WO2014073567A1 - スイッチング電源回路制御方法 - Google Patents

スイッチング電源回路制御方法 Download PDF

Info

Publication number
WO2014073567A1
WO2014073567A1 PCT/JP2013/080012 JP2013080012W WO2014073567A1 WO 2014073567 A1 WO2014073567 A1 WO 2014073567A1 JP 2013080012 W JP2013080012 W JP 2013080012W WO 2014073567 A1 WO2014073567 A1 WO 2014073567A1
Authority
WO
WIPO (PCT)
Prior art keywords
mode
threshold
load
adopted
power consumption
Prior art date
Application number
PCT/JP2013/080012
Other languages
English (en)
French (fr)
Inventor
和広 大下
和寛 中谷
紀雄 榮
満 井本
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to US14/441,463 priority Critical patent/US9843269B2/en
Priority to BR112015010418A priority patent/BR112015010418B8/pt
Priority to ES13853487T priority patent/ES2699408T3/es
Priority to CN201380055750.2A priority patent/CN104769828B/zh
Priority to AU2013342516A priority patent/AU2013342516B2/en
Priority to KR1020157011153A priority patent/KR101671138B1/ko
Priority to EP13853487.0A priority patent/EP2919372B1/en
Publication of WO2014073567A1 publication Critical patent/WO2014073567A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4225Arrangements for improving power factor of AC input using a non-isolated boost converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0032Control circuits allowing low power mode operation, e.g. in standby mode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • H02M3/1586Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel switched with a phase shift, i.e. interleaved
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention is a method for controlling a switching power supply circuit, and is applied, for example, when the switching power supply constitutes a boost converter.
  • a power factor correction circuit employing a configuration as a so-called boost converter is known.
  • a pair of boost converters are provided, and a so-called interleave method is adopted.
  • Patent Documents 1 and 3 Since the operation of such a boost converter involves switching, there is a phenomenon of switching loss, generation of harmonics, and generation of leakage current.
  • the discontinuous mode is employed in the operation of the boost converter when the load is small, and the critical mode of the boost converter is employed when the load is large.
  • Patent Document 2 adopts a discontinuous mode at a low load and a critical mode or a continuous mode at a high load.
  • discontinuous mode, critical mode, and continuous mode should be used for the current mode of the current that flows through the reactor of the boost converter. However, in the present application, for convenience, these terms are also used to express the operation mode of the boost converter having the reactor.
  • the switching frequency is reduced in the operating region where the harmonic power component is small, thereby reducing the harmonic power component and the switching loss. I am trying.
  • Patent Document 5 discloses a technique for compensating for a leakage current described later.
  • an object of the present invention is to provide a technique for suppressing an increase in leakage current, a decrease in efficiency, and an increase in harmonics even when the load of the switching power supply circuit is small.
  • the switching power supply circuit control method is a method for controlling a switching power supply circuit comprising: first and second input terminals (P1, P2); a capacitor (C1) and a load (4). First and second output terminals (P3, P4) connected; a second power supply line (LL) connecting the second input terminal and the second output terminal; and at least one circuit ( 3a, 3b).
  • each of the circuits includes a first power line (LH1, LH2) that connects the first input terminal and the first output terminal; and a reactor (L1, L2) provided on the first power line.
  • the switch element when the power consumption of the load is smaller than a first threshold value (P11; P12; P13; P14; P15; P16; P21; P22), the switch element is non-conductive in any of the circuits. Thus, power is supplied from all the circuits to the load.
  • a first threshold value P11; P12; P13; P14; P15; P16; P21; P22
  • the switch element is non-conductive in any of the circuits.
  • the power consumption of the load is greater than the first threshold
  • at least one of the switch elements of the circuit is intermittently turned on to supply power from all the circuits to the load.
  • the second aspect of the switching power supply circuit control method according to the present invention is the first aspect, and the second threshold (P21; P22; P23) below is the first threshold (P11; P12; P13).
  • the third threshold value (P31; P32; P33) below is larger than the second threshold value.
  • the discontinuous mode is adopted as the current mode flowing through the reactor.
  • the critical mode is adopted as the current mode.
  • the continuous mode is adopted as the current mode.
  • a third aspect of the switching power supply circuit control method according to the present invention is the first aspect, and the second threshold (P21; P22; P23) below is the first threshold (P11; P12; P13). Bigger than.
  • the discontinuous mode is adopted as the current mode flowing through the reactor.
  • the critical mode is adopted as the current mode.
  • a fourth aspect of the switching power supply circuit control method according to the present invention is the first aspect, and the second threshold (P31; P32; P33) below is the first threshold (P21; P22; P23). Bigger than.
  • a critical mode is adopted as a current mode flowing through the reactor.
  • the continuous mode is adopted as the current mode.
  • a fifth aspect of the switching power supply circuit control method according to the present invention is the first aspect, and the following second threshold (P31; P32; P33) is the first threshold (P11; P12; P13). Bigger than.
  • the discontinuous mode is adopted as the current mode flowing through the reactor.
  • the continuous mode is adopted as the current mode.
  • a sixth aspect of the switching power supply circuit control method according to the present invention is the second aspect, wherein the current mode is discontinuous mode when the power consumption of the load is the first threshold (P11). And the leakage when the critical mode is adopted as the current mode when the power consumption of the load is the second threshold (P21). The magnitude of the current and the magnitude of the leakage current when the continuous mode is adopted as the current mode when the power consumption of the load is the third threshold (P31) are equal to each other.
  • a seventh aspect of the switching power supply circuit control method according to the present invention is the third aspect, wherein the current mode is discontinuous mode when the power consumption of the load is the first threshold (P11). And the leakage when the critical mode is adopted as the current mode when the power consumption of the load is the second threshold (P21). The magnitude of the current is equal to each other.
  • An eighth aspect of the switching power supply circuit control method according to the present invention is the fourth aspect thereof, wherein the critical mode is set in the current mode when the power consumption of the load is the first threshold (P21).
  • the leakage current from the switching power supply circuit when adopted, and the leakage current when the continuous mode is adopted as the current mode when the power consumption of the load is the second threshold (P31) Are equal to each other.
  • a ninth aspect of the switching power supply circuit control method according to the present invention is the fifth aspect, wherein the current mode is discontinuous mode when the power consumption of the load is the first threshold (P11).
  • the leakage current when the continuous mode is adopted as the current mode when the power consumption of the load is the second threshold (P31) when the power consumption of the load is the second threshold (P31)
  • the magnitude of the current is equal to each other.
  • a tenth aspect of the switching power supply circuit control method is the second aspect, wherein the current mode is discontinuous mode when the power consumption of the load is the first threshold value (P12).
  • An eleventh aspect of the switching power supply circuit control method according to the present invention is the second aspect, wherein the current mode is discontinuous mode when the power consumption of the load is the first threshold (P13).
  • the critical mode is adopted as the current mode when the magnitude of the harmonics generated in the switching power supply circuit when the power consumption is adopted and the power consumption of the load is the second threshold (P23)
  • the magnitude of the harmonic and the magnitude of the harmonic when the continuous mode is adopted as the current mode when the power consumption of the load is the third threshold (P33) are equal to each other.
  • a twelfth aspect of the switching power supply circuit control method according to the present invention is the third aspect, wherein the current mode is switched to the non-conduction mode when the power consumption of the load is the first threshold (P13). And the efficiency when the discontinuous mode is adopted as the current mode when the power consumption of the load is the second threshold (P23). be equivalent to.
  • a thirteenth aspect of the switching power supply circuit control method according to the present invention is the fourth aspect, wherein the current mode is switched to the non-conduction mode when the power consumption of the load is the first threshold (P13). And the efficiency when the critical mode is adopted as the current mode when the power consumption of the load is the second threshold (P33). equal.
  • a fourteenth aspect of the switching power supply circuit control method according to the present invention is the fifth aspect, wherein the current mode is switched to the non-conduction mode when the power consumption of the load is the first threshold (P13). And the efficiency when the discontinuous mode is adopted as the current mode when the power consumption of the load is the second threshold (P23). be equivalent to.
  • a fifteenth aspect of the switching power supply circuit control method according to the present invention is the first aspect thereof, wherein the switching power supply circuit includes a pair of the circuits (3a, 3b), and the pair of the circuits are interleaved. Is possible.
  • the following second threshold (P24; P25; P26) is larger than the first threshold (P14; P15; P16), and the following third threshold (P34; P35; P36) is larger than the second threshold.
  • the following fourth threshold value (P44; P45; P46) is larger than the third threshold value, and the following fifth threshold value (P64; P65; P66) is larger than the fourth threshold value.
  • the switch element of one of the pair of circuits is made non-conductive, and The discontinuous mode is adopted as the current mode of the current flowing through the other reactor.
  • the discontinuous mode is adopted as the current mode of the current flowing through the reactor in any of the pair of circuits.
  • one of the pair of the circuits is made non-conductive, and the pair of the circuits The critical mode is adopted as the current mode of the current flowing through the other reactor.
  • the critical mode is adopted as the current mode of the current flowing through the reactor in any of the pair of circuits.
  • one of the switch elements of the pair of circuits is made non-conductive, and a continuous mode is adopted as a current mode of a current flowing through the reactor of the other of the pair of circuits.
  • the continuous mode is adopted as the current mode of the current flowing through the reactor in any of the pair of circuits.
  • an increase in leakage current, a decrease in efficiency, and an increase in harmonics are suppressed even when the power consumption of the load of the switching power supply circuit is small.
  • the circuit diagram which illustrates the switching power supply circuit used as the object of the control method concerning a 1st embodiment and a 2nd embodiment.
  • the circuit diagram which illustrates the composition of the compensation current output part.
  • the graph which shows the waveform of the electric current which flows from a diode rectifier circuit, and the waveform of the electric current which flows into a reactor.
  • the graph which shows the waveform of the electric current which flows from a diode rectifier circuit, and the waveform of the electric current which flows into a reactor.
  • the graph which shows the waveform of the electric current which flows from a diode rectifier circuit, and the waveform of the electric current which flows into a reactor.
  • the graph which shows the relationship between an output and efficiency in non-conduction mode, discontinuous mode, critical mode, and continuous mode in 1st Embodiment The graph which shows the relationship between an output and efficiency in non-conduction mode, discontinuous mode, critical mode, and continuous mode in 1st Embodiment.
  • the graph which shows the relationship between an output and efficiency in the non-conduction mode, discontinuous mode, and continuous mode in 1st Embodiment The graph which shows the relationship between an output and efficiency in the non-conduction mode, discontinuous mode, and continuous mode in 1st Embodiment.
  • the graph which shows the relationship between an output and efficiency in non-conduction mode, discontinuous mode, critical mode, and continuous mode in 2nd Embodiment The graph which shows the relationship between an output and efficiency in non-conduction mode, discontinuous mode, critical mode, and continuous mode in 2nd Embodiment.
  • FIG. 1 is a circuit diagram illustrating a switching power supply circuit that is an object of a control method according to the following first and second embodiments.
  • the switching power supply circuit includes input terminals P1 and P2, output terminals P3 and P4, a power supply line LL, and circuits 3a and 3b.
  • the power supply line LL connects the input terminal P2 and the output terminal P4.
  • the capacitor C1 and the load 4 are connected in parallel to the output terminals P3 and P4.
  • the inverter is illustrated here as the load 4, it is grasped
  • a DC voltage is applied between the input terminals P1 and P2.
  • a diode rectifier circuit 2 is connected to the input terminals P1 and P2.
  • the diode rectifier circuit 2 rectifies the AC voltage from the AC power source 1 and applies the rectified DC voltage between the input terminals P1 and P2.
  • the potential applied to the input terminal P2 is lower than the potential applied to the input terminal P1.
  • a direct current I flows out from the diode rectifier circuit 2 by the voltage application and the operations of the circuits 3a and 3b described later.
  • a leakage current detector 61 is provided between the diode rectifier circuit 2 and the AC power supply 1.
  • the leakage current detector 61 is combined with the compensation current output unit 62 to constitute the leakage current reducing device 6.
  • the leakage current detector 61 detects the current Ib corresponding to the leakage current from the difference between the pair of currents input to the diode rectifier circuit 2, and outputs this to the compensation current output unit 62.
  • the leakage current detector 61 has a common mode choke 61a provided between the AC power supply 1 and the diode rectifier circuit 2, and a coil 61b inductively coupled thereto.
  • the compensation current output unit 62 has a pair of input terminals Q1 and Q2 connected to the coil 61b, and output terminals Q3 and Q4 that flow the compensation current Ic in response to the detected current Ib.
  • FIG. 1 shows a case where the output terminals Q3 and Q4 are connected to the input terminals P1 and P2, respectively.
  • the output terminals Q3 and Q4 may be connected to the output terminals P3 and P4.
  • FIG. 2 is a circuit diagram illustrating the configuration of the compensation current output unit 62.
  • the compensation current output unit 62 includes transistors 621 and 622 connected in series between the output terminals Q3 and Q4.
  • the transistors 621 and 622 have different conductivity types. Specifically, the transistor 621 is an NPN type, and the transistor 622 is a PNP type.
  • connection point where the transistors 621 and 622 are connected to each other is grounded, and the compensation current Ic is output here.
  • a current Ib flows between the connection point and the bases of the transistors 621 and 622.
  • an element 623 having a capacitive impedance between the connection point and the ground for example, a series connection of a capacitor and a resistor.
  • the base that is the control electrode of the transistor 621 and the base that is the control electrode of the transistor 622 are connected to the leakage current detector 61 via a resistor 624, for example.
  • a resistor 624 for example.
  • a capacitor C2 may be provided between the input terminals P1 and P2.
  • the capacitor C2 can reduce noise of the current input to the circuits 3a and 3b.
  • Circuits 3a and 3b are both connected to input terminals P1 and P2 and output terminals P3 and P4.
  • the circuits 3a and 3b function as a boost converter in cooperation with the capacitor C1.
  • the circuits 3a and 3b function as a power factor correction circuit that boosts the DC voltage applied to the input terminals P1 and P2 and improves the power factor on the input side.
  • the circuit 3a includes a power line LH1, a reactor L1, a diode D11, and a switch element S1.
  • the power supply line LH1 connects the input terminal P1 and the output terminal P3.
  • Reactor L1 is provided on power supply line LH1.
  • the diode D11 is connected in series with the reactor L1 on the output terminal P3 side with respect to the reactor L1.
  • the diode D11 is provided with its anode facing the reactor L1.
  • the switch element S1 is provided between the point between the reactor L1 and the diode D11 and the power line LL.
  • the circuit 3b includes a power line LH2, a reactor L2, a diode D21, and a switch element S2.
  • the connection relationship among the power supply line LH2, the reactor L2, the diode D21, and the switch element S2 is the same as the connection relationship between the power supply line LH1, the reactor L1, the diode D11, and the switch element S1.
  • the switch element S1 includes a transistor T1 and a diode D12.
  • the transistor T1 is an insulated gate bipolar transistor, for example, and is provided with its emitter electrode facing the power supply line LL.
  • the switch element S1 does not necessarily have to include the transistor T1 and the diode D12.
  • the diode D12 may not be provided.
  • a MOS (Metal-Oxide-Semiconductor) field effect transistor may be employed as the switch element S1.
  • the switch element S2 includes a transistor T2 and a diode D22.
  • the connection relationship between the transistor T2 and the diode D22 is the same as the connection relationship between the transistor T1 and the diode D12.
  • the diode D22 is not an essential requirement, and the switch element S2 may be, for example, a MOS field effect transistor.
  • control unit 5 controls the conduction / non-conduction of the switch elements S1 and S2 described below unless otherwise specified.
  • the control unit 5 detects the power consumption consumed by the load 4. Specifically, the voltage Vo across the capacitor C1 and the current Io flowing between the load 4 and the power supply line LL are detected. The power consumption of the load 4 is calculated from the voltage Vo and the current Io.
  • control unit 5 detects the current IL1 flowing through the reactor L1 and the current IL2 flowing through the reactor L2.
  • the control unit 5 controls conduction / non-conduction of the switch elements S1, S2 for supplying desired power consumption to the load 4.
  • what current mode is adopted in the control depends on the power consumption and is determined in detail later.
  • the control unit 5 can include a microcomputer and a storage device.
  • the microcomputer executes each processing step (in other words, a procedure) described in the program.
  • the storage device is, for example, a ROM (Read-Only-Memory), a RAM (Random-Access-Memory), a rewritable nonvolatile memory (EPROM (Erasable-Programmable-ROM), etc.), and various storage devices such as a hard disk device. One or more can be configured.
  • the storage device stores various information, data, and the like, stores a program executed by the microcomputer, and provides a work area for executing the program.
  • control unit 5 is not limited to this, and various procedures executed by the control unit 5 or various means or various functions implemented may be realized by hardware.
  • the switching power supply circuit having such a configuration only one of the circuits 3a and 3b may be adopted, and the others may be omitted.
  • the control for the switching power supply circuit having the configuration in which the circuit 3b is omitted and the circuit 3a is employed will be described in the first embodiment.
  • FIG. 7 is a graph showing a thin triangular wave in FIG. 6. However, the case where the effective values of the current I are equal is illustrated.
  • FIG. 3 shows a case where power is supplied to the load 4 with the switch element S1 being non-conductive.
  • the current IL1 is equal to the current I
  • FIGS. 4, 5, and 6 show the cases of the discontinuous mode, the critical mode, and the continuous mode, respectively.
  • the operation of the circuit 3a when the switch element S1 is made non-conductive and power is supplied to the load 4 is temporarily referred to as “non-conductive mode”.
  • the current I waveform approaches a sine wave as it progresses to the non-conduction mode, discontinuous mode, critical mode, and continuous mode in order, and the generation of harmonics is further suppressed. It can be seen that the power factor is improved.
  • the switching period varies with periods T2, T3, and T4. Since T2> T3> T4 (ie, 1 / T2 ⁇ 1 / T3 ⁇ 1 / T4), the switching frequency increases and the switching loss increases as the discontinuous mode, the critical mode, and the continuous mode proceed in this order. I know that
  • the leakage current has a unimodal characteristic with respect to the load, there is an operating region where the leakage current of the boost converter cannot be sufficiently reduced even when the discontinuous mode is adopted. Even if the discontinuous mode is adopted, if the load is reduced, the leakage current increases, and it is desired to reduce this.
  • the switching frequency in the non-conduction mode, can be regarded as 0 ( ⁇ 1 / T2 ⁇ 1 / T3 ⁇ 1 / T4), so that the leakage current can be reduced as compared with the discontinuous mode.
  • Such switching between the non-conduction mode and the other operation modes can be easily performed using a conventional control technique as in the switching between the discontinuous mode, the critical mode, and the continuous mode.
  • FIG. 7 shows the output of the switching power supply circuit in the non-conduction mode, the discontinuous mode, the critical mode, and the continuous mode (this can be grasped as the output of the circuit 3a or the power consumption of the load 4) and the leakage current. It is a graph which shows the relationship. It can be seen that the leakage current is smaller in the non-conducting mode than in the discontinuous mode, the critical mode is less than the critical mode, and the critical mode is smaller than the continuous mode, even if the output size varies. . Moreover, it can be seen that the leakage current decreases as the output increases in a wide area.
  • the non-conduction mode is set. If the output is between the threshold values P11 to P21 (> P11), the discontinuous mode is set. If the output is between the threshold values P21 to P31 (> P21), When the critical mode is larger than the threshold value P31, the continuous mode is employed as the operation mode of the circuit 3a. Thereby, compared with the prior art, an increase in leakage current can be further suppressed in a region where the power consumption of the load 4 is small.
  • Threshold for output can be selected as follows. Since it is desirable that the leakage current is small regardless of the output, the threshold P11, P21, the output in the discontinuous mode, the output in the critical mode, and the output in the continuous mode, respectively, when the leakage current is constant. What is necessary is just to know beforehand as P31. In other words, in the switching power supply circuit, when the discontinuous mode is adopted and the output takes the threshold value P11, when the critical mode is adopted and the output takes the threshold value P21, the continuous mode is adopted and the output takes the threshold value P31. In this case, the magnitudes of the leakage currents are equal to each other (see the chain line in FIG. 7).
  • FIG. 8 is a graph showing the relationship between the output of the switching power supply circuit and the leakage current in the non-conduction mode, the discontinuous mode, and the critical mode.
  • the non-conducting mode is set.
  • the discontinuous mode is set.
  • the critical mode is set. Adopt as a mode.
  • Threshold for output can be selected as follows. In the switching power supply circuit, when the discontinuous mode is adopted and the output takes the threshold value P11, when the critical mode is adopted and the output takes the threshold value P21, the magnitudes of the leakage currents are equal to each other (see the chain line in FIG. 8). .
  • FIG. 9 is a graph showing the relationship between the output of the switching power supply circuit and the leakage current in the non-conduction mode, the critical mode, and the continuous mode.
  • the non-conduction mode is set, when the output is between the threshold values P21 to P31 (> P21), the critical mode is set.
  • the output is larger than the threshold value P31, the continuous mode is set. Adopt as.
  • Threshold for output can be selected as follows. In the switching power supply circuit, when the critical mode is adopted and the output takes the threshold value P21, when the continuous mode is adopted and the output takes the threshold value P31, the magnitudes of the leakage currents are equal to each other (see the chain line in FIG. 9).
  • FIG. 10 is a graph showing the relationship between the output of the switching power supply circuit and the leakage current in the non-conduction mode, the discontinuous mode, and the continuous mode.
  • the non-conduction mode is selected, when the output is between the threshold values P11 to P31 (> P11), the discontinuous mode is selected.
  • the output is larger than the threshold value P31, the continuous mode is selected. Adopt as a mode.
  • Threshold for output can be selected as follows. In the switching power supply circuit, when the discontinuous mode is adopted and the output takes the threshold value P11, when the continuous mode is adopted and the output takes the threshold value P31, the magnitudes of the leakage currents are equal to each other (see the chain line in FIG. 10). .
  • the first threshold value in the above (1a) and (1b) is a mode in which the switching element S1 is intermittently conducted and is the mode in which the leakage current is the smallest among those employed in the switching power supply circuit (see FIG. 7, the power consumption of the load 4 when taking a threshold value (indicated by a chain line in FIGS. 7 to 10) for the leakage current in the discontinuous mode in the illustration of FIGS. 8 and 10 and the critical mode in the illustration of FIG. 9. (The threshold value P11 in the examples of FIGS. 7, 8, and 10 and P21 in the example of FIG. 9).
  • 11 and 12 are graphs showing the relationship between the output of the switching power supply circuit and the efficiency in the non-conduction mode, the discontinuous mode, the critical mode, and the continuous mode. It can be seen that the non-conducting mode is more efficient than the discontinuous mode than the critical mode, and the critical mode is more efficient than the continuous mode, even if the output magnitude varies. Then, by switching the operation mode of the circuit 3a according to the magnitude of the output as shown by the thick line, it is possible to suppress the efficiency from being lowered below the threshold value indicated by the chain line regardless of the number of outputs.
  • the non-conduction mode is set. If the output is between the threshold values P12 to P22 (> P12), the discontinuous mode is set. If the output is between the threshold values P22 to P32 (> P22), When the critical mode is larger than the threshold value P32, the continuous mode is employed as the operation mode of the circuit 3a. Thereby, compared with the prior art, the fall of efficiency can further be suppressed in the area
  • the efficiency when the discontinuous mode is adopted when the output takes the threshold value P11 the efficiency when the critical mode is adopted when the output takes the threshold value P21, and the output The efficiency when the continuous mode is adopted when the threshold value P31 is adopted is equal to each other (see the chain line in FIG. 11).
  • the efficiency may be evaluated in which area the power consumption of the load 4 is frequently used.
  • year-round energy consumption efficiency APF: Annual Performance Factor
  • the APF is roughly calculated by dividing the sum of the air-conditioning capabilities exhibited by the sum of the consumed power. Therefore, importance is placed on efficiency in power consumption that is realized for a long time.
  • the threshold value for efficiency may be increased as the power consumption is decreased.
  • the efficiency of the switching power supply circuit is such that the discontinuous mode is adopted when the power consumption of the load 4 is the threshold value P12
  • the critical mode is when the power consumption of the load 4 is the threshold value P22. At least any two of them may be different from each other between the case of being adopted and the case of adopting the continuous mode when the power consumption of the load 4 is the threshold value P32.
  • the efficiency of the switching power supply circuit is such that the output is the threshold value P22 than when the discontinuous mode is adopted when the output takes the threshold value P12.
  • the case where the critical mode is adopted when the output is taken is smaller, and the case where the continuous mode is adopted when the output takes the threshold value P32 than when the critical mode is adopted when the output takes the threshold value P22.
  • the case where it is smaller is illustrated. That is, the case where the threshold value for efficiency decreases as the power consumption increases is indicated by a chain line in FIG.
  • FIG. 13 is a graph showing the relationship between the output of the switching power supply circuit and the leakage current in the non-conduction mode, the discontinuous mode, and the critical mode.
  • the non-conduction mode is selected, when the output is between the threshold values P12 to P22 (> P12), the discontinuous mode is selected, and when the output is larger than the threshold value P22, the critical mode is selected.
  • Adopt as a mode.
  • Threshold for output can be selected as follows.
  • the efficiency when the discontinuous mode is adopted and the output takes the threshold value P12 is different from the efficiency when the critical mode is adopted and the output takes the threshold value P22. More specifically, in the switching power supply circuit, the efficiency when the discontinuous mode is adopted and the output takes the threshold value P12 is larger than the efficiency when the critical mode is adopted and the output takes the threshold value P22 (FIG. 13).
  • FIG. 14 is a graph showing the relationship between the output of the switching power supply circuit and the leakage current in the non-conduction mode, the critical mode, and the continuous mode.
  • the non-conduction mode is set, when the output is between the threshold values P22 to P32 (> P22), the critical mode is set.
  • the output is larger than the threshold value P32, the continuous mode is set. Adopt as.
  • Threshold for output can be selected as follows.
  • the efficiency when the critical mode is adopted and the output takes the threshold value P22 is different from the efficiency when the continuous mode is adopted and the output takes the threshold value P32. More specifically, in the switching power supply circuit, the efficiency when the critical mode is adopted and the output takes the threshold value P22 is larger than the efficiency when the continuous mode is adopted and the output takes the threshold value P32 (FIG. 14). (See the dashed line).
  • FIG. 15 is a graph showing the relationship between the output of the switching power supply circuit and the leakage current in the non-conduction mode, the discontinuous mode, and the continuous mode.
  • the non-conducting mode is selected.
  • the discontinuous mode is selected.
  • the output is larger than the threshold value P32, the continuous mode is selected. Adopt as a mode.
  • Threshold for output can be selected as follows.
  • the efficiency when the discontinuous mode is adopted and the output takes the threshold value P12 is different from the efficiency when the continuous mode is adopted and the output takes the threshold value P32. More specifically, in the switching power supply circuit, the efficiency when the discontinuous mode is adopted and the output takes the threshold value P12 is larger than the efficiency when the continuous mode is adopted and the output takes the threshold value P32 (FIG. (See 15 dashed line).
  • the first threshold value in the above (2a) and (2b) is a mode in which the switching element S1 is intermittently conducted and is the most efficient (good) mode among those employed in the switching power supply circuit.
  • a threshold for leakage current indicated by a dashed line in FIGS. 11 to 15
  • This is the power consumption of the load 4 (the threshold value P12 in the examples of FIGS. 11, 12, 13, and 15 and P22 in the example of FIG. 14).
  • FIG. 16 is a graph showing the relationship between the output of the switching power supply circuit and harmonics in the non-conduction mode, the discontinuous mode, the critical mode, and the continuous mode. Even if the magnitude of the output fluctuates, the non-conducting mode increases (deteriorates) harmonics in the discontinuous mode, in the discontinuous mode, in the critical mode, and in the critical mode, compared with the continuous mode. I know that However, harmonics are reduced (improved) as the power consumption of the load 4 is small in any of the operation modes.
  • the non-conduction mode is set. If the output is between the threshold values P13 to P23 (> P13), the discontinuous mode is set. If the output is between the threshold values P23 to P33 (> P23), When the critical mode is larger than the threshold value P33, the continuous mode is employed as the operation mode of the circuit 3a. As a result, it is possible to adopt an operation mode in which leakage current is small or efficiency is high while suppressing an increase in harmonics in a region where the power consumption of the load 4 is small as compared with the conventional technique.
  • the critical mode is When adopted and the power consumption of the load 4 takes the threshold value P33, the magnitudes of the harmonics are equal to each other (see the chain line in FIG. 16).
  • FIG. 17 is a graph showing the relationship between the output of the switching power supply circuit and harmonics in the non-conduction mode, the discontinuous mode, and the critical mode.
  • the non-conduction mode is set.
  • the discontinuous mode is set.
  • the critical mode is set. Adopt as a mode.
  • Threshold for output can be selected as follows. In the switching power supply circuit, when the non-conduction mode is adopted and the output takes the threshold value P13, when the discontinuous mode is adopted and the output takes the threshold value P23, the magnitudes of the harmonics are equal to each other (see the chain line in FIG. 17). ).
  • FIG. 18 is a graph showing the relationship between the output of the switching power supply circuit and harmonics in the non-conduction mode, critical mode, and continuous mode.
  • the non-conduction mode is set, when the output is between the threshold values P13 to P33 (> P13), the critical mode is set.
  • the output is larger than the threshold value P33, the continuous mode is set. Adopt as.
  • Threshold for output can be selected as follows. In the switching power supply circuit, when the non-conduction mode is adopted and the output takes the threshold value P13, when the critical mode is adopted and the output takes the threshold value P33, the magnitudes of the harmonics are equal to each other (see the chain line in FIG. 18). .
  • FIG. 19 is a graph showing the relationship between the output of the switching power supply circuit and harmonics in the non-conduction mode, the discontinuous mode, and the continuous mode.
  • the non-conduction mode is selected, when the output is between the threshold values P13 to P23 (> P13), the discontinuous mode is selected.
  • the output is larger than the threshold value P23, the continuous mode is selected.
  • Adopt as a mode.
  • Threshold for output can be selected as follows. In the switching power supply circuit, when the non-conduction mode is adopted and the output takes the threshold value P13, when the discontinuous mode is adopted and the output takes the threshold value P23, the magnitudes of the harmonics are equal to each other (see the chain line in FIG. 19). ).
  • the first threshold value in the above (3a) and (3b) means that when the switching element S1 takes a threshold value for harmonics (shown by a chain line in FIGS. 16 to 19) in the non-conduction mode. This is the power consumption of the load 4 (the threshold value P11 in the examples of FIGS. 16 to 19).
  • the operation mode is temporarily referred to as “continuous (two-phase) mode”.
  • the operation mode is temporarily referred to as “discontinuous (two-phase) mode”.
  • the operation mode is temporarily referred to as “critical (one-phase) mode”.
  • critical (one-phase) mode when only one of the circuits 3a and 3b operates in the critical mode and the other operates in the non-conduction mode, the operation mode is temporarily referred to as “continuous (one-phase) mode”.
  • discontinuous (one-phase) mode when only one of the circuits 3a and 3b operates in the discontinuous mode and the other operates in the non-conduction mode, the operation mode is temporarily referred to as “discontinuous (one-phase) mode”.
  • the operation mode is simply treated as “non-conduction mode” for convenience.
  • the leakage current is smaller in the non-conduction mode than in any of the other operation modes (that is, the discontinuous mode, the critical mode, or the continuous mode). Therefore, in order from the operation mode with small leakage current, in principle, non-conduction mode, discontinuous mode (one phase), discontinuous mode (two phases), critical mode (one phase), critical mode (two phases) ), Continuous mode (1 phase), and continuous mode (2 phases).
  • the critical (two-phase) mode is a so-called interleaved operation. Therefore, depending on the switching frequency of the critical mode, the leakage current may be larger in the critical (two-phase) mode than in the continuous (one-phase) mode. Therefore, in the following description, the order between the continuous mode (one phase) and the critical mode (two phases) may be switched in the above order.
  • FIG. 20 shows the output of the switching power supply circuit in various operation modes of the circuits 3a and 3b (this can be grasped as the output from both the circuits 3a and 3b, and can be grasped as the power consumption of the load 4). ) And leakage current.
  • the leakage current can be kept smaller than the threshold value indicated by the chain line regardless of the number of outputs.
  • the non-conduction mode is set.
  • the discontinuous (one-phase) mode is set, and the threshold values P24 to P34 (> P24) are set.
  • Discontinuous (two-phase) mode if in between, critical (one-phase) mode if between thresholds P34 to P44 (> P34), critical (2) if between thresholds P44 and P54 (> P44)
  • the operation mode of the circuits 3a and 3b is the continuous (one-phase) mode if it is between the threshold values P54 to P64 (> P54), and the continuous (two-phase) mode if it is greater than the threshold value P64.
  • Adopt as.
  • Threshold for output can be selected as follows. Since it is desirable that the leakage current is small irrespective of the output, the output in the discontinuous mode (one phase), the output in the discontinuous mode (two phases), the critical mode ( The output in the single phase), the output in the critical mode (two phases), the output in the continuous mode (one phase), and the output in the continuous mode (two phases) are threshold values P14, P24, P34, P44, P54, P64, respectively. As long as you know.
  • 21 and 22 are graphs showing the relationship between the output and the efficiency in various operation modes of the circuits 3a and 3b.
  • the non-conduction mode is set.
  • the discontinuous (one-phase) mode is set, and the threshold values P25 to P35 (> P25) are set.
  • Discontinuous (two-phase) mode if in between, critical (single-phase) mode if between thresholds P35 to P45 (> P35), critical (2 if between thresholds P45 to P55 (> P45)) Operation mode of the circuits 3a and 3b, respectively, if the phase is between the threshold values P55 to P65 (> P55), the continuous (one-phase) mode is selected.
  • Adopt as. Thereby, compared with the prior art, efficiency can be further improved in a region where the power consumption of the load 4 is small.
  • Threshold for output can be selected as follows. For example, in the example shown in FIG. 21, the output in the discontinuous mode (one phase), the output in the discontinuous mode (two phases), the output in the critical mode (single phase) when taking a certain efficiency,
  • the threshold mode P15, P25, P35, P45, P55, and P65 should be known beforehand as the output in the critical mode (two phases), the output in the continuous mode (one phase), and the output in the continuous mode (two phases), respectively. That's fine.
  • the switching power supply circuit when the discontinuous mode (one phase) is adopted and the output takes the threshold value P15, when the discontinuous mode (two phases) is adopted and the output takes the threshold value P25, the critical mode ( When 1 phase) is adopted and the output takes the threshold value P35, when the critical mode (2 phases) is adopted and the output takes the threshold value P45, when continuous mode (1 phase) is adopted and the output takes the threshold value P55, the efficiencies are equal to each other (see the chain line in FIG. 21).
  • the threshold of efficiency may increase as the power consumption decreases.
  • desirable threshold values P15, P25, P35, P45, P55, and P65 in an air conditioner there is a case where the efficiency of the switching power supply circuit decreases in the following order (see FIG. 22).
  • a case where the threshold value for efficiency becomes smaller as the power consumption is increased is indicated by a chain line in FIG.
  • FIG. 23 is a graph showing the relationship between the output and the harmonics in various operation modes of the circuits 3a and 3b.
  • the non-conduction mode is set.
  • the discontinuous (one-phase) mode is set, and the threshold values P26 to P36 (> P26) are set. If it is between, the discontinuous (two-phase) mode is set. If it is between the threshold values P36 to P46 (> P36), the critical (one-phase) mode is set. If it is between the threshold values P46 to P56 (> P46), the critical (2) mode is set. Operation mode of the circuits 3a and 3b, respectively, if the phase is between the threshold values P56 to P66 (> P56), the continuous (one-phase) mode is selected. Adopt as. Thereby, it is possible to adopt an operation mode in which leakage current is small or efficiency is high while suppressing harmonics in a region where the power consumption of the load 4 is small as compared with the conventional technique.
  • the output in the mode, the output in the critical (one-phase) mode, the output in the critical (two-phase) mode, and the output in the continuous (one-phase) mode are set as thresholds P16, P26, P36, P46, P56, and P66, respectively. Just know. In other words, in the switching power supply circuit, when the non-conduction mode is adopted and the power consumption of the load 4 takes the threshold value P16, the discontinuous (one-phase) mode is adopted and the power consumption of the load 4 takes the threshold value P26.
  • the critical (two-phase) mode is adopted and the power consumption of the load 4 takes the threshold value P46.
  • the mode is adopted and the power consumption of the load 4 takes the threshold value P56
  • the continuous (one-phase) mode is adopted and the power consumption of the load 4 takes the threshold value P66
  • the magnitudes of the harmonics are equal to each other (See the chain line in FIG. 23).
  • the operation mode can be expressed as follows, following (1a), (2a), and (3a).
  • the expression (4b) includes the expressions (1b), (2b), and (3b) except for the sign.
  • (4b4) When the power consumption of the load 4 is larger than the threshold value P44 (or threshold value P45 or threshold value P46) and smaller than the threshold value P64 (or threshold value P65 or threshold value P66), one of the following modes is adopted. : (4b4-1) In any of the circuits 3a and 3b, the critical mode is adopted as the current mode of the currents IL1 and IL2 flowing through the reactors L1 and L2 (critical (two-phase) mode); (4b4-2) The current mode of the current IL2 (or current IL1) flowing through the other reactor L2 (or reactor L1) by making one of the switch elements S1 (or switch element S2) of the circuits 3a and 3b non-conductive Adopt continuous mode (continuous (one-phase) mode).
  • the continuous mode is set to the current mode of the currents IL1 and IL2 flowing in the reactors L1 and L2 in both the circuits 3a and 3b.
  • Adopt critical (two-phase) mode).
  • the above (4b4) is further divided into (4b4-1) and (4b4-2) because the order between the continuous mode (1 phase) and the continuous mode (2 phases) is the switching frequency of the critical mode. This is because there is a case where it is replaced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Rectifiers (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

 スイッチング電源回路の負荷が小さい状態においても、漏洩電流の増大、効率の低下、高調波の増大を、抑制する。出力が閾値P11よりも小さい場合には非導通モードを、閾値P11~P21(>P11)の間にあれば不連続モードを、閾値P21~P31(>P21)の間にあれば臨界モードを、閾値P31よりも大きい場合には連続モードを、それぞれ回路の動作モードとして採用する。これにより、従来の技術と比較して、負荷の消費電力が小さい領域において更に漏洩電流の増大を抑制できる。

Description

スイッチング電源回路制御方法
 この発明はスイッチング電源回路を制御する方法であって、例えば当該スイッチング電源が昇圧コンバータを構成する場合に適用される。
 従来から、いわゆる昇圧コンバータとしての構成を採用した力率改善回路が公知である。そして例えば下掲の特許文献2,4では昇圧コンバータが一対設けられ、いわゆるインタリーブ方式が採用されている。
 このような昇圧コンバータの動作はスイッチングを伴うので、スイッチング損失、高調波の発生、引いては漏洩電流の発生という現象が伴う。かかる現象を改善するため、上記特許文献1,3では、負荷が小さい場合には昇圧コンバータの動作で不連続モードが採用され、負荷が大きい場合には昇圧コンバータの臨界モードが採用されている。同様に、特許文献2では低負荷で不連続モードが、高負荷で臨界モードあるいは連続モードが、それぞれ採用されている。
 なお、不連続モード、臨界モード、連続モードとの用語は、本来は昇圧コンバータが有するリアクトルに流れる電流の電流モードについて用いられるべきである。但し本願では便宜上、当該リアクトルを有する昇圧コンバータの動作モードを表現するためにもこれらの用語を採用する。
 このように低負荷における昇圧コンバータの動作として不連続モードを採用することにより、高調波の電力成分が小さい動作領域においてスイッチング周波数を低減し、以て高調波電力成分の低減とスイッチング損失の低減とを図っている。
 なお、特許文献5は後述する漏洩電流について補償する技術を開示する。
特開2009-291034号公報 国際公開第2010/023978号 特開2011-019323号公報 特開2011-223865号公報 特許第3044650号公報
 しかしながら、不連続モードであってもスイッチングが伴う以上、昇圧コンバータのスイッチング損失は不可避となる。
 また、広い動作領域において、負荷が小さくなるほど漏洩電流は大きくなる傾向を有するので、不連続モードが採用されても、昇圧コンバータの漏洩電流が十分に低減できない動作領域が存在する。
 本発明は上記の課題に鑑み、スイッチング電源回路の負荷が小さい状態においても、漏洩電流の増大、効率の低下、高調波の増大を、抑制する技術を提供することを目的とする。
 この発明にかかるスイッチング電源回路制御方法は、下記を備えるスイッチング電源回路を制御する方法である:第1および第2の入力端(P1,P2)と;コンデンサ(C1)と負荷(4)とが接続される、第1および第2の出力端(P3,P4)と;前記第2の入力端及び前記第2の出力端を接続する第2の電源線(LL)と;少なくとも一つの回路(3a,3b)。
 但し前記回路の各々は、前記第1の入力端と前記第1の出力端とを接続する第1の電源線(LH1,LH2)と;前記第1の電源線上に設けられるリアクトル(L1,L2)と;前記第1の電源線上で前記リアクトルと直列に接続され、アノードを前記リアクトル側に向けて配置されるダイオード(D11,D21)と;前記リアクトルと前記ダイオードとの間の点と、前記第2の電源線との間に設けられるスイッチ素子(S1,S2)とを有する。
 そして当該制御方法は、前記負荷の消費電力が第1の閾値(P11;P12;P13;P14;P15;P16;P21;P22)よりも小さいときには、前記回路のいずれにおいても前記スイッチ素子を非導通にして、全ての前記回路から前記負荷へと電力を供給する。そして前記負荷の前記消費電力が前記第1の閾値よりも大きいときには前記回路の少なくともいずれか一つの前記スイッチ素子を間欠的に導通させて、全ての前記回路から前記負荷へと電力を供給する。
 この発明にかかるスイッチング電源回路制御方法の第2の態様は、その第1の態様であって、下記第2の閾値(P21;P22;P23)は前記第1の閾値(P11;P12;P13)よりも大きく、下記第3の閾値(P31;P32;P33)は前記第2の閾値よりも大きい。
 前記負荷の前記消費電力が、前記第1の閾値よりも大きく前記第2の閾値よりも小さいときには前記リアクトルに流れる電流モードに不連続モードが採用される。
 前記負荷の消費電力が、前記第2の閾値よりも大きく前記第3の閾値よりも小さいときには前記電流モードに臨界モードが採用される。
 前記負荷の消費電力が、前記第3の閾値よりも大きいときには前記電流モードに連続モードが採用される。
 この発明にかかるスイッチング電源回路制御方法の第3の態様は、その第1の態様であって、下記第2の閾値(P21;P22;P23)は前記第1の閾値(P11;P12;P13)よりも大きい。
 前記負荷の前記消費電力が、前記第1の閾値よりも大きく前記第2の閾値よりも小さいときには前記リアクトルに流れる電流モードに不連続モードが採用される。
 前記負荷の消費電力が、前記第2の閾値よりも大きいときには前記電流モードに臨界モードが採用される。
 この発明にかかるスイッチング電源回路制御方法の第4の態様は、その第1の態様であって、下記第2の閾値(P31;P32;P33)は前記第1の閾値(P21;P22;P23)よりも大きい。
 前記負荷の前記消費電力が、前記第1の閾値よりも大きく前記第2の閾値よりも小さいときには前記リアクトルに流れる電流モードに臨界モードが採用される。
 前記負荷の消費電力が、前記第2の閾値よりも大きいときには前記電流モードに連続モードが採用される。
 この発明にかかるスイッチング電源回路制御方法の第5の態様は、その第1の態様であって、下記第2の閾値(P31;P32;P33)は前記第1の閾値(P11;P12;P13)よりも大きい。
 前記負荷の前記消費電力が、前記第1の閾値よりも大きく前記第2の閾値よりも小さいときには前記リアクトルに流れる電流モードに不連続モードが採用される。
 前記負荷の消費電力が、前記第2の閾値よりも大きいときには前記電流モードに連続モードが採用される。
 この発明にかかるスイッチング電源回路制御方法の第6の態様は、その第2の態様であって、前記負荷の前記消費電力が前記第1の閾値(P11)のときに前記電流モードに不連続モードが採用されるときの前記スイッチング電源回路からの漏洩電流の大きさと、前記負荷の前記消費電力が前記第2の閾値(P21)のときに前記電流モードに臨界モードが採用されるときの前記漏洩電流の大きさと、前記負荷の前記消費電力が前記第3の閾値(P31)のときに前記電流モードに連続モードが採用されるときの前記漏洩電流の大きさとは、相互に等しい。
 この発明にかかるスイッチング電源回路制御方法の第7の態様は、その第3の態様であって、前記負荷の前記消費電力が前記第1の閾値(P11)のときに前記電流モードに不連続モードが採用されるときの前記スイッチング電源回路からの漏洩電流の大きさと、前記負荷の前記消費電力が前記第2の閾値(P21)のときに前記電流モードに臨界モードが採用されるときの前記漏洩電流の大きさとは、相互に等しい。
 この発明にかかるスイッチング電源回路制御方法の第8の態様は、その第4の態様であって、前記負荷の前記消費電力が前記第1の閾値(P21)のときに前記電流モードに臨界モードが採用されるときの前記スイッチング電源回路からの漏洩電流の大きさと、前記負荷の前記消費電力が前記第2の閾値(P31)のときに前記電流モードに連続モードが採用されるときの前記漏洩電流の大きさとは、相互に等しい。
 この発明にかかるスイッチング電源回路制御方法の第9の態様は、その第5の態様であって、前記負荷の前記消費電力が前記第1の閾値(P11)のときに前記電流モードに不連続モードが採用されるときの前記スイッチング電源回路からの漏洩電流の大きさと、前記負荷の前記消費電力が前記第2の閾値(P31)のときに前記電流モードに連続モードが採用されるときの前記漏洩電流の大きさとは、相互に等しい。
 この発明にかかるスイッチング電源回路制御方法の第10の態様は、その第2の態様であって、前記負荷の前記消費電力が前記第1の閾値(P12)のときに前記電流モードに不連続モードが採用されるときの前記スイッチング電源回路の効率と、前記負荷の前記消費電力が前記第2の閾値(P22)のときに前記電流モードに臨界モードが採用されるときの前記効率と、前記負荷の前記消費電力が前記第3の閾値(P32)のときに前記電流モードに連続モードが採用されるときの前記効率との間で、少なくともいずれか二つが相互に異なる。
 この発明にかかるスイッチング電源回路制御方法の第11の態様は、その第2の態様であって、前記負荷の前記消費電力が前記第1の閾値(P13)のときに前記電流モードに不連続モードが採用されるときの前記スイッチング電源回路で発生する高調波の大きさと、前記負荷の前記消費電力が前記第2の閾値(P23)のときに前記電流モードに臨界モードが採用されるときの前記高調波の大きさと、前記負荷の前記消費電力が前記第3の閾値(P33)のときに前記電流モードに連続モードが採用されるときの前記高調波の大きさとは、相互に等しい。
 この発明にかかるスイッチング電源回路制御方法の第12の態様は、その第3の態様であって、前記負荷の前記消費電力が前記第1の閾値(P13)のときに前記電流モードに非導通モードが採用されるときの前記スイッチング電源回路の効率と、前記負荷の前記消費電力が前記第2の閾値(P23)のときに前記電流モードに不連続モードが採用されるときの前記効率とが相互に等しい。
 この発明にかかるスイッチング電源回路制御方法の第13の態様は、その第4の態様であって、前記負荷の前記消費電力が前記第1の閾値(P13)のときに前記電流モードに非導通モードが採用されるときの前記スイッチング電源回路の効率と、前記負荷の前記消費電力が前記第2の閾値(P33)のときに前記電流モードに臨界モードが採用されるときの前記効率とが相互に等しい。
 この発明にかかるスイッチング電源回路制御方法の第14の態様は、その第5の態様であって、前記負荷の前記消費電力が前記第1の閾値(P13)のときに前記電流モードに非導通モードが採用されるときの前記スイッチング電源回路の効率と、前記負荷の前記消費電力が前記第2の閾値(P23)のときに前記電流モードに不連続モードが採用されるときの前記効率とが相互に等しい。
 この発明にかかるスイッチング電源回路制御方法の第15の態様は、その第1の態様であって、前記スイッチング電源回路において前記回路(3a,3b)は一対備えられ、前記一対の前記回路はインタリーブ方式の動作が可能である。
 下記第2の閾値(P24;P25;P26)は前記第1の閾値(P14;P15;P16)よりも大きく、下記第3の閾値(P34;P35;P36)は前記第2の閾値よりも大きく、下記第4の閾値(P44;P45;P46)は前記第3の閾値よりも大きく、下記第5の閾値(P64;P65;P66)は前記第4の閾値よりも大きい。
 前記負荷の前記消費電力が前記第1の閾値よりも大きく前記第2の閾値よりも小さい場合、前記一対の前記回路のいずれか一方の前記スイッチ素子を非導通にして、前記一対の前記回路の他方の前記リアクトルに流れる電流の電流モードに不連続モードを採用する。
 前記負荷の前記消費電力が前記第2の閾値よりも大きく前記第3の閾値よりも小さい場合、前記一対の前記回路のいずれにおいても前記リアクトルに流れる電流の電流モードに不連続モードを採用する。
 前記負荷の前記消費電力が前記第3の閾値よりも大きく前記第4の閾値よりも小さい場合、前記一対の前記回路のいずれか一方の前記スイッチ素子を非導通にして、前記一対の前記回路の他方の前記リアクトルに流れる電流の電流モードに臨界モードを採用する。
 前記負荷の前記消費電力が前記第4の閾値よりも大きく前記第5の閾値よりも小さい場合、前記一対の前記回路のいずれにおいても前記リアクトルに流れる電流の電流モードに臨界モードを採用するか、あるいは、前記一対の前記回路のいずれか一方の前記スイッチ素子を非導通にして、前記一対の前記回路の他方の前記リアクトルに流れる電流の電流モードに連続モードを採用する。
 前記負荷の前記消費電力が前記第5の閾値よりも大きい場合、前記一対の前記回路のいずれにおいても前記リアクトルに流れる電流の電流モードに連続モードを採用する。
 この発明にかかるスイッチング電源回路制御方法によれば、スイッチング電源回路の負荷の消費電力が小さい状態においても、漏洩電流の増大、効率の低下、高調波の増大、が抑制される。
 この発明の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。
第1の実施の形態、第2の実施の形態にかかる制御方法の対象となるスイッチング電源回路を例示する回路図。 補償電流出力部の構成を例示する回路図。 ダイオード整流回路から流れる電流の波形と、リアクトルに流れる電流の波形とを示すグラフ。 ダイオード整流回路から流れる電流の波形と、リアクトルに流れる電流の波形とを示すグラフ。 ダイオード整流回路から流れる電流の波形と、リアクトルに流れる電流の波形とを示すグラフ。 ダイオード整流回路から流れる電流の波形と、リアクトルに流れる電流の波形とを示すグラフ。 第1の実施の形態における、非導通モード、不連続モード、臨界モード、連続モードにおける、出力と漏洩電流の関係を示すグラフ。 第1の実施の形態における、非導通モード、不連続モード、臨界モードにおける、出力と漏洩電流の関係を示すグラフ。 第1の実施の形態における、非導通モード、臨界モード、連続モードにおける、出力と漏洩電流の関係を示すグラフ。 第1の実施の形態における、非導通モード、不連続モード、連続モードにおける、出力と漏洩電流の関係を示すグラフ。 第1の実施の形態における、非導通モード、不連続モード、臨界モード、連続モードにおける、出力と効率の関係を示すグラフ。 第1の実施の形態における、非導通モード、不連続モード、臨界モード、連続モードにおける、出力と効率の関係を示すグラフ。 第1の実施の形態における、非導通モード、不連続モード、臨界モードにおける、出力と効率の関係を示すグラフ。 第1の実施の形態における、非導通モード、臨界モード、連続モードにおける、出力と効率の関係を示すグラフ。 第1の実施の形態における、非導通モード、不連続モード、連続モードにおける、出力と効率の関係を示すグラフ。 第1の実施の形態における、非導通モード、不連続モード、臨界モード、連続モードにおける、出力と高調波の関係を示すグラフ。 第1の実施の形態における、非導通モード、不連続モード、臨界モードにおける、出力と高調波の関係を示すグラフ。 第1の実施の形態における、非導通モード、臨界モード、連続モードにおける、出力と高調波の関係を示すグラフ。 第1の実施の形態における、非導通モード、不連続モード、連続モードにおける、出力と高調波の関係を示すグラフ。 第2の実施の形態における、非導通モード、不連続モード、臨界モード、連続モードにおける、出力と漏洩電流の関係を示すグラフ。 第2の実施の形態における、非導通モード、不連続モード、臨界モード、連続モードにおける、出力と効率の関係を示すグラフ。 第2の実施の形態における、非導通モード、不連続モード、臨界モード、連続モードにおける、出力と効率の関係を示すグラフ。 第2の実施の形態における、非導通モード、不連続モード、臨界モード、連続モードにおける、出力と高調波の関係を示すグラフ。
 図1は下記第1の実施の形態及び第2の実施の形態にかかる制御方法の対象となるスイッチング電源回路を例示する回路図である。
 当該スイッチング電源回路は、入力端P1,P2、出力端P3,P4、電源線LL、及び回路3a,3bを備える。電源線LLは、入力端P2と出力端P4とを接続する。
 出力端P3,P4には、コンデンサC1と負荷4とが並列に接続される。
 なお、負荷4として、ここではインバータが例示されるが、実際にはインバータによって電力が供給される対象も含めて把握される。よって以下にいう負荷4の消費電力とは、負荷4それ自身が消費する電力のみならず、負荷4から出力される電力も含めて把握される。
 入力端P1,P2の間には直流電圧が印加される。図1の例示では、入力端P1,P2にはダイオード整流回路2が接続されている。ダイオード整流回路2は交流電源1からの交流電圧を整流し、整流後の直流電圧を入力端P1,P2の間に印加する。ここでは入力端P2に印加される電位は入力端P1に印加される電位よりも低い。かかる電圧印加と、回路3a,3bの後述する動作によって直流の電流Iがダイオード整流回路2から流れ出す。
 ダイオード整流回路2と交流電源1との間には、漏洩電流検出器61が設けられる。漏洩電流検出器61は補償電流出力部62と相まって、漏洩電流低減装置6を構成する。
 漏洩電流検出器61は、ダイオード整流回路2に入力される一対の電流同士の差分から漏洩電流に対応する電流Ibを検出し、これを補償電流出力部62に出力する。具体的には漏洩電流検出器61は、交流電源1とダイオード整流回路2との間に設けられるコモンモードチョーク61a及びこれに誘導結合したコイル61bを有している。
 漏洩電流低減装置6についての基本的な説明は特許文献5に開示されているので、これについての説明は以下のように簡単に留める。
 補償電流出力部62は、コイル61bに接続される一対の入力端Q1,Q2と、検出された電流Ibに応答して補償電流Icを流す出力端Q3,Q4とを有する。
 図1では出力端Q3,Q4は入力端P1,P2にそれぞれ接続されている場合が図示されている。あるいは出力端P3,P4へ出力端Q3,Q4を接続してもよい。
 図2は補償電流出力部62の構成を例示する回路図である。補償電流出力部62は、その出力端Q3,Q4の間に直列接続されるトランジスタ621,622を備える。トランジスタ621,622は相互に導電型が異なる。具体的にはトランジスタ621はNPN型であり、トランジスタ622はPNP型である。
 トランジスタ621,622同士が接続される接続点が接地され、ここに補償電流Icが出力される。当該接続点と、トランジスタ621,622のベースとの間には電流Ibが流れる。
 補償電流Icから直流分をカットするために、当該接続点は接地との間に容量性のインピーダンスを持つ素子623、例えばコンデンサと抵抗の直列接続を設けることが望ましい。
 具体的にはトランジスタ621の制御電極たるベースと、トランジスタ622の制御電極たるベースとは、例えば抵抗624を介して漏洩電流検出器61に接続される。当該抵抗624に電流Ibが流れることにより、ベースバイアス電圧がトランジスタ621,622に引加されることになる。
 なお、入力端P1,P2の間にはコンデンサC2が設けられてもよい。コンデンサC2は回路3a,3bに入力する電流のノイズを低減することができる。
 回路3a,3bはいずれも入力端P1,P2及び出力端P3,P4に接続される。回路3a,3bはコンデンサC1と協動して昇圧コンバータとして機能する。これにより、回路3a,3bは、入力端P1,P2に印加された直流電圧を昇圧するとともに入力側の力率を改善する力率改善回路として機能する。
 回路3aは電源線LH1とリアクトルL1とダイオードD11とスイッチ素子S1とを備えている。電源線LH1は入力端P1と出力端P3とを接続する。リアクトルL1は電源線LH1上に設けられている。ダイオードD11はリアクトルL1に対して出力端P3側でリアクトルL1に直列に接続される。またダイオードD11はそのアノードをリアクトルL1に向けて設けられる。
 スイッチ素子S1はリアクトルL1とダイオードD11との間の点と、電源線LLとの間に設けられる。
 回路3bは電源線LH2とリアクトルL2とダイオードD21とスイッチ素子S2とを備えている。電源線LH2とリアクトルL2とダイオードD21とスイッチ素子S2との接続関係は、電源線LH1とリアクトルL1とダイオードD11とスイッチ素子S1との接続関係と同じである。
 図1の例示では、スイッチ素子S1はトランジスタT1とダイオードD12とを備えている。トランジスタT1は例えば絶縁ゲートバイポーラトランジスタであって、そのエミッタ電極を電源線LL側に向けて設けられる。なお、スイッチ素子S1は必ずしもトランジスタT1とダイオードD12とを有している必要は無い。例えばダイオードD12が設けられていなくてもよい。またスイッチ素子S1として例えばMOS(Metal-Oxide-Semiconductor)電界効果トランジスタが採用されてもよい。
 スイッチ素子S2はトランジスタT2とダイオードD22とを有している。トランジスタT2とダイオードD22との接続関係はトランジスタT1とダイオードD12との接続関係と同一である。またダイオードD22は必須要件ではなく、またスイッチ素子S2は例えばMOS電界効果トランジスタであってもよい。
 なお、以下で説明するスイッチ素子S1,S2の導通/非導通の制御について、特別な記載が無い限りその制御は制御部5によって行われる。
 制御部5は負荷4が消費する消費電力を検出する。具体的にはコンデンサC1の両端の電圧Voと、負荷4と電源線LLとの間に流れる電流Ioを検出する。負荷4の消費電力は上記電圧Voと電流Ioとから算出される。
 また制御部5はリアクトルL1に流れる電流IL1、リアクトルL2に流れる電流IL2を検出する。制御部5は所望の消費電力を負荷4へ供給するためのスイッチ素子S1,S2の導通/非導通を制御する。但し当該制御においてどのような電流モードが採用されるかは上記の消費電力に依存し、後に詳述するようにして決定される。
 制御部5はマイクロコンピュータと記憶装置を含んで構成することができる。マイクロコンピュータは、プログラムに記述された各処理ステップ(換言すれば手順)を実行する。上記記憶装置は、例えばROM(Read-Only-Memory)、RAM(Random-Access-Memory)、書き換え可能な不揮発性メモリ(EPROM(Erasable-Programmable-ROM)等)、ハードディスク装置などの各種記憶装置の1つ又は複数で構成可能である。当該記憶装置は、各種の情報やデータ等を格納し、またマイクロコンピュータが実行するプログラムを格納し、また、プログラムを実行するための作業領域を提供する。なお、マイクロコンピュータは、プログラムに記述された各処理ステップに対応する各種手段として機能するとも把握でき、あるいは、各処理ステップに対応する各種機能を実現するとも把握できる。また、制御部5はこれに限らず、制御部5によって実行される各種手順、あるいは実現される各種手段又は各種機能の一部又は全部をハードウェアで実現しても構わない。
 かかる構成を有するスイッチング電源回路において回路3a,3bのいずれか一方のみを採用し、それ以外を省略してもよい。以下では説明を簡単にするため、まず回路3bを省略し、回路3aを採用した構成のスイッチング電源回路に対する制御について第1の実施の形態において説明する。
 第1の実施の形態.
 図3乃至図6のいずれも、交流電源1の一周期(位相0~360度)における、ダイオード整流回路2から流れる電流Iの波形(太線)と、リアクトルL1に流れる電流IL1の波形(図4乃至図6における細線の三角波)とを示すグラフである。但し、電流Iの実効値は等しくした場合を例示している。
 図3はスイッチ素子S1を非導通にして負荷4へと電力を供給した場合を示す。この場合、スイッチ素子S1には電流が流れず、回路3bは省略されているので、電流IL1は電流Iと等しく、電流IL1のグラフは電流Iと一致する。図4乃至図6はスイッチ素子S1を間欠的に導通させて負荷4へと電力を供給した場合を示す。より詳細には、図4、図5、図6は、それぞれ不連続モード、臨界モード、連続モードの場合を示す。以下、便宜上、スイッチ素子S1を非導通にして負荷4へと電力を供給場合の回路3aの動作を「非導通モード」と仮称する。
 これらの図を比較して理解されるように、非導通モード、不連続モード、臨界モード、連続モードへと順に進むに連れ、電流Iの波形は正弦波に近づき、高調波の発生がより抑制され、力率が改善されることがわかる。
 他方、不連続モード、臨界モード、連続モードへと順に進むに連れ、スイッチ素子S1が非導通から導通へと遷移する時点の間隔、いわゆるスイッチング周期は周期T2,T3,T4と変動する。そしてT2>T3>T4(即ち1/T2<1/T3<1/T4)であるので、不連続モード、臨界モード、連続モードとこの順に進むに連れ、スイッチング周波数は増大し、スイッチング損失も増大することが判る。
 従って、なるほど、特許文献1乃至3に示されるように、負荷が小さい場合に不連続モードを採用することはスイッチング損失の低減に関して効果的ではある。しかしながら、不連続モードであってもスイッチングが伴う以上、昇圧コンバータのスイッチング損失は不可避となる。これに対し、非導通モードではスイッチングを採用しないのであるから、理論的にはスイッチング損失は発生しない。
 また漏洩電流は負荷に対して単峰性の特性を有するので、不連続モードが採用されても、昇圧コンバータの漏洩電流が十分に低減できない動作領域が存在する。不連続モードを採用したとしても負荷が小さくなれば漏洩電流が大きくなり、これを低減することが望まれる。
 これに対し、非導通モードでは、スイッチング周波数を0(<1/T2<1/T3<1/T4)と見なすことができるので、漏洩電流を不連続モードよりも低減することができる。
 このような非導通モードとそれ以外の動作モードとの切替は、不連続モード、臨界モード、連続モードの間での切替と同様、従来の制御技術を用いて容易に実行することができる。
 図7は非導通モード、不連続モード、臨界モード、連続モードにおけるスイッチング電源回路の出力(これは回路3aの出力として把握することもできるし、負荷4の消費電力としても把握できる)と漏洩電流の関係を示すグラフである。出力の大きさが変動しても、非導通モードの方が不連続モードよりも、不連続モードの方が臨界モードよりも、臨界モードの方が連続モードよりも、漏洩電流が小さいことが判る。しかも、広い領域において、出力が大きいほど漏洩電流は低下することが判る。
 よって太線のように、出力の大きさに応じて回路3aの動作モードを切り換えることにより、出力の多寡にかかわらず、鎖線で示された閾値よりも小さい漏洩電流を維持することができる。
 これは漏洩電流低減装置6の回路規模の低減、あるいは更にその省略を招来する観点で望ましい効果として把握できる。
 具体的には出力が閾値P11よりも小さい場合には非導通モードを、閾値P11~P21(>P11)の間にあれば不連続モードを、閾値P21~P31(>P21)の間にあれば臨界モードを、閾値P31よりも大きい場合には連続モードを、それぞれ回路3aの動作モードとして採用する。これにより、従来の技術と比較して、負荷4の消費電力が小さい領域において更に漏洩電流の増大を抑制できる。
 出力についての閾値は、下記のように選定することができる。漏洩電流は出力に関係なく小さいことが望ましいので、漏洩電流について一定の大きさを採るときの、不連続モードでの出力、臨界モードでの出力、連続モードでの出力をそれぞれ閾値P11,P21,P31として予め了知しておけばよい。換言すれば、スイッチング電源回路において、不連続モードが採用されて出力が閾値P11を採るとき、臨界モードが採用されて出力が閾値P21を採るとき、連続モードが採用されて出力が閾値P31を採るとき、漏洩電流の大きさは相互に等しい(図7の鎖線参照)。
 図8は非導通モード、不連続モード、臨界モードにおけるスイッチング電源回路の出力と漏洩電流の関係を示すグラフである。
 出力が閾値P11よりも小さい場合には非導通モードを、閾値P11~P21(>P11)の間にあれば不連続モードを、閾値P21よりも大きい場合には臨界モードを、それぞれ回路3aの動作モードとして採用する。これにより、従来の技術と比較して、負荷4の消費電力が小さい領域において更に漏洩電流の増大を抑制できる。
 出力についての閾値は、下記のように選定することができる。スイッチング電源回路において、不連続モードが採用されて出力が閾値P11を採るとき、臨界モードが採用されて出力が閾値P21を採るとき、漏洩電流の大きさは相互に等しい(図8の鎖線参照)。
 図9は非導通モード、臨界モード、連続モードにおけるスイッチング電源回路の出力と漏洩電流の関係を示すグラフである。
 出力が閾値P21よりも小さい場合には非導通モードを、閾値P21~P31(>P21)の間にあれば臨界モードを、閾値P31よりも大きい場合には連続モードを、それぞれ回路3aの動作モードとして採用する。これにより、従来の技術と比較して、負荷4の消費電力が小さい領域において更に漏洩電流の増大を抑制できる。
 出力についての閾値は、下記のように選定することができる。スイッチング電源回路において、臨界モードが採用されて出力が閾値P21を採るとき、連続モードが採用されて出力が閾値P31を採るとき、漏洩電流の大きさは相互に等しい(図9の鎖線参照)。
 図10は非導通モード、不連続モード、連続モードにおけるスイッチング電源回路の出力と漏洩電流の関係を示すグラフである。
 出力が閾値P11よりも小さい場合には非導通モードを、閾値P11~P31(>P11)の間にあれば不連続モードを、閾値P31よりも大きい場合には連続モードを、それぞれ回路3aの動作モードとして採用する。これにより、従来の技術と比較して、負荷4の消費電力が小さい領域において更に漏洩電流の増大を抑制できる。
 出力についての閾値は、下記のように選定することができる。スイッチング電源回路において、不連続モードが採用されて出力が閾値P11を採るとき、連続モードが採用されて出力が閾値P31を採るとき、漏洩電流の大きさは相互に等しい(図10の鎖線参照)。
 なるほど、不連続モード、臨界モード、連続モードにおけるモードの切替は上述のように公知であるので、当該実施の形態の動作は以下のように纏めることができる。
 (1a)負荷4の消費電力が第1の閾値よりも小さいときには、回路3aにおいてスイッチ素子S1を非導通にして回路3aから負荷4へと電力を供給する。
 (1b)負荷4の消費電力が第1の閾値よりも大きいときには回路3aのスイッチ素子S1を間欠的に導通させて、回路3aから負荷4へと電力を供給する。
 (1c)上記(1a),(1b)における第1の閾値とは、スイッチ素子S1が間欠的に導通するモードであってスイッチング電源回路において採用されるもののうち、最も漏洩電流が小さいモード(図7、図8及び図10の例示では不連続モード、図9の例示では臨界モード)において漏洩電流についての閾値(図7乃至図10の鎖線で示される)を採るときの、負荷4の消費電力(図7、図8及び図10の例示では閾値P11、図9の例示ではP21)である。
 図11及び図12は非導通モード、不連続モード、臨界モード、連続モードにおけるスイッチング電源回路の出力と効率の関係を示すグラフである。出力の大きさが変動しても、非導通モードの方が不連続モードよりも、不連続モードの方が臨界モードよりも、臨界モードの方が連続モードよりも、効率が良いことが判る。そして太線のように、出力の大きさに応じて回路3aの動作モードを切り換えることにより、出力の多寡にかかわらず、鎖線で示された閾値よりも効率が低下することを抑制できる。
 具体的には出力が閾値P12よりも小さい場合には非導通モードを、閾値P12~P22(>P12)の間にあれば不連続モードを、閾値P22~P32(>P22)の間にあれば臨界モードを、閾値P32よりも大きい場合には連続モードを、それぞれ回路3aの動作モードとして採用する。これにより、従来の技術と比較して、負荷4の消費電力が小さい領域において更に効率の低下を抑制できる。
 図11では、スイッチング電源回路において、出力が閾値P11を採るときに不連続モードが採用された場合の効率と、出力が閾値P21を採るときに臨界モードが採用された場合の効率と、出力が閾値P31を採るときに連続モードが採用された場合の効率とは、相互に等しい(図11の鎖線参照)。
 但し効率は、負荷4の消費電力についてどの領域で多く用いられるかについて評価すべき場合がある。例えば空気調和機の場合、効率計算として通年エネルギー消費効率(APF:Annual Performance Factor)が採用されることも多い。そしてAPFはおおまかには、発揮された空調能力の総和を消費された電力の総和で除して計算される。よって実現される時間が長い消費電力における効率が重視される。
 通常、空気調和機では消費電力が大きくなるのは動作初期のみであり、消費電力が小さい動作時における効率がAPFにおいて重要となる。よって例えば効率についての閾値が消費電力が小さいほど大きくなってもよい。これを一般的に見れば、スイッチング電源回路の効率が、負荷4の消費電力が閾値P12のときに不連続モードが採用される場合と、負荷4の消費電力が閾値P22のときに臨界モードが採用される場合と、負荷4の消費電力が閾値P32のときに連続モードが採用される場合との間で、少なくともいずれか二つが相互に異なってもよい。
 空気調和機の消費電力の大部分は、インバータが供給する消費電力である。よって図12では上記空気調和機において望ましい閾値P12,P22,P32の例として、スイッチング電源回路の効率は、出力が閾値P12を採るときに不連続モードが採用される場合よりも、出力が閾値P22を採るときに臨界モードが採用される場合の方が小さく、出力が閾値P22を採るときに臨界モードが採用される場合よりも、出力が閾値P32を採るときに連続モードが採用される場合の方が小さい場合が例示される。つまり効率についての閾値が消費電力が大きいほど小さくなる場合が、図12において鎖線で示される。
 図13は非導通モード、不連続モード、臨界モードにおけるスイッチング電源回路の出力と漏洩電流の関係を示すグラフである。
 出力が閾値P12よりも小さい場合には非導通モードを、閾値P12~P22(>P12)の間にあれば不連続モードを、閾値P22よりも大きい場合には臨界モードを、それぞれ回路3aの動作モードとして採用する。これにより、従来の技術と比較して、負荷4の消費電力が小さい領域において更に効率の低下を抑制できる。
 出力についての閾値は、下記のように選定することができる。スイッチング電源回路において、不連続モードが採用されて出力が閾値P12を採るときの効率と、臨界モードが採用されて出力が閾値P22を採るときの効率とは相互に異なる。より具体的にはスイッチング電源回路において、不連続モードが採用されて出力が閾値P12を採るときの効率の方が、臨界モードが採用されて出力が閾値P22を採るときの効率よりも大きい(図13の鎖線参照)。
 図14は非導通モード、臨界モード、連続モードにおけるスイッチング電源回路の出力と漏洩電流の関係を示すグラフである。
 出力が閾値P22よりも小さい場合には非導通モードを、閾値P22~P32(>P22)の間にあれば臨界モードを、閾値P32よりも大きい場合には連続モードを、それぞれ回路3aの動作モードとして採用する。これにより、従来の技術と比較して、負荷4の消費電力が小さい領域において更に効率の低下を抑制できる。
 出力についての閾値は、下記のように選定することができる。スイッチング電源回路において、臨界モードが採用されて出力が閾値P22を採るときの効率と、連続モードが採用されて出力が閾値P32を採るときの効率とは相互に異なる。より具体的にはスイッチング電源回路において、臨界モードが採用されて出力が閾値P22を採るときの効率の方が、連続モードが採用されて出力が閾値P32を採るときの効率よりも大きい(図14の鎖線参照)。
 図15は非導通モード、不連続モード、連続モードにおけるスイッチング電源回路の出力と漏洩電流の関係を示すグラフである。
 出力が閾値P12よりも小さい場合には非導通モードを、閾値P12~P32(>P12)の間にあれば不連続モードを、閾値P32よりも大きい場合には連続モードを、それぞれ回路3aの動作モードとして採用する。これにより、従来の技術と比較して、負荷4の消費電力が小さい領域において更に効率の低下を抑制できる。
 出力についての閾値は、下記のように選定することができる。スイッチング電源回路において、不連続モードが採用されて出力が閾値P12を採るときの効率と、連続モードが採用されて出力が閾値P32を採るときの効率とは相互に異なる。より具体的にはスイッチング電源回路において、不連続モードが採用されて出力が閾値P12を採るときの効率の方が、連続モードが採用されて出力が閾値P32を採るときの効率よりも大きい(図15の鎖線参照)。
 図11~15の太線で示された回路3aの動作の切替は、上記動作(1a),(1b),(1c)に倣って以下のように纏めることができる。
 (2a)負荷4の消費電力が第1の閾値よりも小さいときには、回路3aにおいてスイッチ素子S1を非導通にして回路3aから負荷4へと電力を供給する。
 (2b)負荷4の消費電力が第1の閾値よりも大きいときには回路3aのスイッチ素子S1を間欠的に導通させて、回路3aから負荷4へと電力を供給する。
 (2c)上記(2a),(2b)における第1の閾値とは、スイッチ素子S1が間欠的に導通するモードであってスイッチング電源回路において採用されるもののうち、最も効率が高い(良い)モード(図11、図12、図13及び図15の例示では不連続モード、図14の例示では臨界モード)において漏洩電流についての閾値(図11乃至図15の鎖線で示される)を採るときの、負荷4の消費電力(図11、図12、図13及び図15の例示では閾値P12、図14の例示ではP22)である。
 図16は非導通モード、不連続モード、臨界モード、連続モードにおけるスイッチング電源回路の出力と高調波の関係を示すグラフである。出力の大きさが変動しても、非導通モードの方が不連続モードよりも、不連続モードの方が臨界モードよりも、臨界モードの方が連続モードよりも、高調波について増大(悪化)することが判る。しかし、いずれの動作モードにおいても負荷4の消費電量が小さいほど、高調波は低減(改善)する。
 よって太線のように、出力の大きさに応じて回路3aの動作モードを切り換えることにより、出力の多寡にかかわらず、鎖線で示された閾値よりも高調波が増大することを抑制できる。
 具体的には出力が閾値P13よりも小さい場合には非導通モードを、閾値P13~P23(>P13)の間にあれば不連続モードを、閾値P23~P33(>P23)の間にあれば臨界モードを、閾値P33よりも大きい場合には連続モードを、それぞれ回路3aの動作モードとして採用する。これにより、従来の技術と比較して、負荷4の消費電力が小さい領域において更に、高調波が増大することを抑制しつつ、漏洩電流が小さく、あるいは効率が高い動作モードを採用できる。
 高調波についても出力に関係なく小さいことが望ましいので、一定の大きさの高調波を採るときの、非導通モードでの出力、不連続モードでの出力、臨界モードでの出力をそれぞれ閾値P13,P23,P33として予め了知しておけばよい。換言すれば、スイッチング電源回路において、非導通モードが採用されて負荷4の消費電力が閾値P13を採るとき、不連続モードが採用されて負荷4の消費電力が閾値P23を採るとき、臨界モードが採用されて負荷4の消費電力が閾値P33を採るとき、高調波の大きさは相互に等しい(図16の鎖線参照)。
 図17は非導通モード、不連続モード、臨界モードにおけるスイッチング電源回路の出力と高調波の関係を示すグラフである。
 出力が閾値P13よりも小さい場合には非導通モードを、閾値P13~P23(>P13)の間にあれば不連続モードを、閾値P23よりも大きい場合には臨界モードを、それぞれ回路3aの動作モードとして採用する。これにより、従来の技術と比較して、負荷4の消費電力が小さい領域において高調波を抑制しつつ、漏洩電流が小さく、あるいは効率が高い動作モードを採用できる。
 出力についての閾値は、下記のように選定することができる。スイッチング電源回路において、非導通モードが採用されて出力が閾値P13を採るとき、不連続モードが採用されて出力が閾値P23を採るとき、高調波の大きさは相互に等しい(図17の鎖線参照)。
 図18は非導通モード、臨界モード、連続モードにおけるスイッチング電源回路の出力と高調波の関係を示すグラフである。
 出力が閾値P13よりも小さい場合には非導通モードを、閾値P13~P33(>P13)の間にあれば臨界モードを、閾値P33よりも大きい場合には連続モードを、それぞれ回路3aの動作モードとして採用する。これにより、従来の技術と比較して、負荷4の消費電力が小さい領域において高調波を抑制しつつ、漏洩電流が小さく、あるいは効率が高い動作モードを採用できる。
 出力についての閾値は、下記のように選定することができる。スイッチング電源回路において、非導通モードが採用されて出力が閾値P13を採るとき、臨界モードが採用されて出力が閾値P33を採るとき、高調波の大きさは相互に等しい(図18の鎖線参照)。
 図19は非導通モード、不連続モード、連続モードにおけるスイッチング電源回路の出力と高調波の関係を示すグラフである。
 出力が閾値P13よりも小さい場合には非導通モードを、閾値P13~P23(>P13)の間にあれば不連続モードを、閾値P23よりも大きい場合には連続モードを、それぞれ回路3aの動作モードとして採用する。これにより、従来の技術と比較して、負荷4の消費電力が小さい領域において高調波を抑制しつつ、漏洩電流が小さく、あるいは効率が高い動作モードを採用できる。
 出力についての閾値は、下記のように選定することができる。スイッチング電源回路において、非導通モードが採用されて出力が閾値P13を採るとき、不連続モードが採用されて出力が閾値P23を採るとき、高調波の大きさは相互に等しい(図19の鎖線参照)。
 図16乃至図19の太線で示された回路3aの動作の切替は、上記動作(1a),(1b),(1c)に倣って以下のように纏めることができる。
 (3a)負荷4の消費電力が第1の閾値よりも小さいときには、回路3aにおいてスイッチ素子S1を非導通にして回路3aから負荷4へと電力を供給する。
 (3b)負荷4の消費電力が第1の閾値よりも大きいときには回路3aのスイッチ素子S1を間欠的に導通させて、回路3aから負荷4へと電力を供給する。
 (3c)上記(3a),(3b)における第1の閾値とは、スイッチ素子S1が非導通のモードにおいて高調波についての閾値(図16乃至図19の鎖線で示される)を採るときの、負荷4の消費電力(図16乃至図19の例示では閾値P11)である。
 第2の実施の形態.
 次に、回路3aのみならず、回路3bをも採用した場合の動作について説明する。特許文献2,4で示されるように、本実施の形態の回路3a,3bの両方を用いてインタリーブ方式で動作させることができる。このようなインタリーブ方式では通常、回路3a,3bの両方が臨界モードで動作する。そこで、以下ではこのようなインタリーブ方式での動作モードを、いずれもが臨界モードで動作することに因み、「臨界(2相)モード」と仮称する。後述するように回路3a,3bが「臨界(2相)モード」で動作する、出力の領域が存在する。即ち回路3a,3bはインタリーブ方式での動作が可能である。
 これと類似して、回路3a,3bのいずれもが連続モードで動作する場合、その動作モードを「連続(2相)モード」と仮称する。また回路3a,3bのいずれもが不連続モードで動作する場合、その動作モードを「不連続(2相)モード」と仮称する。
 これに対し、回路3a,3bのいずれか一方のみが臨界モードで、他方が非導通モードで、それぞれ動作する場合、その動作モードを「臨界(1相)モード」と仮称する。同様に、回路3a,3bのいずれか一方のみが連続モードで、他方が非導通モードで、それぞれ動作する場合、その動作モードを「連続(1相)モード」と仮称する。同様に、回路3a,3bのいずれか一方のみが不連続モードで、他方が非導通モードで、それぞれ動作する場合、その動作モードを「不連続(1相)モード」と仮称する。
 また、回路3a,3bのいずれもが非導通モードで動作する場合、その動作モードを便宜上、単に「非導通モード」として扱う。
 図7を用いて説明したように、非導通モードを用いた方が、その他の動作モード(即ち不連続モード、臨界モード、連続モード)のいずれよりも漏洩電流が小さい。よって漏洩電流が小さい動作モードから順次に挙げると、原則的には、非導通モード、不連続モード(1相)、不連続モード(2相)、臨界モード(1相)、臨界モード(2相)、連続モード(1相)、連続モード(2相)の順序となる。
 但し、上述のように臨界(2相)モードは、いわゆるインタリーブ方式の動作である。よって、臨界モードのスイッチング周波数によっては、連続(1相)モードよりも臨界(2相)モードの方が漏洩電流が大きい場合もあり得る。よって以下の説明において、上記順序において連続モード(1相)と臨界モード(2相)との間での順序を入れ替えてもよい。
 なお、上述の順序は、図12、図16を用いた説明からも判るように、効率が良好な動作モードから順次に挙げる順序、及び高調波が大きい(悪い)動作モードから順次に挙げる順序と同じである。
 図20は回路3a、3bの動作モードの各種において、スイッチング電源回路の出力(これは回路3a,3bの両方からの出力として把握することができ、また負荷4の消費電力として把握することもできる)と漏洩電流との関係を示すグラフである。太線のように、出力の大きさに応じて回路3a,3bの動作モードを切り換えることにより、出力の多寡にかかわらず、漏洩電流を鎖線で示された閾値よりも小さく維持することができる。
 具体的には出力が閾値P14よりも小さい場合には非導通モードを、閾値P14~P24(>P14)の間にあれば不連続(1相)モードを、閾値P24~P34(>P24)の間にあれば不連続(2相)モードを、閾値P34~P44(>P34)の間にあれば臨界(1相)モードを、閾値P44~P54の間(>P44)にあれば臨界(2相)モードを、閾値P54~P64(>P54)の間にあれば連続(1相)モードを、閾値P64よりも大きい場合には連続(2相)モードを、それぞれ回路3a,3bの動作モードとして採用する。これにより、従来の技術と比較して、負荷4の消費電力が小さい領域において更に漏洩電流の増大を抑制できる。
 出力についての閾値は、下記のように選定することができる。漏洩電流は出力に関係なく小さいことが望ましいので、漏洩電流について一定の大きさを採るときの、不連続モード(1相)での出力、不連続モード(2相)での出力、臨界モード(1相)での出力、臨界モード(2相)での出力、連続モード(1相)での出力、連続モード(2相)での出力をそれぞれ閾値P14,P24,P34,P44,P54,P64として予め了知しておけばよい。換言すれば、スイッチング電源回路において、不連続モード(1相)が採用されて出力が閾値P14を採るとき、不連続モード(2相)が採用されて出力が閾値P24を採るとき、臨界モード(1相)が採用されて出力が閾値P34を採るとき、臨界モード(2相)が採用されて出力が閾値P44を採るとき、連続モード(1相)が採用されて出力が閾値P54を採るとき、連続モード(2相)が採用されて出力が閾値P64を採るとき、漏洩電流の大きさは相互に等しい(図20の鎖線参照)。
 図21及び図22は回路3a、3bの動作モードの各種において、出力と効率との関係を示すグラフである。太線のように、出力の大きさに応じて回路3a,3bの動作モードを切り換えることにより、出力の多寡にかかわらず、鎖線で示された閾値よりも良好な効率を得ることができる。
 具体的には出力が閾値P15よりも小さい場合には非導通モードを、閾値P15~P25(>P15)の間にあれば不連続(1相)モードを、閾値P25~P35(>P25)の間にあれば不連続(2相)モードを、閾値P35~P45(>P35)の間にあれば臨界(1相)モードを、閾値P45~P55(>P45)の間にあれば臨界(2相)モードを、閾値P55~P65(>P55)の間にあれば連続(1相)モードを、閾値P65よりも大きい場合には連続(2相)モードを、それぞれ回路3a,3bの動作モードとして採用する。これにより、従来の技術と比較して、負荷4の消費電力が小さい領域において更に効率を高めることができる。
 出力についての閾値は、下記のように選定することができる。例えば図21に示された例では、一定の効率を採るときの、不連続モード(1相)での出力、不連続モード(2相)での出力、臨界モード(1相)での出力、臨界モード(2相)での出力、連続モード(1相)での出力、連続モード(2相)での出力をそれぞれ閾値P15,P25,P35,P45,P55,P65として予め了知しておけばよい。換言すれば、スイッチング電源回路において、不連続モード(1相)が採用されて出力が閾値P15を採るとき、不連続モード(2相)が採用されて出力が閾値P25を採るとき、臨界モード(1相)が採用されて出力が閾値P35を採るとき、臨界モード(2相)が採用されて出力が閾値P45を採るとき、連続モード(1相)が採用されて出力が閾値P55を採るとき、連続モード(2相)が採用されて出力が閾値P65を採るとき、効率は相互に等しい(図21の鎖線参照)。
 もちろん、上述のように、消費電力が小さいほど効率の閾値が大きくなってもよい。具体的には例えば、空気調和機において望ましい閾値P15,P25,P35,P45,P55,P65の例として、スイッチング電源回路の効率は、下記の順に小さくなって行く場合が挙げられる(図22参照):出力が閾値P15を採って不連続(1相)モードが採用されるとき;出力が閾値P25を採って不連続(2相)モードが採用されるとき;出力が閾値P35を採って臨界(1相)モードが採用されるとき;出力が閾値P45を採って臨界(2相)モードが採用されるとき;出力が閾値P55を採って連続(1相)モードが採用されるとき;出力が閾値P65を採って連続(2相)モードが採用されるとき。
 このように効率についての閾値が消費電力が大きいほど小さくなる場合が、図22において鎖線で示される。
 図23は回路3a、3bの動作モードの各種において、出力と高調波との関係を示すグラフである。太線のように、出力の大きさに応じて回路3a,3bの動作モードを切り換えることにより、出力の多寡にかかわらず、高調波を鎖線で示された閾値よりも小さく維持することができる。
 具体的には出力が閾値P16よりも小さい場合には非導通モードを、閾値P16~P26(>P16)の間にあれば不連続(1相)モードを、閾値P26~P36(>P26)の間にあれば不連続(2相)モードを、閾値P36~P46(>P36)の間にあれば臨界(1相)モードを、閾値P46~P56(>P46)の間にあれば臨界(2相)モードを、閾値P56~P66(>P56)の間にあれば連続(1相)モードを、閾値P66よりも大きい場合には連続(2相)モードを、それぞれ回路3a,3bの動作モードとして採用する。これにより、従来の技術と比較して、負荷4の消費電力が小さい領域において高調波を抑制しつつ、漏洩電流が小さく、あるいは効率が高い動作モードを採用できる。
 高調波についても出力に関係なく小さいことが望ましいので、一定の大きさの高調波を採るときの、非導通モードでの出力、不連続(1相)モードでの出力、不連続(2相)モードでの出力、臨界(1相)モードでの出力、臨界(2相)モードでの出力、連続(1相)モードでの出力をそれぞれ閾値P16,P26,P36,P46,P56,P66として予め了知しておけばよい。換言すれば、スイッチング電源回路において、非導通モードが採用されて負荷4の消費電力が閾値P16を採るとき、不連続(1相)モードが採用されて負荷4の消費電力が閾値P26を採るとき、不連続(2相)モードが採用されて負荷4の消費電力が閾値P36を採るとき、臨界(1相)モードが採用されて負荷4の消費電力が閾値P46を採るとき、臨界(2相)モードが採用されて負荷4の消費電力が閾値P56を採るとき、連続(1相)モードが採用されて負荷4の消費電力が閾値P66を採るとき、高調波の大きさは相互に等しい(図23の鎖線参照)。
 このように複数の回路3a,3bを設けた場合であっても、その動作モードについて、上記(1a),(2a),(3a)に倣って、下記のように表現できる。
 (4a)負荷4の消費電力が第1の閾値(図20では閾値P14、図21及び図22では閾値P15、図23では閾値P16)よりも小さいときには、回路3a,3bのいずれにおいても(換言すれば全ての回路3a,3bにおいて)スイッチ素子S1,S2を非導通にして、全ての回路3a,3bから負荷4へと電力を供給する。
 回路3aのみを設けた場合には、上記(4a)の「全ての回路3a,3b」「回路3a,3bのいずれにおいても」とは回路3aのみを指すことになる。よって上記(4a)の表現は、符号を除けば上記(1a)(2a),(3a)の表現を内包すると把握することができる。
 また、上記(1b)(2b),(3b)に倣って、複数の回路3a,3bを設けた場合の動作モードについて、下記のように表現できる。
 (4b)負荷4の消費電力が第1の閾値(図20では閾値P14、図21及び図22では閾値P15、図23では閾値P16)よりも大きいときには回路3a,3bの少なくともいずれか一つのスイッチ素子S1(あるいはスイッチ素子S2)を間欠的に導通させて、全ての回路3a,3bから負荷4へと電力を供給する。
 回路3aのみを設けた場合には、上記(4b)の「回路3a,3bの少なくともいずれか一つ」「全ての回路3a,3b」とは回路3aのみを指すことになる。よって上記(4b)の表現は、符号を除けば上記(1b)(2b),(3b)の表現を内包すると把握することができる。
 さて、上記(4b)で表現された内容は、図20~図23を用いた説明に即した表現により、下記に示すように区分される。
 (4b1)負荷4の消費電力が閾値P14(あるいは閾値P15、あるいは閾値P16)よりも大きく閾値P24(あるいは閾値P25、あるいは閾値P26)よりも小さい場合、回路3a,3bのいずれか一方のスイッチ素子S1(あるいはスイッチ素子S2)を非導通にして、他方のリアクトルL2(あるいはリアクトルL1)に流れる電流IL2(あるいは電流IL1)の電流モードに不連続モードを採用する(不連続(1相)モード)。
 (4b2)負荷4の消費電力が閾値P24(あるいは閾値P25、あるいは閾値P26)よりも大きく閾値P34(あるいは閾値P35、あるいは閾値P36)よりも小さい場合、回路3a,3bのいずれにおいてもリアクトルL1,L2に流れる電流IL1,Il2の電流モードに不連続モードを採用する(不連続(2相)モード)。
 (4b3)負荷4の消費電力が閾値P34(あるいは閾値P35、あるいは閾値P36)よりも大きく閾値P44(あるいは閾値P45、あるいは閾値P46)よりも小さい場合、回路3a,3bのいずれか一方のスイッチ素子S1(あるいはスイッチ素子S2)を非導通にして、他方のリアクトルL2(あるいはリアクトルL1)に流れる電流IL2(あるいは電流IL1)の電流モードに臨界モードを採用する(臨界(1相)モード)。
 (4b4)負荷4の消費電力が閾値P44(あるいは閾値P45、あるいは閾値P46)よりも大きく閾値P64(あるいは閾値P65、あるいは閾値P66)よりも小さい場合、下記のいずれか一方のモードが採用される:
 (4b4-1)回路3a,3bのいずれにおいてもリアクトルL1,L2に流れる電流IL1,IL2の電流モードに臨界モードを採用する(臨界(2相)モード);
 (4b4-2)回路3a,3bのいずれか一方のスイッチ素子S1(あるいはスイッチ素子S2)を非導通にして、他方のリアクトルL2(あるいはリアクトルL1)に流れる電流IL2(あるいは電流IL1)の電流モードに連続モードを採用する(連続(1相)モード)。
 (4b5)負荷4の消費電力が閾値P64(あるいは閾値P65、あるいは閾値P66)よりも大きい場合、回路3a,3bのいずれにおいてもリアクトルL1,L2に流れる電流IL1,IL2の電流モードに連続モードを採用する(臨界(2相)モード)。
 上記(4b4)が更に(4b4-1),(4b4-2)に区分されるのは、連続モード(1相)と連続モード(2相)との間での順序が、臨界モードのスイッチング周波数によっては、入れ替わる場合があるからである。
 この発明は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。

Claims (15)

  1.  スイッチング電源回路を制御する方法であって、
     前記スイッチング電源回路は、
     第1および第2の入力端(P1,P2)と、
     コンデンサ(C1)と負荷(4)とが接続される、第1および第2の出力端(P3,P4)と、
     前記第2の入力端及び前記第2の出力端を接続する第2の電源線(LL)と、
     少なくとも一つの回路(3a,3b)と
    を備え、
     前記回路の各々が、
     前記第1の入力端と前記第1の出力端とを接続する第1の電源線(LH1,LH2)と、
     前記第1の電源線上に設けられるリアクトル(L1,L2)と、
     前記第1の電源線上で前記リアクトルと直列に接続され、アノードを前記リアクトル側に向けて配置されるダイオード(D11,D21)と、
     前記リアクトルと前記ダイオードとの間の点と、前記第2の電源線との間に設けられるスイッチ素子(S1,S2)と
    を有し、
     前記負荷の消費電力が第1の閾値(P11;P12;P13;P14;P15;P16;P21;P22)よりも小さいときには、前記回路のいずれにおいても前記スイッチ素子を非導通にして、全ての前記回路から前記負荷へと電力を供給し、
     前記負荷の前記消費電力が前記第1の閾値よりも大きいときには前記回路の少なくともいずれか一つの前記スイッチ素子を間欠的に導通させて、全ての前記回路から前記負荷へと電力を供給する、スイッチング電源回路制御方法。
  2.  第2の閾値(P21;P22;P23)は前記第1の閾値(P11;P12;P13)よりも大きく、第3の閾値(P31;P32;P33)は前記第2の閾値よりも大きく、
     前記負荷の前記消費電力が、前記第1の閾値よりも大きく前記第2の閾値よりも小さいときには前記リアクトルに流れる電流モードに不連続モードが採用され、
     前記負荷の消費電力が、前記第2の閾値よりも大きく前記第3の閾値よりも小さいときには前記電流モードに臨界モードが採用され、
     前記負荷の消費電力が、前記第3の閾値よりも大きいときには前記電流モードに連続モードが採用される、請求項1記載のスイッチング電源回路制御方法。
  3.  第2の閾値(P21;P22;P23)は前記第1の閾値(P11;P12;P13)よりも大きく、
     前記負荷の前記消費電力が、前記第1の閾値よりも大きく前記第2の閾値よりも小さいときには前記リアクトルに流れる電流モードに不連続モードが採用され、
     前記負荷の消費電力が、前記第2の閾値よりも大きいときには前記電流モードに臨界モードが採用される、請求項1記載のスイッチング電源回路制御方法。
  4.  第2の閾値(P31;P32;P33)は前記第1の閾値(P21;P22;P23)よりも大きく、
     前記負荷の前記消費電力が、前記第1の閾値よりも大きく前記第2の閾値よりも小さいときには前記リアクトルに流れる電流モードに臨界モードが採用され、
     前記負荷の消費電力が、前記第2の閾値よりも大きいときには前記電流モードに連続モードが採用される、請求項1記載のスイッチング電源回路制御方法。
  5.  第2の閾値(P31;P32;P33)は前記第1の閾値(P11;P12;P13)よりも大きく、
     前記負荷の前記消費電力が、前記第1の閾値よりも大きく前記第2の閾値よりも小さいときには前記リアクトルに流れる電流モードに不連続モードが採用され、
     前記負荷の消費電力が、前記第2の閾値よりも大きいときには前記電流モードに連続モードが採用される、請求項1記載のスイッチング電源回路制御方法。
  6.  前記負荷の前記消費電力が前記第1の閾値(P11)のときに前記電流モードに不連続モードが採用されるときの前記スイッチング電源回路からの漏洩電流の大きさと、前記負荷の前記消費電力が前記第2の閾値(P21)のときに前記電流モードに臨界モードが採用されるときの前記漏洩電流の大きさと、前記負荷の前記消費電力が前記第3の閾値(P31)のときに前記電流モードに連続モードが採用されるときの前記漏洩電流の大きさとは、相互に等しい、請求項2記載のスイッチング電源回路制御方法。
  7.  前記負荷の前記消費電力が前記第1の閾値(P11)のときに前記電流モードに不連続モードが採用されるときの前記スイッチング電源回路からの漏洩電流の大きさと、前記負荷の前記消費電力が前記第2の閾値(P21)のときに前記電流モードに臨界モードが採用されるときの前記漏洩電流の大きさとは、相互に等しい、請求項3記載のスイッチング電源回路制御方法。
  8.  前記負荷の前記消費電力が前記第1の閾値(P21)のときに前記電流モードに臨界モードが採用されるときの前記スイッチング電源回路からの漏洩電流の大きさと、前記負荷の前記消費電力が前記第2の閾値(P31)のときに前記電流モードに連続モードが採用されるときの前記漏洩電流の大きさとは、相互に等しい、請求項4記載のスイッチング電源回路制御方法。
  9.  前記負荷の前記消費電力が前記第1の閾値(P11)のときに前記電流モードに不連続モードが採用されるときの前記スイッチング電源回路からの漏洩電流の大きさと、前記負荷の前記消費電力が前記第2の閾値(P31)のときに前記電流モードに連続モードが採用されるときの前記漏洩電流の大きさとは、相互に等しい、請求項5記載のスイッチング電源回路制御方法。
  10.  前記負荷の前記消費電力が前記第1の閾値(P12)のときに前記電流モードに不連続モードが採用されるときの前記スイッチング電源回路の効率と、前記負荷の前記消費電力が前記第2の閾値(P22)のときに前記電流モードに臨界モードが採用されるときの前記効率と、前記負荷の前記消費電力が前記第3の閾値(P32)のときに前記電流モードに連続モードが採用されるときの前記効率との間で、少なくともいずれか二つが相互に異なる、請求項2記載のスイッチング電源回路制御方法。
  11.  前記負荷の前記消費電力が前記第1の閾値(P13)のときに前記電流モードに不連続モードが採用されるときの前記スイッチング電源回路で発生する高調波の大きさと、前記負荷の前記消費電力が前記第2の閾値(P23)のときに前記電流モードに臨界モードが採用されるときの前記高調波の大きさと、前記負荷の前記消費電力が前記第3の閾値(P33)のときに前記電流モードに連続モードが採用されるときの前記高調波の大きさとは、相互に等しい、請求項2記載のスイッチング電源回路制御方法。
  12.  前記負荷の前記消費電力が前記第1の閾値(P13)のときに前記電流モードに非導通モードが採用されるときの前記スイッチング電源回路の効率と、前記負荷の前記消費電力が前記第2の閾値(P23)のときに前記電流モードに不連続モードが採用されるときの前記効率とが相互に等しい、請求項3記載のスイッチング電源回路制御方法。
  13.  前記負荷の前記消費電力が前記第1の閾値(P13)のときに前記電流モードに非導通モードが採用されるときの前記スイッチング電源回路の効率と、前記負荷の前記消費電力が前記第2の閾値(P33)のときに前記電流モードに臨界モードが採用されるときの前記効率とが相互に等しい、請求項4記載のスイッチング電源回路制御方法。
  14.  前記負荷の前記消費電力が前記第1の閾値(P13)のときに前記電流モードに非導通モードが採用されるときの前記スイッチング電源回路の効率と、前記負荷の前記消費電力が前記第2の閾値(P23)のときに前記電流モードに不連続モードが採用されるときの前記効率とが相互に等しい、請求項5記載のスイッチング電源回路制御方法。
  15.  前記スイッチング電源回路において前記回路(3a,3b)は一対備えられ、
     前記一対の前記回路はインタリーブ方式の動作が可能であり、
     第2の閾値(P24;P25;P26)は前記第1の閾値(P14;P15;P16)よりも大きく、
     第3の閾値(P34;P35;P36)は前記第2の閾値よりも大きく、
     第4の閾値(P44;P45;P46)は前記第3の閾値よりも大きく、
     第5の閾値(P64;P65;P66)は前記第4の閾値よりも大きく、
     前記負荷の前記消費電力が前記第1の閾値よりも大きく前記第2の閾値よりも小さい場合、前記一対の前記回路のいずれか一方の前記スイッチ素子を非導通にして、前記一対の前記回路の他方の前記リアクトルに流れる電流の電流モードに不連続モードを採用し、
     前記負荷の前記消費電力が前記第2の閾値よりも大きく前記第3の閾値よりも小さい場合、前記一対の前記回路のいずれにおいても前記リアクトルに流れる電流の電流モードに不連続モードを採用し、
     前記負荷の前記消費電力が前記第3の閾値よりも大きく前記第4の閾値よりも小さい場合、前記一対の前記回路のいずれか一方の前記スイッチ素子を非導通にして、前記一対の前記回路の他方の前記リアクトルに流れる電流の電流モードに臨界モードを採用し、
     前記負荷の前記消費電力が前記第4の閾値よりも大きく前記第5の閾値よりも小さい場合、前記一対の前記回路のいずれにおいても前記リアクトルに流れる電流の電流モードに臨界モードを採用するか、あるいは、前記一対の前記回路のいずれか一方の前記スイッチ素子を非導通にして、前記一対の前記回路の他方の前記リアクトルに流れる電流の電流モードに連続モードを採用し、
     前記負荷の前記消費電力が前記第5の閾値よりも大きい場合、前記一対の前記回路のいずれにおいても前記リアクトルに流れる電流の電流モードに連続モードを採用する、請求項1記載のスイッチング電源回路制御方法。
PCT/JP2013/080012 2012-11-08 2013-11-06 スイッチング電源回路制御方法 WO2014073567A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US14/441,463 US9843269B2 (en) 2012-11-08 2013-11-06 Switching power supply circuit control method
BR112015010418A BR112015010418B8 (pt) 2012-11-08 2013-11-06 método de controle de circuito de fonte de alimentação comutada
ES13853487T ES2699408T3 (es) 2012-11-08 2013-11-06 Método para controlar un circuito de fuente de alimentación conmutada
CN201380055750.2A CN104769828B (zh) 2012-11-08 2013-11-06 开关电源电路控制方法
AU2013342516A AU2013342516B2 (en) 2012-11-08 2013-11-06 Switching Power Supply Circuit Control Method
KR1020157011153A KR101671138B1 (ko) 2012-11-08 2013-11-06 스위칭 전원 회로 제어 방법
EP13853487.0A EP2919372B1 (en) 2012-11-08 2013-11-06 Method for controlling power source switching circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-246223 2012-11-08
JP2012246223 2012-11-08

Publications (1)

Publication Number Publication Date
WO2014073567A1 true WO2014073567A1 (ja) 2014-05-15

Family

ID=50684669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/080012 WO2014073567A1 (ja) 2012-11-08 2013-11-06 スイッチング電源回路制御方法

Country Status (9)

Country Link
US (1) US9843269B2 (ja)
EP (1) EP2919372B1 (ja)
JP (2) JP5594421B2 (ja)
KR (1) KR101671138B1 (ja)
CN (1) CN104769828B (ja)
AU (1) AU2013342516B2 (ja)
BR (1) BR112015010418B8 (ja)
ES (1) ES2699408T3 (ja)
WO (1) WO2014073567A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105450028A (zh) * 2014-06-18 2016-03-30 台达电子企业管理(上海)有限公司 变换器及其控制方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014208722A1 (de) * 2014-05-09 2015-11-12 Bayerische Motoren Werke Aktiengesellschaft Endrohrblende für eine Abgasanlage eines Kraftfahrzeugs sowie Abgasanlage mit einer solchen Endrohrblende
JP6439484B2 (ja) * 2015-02-17 2018-12-19 富士電機株式会社 スイッチング電源回路および力率改善回路
GB2540570B (en) * 2015-07-21 2019-04-03 Dyson Technology Ltd Battery charger
JP6168211B2 (ja) 2015-12-28 2017-07-26 ダイキン工業株式会社 電力変換装置
WO2017115621A1 (ja) 2015-12-28 2017-07-06 ダイキン工業株式会社 電力変換装置
TW201739155A (zh) * 2016-04-18 2017-11-01 Inno-Tech Co Ltd 電源控制器
CN107306090B (zh) * 2016-04-18 2019-04-26 产晶积体电路股份有限公司 电源控制器
CN110192336B (zh) * 2017-01-18 2021-07-27 株式会社电装 电力转换系统的控制装置、控制系统
US11043838B2 (en) * 2018-11-30 2021-06-22 Schneider Electric It Corporation System and method to reduce converter emissions
JP7476585B2 (ja) * 2020-03-13 2024-05-01 オムロン株式会社 電力変換装置
KR102681716B1 (ko) * 2021-11-16 2024-07-05 엘지전자 주식회사 전력변환장치 및 이를 포함하는 공기 조화기

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0344650B2 (ja) 1984-04-11 1991-07-08 Sara Rii Deii Ii Nv
JP2009291034A (ja) 2008-05-30 2009-12-10 Toshiba Lighting & Technology Corp 負荷制御装置および電気機器
WO2010023978A1 (ja) * 2008-09-01 2010-03-04 三菱電機株式会社 コンバータ回路、並びにそれを備えたモータ駆動制御装置、空気調和機、冷蔵庫、及び誘導加熱調理器
JP2010187521A (ja) * 2009-01-16 2010-08-26 Mitsubishi Electric Corp モーター駆動制御装置、圧縮機、送風機、空気調和機及び冷蔵庫又は冷凍庫
JP2011019323A (ja) 2009-07-08 2011-01-27 Sanken Electric Co Ltd 力率改善回路
JP2011223865A (ja) 2010-03-26 2011-11-04 Daikin Ind Ltd スイッチング電源回路およびスイッチング電源回路の制御方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3044650B2 (ja) 1996-03-27 2000-05-22 勲 高橋 電力変換装置のノイズ低減装置
DE10036378A1 (de) * 1999-10-02 2001-05-10 Elanvital Corp Ping Jen Verfahren und Vorrichtung zur Leistungsfaktorkorrektur
US6967851B2 (en) 2003-12-15 2005-11-22 System General Corp. Apparatus for reducing the power consumption of a PFC-PWM power converter
US7812576B2 (en) * 2004-09-24 2010-10-12 Marvell World Trade Ltd. Power factor control systems and methods
JP4379396B2 (ja) 2005-08-19 2009-12-09 株式会社デンソー 昇降圧チョッパ式dc−dcコンバータ
JP4854451B2 (ja) * 2006-09-29 2012-01-18 パナソニック株式会社 昇圧コンバータ
US7817447B2 (en) 2008-08-30 2010-10-19 Active-Semi, Inc. Accurate voltage regulation of a primary-side regulation power supply in continuous conduction mode operation
WO2010061654A1 (ja) 2008-11-25 2010-06-03 株式会社村田製作所 Pfcコンバータ
US8072193B2 (en) * 2009-01-21 2011-12-06 Fsp Technology Inc. Phase shift control method for boost converter and circuit implementation
JP2010233439A (ja) * 2009-03-03 2010-10-14 Toshiba Corp 電源制御装置、及びそれを用いた電源装置
JP5515326B2 (ja) 2009-03-03 2014-06-11 富士ゼロックス株式会社 電源装置、画像形成装置およびプログラム
CN101702574B (zh) 2009-10-22 2012-07-11 旭丽电子(广州)有限公司 功率因子校正控制器及其控制方法与其应用的电源转换器
US20110148379A1 (en) * 2009-12-18 2011-06-23 Linear Technology Corporation Clean transition between ccm and dcm in valley current mode control of dc-to-dc converter
JP5122622B2 (ja) * 2010-09-24 2013-01-16 シャープ株式会社 スイッチング電源装置
WO2012061769A2 (en) * 2010-11-04 2012-05-10 Cirrus Logic, Inc. Controlled power dissipation in a switch path in a lighting system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0344650B2 (ja) 1984-04-11 1991-07-08 Sara Rii Deii Ii Nv
JP2009291034A (ja) 2008-05-30 2009-12-10 Toshiba Lighting & Technology Corp 負荷制御装置および電気機器
WO2010023978A1 (ja) * 2008-09-01 2010-03-04 三菱電機株式会社 コンバータ回路、並びにそれを備えたモータ駆動制御装置、空気調和機、冷蔵庫、及び誘導加熱調理器
JP2010187521A (ja) * 2009-01-16 2010-08-26 Mitsubishi Electric Corp モーター駆動制御装置、圧縮機、送風機、空気調和機及び冷蔵庫又は冷凍庫
JP2011019323A (ja) 2009-07-08 2011-01-27 Sanken Electric Co Ltd 力率改善回路
JP2011223865A (ja) 2010-03-26 2011-11-04 Daikin Ind Ltd スイッチング電源回路およびスイッチング電源回路の制御方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105450028A (zh) * 2014-06-18 2016-03-30 台达电子企业管理(上海)有限公司 变换器及其控制方法

Also Published As

Publication number Publication date
BR112015010418A2 (pt) 2017-07-11
CN104769828A (zh) 2015-07-08
EP2919372A1 (en) 2015-09-16
JP5594421B2 (ja) 2014-09-24
US9843269B2 (en) 2017-12-12
BR112015010418B1 (pt) 2021-05-11
AU2013342516A1 (en) 2015-05-21
JP5880641B2 (ja) 2016-03-09
KR20150063144A (ko) 2015-06-08
CN104769828B (zh) 2017-12-05
JP2014113037A (ja) 2014-06-19
EP2919372A4 (en) 2016-08-31
US20150311816A1 (en) 2015-10-29
AU2013342516B2 (en) 2015-12-03
BR112015010418B8 (pt) 2021-06-01
KR101671138B1 (ko) 2016-10-31
ES2699408T3 (es) 2019-02-11
EP2919372B1 (en) 2018-08-29
JP2014200174A (ja) 2014-10-23

Similar Documents

Publication Publication Date Title
JP5880641B2 (ja) スイッチング電源回路制御方法
JP4079178B2 (ja) 電力変換器及びその制御方法並びに空気調和機
JP6200810B2 (ja) Emiフィルタ用のピーク電流制限器を持つ照明用電源回路
JP4771017B1 (ja) スイッチング電源回路
KR101422948B1 (ko) 역률 보정 회로
US9214856B2 (en) Power factor correction device
WO2013111402A1 (ja) 電力変換回路
US9941785B2 (en) Power factor correction circuit and electronic product including the same
US20140119079A1 (en) Power factor correction circuit and power supply device including the same
JP3990421B2 (ja) 突入電流低減回路および電気機器
JP5919804B2 (ja) スイッチング電源回路
JP5923961B2 (ja) 交流直流変換装置
KR20150044333A (ko) 브리지리스 역률 개선 회로 및 이의 구동 방법
JP2014011907A (ja) スイッチング電源装置
CN111725987B (zh) 电力转换装置
JP5741199B2 (ja) 整流器のスナバ回路
CN103904877B (zh) 用于驱动功率因数校正电路的驱动设备
KR101421020B1 (ko) 브리지리스 역률 보상 회로
US9312749B2 (en) Driver device for power factor correction circuit
KR20160148857A (ko) 인터리브드 방식의 역률 개선 회로
JP2014103772A (ja) 電源装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13853487

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157011153

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013853487

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14441463

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015010418

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2013342516

Country of ref document: AU

Date of ref document: 20131106

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112015010418

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150507