーブルT401は、例えば、モード欄C401と、SoC欄C402と、電気料金欄C403と、動作欄C404を備える。モード欄C401は、蓄電池制御モードの値を記憶する。モード値には、充電モードまたは放電モードがある。
 SoC欄C402には、蓄電池112のSoCが記憶される。本実施例では、SoCを4つの状態に区別して管理する。第1の状態(F)は、蓄電池112に電気エネルギー(電力)が例えば80%以上蓄えられた状態である。第2の状態(H)は、蓄電池112に電気エネルギーが例えば50%以上~80%未満の範囲で蓄えられた状態である。第3の状態(L)は、蓄電池112に電気エネルギーが例えば50%未満~20%以上蓄えられた状態である。第4の状態(E)は、蓄電池112に電気エネルギーが例えば20%未満しか蓄えられていない状態である。以上の数値範囲は一例に過ぎず、上記の数値範囲に限定されない。4の状態に区別する場合を述べたが、3つ、または5つ以上の状態に区別して管理する構成でもよい。
 電気料金評価欄C403には、対応する料金の評価が記憶される。本実施例では、電気料金が高い場合と、低い場合の2つの状態に評価される。
 動作欄C404には、蓄電池112の動作が記憶される。蓄電池の動作には、充電、放電、何もしない(何もしない場合は「-」が設定される)がある。さらに、充電動作の場合、どこまで充電するかを指定することもできる。放電動作の場合も、どこまで放電させるかを指定することができる。図4中の「充電(Fまで)」とは、SoCが現在の状態から第1の状態(F)になるまで充電することを意味する。「放電(Eまで)」とは、SoCが現在の状態から第4の状態(E)まで放電することを意味する。
 充電モードが指定された場合であって、SoCが第1の状態(F)の場合は、電気料金の高低を問わずに、蓄電池112は充電も放電もせずに待機する。蓄電池112は、既に十分な電気エネルギーを蓄えているためである。
 充電モードが指定された場合であって、SoCが第2の状態(H)であり、かつ、電気料金が高い場合は、蓄電池112は何もせずに待機する。蓄電池112に充電は可能であるが、電気料金が高いため、充電を見送る。
 充電モードが指定された場合であって、SoCが第2の状態(H)であり、かつ、電気料金が低い場合は、蓄電池112は第1の状態(F)まで充電する。料金の安い電力をできるだけ多く蓄えておくことで、ユーザの経済的負担を軽減できる。
 充電モードが指定された場合であって、SoCが第3の状態(L)であり、かつ、電気料金が高い場合は、蓄電池112は何もせずに待機する。充電しようと思えば可能であるが、電気料金が高いため、充電を見送る。
 充電モードが指定された場合であって、SoCが第3の状態(L)であり、かつ、電気料金が安い場合、蓄電池112は、第1の状態(F)となるまで充電する。電気料金が安い電力をできるだけ多く蓄える。
 充電モードが指定された場合であって、SoCが第4の状態(E)であり、かつ、電気料金が高い場合は、第3の状態(L)になるまで蓄電池122に充電する。電気料金が高いため、必要最低限の電力だけを蓄える。
 充電モードが指定された場合であって、SoCが第4の状態(E)であり、かつ、電気料金が安い場合は、第1の状態(F)になるまで蓄電池122に充電する。電気料金が安い電力を可能な限り蓄えるためである。
 放電モードが指定された場合であって、SoCが第1の状態(F)の場合は、電気料金の高低を問わずに、蓄電池112は、第4の状態(E)となるまで放電する。電気料金の高い間にできるだけ放電すれば、ユーザの経済的負担を軽減できる。高い料金の電気を使わずに済むためである。
 放電モードが指定された場合であって、SoCが第2の状態(H)であり、かつ、電気料金が高い場合、蓄電池112は、第4の状態(E)となるまで放電する。上記同様、電気料金の高い間は、できるだけ系統から購入する電力量を少なくして、ユーザの経済的負担を軽減するためである。
 放電モードが指定された場合であって、SoCが第2の状態(H)であり、かつ、電気料金が低い場合、蓄電池112は、何もせずに待機する。比較的十分な電気エネルギーを蓄えているので放電は可能であるが、電気料金が低いため、放電を見送る。電気料金の高い時間帯で放電する方が、ユーザにとって経済的メリットが高くなる。
 放電モードが指定された場合であって、SoCが第3の状態(L)であり、かつ、電気料金が高い場合、蓄電池112は、第4の状態(E)まで放電する。電気料金の高い間にできるだけ放電して、ユーザの経済的負担を軽減するためである。
 放電モードが指定された場合であって、SoCが第3の状態(L)であり、かつ、電気料金が安い場合、蓄電池112は、何もしない。上記と同様に、電気料金の安い時間帯に放電するよりも、電気料金の高い時間帯に放電する方がユーザにとって経済的メリットが高いためである。
 放電モードが指定された場合であって、SoCが第4の状態(E)である場合、電気料金の高低を問わず、蓄電池112は何もしない。放電モードでは充電動作が禁止されており、かつ、蓄電池112の残量が殆ど残っていないためである。
 このように構成される本実施例も第1実施例と同様の作用効果を奏する。さらに、本実施例では、各蓄電池制御装置111は、電気料金も考慮して蓄電池112の動作を決定することができるため、ユーザの使い勝手が向上する。
 図6を参照して第3実施例を説明する。本実施例では、充電モードまたは放電モードのいずれかを選択するために使用するモード判別用閾値DPに0以外の値を用いる。
 図6は、本実施例による蓄電池充放電制御処理を示すフローチャートである。本処理では、推定実需要をモード判別用閾値DPと比較する。モード判別用閾値DPとして、例えば、需要家1の過去の実績値の移動平均値を用いることができる。
 これにより、推定実需要が閾値DPよりも大きい場合(S204A:Yes)、放電モードが選択され(S205)、推定実需要が閾値DPよりも大きくない場合(S204A:No)、充電モードが選択される(S206)。
 従って、本実施例によれば、需要家1が分散電源1を備えていない場合であっても、需要家の系統連系点の電力値を閾値DP付近に制御することができる。
 第1実施例では、需要家1が分散電源を備えている場合を前提に述べたので、需要家1内の推定実需要が0より大きいか否かによって、モード値を選択している。しかし、分散電源30を備えない需要家の場合は、余剰電力が発生しないため、蓄電池モジュール110は常時放電モードで運用されることになる。
 そこで、本実施例では、充電モードと放電モードのいずれを選択するかを判別するための閾値DPに0以外の値を設定することで、対応する。例えば、10kWh等のような、ある閾値を設定すると、蓄電池112の充放電によって、その閾値DPに近い系統連系点電力となるように制御できる。好ましくは、閾値DPとして、推定実需要の過去の実績値の移動平均値を用いれば、系統連系点の電力変動を緩和するような制御が可能である。
 図7を参照して第4実施例を説明する。本実施例では、分散電源30の発電量に応じて、モード判別用閾値DPの値を制御する。
 図7は、本実施例による蓄電池充放電制御処理を示すフローチャートである。蓄電池制御装置111は、推定実需要を算出すると(S203)、分散電源30の発電量が発電量閾値Thを超えているか判定する(S208)。図示は省略するが、蓄電池制御装置111は、分散電源30の発電量を直接的または間接的に取得できるように構成されている。
 分散電源30の発電量が閾値Thを超えている場合(S208:Yes)、蓄電池制御装置111は、モード判別用閾値DPの値を0に設定する(S209)。分散電源30の発電量が閾値Thを超えていない場合(S208:No)、蓄電池制御装置111は、モード判別用閾値DPの値に、所定値W1(>0)を設定する(S210)。
 このように構成される本実施例も前記第2実施例と同様の作用効果を奏する。さらに、本実施例では、分散電源30の発電量が閾値Thを超えた場合は、モード判別用閾値DPの値を0に設定し、分散電源30の発電量が閾値Thを超えない場合は、モード判別用閾値DPの値をW1に設定する。
 従って、本実施例では、分散電源30が設けられており、かつ、閾値Thを上回る発電をしている場合と、分散電源30が設けられていないか、または、分散電源30が十分に発電できない場合とで、蓄電池モジュール110の充放電制御を変更できる。例えば、分散電源30が太陽光発電装置または風力発電装置のように、天候に左右されやすい場合でも、適切に複数の蓄電池モジュール120を管理することができる。また、分散電源30が燃料電池、コージェネレーションシステム、ディーゼル自家発電装置の場合でも、燃料切れ、故障などによって発電能力が低下または失われている場合にも、各蓄電池モジュール110を適切に制御することができる。
 図8を参照して第5実施例を説明する。本実施例では、複数の需要家1A、1Bがそれぞれ有する蓄電池モジュール、10A、10Bを同一グループとして管理し、充放電動作を制御できるようにした。
 図8では、2つの需要家1A、1Bを示すが、3つ以上の需要家にも対応できる。需要家1Aは、例えば、設備負荷20Aと、分散電源30Aと、蓄電池モジュール10Aと、スマートメータ130Aを有する。スマートメータ130Aとは、ここでは、少なくとも通信機能を備える電力計を意味する。他方の需要家1Bも、需要家1Aと同様に、設備負荷20Bと、分散電源30Bと、蓄電池モジュール10Bと、スマートメータ130Bを有する。
 各需要家1A、1Bは、低圧配電系統52を介して柱上トランス51に接続され、柱上トランス51を介して高圧配電系統50に接続される。各需要家1A、1B内の構成は、各需要家内に設置される蓄電池モジュール10A、10Bが、通信ネットワークCN3を介して、双方向通信可能に接続されている。スマートメータ130A、130Bは、通信ネットワークCN2を介して、スマートメータサーバ131に接続されている。スマートメータサーバ131は、各需要家のスマートメータ130A、130Bが計測した各需要家の使用電力量を収集し、さらに通信ネットワークCN3経由で、各需要家の蓄電池モジュールに各需要家の使用電力量を送信する。通信ネットワークCN2、CN3は、例えば、無線LAN、PLC、光通信、インターネット等で構成されてもよい。
 図中では、各需要家が1個の蓄電池モジュールを有するが、2個以上の蓄電池モジュールを有する構成でもよい。
 スマートメータサーバ131は、例えば、電力会社が電力料金を算出するために各需要家の使用電力量を収集するために設けられるもので、その場合通信ネットワークCN2は電力会社のプライベートなネットワーク、通信ネットワークCN3はインターネットで構成される。
 蓄電池モジュール10A、10Bは、それぞれ、通信部101A、101Bと、充放電制御部102A、102B、蓄電池103A、103Bを備える。
 通信部101A、101Bは、通信ネットワークCN2を介して、他の蓄電池モジュールなどと通信するための回路である。通信ネットワークCN2は、各蓄電池モジュールが通信するためのネットワークであり、例えば、無線通信ネットワーク、PLC(Power Line Communications)、無線または有線のLAN(Local Area Network),PHS(Personal Handy-phone System)などのように構成される。
 通信部101A、101Bは、お互いに通信ネットワークCN2を介して、後述の蓄電池充放電情報を受信する。また、通信部は、スマートメータサーバ131から、通信ネットワークCN2を介して、需要家の消費電力測定値を受信する。通信部101A、101Bは、受信した需要家消費電力測定値を充放電制御部102A、102Bに渡す。また、通信部101A、101Bは、充放電制御部102A、102Bから、蓄電池充放電情報を取得し、通信ネットワークCN2を介して、他の蓄電池モジュールに対して蓄電池充放電情報を送信する。
 蓄電池103A、103Bは、図1で述べた蓄電池112と同一の機能を有する電力を充放電可能な蓄電池である。
 充放電制御部102A、102Bは、図1で述べた充放電制御部1112と同一の機能を有し、蓄電池103A、103Bへの充電、及び、蓄電池103A、103Bからの放電を制御するための制御回路である。充放電制御部102A、102Bは、例えば、インバータ回路とマイクロコンピュータ回路等を含んで構成することができる。
 充電時に、充放電制御部102A、102Bは、低圧側系統51からの交流電力を直流電力に変換して蓄電池103A、103Bに充電する。放電時に、充放電制御部102A、102Bは、蓄電池103A、103Bの直流電力を交流電力に変換して、低圧側系統51に供給する。
 また、充放電制御部102A、102Bは、蓄電池103A、103Bへの充電電力量や、低圧側系統51への供給電力量(蓄電池102A、102Bの放電電力量)を、蓄電池充放電情報として計測し、計測した蓄電池充放電情報は、通信部101A、101BからネットワークCN2を介して他の蓄電池モジュール10B、10Aに送信することができる。
充放電制御部102A、102Bは、通信部101A、101Bから受信する他の蓄電池モジュールの蓄電池充放電情報と、後述のスマートメータサーバから送信される需要家総消費電力量に従って、蓄電池103A、103Bに充電または放電させる。充放電制御部102A、102Bは、蓄電池103A、103Bの蓄電量(現在の電池残量、SoC(State of Charge))を管理している。
 スマートメータサーバ131は、各需要家1A、1Bに設置されたスマートメータ130A、130Bから送信される、各需要家の消費電力量を通信ネットワークCN2を介して受信し、受信した各需要家の消費電力の合計値である需要家総消費電力量を計算し、その値をネットワークCN3経由で各需要家の蓄電池モジュールに送信する。
充放電制御部102A、102Bは、需要家総消費電力量から各蓄電池モジュールの充放電電力を引いた差分を推定実需要とし、蓄電池の充放電モードを決定し、蓄電池の充放電制御を実施する。蓄電池の充放電制御の方法は、例えば第1実施例と同様である。
 本実施例は、第1実施例と同様に、異なる需要家に設けられた各蓄電池モジュール103の充放電動作を制御する。これにより、本実施例では、グループ内の需要家間で、複数の蓄電池モジュールを適切に制御できる。
 図9を参照して第6実施例を説明する。本実施例は、前記第5実施例と同様に、需要家間に分散する複数の蓄電池モジュール10A、10Bをグループ化して、充放電動作を制御できる。前記第5実施例では、スマートメータサーバ131は、需要家1A、1Bに設けられるスマートメータ130A、130Bから、需要家1A、1Bの使用電力量を取得後、需要家総消費電力量を計算し、その値を各需要家の蓄電池モジュール10A、10Bに送信していた。さらに蓄電池モジュール10A、10Bも、蓄電池充放電情報を他の蓄電池モジュール10B、10Aに送信することで、推定実需要を算出していた。
 これに対し、本実施例では、需要家1A、1B内で実需要を算出し、その実需要を各蓄電池モジュール10B、10Aに送信し、各需要家の実需要を合計することで、総実需要を算出する。
 図9と図8を比較すると、需要家1Aからはスマートメータ130Aが取り除かれており、実需要処理部140Aが新たに設けられている。同様に、需要家1Bからもスマートメータ130Bが取り除かれており、実需要処理部140Bが設けられている。
 実需要処理部140A、140Bは、通信ネットワークCN3を介して各蓄電池モジュール10A、10Bに、需要家1A、1Bの実需要を送信する。ここで、実需要とは、需要家の使用電力から、該需要家の蓄電池モジュールの蓄電池充放電電力を引いた値である。
 実需要処理部140A、140Bは、蓄電池モジュール10A、10Bから蓄電池充放電電力を受信し、さらに電力計PM(需要家1B側にのみ符号を付す)から使用電力を受信する。電力計PMは、各需要家1A、1Bの使用電力を計測して、計測した使用電力を実需要処理部140A、140Bに送信する。
 各蓄電池モジュール10A、10Bは、蓄電池充放電電力を、ネットワークCN3経由で他の蓄電池モジュール10B、10Bに送信するのではなく、各需要家1A、1Bに設置された実需要処理部140A、140Bに送信する点が、第5実施例と異なる。
 実需要処理部140A、140Bは、各需要家1A、1Bに対して一つ設けられている。
 実需要処理部140A、140Bでは、設置された需要家の使用電力から、蓄電池充放電電力を差し引いて実需要を計算し、ネットワークCN3を介して各蓄電池モジュール10A、10Bに送信する。
 各蓄電池モジュール10A、10Bは、第1実施例で述べた推定実需要の代わりに、各需要家の実需要を合計した総実需要を使用して、蓄電池の充放電モードを決定し、蓄電池の充放電制御を実施する。蓄電池の充放電制御の方法は、例えば第1実施例と同様である。
 このように構成される本実施例も第5実施例と同様の作用効果を奏する。さらに、本実施例では、需要家1A、1B内に実需要処理部140A、140Bを設けるため、いわゆるスマートメータやスマートメータサーバを備えていない環境下であっても、需要家内の蓄電池モジュールを制御可能である。
 なお、本発明は、上述した実施例に限定されない。当業者であれば、本発明の範囲内で、種々の追加や変更等を行うことができる。
 1,1A,1B:需要家
 20,20A,20B:設備負荷
 30,30A,30B:分散電源
 111:蓄電池制御装置
 110,10A,10B:蓄電池モジュール
 1112,102A,102B:充放電制御部
 140A、140B:実需要処理部

Claims (13)

  1.  蓄電池の作動を制御する蓄電池制御システムであって、
     電力系統に接続される複数の蓄電池と、
     前記複数の蓄電池毎に設置され相互に通信可能に接続される複数の蓄電池制御装置とを備え、
     前記蓄電池制御装置は、
     前記複数の蓄電池に設けられる所定の需要家における電力需要を取得し、
     前記所定の需要家における電力需要に基づいて、前記管理している蓄電池の充放電を制御する、
    蓄電池制御システム。
  2.  前記蓄電池制御装置は、
     前記複数の蓄電池の充放電電力量を取得し、かつ、
     前記所定の需要家と前記電力系統との連系点における電力潮流データを取得し、
     前記充放電電力量と前記電力潮流データとに基づいて、前記所定の需要家における前記電力需要を推定する、
    請求項1に記載の蓄電池制御システム。
  3.  前記蓄電池制御装置は、
     充放電動作のモードを判別するために予め用意されるモード判別用閾値と、前記電力需要とを比較することで、前記複数の蓄電池毎に充電モードまたは放電モードのいずれで動作するかを選択し、
     前記充電モードまたは前記放電モードのうち選択したモードで前記蓄電池の充放電制御を行う、
    請求項2に記載の蓄電池制御システム。
  4.  前記蓄電池制御装置は、他の蓄電池制御装置と通信するための通信部と、前記蓄電池の充放電動作を制御するための充放電制御部とをそれぞれ備え、
     前記充放電制御部は、前記蓄電池の充放電電力を他の蓄電池制御装置に送信し、他の蓄電池制御装置から受信する充放電電力と、前記蓄電池の充電残量とに基づいて、前記蓄電池の充放電動作を制御する、
    請求項3に記載の蓄電池制御システム。
  5.  前記複数の蓄電池のうち前記充電モードが選択された蓄電池では、充電動作が許可されており、
     前記複数の蓄電池のうち前記放電モードが選択された蓄電池では、放電動作が許可される、
    請求項4に記載の蓄電池制御システム。
  6.  前記蓄電池制御装置は、
     前記充放電電力量と前記電力潮流データとの差分を、前記所定の需要家における前記電力需要として推定し、
     前記モード判別用閾値として、前記所定の需要家における過去の電力需要の実績値から得られる実績関連値を用いる、
    請求項5に記載の蓄電池制御システム。
  7.  前記所定の需要家は、自家発電装置を備えており、
     前記蓄電池制御装置は、前記自家発電装置の発電量に応じて、前記モード判別用閾値を選択する、
    請求項6に記載の蓄電池制御システム。
  8.  前記蓄電池制御装置は、
     前記発電量が予め設定される所定の発電量閾値を超えたか否か判定し、
     前記発電量が前記発電量閾値を超えたと判定した場合は、前記モード判別用閾値の値として第1の値を選択し、
     前記発電量が前記発電量閾値を超えていないと判定した場合は、前記第1の値よりも高く設定される前記実績関連値を選択する、
    請求項7に記載の蓄電池制御システム。
  9.  前記充放電制御部は、前記選択モードに従って前記蓄電池の充放電動作を制御することが予め設定されている場合、前記選択モードと前記蓄電池の充電残量とに基づいて、前記蓄電池の充放電動作を制御する、
    請求項1乃至8のいずれか一項に記載の蓄電池制御システム。
  10.  前記所定の需要家は複数存在し、
     前記複数の蓄電池は、それぞれ異なる所定の需要家に設けられている、
    請求項1乃至8のいずれか一項に記載の蓄電池制御システム。
  11.  前記蓄電池制御装置は、前記複数の蓄電池のそれぞれから、前記複数の蓄電池の充放電電力量と前記所定の需要家における電力潮流データとの差分を、前記所定の需要家における前記電力需要として取得する、
    請求項1に記載の蓄電池制御システム。
  12.  前記充放電制御部は、前記蓄電池制御装置から受信する前記選択したモードと、前記蓄電池から取得する充電残量と、前記電力系統の電気料金に関する情報とに基づいて、前記蓄電池の充放電動作を制御する、
    請求項4に記載の蓄電池制御システム。
  13.  電力系統に接続される複数の蓄電池の作動を蓄電池制御装置を用いて制御するための蓄電池制御方法であって、
     前記蓄電池制御装置は、
      前記複数の蓄電池毎に設置され、
      前記複数の蓄電池の設けられる所定の需要家における電力需要を取得し、
      前記所定の需要家における電力需要に基づいて、前記複数の蓄電池の充放電を制御するための情報を、複数の蓄電池制御装置間で相互に送受信する、
    蓄電池制御方法。
PCT/JP2012/079894 2012-11-19 2012-11-19 蓄電池制御装置及び蓄電地制御方法 WO2014076832A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2012/079894 WO2014076832A1 (ja) 2012-11-19 2012-11-19 蓄電池制御装置及び蓄電地制御方法
JP2014546819A JP5905118B2 (ja) 2012-11-19 2012-11-19 蓄電池制御装置及び蓄電地制御方法
CN201280075468.6A CN104584358B (zh) 2012-11-19 2012-11-19 蓄电池控制装置以及蓄电池控制方法
US14/426,307 US9793723B2 (en) 2012-11-19 2012-11-19 Storage battery control device and storage battery control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/079894 WO2014076832A1 (ja) 2012-11-19 2012-11-19 蓄電池制御装置及び蓄電地制御方法

Publications (1)

Publication Number Publication Date
WO2014076832A1 true WO2014076832A1 (ja) 2014-05-22

Family

ID=50730772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/079894 WO2014076832A1 (ja) 2012-11-19 2012-11-19 蓄電池制御装置及び蓄電地制御方法

Country Status (4)

Country Link
US (1) US9793723B2 (ja)
JP (1) JP5905118B2 (ja)
CN (1) CN104584358B (ja)
WO (1) WO2014076832A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104753445A (zh) * 2015-03-12 2015-07-01 广东美的制冷设备有限公司 太阳能供电装置
WO2015198630A1 (ja) * 2014-06-24 2015-12-30 株式会社 東芝 蓄電池制御装置
WO2016063947A1 (ja) * 2014-10-23 2016-04-28 日本電気株式会社 分散蓄電システム、電力制御方法、及びプログラム
WO2016063946A1 (ja) * 2014-10-23 2016-04-28 日本電気株式会社 分散蓄電システム、電力制御方法、及びプログラム
WO2016063948A1 (ja) * 2014-10-23 2016-04-28 日本電気株式会社 分散蓄電システム、電力制御方法、及びプログラム
JPWO2016166854A1 (ja) * 2015-04-15 2017-10-19 三菱電機株式会社 制御装置、制御方法、及びプログラム
EP3259828A4 (en) * 2015-02-19 2018-06-06 Cummins Power Generation IP, Inc. Energy storage system
JP2018102125A (ja) * 2018-01-18 2018-06-28 三菱電機株式会社 制御装置、制御方法、及びプログラム
US10566802B2 (en) 2015-02-19 2020-02-18 Cummins Power Generation Ip, Inc. Energy storage system
JPWO2019159904A1 (ja) * 2018-02-19 2021-01-28 ネクストエナジー・アンド・リソース株式会社 電力制御装置、電力制御システム及び電力制御方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101451009B1 (ko) * 2013-03-27 2014-10-15 주식회사 엘지씨엔에스 직렬 연결된 다수 개의 전지 직류 마이크로그리드 충방전 시스템
FR3008207B1 (fr) * 2013-07-04 2016-12-02 M Et R Energies Unite et procede de regulation energetique d'un systeme de production et de consommation electrique
JP6332276B2 (ja) * 2013-09-17 2018-05-30 日本電気株式会社 電力需給調整装置、電力システム、および電力需給調整方法
US9929594B2 (en) * 2015-05-26 2018-03-27 The Aes Corporation Modular energy storage method and system
KR101717853B1 (ko) * 2015-09-02 2017-03-27 엘에스산전 주식회사 전력 모니터링 시스템 및 그의 전력 모니터링 방법
JP6559247B2 (ja) * 2015-09-29 2019-08-14 京セラ株式会社 蓄電システム、蓄電装置及び蓄電システムの制御方法
TW201742350A (zh) * 2016-05-30 2017-12-01 微星科技股份有限公司 可充電的電池及其充電方法
EP3497768B8 (en) * 2016-08-08 2023-12-06 Orison Inc. Plug and play with smart energy storage units
DE102020100008A1 (de) * 2020-01-02 2021-07-08 Innogy Se Elektrisches Versorgungssystem für ein Gebäude
JP7530319B2 (ja) * 2021-03-17 2024-08-07 株式会社東芝 情報処理装置、情報処理方法、コンピュータプログラム及び情報処理システム
CN117767504A (zh) * 2024-01-31 2024-03-26 深圳市力生美半导体股份有限公司 一种家庭分布式储能系统及分布式储能设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008117392A1 (ja) * 2007-03-26 2008-10-02 Vpec, Inc. 電力システム
JP2012055067A (ja) * 2010-08-31 2012-03-15 Sekisui Chem Co Ltd 系統連系方法、および系統連系システム
JP2012075297A (ja) * 2010-09-30 2012-04-12 Hitachi Ltd 電力量演算装置,電力量演算サーバ,電力量演算システムおよび電力量演算方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002199588A (ja) * 2000-12-27 2002-07-12 Hitachi Ltd 電源システム
JP3775306B2 (ja) * 2002-02-06 2006-05-17 富士電機システムズ株式会社 受電電力の電力制御方法およびその受電電力制御装置
JP2006084373A (ja) * 2004-09-17 2006-03-30 Meidensha Corp 受電電源設備および受電電力量測定装置
JP4850019B2 (ja) 2006-10-16 2012-01-11 東京瓦斯株式会社 電力系統に接続された自家発電設備における蓄電池設備および蓄電池設備の運転方法
JP2011097816A (ja) * 2009-09-30 2011-05-12 Sanyo Electric Co Ltd 発電システムおよび充放電制御装置
JP5539750B2 (ja) 2010-02-17 2014-07-02 トヨタホーム株式会社 住宅用電力システム
WO2012128252A1 (ja) * 2011-03-18 2012-09-27 三洋電機株式会社 蓄電システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008117392A1 (ja) * 2007-03-26 2008-10-02 Vpec, Inc. 電力システム
JP2012055067A (ja) * 2010-08-31 2012-03-15 Sekisui Chem Co Ltd 系統連系方法、および系統連系システム
JP2012075297A (ja) * 2010-09-30 2012-04-12 Hitachi Ltd 電力量演算装置,電力量演算サーバ,電力量演算システムおよび電力量演算方法

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015198630A1 (ja) * 2014-06-24 2017-04-20 株式会社東芝 蓄電池制御装置
WO2015198630A1 (ja) * 2014-06-24 2015-12-30 株式会社 東芝 蓄電池制御装置
JPWO2016063948A1 (ja) * 2014-10-23 2017-04-27 日本電気株式会社 分散蓄電システム、電力制御方法、及びプログラム
WO2016063946A1 (ja) * 2014-10-23 2016-04-28 日本電気株式会社 分散蓄電システム、電力制御方法、及びプログラム
WO2016063948A1 (ja) * 2014-10-23 2016-04-28 日本電気株式会社 分散蓄電システム、電力制御方法、及びプログラム
WO2016063947A1 (ja) * 2014-10-23 2016-04-28 日本電気株式会社 分散蓄電システム、電力制御方法、及びプログラム
JPWO2016063946A1 (ja) * 2014-10-23 2017-04-27 日本電気株式会社 分散蓄電システム、電力制御方法、及びプログラム
JPWO2016063947A1 (ja) * 2014-10-23 2017-04-27 日本電気株式会社 分散蓄電システム、電力制御方法、及びプログラム
US10291026B2 (en) 2015-02-19 2019-05-14 Cummins Power Generation Ip, Inc. Energy storage system
EP3259828A4 (en) * 2015-02-19 2018-06-06 Cummins Power Generation IP, Inc. Energy storage system
US10566802B2 (en) 2015-02-19 2020-02-18 Cummins Power Generation Ip, Inc. Energy storage system
US11196265B2 (en) 2015-02-19 2021-12-07 Cummins Power Generation Ip, Inc. Energy storage system
CN104753445A (zh) * 2015-03-12 2015-07-01 广东美的制冷设备有限公司 太阳能供电装置
JPWO2016166854A1 (ja) * 2015-04-15 2017-10-19 三菱電機株式会社 制御装置、制御方法、及びプログラム
JP2018102125A (ja) * 2018-01-18 2018-06-28 三菱電機株式会社 制御装置、制御方法、及びプログラム
JPWO2019159904A1 (ja) * 2018-02-19 2021-01-28 ネクストエナジー・アンド・リソース株式会社 電力制御装置、電力制御システム及び電力制御方法
JP7162819B2 (ja) 2018-02-19 2022-10-31 ネクストエナジー・アンド・リソース株式会社 電力制御装置、電力制御システム及び電力制御方法

Also Published As

Publication number Publication date
CN104584358A (zh) 2015-04-29
JPWO2014076832A1 (ja) 2017-01-05
US20150249350A1 (en) 2015-09-03
JP5905118B2 (ja) 2016-04-20
US9793723B2 (en) 2017-10-17
CN104584358B (zh) 2017-04-12

Similar Documents

Publication Publication Date Title
JP5905118B2 (ja) 蓄電池制御装置及び蓄電地制御方法
JP5126308B2 (ja) 電力コントロール装置
JP5663645B2 (ja) 制御装置及び制御方法
JP2014003778A (ja) 蓄電池装置制御システム及び蓄電装置制御方法
JP5095495B2 (ja) 電力システムおよびその制御方法
JP5662877B2 (ja) 蓄電池システム
JP5218483B2 (ja) 電力コントロール装置
US11689118B2 (en) Converter with power management system for household users to manage power between different loads including their electric vehicle
WO2012005273A1 (ja) 電力コントロール装置および電力コントロール方法
JPWO2011162025A1 (ja) 直流配電システム
JP5422021B2 (ja) 蓄電システム
WO2015001767A1 (ja) 制御装置、電力管理システム
JP5995804B2 (ja) 蓄電システムの管理装置及び制御目標値決定方法
JP2013093981A (ja) 電動車両の充放電システム
Jarrah et al. A multi-objective evolutionary solution to improve the quality of life in smart cities
WO2016039195A1 (ja) エネルギー管理装置、エネルギー管理方法、及びエネルギー管理プログラム
Zhang et al. An Optimal Dispatching Model of Active Distribution Network Based on the Collaboration of Source-Load-Storage
JP6523120B2 (ja) 電力供給システム
US12132418B2 (en) Converter with power management system for household users to manage power between different loads including their electric vehicle
JP7303692B2 (ja) 電力管理システム、電力管理方法、電力管理装置、及びプログラム
CN106130053B (zh) 一种分布式电网调峰配电方法
CN109818353A (zh) 一种供电控制方法和供电控制装置
JP2017085797A (ja) 電力制御装置、電力管理システムおよび電力管理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12888403

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014546819

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14426307

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12888403

Country of ref document: EP

Kind code of ref document: A1