WO2014069571A1 - ビニルアミン単位含有重合体溶液の製造方法 - Google Patents

ビニルアミン単位含有重合体溶液の製造方法 Download PDF

Info

Publication number
WO2014069571A1
WO2014069571A1 PCT/JP2013/079554 JP2013079554W WO2014069571A1 WO 2014069571 A1 WO2014069571 A1 WO 2014069571A1 JP 2013079554 W JP2013079554 W JP 2013079554W WO 2014069571 A1 WO2014069571 A1 WO 2014069571A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
solution
molecular weight
acid amide
mass
Prior art date
Application number
PCT/JP2013/079554
Other languages
English (en)
French (fr)
Inventor
明宏 石井
康治 森
Original Assignee
三菱レイヨン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱レイヨン株式会社 filed Critical 三菱レイヨン株式会社
Priority to KR1020177013326A priority Critical patent/KR20170059012A/ko
Priority to JP2014544581A priority patent/JP6350286B2/ja
Priority to KR1020157010865A priority patent/KR20150063123A/ko
Priority to CN201380056642.7A priority patent/CN104768979B/zh
Priority to CA2890957A priority patent/CA2890957C/en
Priority to EP13851445.0A priority patent/EP2915823B1/en
Priority to US14/436,762 priority patent/US9745448B2/en
Publication of WO2014069571A1 publication Critical patent/WO2014069571A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/41Compounds containing sulfur bound to oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F26/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F26/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a single or double bond to nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/12Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an ether radical
    • C08F216/14Monomers containing only one unsaturated aliphatic radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/12Hydrolysis
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/37Polymers of unsaturated acids or derivatives thereof, e.g. polyacrylates
    • D21H17/375Poly(meth)acrylamide
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/06Paper forming aids
    • D21H21/10Retention agents or drainage improvers

Definitions

  • the present invention relates to a method for producing a vinylamine unit-containing polymer solution. More specifically, the present invention relates to a high-molecular-weight vinylamine unit-containing polymer useful as a papermaking agent in the paper processing industry in addition to a flocculant in the water treatment field, particularly wastewater treatment. The present invention relates to a method for producing a combined solution.
  • the vinylamine unit-containing polymer may be simply abbreviated as polyvinylamine.
  • Polyvinylamine is a useful substance that is widely used as a flocculant, a papermaking agent, a fiber treatment agent, a paint additive, and the like.
  • a flocculant in wastewater treatment or a papermaking agent in the paper industry, high molecular weight polyvinylamine is considered effective.
  • polyvinylamine is a polymer or copolymer of N-vinylcarboxylic acid amide (hereinafter collectively referred to as a (co) polymer) in the presence of an acid or an alkali, in whole or in part. It is obtained by hydrolysis.
  • high molecular weight polyvinylamine is difficult to handle because it becomes extremely high viscosity when it is made into an aqueous solution.
  • it is easy to handle if diluted, but there are problems such as increased costs in production and transportation.
  • N-vinylcarboxylic acid amide polymer powder is subjected to alkaline hydrolysis to form an aqueous solution.
  • the N-vinylcarboxylic acid amide (co) polymer has a reduced viscosity of 9 or more.
  • a molecular weight product is preferred (Patent Document 1).
  • the resulting aqueous solution has a high viscosity and is extremely difficult to handle.
  • an aqueous solution stationary adiabatic polymerization method has been proposed as a polymerization method of N-vinylcarboxylic acid amide (Patent Document 2).
  • this proposal does not explain how to convert to polyvinylamine and its functionality.
  • N-vinylcarboxylic acid amide (co) polymer it is industrially advantageous to hydrolyze the N-vinylcarboxylic acid amide (co) polymer to polyvinylamine under alkaline conditions.
  • acid hydrolysis all equipment piping related to production, transportation, storage and use is required to have corrosion resistance, whereas in alkaline conditions, ordinary steel or stainless steel equipment piping may be used. Is possible.
  • a solution is advantageous as a product form. That is, in the production of a powder product, a powder drying step is essential. However, when polyvinylamine is heated at a high temperature, the product may deteriorate and the solubility of the product may deteriorate. Such deterioration is a very important problem particularly in papermaking chemicals that require high solubility. In addition, powders require a facility for melting when used.
  • the product form is preferably alkaline and in a uniform solution state, and this is already known (Patent Document 1).
  • Patent Document 1 no countermeasure has been proposed to cope with the fact that an aqueous solution of high molecular weight polyvinylamine becomes extremely viscous.
  • the present inventor has found that the performance of papermaking chemicals, especially the yield filtering agent, is different in performance even if the molecular weight distribution is different even with the same reduced viscosity, the molecular weight distribution is
  • the polyvinylformamide produced by the adiabatic polymerization method varies depending on the polymerization method, and exhibits excellent performance even when the molecular weight distribution is wide and the average molecular weight is relatively low.
  • the present inventors have found that a high-performance polyvinylamine aqueous solution can be made for drugs and the like, and have reached the present invention.
  • the gist of the present invention is to produce a polymer containing an N-vinylcarboxylic acid amide monomer unit and having a weight average molecular weight Mw / number average molecular weight Mn of 5 or more by an aqueous solution adiabatic polymerization method. Then, the polymer is hydrolyzed in an aqueous solvent in the presence of an alkali and an antigelling agent, and the method lies in a method for producing a vinylamine unit-containing polymer solution.
  • a polyvinylamine solution having high performance and good handleability can be produced industrially and efficiently.
  • Such a high molecular weight polyvinylamine solution is extremely useful because it can be widely applied in various fields including papermaking chemicals in the paper industry.
  • the (co) polymer powder handled in the middle of the production method of the present invention can be stored for a long period of time and can be handled easily, and is dissolved in an alkaline aqueous solution as it is and heated to obtain a polyvinylamine aqueous solution. Obtainable. Therefore, the polyvinylamine aqueous solution can be produced when necessary at the place of use, and transportation costs and storage costs can be reduced, which is economically advantageous. Moreover, since it is not necessary to preserve
  • N-vinylcarboxylic amide (co) polymer The N-vinylcarboxylic acid amide used in the present invention is represented by the general formula: CH 2 ⁇ CH—NHCOR (wherein R represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms).
  • R represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • N-vinylformamide (R H)
  • N-vinylcarboxylic acid amide can be copolymerized with any monomer having an ethylenically unsaturated bond, if necessary.
  • monomers that can be copolymerized include (meth) acrylic acid and salts thereof, (meth) acrylic acid esters, (meth) acrylonitrile, (meth) acrylamide, N-alkyl (meth) acrylamide, N, N -Dialkyl (meth) acrylamide, dialkylaminoethyl (meth) acrylamide and salts or quaternized compounds thereof, dialkylaminopropyl (meth) acrylamide and salts or quaternized compounds thereof, diacetone acrylamide, N-vinylpyrrolidone, N-vinylcaprolactam And vinyl acetate.
  • the content ratio of N-vinylcarboxylic acid amide in the monomer composition is usually 5 mol% or more, preferably 10 mol% or more, more preferably 50 mol% or more, although it depends on the target (co) polymer. 70 to 100 mol% is preferred.
  • said monomer composition is reflected as a composition of a (co) polymer.
  • an aqueous solution adiabatic polymerization method is selected.
  • the stationary adiabatic polymerization method is a method of polymerizing in a reaction tank that does not have a device for removing heat of reaction and a stirring device during polymerization.
  • the temperature in the system rises because it generates heat but does not remove heat. Therefore, if the monomer concentration is too high, it boils, and if it is too low, the production efficiency is poor.
  • the monomer concentration is usually 10 to 50% by mass, preferably 20 to 40% by mass, and more preferably 25 to 35% by mass.
  • the polymerization initiation temperature is preferably low in order to increase the polymerization concentration without boiling, but if it is too low, it will freeze, so it is usually from -10 to + 20 ° C, preferably from -10 to + 10 ° C. Selected.
  • the aqueous solution polymerization is performed with a radical polymerization initiator.
  • a radical polymerization initiator a normal redox initiator, azo initiator, peroxide and a combination thereof can be used. These initiators may be either water-soluble or oil-soluble. However, when using an oil-soluble initiator, it is necessary to add it by dissolving it in a water-soluble solvent.
  • water-soluble azo initiators examples include 2,2′-azobis (amidinopropane) dihydrochloride, 2,2′-azobis [2- (5-methyl-2-imidazolin-2-yl) propane] And hydrochloride, 4,4′-azobis (4-cyanovaleric acid), and the like.
  • oil-soluble azo initiators examples include 2,2′-azobisisobutyronitrile, 1,1′-azobis (cyclohexanecarbonitrile), 2,2′-azobis (2-methylbutyronitrile), Examples include 2,2′-azobis (2-methylpropionate) and 2,2′-azobis (4-methoxy-2,4dimethyl) valeronitrile.
  • redox initiators include combinations of ammonium peroxodisulfate and sodium sulfite, sodium bisulfite, trimethylamine, tetramethylethylenediamine, etc., t-butyl hydroperoxide and sodium sulfite, sodium bisulfite, ferrous sulfate And the like.
  • peroxides examples include ammonium or potassium peroxodisulfate, hydrogen peroxide, benzoyl peroxide, lauroyl peroxide, octanoyl peroxide, succinic peroxide, t-butylperoxy-2-ethylhexanoate, etc. Can be mentioned.
  • Most preferred among these initiators is a combination of a redox initiator that initiates polymerization at a low temperature and a water-soluble azo initiator that starts at a relatively high temperature.
  • a redox initiator t-butyl hydroperoxide is used.
  • 2,2′-azobis (2-amidinopropane) dihydrochloride as a water-soluble azo initiator in combination with sodium sulfite, sodium hydrogen sulfite and ferrous sulfate.
  • the amount of the polymerization initiator used is usually 100 to 10,000 ppm, preferably 500 to 5000 ppm in the case of an azo initiator, and usually 10 to 700 ppm, preferably 30 to 30 in the case of a redox initiator relative to the monomer. 600 ppm. If the amount of the polymerization initiator used is too small, a sufficient polymerization rate cannot be obtained, and if it is too large, the polymerization rate increases but the molecular weight decreases, which is not preferable.
  • ⁇ sp / C is Usually, it is 2 to 9, preferably 2 to 8.
  • the adjustment may be performed using the reaction temperature, the type and amount of the initiator, and further using a known chain transfer agent.
  • chain transfer agent examples include alcohols such as isopropyl alcohol and allyl alcohol, mercaptans such as thioglycolic acid and thioglycerol, and phosphites such as sodium hypophosphite.
  • the molecular weight distribution is represented by the ratio Mw / Mn of the weight average molecular weight and the number average molecular weight.
  • Mw / Mn can be calculated by, for example, size exclusion chromatography.
  • GPC gel permeation chromatography
  • GFC gel filtration chromatography
  • the Mw / Mn value of the polymer produced by the present invention measured by these methods is 5 or more.
  • a chain transfer agent may be used.
  • the chain transfer agent is not particularly limited unless Mw / Mn is less than 5.
  • the aqueous solution adiabatic polymerization method is not particularly limited, but may be performed in the presence of an inorganic salt. Specifically, for example, it is performed as follows. That is, water, inorganic salt, monomer, etc. are mixed to prepare a monomer preparation liquid (uniform monomer aqueous solution) adjusted to the polymerization start temperature, and this is injected into an adiabatic reaction tank. The body preparation solution is aerated with nitrogen to remove dissolved oxygen, and an initiator is added thereto and mixed to start the polymerization reaction.
  • a monomer preparation liquid uniform monomer aqueous solution
  • the body preparation solution is aerated with nitrogen to remove dissolved oxygen, and an initiator is added thereto and mixed to start the polymerization reaction.
  • the inorganic salt is not particularly limited as long as it is water-soluble, but a metal halide is preferable from the viewpoints of handleability and cost.
  • the metal halide include alkali metal and alkaline earth metal halides, specifically sodium chloride, potassium chloride, calcium chloride, potassium bromide, sodium bromide and the like.
  • preferred examples of the metal halide include chlorides. Specifically, sodium chloride, potassium chloride, calcium chloride and the like are preferred because they are inexpensive, but sodium chloride is more preferred.
  • the concentration of the inorganic salt is 7% by mass or more with respect to water in the homogeneous aqueous solution containing the monomer and is equal to or less than the saturated dissolution concentration at the polymerization initiation temperature, preferably 80% or less of the saturated dissolution concentration.
  • the conversion rate of N-vinylcarboxylic acid amide is usually 90% or more, preferably 95% or more, more preferably 98% or more, and particularly preferably 99% or more.
  • the obtained (co) polymer contains water according to the polymerization method. Although it may be diluted as it is to make an aqueous solution and hydrolyzed, in the present invention, it is preferably dried and powdered by any method. By making it dry powder, it can be stored and transported stably with good handleability. Further, when it is dissolved in an aqueous solvent in the subsequent modification step, since the specific surface area is large, it can be uniformly dissolved in a short time.
  • a gel-like polymer mass is obtained, so that powder can be obtained by pulverizing and drying the gel.
  • a massive aqueous gel is pulverized after cutting into particles.
  • the average particle size at the time of pulverization is usually 5 cm or less, preferably 2 cm or less, more preferably 1 cm or less.
  • Various known methods can be adopted as the pulverization method, and there are a method of cutting the gel with a cutter or the like, and a method of cutting the gel with a meat chopper or the like.
  • the hole diameter of the die of the meat chopper is usually 5 cm or less, preferably 2 cm or less, more preferably 1 cm or less, and particularly preferably 1 to 7 mm.
  • the obtained granular material is usually dried at 50 to 140 ° C., preferably 60 to 130 ° C., more preferably 70 to 120 ° C. If the drying temperature is too low, the drying efficiency is poor, and if the drying temperature is too high, the quality of the (co) polymer may be deteriorated.
  • the volatile content of the polymer powder after drying is usually 0.1 to 12% by mass from the viewpoint of easy handling. If the amount of volatile components is large, the powder tends to stick, and the particles may be soft and difficult to grind. On the other hand, if the amount of volatile components is reduced too much, an excessive amount of heat and time are required for drying, and the (co) polymer may be deteriorated due to overheating.
  • the volatile matter here is mainly moisture.
  • the particle size of the (co) polymer powder is usually 4 mesh pass to 500 mesh on, preferably 80% or more, preferably 90% or more in the range of 10 mesh pass to 100 mesh on. Good.
  • An auxiliary agent may be used to suppress adhesion between particles during crushing and fine granulation.
  • an auxiliary agent polyalkylene glycols, various oils such as silicone oil, surfactants and the like are used.
  • the auxiliary agent may be applied to the surface of the bulk aqueous gel before pulverization, added together with the aqueous gel in a pulverizer, or mixed with the granular gel after pulverization.
  • the auxiliary may be present in advance in the polymerization reaction water system. It is also useful to add a salt at the time of polymerization as shown in Patent Document 2. Thereby, the adhesion at the time of crushing the gel is suppressed, and the processing becomes easy.
  • the aqueous gel is too soft or too sticky when crushing or making fine particles, it will adhere without being cut by a cutter. Moreover, even if it can cut, the cutting speed will fall. However, if an inorganic salt is present in the polymerization system in accordance with a preferred embodiment of the method of the present invention, the resulting aqueous (co) polymer gel has a suitable hardness and can be easily cut into fine particles.
  • the aqueous gel of the resulting polymer may become soft, and it may not be possible to process the particles by pulverization of the gel.
  • an inorganic salt is present according to a preferred embodiment of the method of the present invention, even when a (co) polymer having a lower molecular weight than usual is produced, the aqueous gel of the resulting polymer has a hardness that is easy to handle.
  • the atomization process can be performed with a normal apparatus.
  • N-vinylcarboxylic acid amide (co) polymer having a broad molecular weight distribution two or more kinds of N-vinylcarboxylic acid amide (co) polymers having different reduced viscosities may be mixed.
  • the reduced viscosity of the N-vinylcarboxylic acid amide (co) polymer after mixing is preferably 2 to 9.
  • Hydrolysis is performed in the presence of alkali. Hydrolysis is possible under both acid and base conditions, but alkali is less susceptible to equipment corrosion.
  • the type of alkali is not limited as long as it can hydrolyze the N-vinylcarboxylic acid amide (co) polymer. Specifically, sodium hydroxide, potassium hydroxide, lithium hydroxide, calcium hydroxide Etc. are exemplified. These alkalis may be used alone or as a mixture.
  • the amount of alkali varies depending on the desired hydrolysis rate, but is usually 10 to 1 times equivalent to the vinylamine unit in the target polyvinylamine. In the case where a substance that is more easily hydrolyzed than the N-vinylamide group coexists in the hydrolysis reaction system, it is necessary to use an excessive amount to offset it.
  • the order of addition of necessary components in the hydrolysis reaction is preferably such that the total amount of (co) polymer powder is added to the aqueous alkali solution and dissolved.
  • the reason is as follows. That is, it is possible to dissolve or add the (co) polymer powder later, but when it is desired to dissolve the (co) polymer having the target molecular weight at a high concentration, the viscosity of the aqueous solution is low. This is because it is extremely large, and when alkali is added later, it takes a long time for uniform mixing, and insoluble matters are generated.
  • the aqueous solvent is basically water, but depending on the copolymer composition, a mixed solvent containing another organic solvent may be used to adjust the solubility of the polymer.
  • a mixed solvent containing another organic solvent include methanol, ethanol, isopropanol, acetone, acetonitrile and the like.
  • neutral salts may be contained in the solvent.
  • the salts include chlorides such as sodium chloride, potassium chloride, ammonium chloride, calcium chloride, and zinc chloride, nitrates such as sodium nitrate and potassium nitrate, sulfates such as sodium sulfate and ammonium sulfate, sodium phosphate, and ammonium phosphate.
  • Organic acid salts such as phosphate, sodium acetate, sodium formate and the like can be mentioned. These salts have the effect of adjusting the solution viscosity.
  • the hydrolysis is carried out in the presence of an antigelling agent.
  • an antigelling agent any known compound can be used as the anti-gelling agent, in the present invention, those which are stable in alkali and have an aldehyde scavenging ability are preferably used.
  • Specific examples of such anti-gelling agents include dithionite, sulfite, bisulfite, disulfite, Rongalite (sulfoxylate formaldehyde adduct), thiourea dioxide, sodium borohydride and the like. Illustrated.
  • a salt the kind can be arbitrarily selected, and examples thereof include alkali metal salts such as sodium, potassium and lithium, alkaline earth metal salts such as calcium, magnesium and zinc, and ammonium salts. Any one or more of these anti-gelling agents can be used as a mixture.
  • sulfite, bisulfite, and disulfite have a slightly weaker aldehyde scavenging ability than other anti-gelling agents, so it is necessary to increase the amount of addition. Therefore, in terms of performance, dithionite, Rongalite, thiourea dioxide, and sodium borohydride are particularly excellent. Of these, dithionite is somewhat unstable in air and requires care in handling. In addition, sodium borohydride needs to be noted that hydrogen bubbles may be generated during reaction and during product storage.
  • the addition amount of the gelling inhibitor depends on the amount of residual monomer in the (co) polymer, but is usually 0.01 to 20% by mass, preferably 0.1 to 10% by mass with respect to the (co) polymer. %, More preferably 0.2 to 5% by mass.
  • the anti-gelling agent is previously dissolved in an aqueous solvent before the (co) polymer powder is dissolved. It is of course possible to dissolve or add later, but since the (co) polymer solution has a very high viscosity, it is difficult to uniformly mix it when an antigelling agent is added later. Further, the gelation inhibitor may be dissolved simultaneously with the (co) polymer powder. Furthermore, since the said antigelling agent is marketed normally as a powder, it can also be mix
  • the concentration of the (co) polymer in the aqueous solvent needs to be appropriately selected in order to perform uniform hydrolysis.
  • the (co) polymer concentration is determined based on a balance between the ability of the dissolution apparatus, the production efficiency, the economics such as transportation costs, and the like.
  • the concentration is preferably 1% by mass or more, more preferably 2% by mass or more, further preferably 3% by mass or more, and particularly preferably 5% by mass or more.
  • the concentration is preferably 30% by mass or less, more preferably 25% by mass or less, and further preferably 20% by mass or less.
  • the type of the dissolution apparatus is not particularly limited, but it is essential that the high viscosity liquid can be effectively stirred.
  • solid-liquid mixing apparatuses such as a stirring tank type, a pump type, an extruder type, and a kneading type can be used.
  • a helical ribbon blade suitable for stirring a highly viscous liquid can be used as the stirring blade.
  • the hydrolysis conditions vary depending on the (co) polymer concentration and alkali concentration, but are usually 30 to 180 ° C, preferably 40 to 140 ° C, and more preferably 50 to 100 ° C.
  • the heating time may be determined according to a desired hydrolysis rate, but there is a risk of promoting deterioration when heated at a high temperature for a long time. Therefore, the heating time is usually within 48 hours, preferably within 24 hours, and more preferably within 12 hours.
  • the apparatus used for the hydrolysis is not particularly limited as long as the (co) polymer solution can be heated.
  • equipment suitable for stirring high viscosity liquids such as a stirring tank type, pump type, extruder type, kneading type, etc. is used, and a heating method using a heat medium such as hot water, steam, or hot oil is adopted from the outside. Is done.
  • the reaction may be continued in an apparatus in which the (co) polymer is dissolved.
  • the reaction temperature is increased, hydrolysis is possible even with a very short heating time. In this case, the selection of equipment becomes wider, for example, multi-tube type, plate type, wet wall type, thin film type, etc. Heating methods using heat exchangers, microwaves, infrared rays and the like can be mentioned.
  • the heating device as described above, it is possible to perform a hydrolysis reaction at a place where polyvinylamine is used, for example, at a paper mill or a wastewater treatment facility. That is, it is possible to carry in (co) polymer as a powder, prepare a solution, hydrolyze it when necessary, and introduce it directly into equipment used, that is, a papermaking apparatus or a wastewater treatment apparatus.
  • the production at the place of use of polyvinylamine does not require large facilities for production and storage of dilute polyvinylamine aqueous solution. Further, since it can be transported as a (co) polymer powder to the place of use, there is no need to transport a dilute solution, and the transportation cost can be reduced, which is economically advantageous.
  • the aqueous polyvinylamine solution thus prepared may be further diluted, adjusted in pH, added with other chemicals, etc. immediately before being introduced into the equipment to be used.
  • concentration of the vinylamine unit containing (co) polymer solution obtained by the said hydrolysis is suitably set according to the intended purpose.
  • aqueous polyvinylamine aqueous solution When hydrolysis is completed, an aqueous polyvinylamine solution is obtained. Depending on the concentration during hydrolysis, an aqueous solution of 1 to 30% by mass is obtained. The concentration may be adjusted to facilitate handling. The preferred concentration depends on the molecular weight of the (co) polymer, but is 2 to 25% by mass, more preferably 3 to 30% by mass. When the concentration is lower than this, the liquid viscosity is lowered and the handleability is improved regardless of the molecular weight distribution, but the cost for transportation and the like increases. If it is higher than this, the liquid viscosity becomes too high regardless of the molecular weight distribution, although it depends on the molecular weight of the polymer.
  • Polyvinylamine can be applied to various fields, and high molecular weight polyvinylamine is said to be effective particularly when used as a papermaking chemical in the paper industry, particularly as a yield filtration agent or a flocculant in wastewater treatment.
  • performance equivalent to or higher can be obtained without using polyvinylamine having a reduced viscosity of 9 or more which has been conventionally recommended.
  • handleability as an aqueous solution is also good.
  • a high molecular weight polyvinylamine solution product can be industrially efficiently produced under alkaline conditions.
  • Alkaline conditions are advantageous because they are less constrained by equipment in the manufacture, transport, storage and use of products.
  • the hydrolysis reaction can be performed in a paper mill or a wastewater treatment facility, which is advantageous in terms of economy and quality.
  • the (co) polymer sample was dissolved in 1N saline to a concentration of 0.1 g / dl pure, and the flow-down time was measured at 25 ° C. using an Ostwald viscometer. Similarly, the flow time of 1N saline was measured, and the reduced viscosity was determined by the following formula 1.
  • the (co) polymer powder was extracted with methanol water and the residual monomer was analyzed using liquid chromatography.
  • main impurities N-vinyl carboxylic acid amide and water adducts of N-vinyl carboxylic acid amide were detected, and the total amount of these was calculated in terms of N-vinyl carboxylic acid amide, and the amount of residual monomer was obtained separately. was corrected to calculate the conversion rate.
  • the (co) polymer powder was heated at 105 ° C. for 90 minutes, and the decrease was determined by the gravimetric method.
  • aqueous solution viscosity The temperature of the aqueous polymer solution was 25 ° C., Brookfield viscometer, 6 rpm, rotor No. The measurement was performed under the condition of 4. The viscosity was expressed as mPa ⁇ s.
  • Example 1 Synthesis and Performance Evaluation of Polymer A; Aqueous Solution Adiabatic Polymerization Method
  • polyethylene glycol average molecular weight 20000
  • N-vinylformamide purity 99% by weight
  • This monomer preparation was cooled to 0 ° C., then transferred to an adiabatic reaction vessel equipped with a thermometer and subjected to nitrogen aeration for 15 minutes, followed by 2,2′-azobis (2-amidinopropane) dihydrochloride (product) Name: Wako Pure Chemical Industries “V-50”) 1500 ppm (compared to monomer) and t-butyl hydroperoxide (trade name: “Perbutyl H-69” manufactured by NOF Corporation) 200 ppm (compared to monomer) Polymerization was started by adding as a 10% by mass aqueous solution and then adding 600 ppm ferrous sulfate heptahydrate (based on monomer) as a 10% by mass aqueous solution.
  • N-vinylformamide gel polymer gel is cut into 3 cm square, the cut gel piece is treated with a meat chopper with a die hole diameter of 4.8 mm, and the gel piece is reduced to 5 mm square or less did.
  • the obtained gel granules maintained a fine-grained shape and had good handleability.
  • the granular material was dried at 80 ° C. for 2 hours, and the dried granular material was pulverized by a Willet type pulverizer to obtain a powder (particle size: 10 mesh pass to 100 mesh on: 95% or more).
  • the reduced viscosity was 7.2 [dl / g]
  • the polymerization conversion was 99.7%
  • the volatile content was 3.2% by mass.
  • Mw / Mn measured by GPC method was 11.58.
  • this polymer as the polymer A the following physical properties and performance evaluation of the polymer solution were carried out.
  • Example 2 Synthesis and Performance Evaluation of Polymer B; Aqueous Solution Adiabatic Polymerization Method
  • Polymerization was carried out in the same manner as for polymer A except that the amount of 2,2′-azobis (2-amidinopropane) dihydrochloride was increased to 2000 ppm to obtain an N-vinylformamide polymer powder having a reduced viscosity of 5.8 dl / g. .
  • the polymerization conversion was 99.8% and the volatile content was 4.5% by mass.
  • Mw / Mn measured by GPC method was 6.5.
  • the physical properties and performance evaluation of the following polymer solutions were carried out.
  • Example 3 Preparation of polymer D and performance evaluation
  • the said polymer C and the polymer A were mixed so that it might become 70 mass% / 30 mass%, and it was set as the polymer D.
  • the reduced viscosity was 6.4 dl / g
  • the polymerization conversion was 99.8%
  • the volatile content was 4.5% by mass.
  • Mw / Mn measured by GPC method was 9.1.
  • the polymer D was subjected to physical properties and performance evaluation of the following polymer solutions.
  • “Comparative Example 1” (Synthesis and performance evaluation of polymer E; photopolymerization method) 333.3 g (purity 99%) of N-vinylformamide as a monomer, 0.11 g of diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide as an initiator, 5.5 g of ammonium chloride, “Sanisol B50” (Kao chloride benza manufactured by Kao) Prepare a monomer solution by uniformly dissolving 0.55 g of a ruthenium-based surfactant (purity 50%), 0.055 g of “AF108” (surfactant manufactured by Toho Chemical Co., Ltd.), and 210.5 g of demineralized water. Aerated to remove dissolved oxygen.
  • a polyethylene terephthalate film (base film 12 ⁇ m thickness, PVDC coat 4 ⁇ m thickness) is laid on the bottom surface of a stainless steel tray-like container (bottom surface 235 mm ⁇ 235 mm), the monomer solution is put here, and the top is covered with a polyethylene terephthalate film did.
  • the fluorescent chemical lamp was irradiated so as to have an intensity of 3 W / m 2 on the irradiated surface.
  • 10 ° C. cold water was sprayed on the stainless steel surface of the container to remove the heat of polymerization.
  • the temperature which was 15 ° C. before irradiation, reached a maximum of 42 ° C. after 90 minutes. 120 minutes after the start of irradiation, the irradiation intensity was increased to 6.5 W / m 2 and polymerization was continued for 60 minutes.
  • a colorless and transparent gel which is an N-vinylformamide polymer was obtained.
  • the gel was pulverized with a meat chopper to make particles of about 4 to 5 mm, and then dried for 2 hours with an air dryer at 80 ° C. Thereafter, it was pulverized again with a rotary pulverizer having a 1 mm ⁇ screen to obtain an N-vinylformamide polymer powder.
  • the amount of volatile components was 4.7% by mass, and the polymerization conversion rate was 98.7%.
  • the reduced viscosity was 11.6 dl / g. Mw / Mn measured by GPC method was 4.6. Using this product as polymer E, physical properties and performance evaluation of the following polymer solutions were carried out.
  • “Comparative Example 2” (Synthesis and performance evaluation of polymer F) Polymerization was carried out in the same manner as for Polymer B except that the amount of diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide was increased to 0.55 g to obtain an N-vinylformamide polymer powder having a reduced viscosity of 8.3 dl / g. . The polymerization conversion was 99.0% and the volatile content was 4% by mass. Mw / Mn measured by GPC method was 4.2. Using this product as a polymer F, the physical properties and performance of the following polymer solutions were evaluated.
  • polyvinylamine obtained by hydrolyzing polymers A, B, D, and E exhibits substantially the same drainage and squeezability, but polymer E has a high solution viscosity and is inferior in handleability.
  • Polyvinylamine obtained by hydrolyzing polymer F has substantially the same handleability as polymers A, B, and D, but is inferior in terms of performance (drainage and squeezability).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

 高性能でありながら取り扱い性の良いポリビニルアミン溶液を工業的に効率よく製造する方法を提供する。 N-ビニルカルボン酸アミド単量体単位を含有する、重量平均分子量Mw/数平均分子量Mnの値が5以上である重合体を水溶液静置断熱重合法にて製造した後、前記重合体をアルカリ及びゲル化防止剤の存在下に水性溶媒中で加水分解を行う。本発明の好ましい態様においては、(共)重合体を製造した後、乾燥粉末化して揮発分が0.1~12質量%の重合体粉末を得、得られた前記粉末を保管し又は重合体溶液の使用場所に搬送し、重合体溶液の必要時に又は重合体溶液の使用場所において、アルカリ及びゲル化防止剤の存在下に水性溶媒中で加水分解を行う。

Description

ビニルアミン単位含有重合体溶液の製造方法
 本発明は、ビニルアミン単位含有重合体溶液の製造方法に関し、詳しくは、水処理分野、特に廃水処理での凝集剤の他、製紙工業での抄紙用薬剤などとして有用な高分子量のビニルアミン単位含有重合体溶液の製造方法に関する。なお、以下の記載において、ビニルアミン単位含有重合体を単にポリビニルアミンと略称する場合がある。
 ポリビニルアミンは、凝集剤、製紙用薬剤、繊維処理剤、塗料添加剤などとして、広く利用されている有用な物質である。特に、廃水処理での凝集剤や製紙工業での抄紙薬剤として使用する場合には、高分子量のポリビニルアミンが有効であるとされる。
 一般に、ポリビニルアミンは、N-ビニルカルボン酸アミドの重合体や共重合体[以下、両者をまとめて(共)重合体と表記する]を、酸またはアルカリの存在下に、全部または一部を加水分解することによって得られている。ところが、高分子量のポリビニルアミンは、水溶液にした際、極めて高粘度になるために取り扱い難く、一方、希釈すれば取り扱いは容易になるが、製造、運搬においてコスト増となる等の問題がある。
 従来、N-ビニルカルボン酸アミドの重合体粉末をアルカリ加水分解して水溶液にする方法が提案され、その場合、N-ビニルカルボン酸アミドの(共)重合体としては還元粘度が9以上の高分子量品が好ましいとされている(特許文献1)。しかしながら、得られる水溶液は粘度が高く極めて取り扱いが困難である。また、N-ビニルカルボン酸アミドの重合方法として水溶液静置断熱重合法が提案されている(特許文献2)。しかしながら、この提案においては、ポリビニルアミンへの転換方法およびその機能性については説明されていない。
 N-ビニルカルボン酸アミド(共)重合体のポリビニルアミンへの加水分解は、アルカリ性条件で行うことが工業的に有利である。すなわち、酸性加水分解においては、製造、輸送、貯蔵、使用に関わる装置配管類すべてに耐食性が要求されるのに対して、アルカリ性条件では通常の鉄鋼やステンレス製の装置配管類を使用することが可能である。
 また、製品形態としては溶液が有利である。すなわち、粉末製品の製造においては、粉末の乾燥工程が必須であるが、ポリビニルアミンは高温で加熱されると製品が劣化し、製品の溶解性が悪化することがある。このような劣化は、特に、高い溶解性が要求される抄紙薬剤において、極めて重要な問題である。さらに粉末では使用時には溶解する設備が必要となる。
 上記の理由から、製品形態としては、アルカリ性で且つ均一溶液状態であることが好ましく、このことは既に知られている(特許文献1)。しかしながら、高分子量ポリビニルアミンの水溶液が極めて高粘度になることに対する対応策については提案されていない。
特開2004-27015号公報 特開2010-59220号公報
 上記のように、高性能のポリビニルアミン溶液製品を、アルカリ性条件下で工業的に製造し、かつ取り扱い性の良い商品を得る方法は未だ提案されていない。すなわち、従来法では、製紙薬剤として性能を向上させるためには分子量を上げた場合、製品の粘度が上がるため、取り扱い性が悪化するという問題がある。これに対処するため、製品濃度を下げた場合、製造、運搬のコストが上がるという問題がある。
 本発明者は、上記実情に鑑み、鋭意検討した結果、製紙薬剤、中でも歩留まり濾水剤の性能は、同一の還元粘度であっても分子量分布が異なれば性能に差があること、分子量分布は重合方法により異なること、さらに断熱重合法で製造したポリビニルホルムアミドは、分子量分布が広く比較的平均分子量が低くても優れた性能を示すこと、そのため水溶液にした場合、比較的粘度が低くても製紙薬剤等に高性能なポリビニルアミン水溶液を作れることを見出し、本発明に到達した。
 すなわち、本発明の要旨は、N-ビニルカルボン酸アミド単量体単位を含有する、重量平均分子量Mw/数平均分子量Mnの値が5以上である重合体を水溶液静置断熱重合法にて製造した後、前記重合体をアルカリ及びゲル化防止剤の存在下に水性溶媒中で加水分解を行うことを特徴とする、ビニルアミン単位含有重合体溶液の製造方法に存する。
 本発明によれば、高性能でありながら取り扱い性の良いポリビニルアミン溶液を工業的に効率よく製造することができる。このような高分子量のポリビニルアミン溶液は、特に製紙工業での抄紙薬剤を初めとして、各種分野で広い応用が可能であり、極めて有用である。
 なお、本発明の製造方法の途中で取り扱われる(共)重合体粉末は、長期間保存することができ、簡便に取り扱い可能であり、そのままアルカリ水溶液に溶解し、加熱することでポリビニルアミン水溶液を得ることができる。従って、ポリビニルアミン水溶液を、その使用場所において必要時に製造可能であり、輸送コストや保管コストが低減でき経済的に有利である。また、劣化し易いポリビニルアミン水溶液を長期保存する必要がないので、品質的にも有利である。
 以下、本発明を更に詳細に説明する。
[N-ビニルカルボン酸アミド(共)重合体]
 本発明で使用されるN-ビニルカルボン酸アミドは、一般式:CH=CH-NHCOR(式中、Rは水素原子または炭素数1~6のアルキル基を表す)で示される。具体的にはN-ビニルホルムアミド(R=H)やN-ビニルアセトアミド(R=CH)、その他、N-ビニルプロピオン酸アミド(R=C)、N-ビニル酪酸アミド(R=C)等が例示されるが、ポリビニルアミンへの誘導のし易さからN-ビニルホルムアミドが好ましい。
 N-ビニルカルボン酸アミドは、必要に応じ、エチレン性不飽和結合を有する任意のモノマーと共重合させることが可能である。共重合させ得るモノマーとしては、具体的には、(メタ)アクリル酸およびその塩、(メタ)アクリル酸エステル、(メタ)アクリロニトリル、(メタ)アクリルアミド、N-アルキル(メタ)アクリルアミド、N,N-ジアルキル(メタ)アクリルアミド、ジアルキルアミノエチル(メタ)アクリルアミド及びその塩あるいは4級化物、ジアルキルアミノプロピル(メタ)アクリルアミド及びその塩あるいは4級化物、ジアセトンアクリルアミド、N-ビニルピロリドン、N-ビニルカプロラクタム、酢酸ビニル等が例示される。
 モノマー組成物におけるN-ビニルカルボン酸アミドの含有割合は、目的とする(共)重合体にもよるが、通常5モル%以上、好ましくは10モル%以上、更に好ましくは50モル%以上、特に好ましくは70~100モル%である。N-ビニルカルボン酸アミド単量体は多いほどその特徴が発揮される。なお、上記のモノマー組成は、(共)重合体の組成として反映される。
 モノマー組成物の重合においては水溶液静置断熱重合法が選択される。ここで、静置断熱重合法は、反応熱を除熱する装置及び重合中の撹拌装置を持たない反応槽で重合する方法である。水溶液重合の際、発熱するが除熱しないため系内の温度は上昇する。そのため、単量体濃度を高くしすぎると沸騰し、低すぎると製造効率が悪い。また分子量分布を広げるためには重合開始温度と終了温度に差があるほうが好ましく、そのためには単量体濃度は高いほうが好ましい。単量体濃度は、通常10~50質量%、好ましくは20~40質量%、更に好ましくは25~35質量%である。重合開始温度は、沸騰せずに重合濃度を上げるためには低くすることが好ましいが、あまり低すぎると凍結してしまうので、通常-10~+20℃、好ましくは-10~+10℃の範囲から選択される。
 水溶液重合はラジカル重合開始剤により行われる。ラジカル重合開始剤としては、通常のレドックス系開始剤、アゾ系開始剤、過酸化物及びこれらを併用して使用することができる。これら開始剤は、水溶性、油溶性の何れでもよいが、油溶性開始剤を使用する場合には水混溶性溶剤に溶解して添加する必要がある。
 水溶性アゾ系開始剤の例としては、2,2’-アゾビス(アミジノプロパン)二塩酸塩、2,2’-アゾビス〔2-(5-メチル-2-イミダゾリン-2-イル)プロパン〕二塩酸塩、4,4’-アゾビス(4-シアノ吉草酸)等が挙げられる。
 油溶性アゾ系開始剤の例としては、2,2’-アゾビスイソブチロニトリル、1,1’-アゾビス(シクロヘキサンカルボニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビス(2-メチルプロピオネ-ト)、2,2’-アゾビス(4-メトキシ-2,4ジメチル)バレロニトリル等が挙げられる。
 また、レドックス系開始剤の例としては、ペルオクソ二硫酸アンモニウムと亜硫酸ナトリウム、亜硫酸水素ナトリウム、トリメチルアミン、テトラメチルエチレンジアミン等との組み合わせ、t-ブチルハイドロパーオキサイドと亜硫酸ナトリウム、亜硫酸水素ナトリウム、硫酸第一鉄等との組み合わせが挙げられる。
 過酸化物の例としては、ペルオクソ二硫酸アンモニウムあるいはカリウム、過酸化水素、ベンゾイルペルオキサイド、ラウロイルペルオキサイド、オクタノイルペルオキサイド、サクシニックペルオキサイド、t-ブチルペルオキシ-2-エチルヘキサノエ-ト等が挙げられる。
 これら開始剤の中で最も好ましいのは、低温で重合開始するレドックス系開始剤と比較的高温で開始する水溶性アゾ系開始剤の併用であり、レドックス系開始剤として、t-ブチルハイドロパーオキサイドと亜硫酸ナトリウムや亜硫酸水素ナトリウム、硫酸第一鉄との組み合わせ、水溶性アゾ系開始剤として2,2’-アゾビス(2-アミジノプロパン)二塩酸塩を併用することである。これにより重合温度が重合開始時と終了時で大きく異なっていても重合を完結させることができる。
 重合開始剤の使用量は、単量体に対し、アゾ系開始剤の場合、通常100~10000ppm、好ましくは500~5000ppmであり、レドックス系開始剤の場合、通常10~700ppm、好ましくは30~600ppmである。重合開始剤の使用量が少なすぎると十分な重合速度が得られず、多すぎると重合速度は増加するが分子量が低下するので好ましくない。
 (共)重合体の分子量は高すぎれば加水分解工程及び製品の取り扱い操作が困難になるばかりでなく、不溶解成分が増加する。さらに分子量分布が広ければ、従来言われていたよりも分子量が低くても高い性能が得られる。一方分子量が低すぎれば性能が低下し、ゲルの付着など製造上の困難も増大する。そのため(共)重合体の分子量は、1Nの食塩水中、25℃における0.1g/dl水溶液の還元粘度(以下ηsp/Cと記載する)の値を指標とした場合、ηsp/Cは、通常2~9、好ましくは2~8である。その調節は反応温度、開始剤の種類及び量、さらには公知の連鎖移動剤を用いて行ってもよい。
 連鎖移動剤としては、イソプロピルアルコール、アリルアルコール等のアルコール類、チオグリコール酸、チオグリセロール等のメルカプタン類、次亜燐酸ソーダ等の亜燐酸塩類が挙げられる。
 断熱重合法の場合に、他の重合形式より還元粘度が低くとも高い性能が得られる理由は分子量分布の違いによると推定される。すなわち、平均分子量は等しくとも高分子量成分が多い等の理由により性能が高いと考えられる。
 通常、分子量分布は重量平均分子量と数平均分子量の比Mw/Mnで表される。Mw/Mnは、例えばサイズ排除クロマトグラフィーにより算出できる。通常GPC(ゲル浸透クロマトグラフィー)やGFC(ゲルろ過クロマトグラフィー)を使用することができる。本発明で製造される重合体をこれらの方法で測定したMw/Mnの値は、5以上である。
 広い分子量分布を保ちつつ、還元粘度を前記の値に保つために、連鎖移動剤を用いてもよい。連鎖移動剤はMw/Mnを5より小さくしなければ特に制約は無い。
 水溶液静置断熱重合法は、特に限定されないが、無機塩の存在下に行ってもよい。具体的には、例えば次のように行われる。すなわち、水、無機塩、単量体などを混合し、重合開始温度に調整された単量体調製液(単量体の均一水溶液)を準備し、これを断熱反応槽に注入し、単量体調製液を窒素曝気して溶存酸素を除き、そこへ開始剤を投入して混合し重合反応を開始させる。重合開始剤の混合が完了した後に窒素曝気を停止して静置し、重合反応によって反応槽内の温度が最も高くなる時間を確認した後に更に30~120分間程度の熟成を行う。熟成後の生成重合体を反応容器から取り出すことにより塊状のN-ビニルカルボン酸アミド系重合体の水性ゲルを得る。
 なお、上記の無機塩としては、水溶性であれば特に限定されるものではないが、取り扱い性、値段の面から金属ハロゲン化物が好ましい。金属ハロゲン化物としては、アルカリ金属やアルカリ土類金属のハロゲン化物、具体的には、塩化ナトリウム、塩化カリウム、塩化カルシウム、臭化カリウム、臭化ナトリウム等が挙げられる。中でも好ましい金属ハロゲン化物としては塩化物が挙げられ、具体的には、安価であることから塩化ナトリウム、塩化カリウム、塩化カルシウム等が好ましく挙げられるが、中でも塩化ナトリウムがより好ましい。また、無機塩の濃度は、単量体を含有する均一水溶液中の水に対し7質量%以上でかつ重合開始温度における飽和溶解濃度以下、好ましくは該飽和溶解濃度の80%濃度以下である。
 重合後の残存N-ビニルカルボン酸アミド量が多いと、後の変性工程でよりゲル化し易いため好ましくない。モノマー残存量が多い場合は、適切な溶媒等で抽出除去することも可能であるが、歩留の点から考えると、重合転化率がより高い方が好ましい。斯かる観点から、N-ビニルカルボン酸アミドの転化率は、通常90%以上、好ましくは95%以上、更に好ましくは98%以上、特に好ましくは99%以上である。
 得られた(共)重合体はその重合法に応じて水を含有している。そのまま希釈して水溶液にし、加水分解を行ってもよいが、本発明では、これを任意の方法で乾燥し粉末化することが好ましい。乾燥粉末化することにより、取り扱い性よく安定に保存、輸送することができる。また、後の変性工程において水性溶媒に溶解させる際、比表面積が大きいので短時間で均一に溶解することが可能である。
 水溶液静置断熱重合法においてはゲル状の重合体塊として得られるので、ゲルを粉砕し、乾燥することによって粉末を得ることができる。通常、塊状の水性ゲルは切断後粉砕して粒子状にされる。粉砕時の平均粒径は、通常5cm以下、好ましくは2cm以下、更に好ましくは1cm以下である。粉砕方法としては、公知の種々の方法を採用し得るが、カッター等でゲルを裁断する方法やミートチョッパー等で押しだしてゲルを裁断する方法がある。ミートチョッパーを使用する場合、ミートチョッパーのダイスの穴径は、通常5cm以下、好ましくは2cm以下、更に好ましくは1cm以下、特に好ましくは1~7mmにする。
 得られた粒状物の乾燥は、通常50~140℃、好ましくは60~130℃、更に好ましくは70~120℃で行われる。乾燥温度が低すぎると乾燥効率が悪く、乾燥温度が高すぎると(共)重合体の品質劣化を生じる恐れがある。
 乾燥後の重合粉末の揮発分は、取り扱い易さの観点から、通常0.1~12質量%である。揮発分量が多いと粉末が固着し易く、また、粒子が柔らかく粉砕し難い場合がある。逆に、揮発分量を減らしすぎると乾燥に過大な熱量と時間が必要であることに加え、過熱による(共)重合体の劣化が懸念される。なお、ここでの揮発分は主として水分である。
 (共)重合体粉末の粒度は、大きすぎると溶解に時間がかかり、小さすぎると溶解時に所謂ママコの発生や微粉による作業環境の悪化の原因となるので好ましくない。従って、(共)重合体粉末の粒度は、通常4メッシュパス~500メッシュオンであり、好ましくは10メッシュパス~100メッシュオンの範囲に80%以上、好ましくは90%以上が入っていることがよい。
 破砕・細粒化する際に粒子同士の付着を抑えるために助剤を使用してもよい。通常、助剤としては、ポリアルキレングリコール類やシリコンオイル等の各種オイル類、界面活性剤等が使われる。助剤は、粉砕前の塊状水性ゲルの表面に塗布したり、粉砕器中に水性ゲルと一緒に添加したり、また、粉砕後の粒状ゲルと混合してもよい。場合により、助剤は重合反応水系に予め存在させておいてもよい。また、特許文献2に示されているように重合時に塩を添加することも有用である。これによりゲルの解砕時の付着が抑えられて処理が容易になる。
 破砕・細粒化する際に水性ゲルが柔らかすぎたり、付着性が高すぎるとカッターによる切断が出来ずに付着する。また、切ることができても、その切断速度が低下してしまう。しかしながら、本発明方法の好ましい態様に従って重合系に無機塩を存在させるならば、得られる(共)重合体の水性ゲルは適度の硬さとなるので容易に切断して細粒化することができる。
 また、水溶液重合法により比較的低分子量の(共)重合体を製造しようとすると、生成重合体の水性ゲルが柔らかくなりゲルの解砕等による細粒化の処理が出来なくなることがある。しかしながら、本発明方法の好ましい態様に従う無機塩を存在させた系においては、通常よりも分子量の低い(共)重合体を製造した場合でも、生成重合体の水性ゲルは取り扱い易い硬さを有するので、通常の装置で細粒化処理を行うことが出来る。
 広い分子量分布のN-ビニルカルボン酸アミド(共)重合体を得るために還元粘度の異なる2種以上のN-ビニルカルボン酸アミド(共)重合体を混合してもよい。その際混合した後のN-ビニルカルボン酸アミド(共)重合体の還元粘度が2~9であることが好ましい。
[加水分解]
 次いで、N-ビニルカルボン酸アミド(共)重合体の一部または全部を加水分解し、ポリビニルアミンに転換する。
 加水分解反応はアルカリの存在下で行う。加水分解は酸、塩基の両条件で可能ではあるが、アルカリのほうが装置腐食が少ない。アルカリの種類としては、N-ビニルカルボン酸アミド(共)重合体を加水分解し得るものであれば制限されないが、具体的には、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化カルシウム等が例示される。これらのアルカリは単独で使用しても混合物として使用してもよい。アルカリの量は、所望の加水分解率によって異なるが、目的とするポリビニルアミン中のビニルアミンユニットに対して通常10~1倍当量である。なお、加水分解反応系中にN-ビニルアミド基よりも加水分解され易い物質が共存する場合は、当然それを相殺する量を過剰に使用する必要がある。
 加水分解反応における必要成分の添加順序は、アルカリの水溶液に対し(共)重合体粉末の全量を添加して溶解するのが好ましい。その理由は次のとおりである。すなわち、(共)重合体粉末を後から溶解したり追加したりすることも可能であるが、本発明が目的とする分子量の(共)重合体を高濃度に溶かしたい場合、水溶液の粘度が極めて大きいので、アルカリを後から加えると均一な混合に長時間を要し、不溶物等が発生するためである。
 水性溶媒は基本的に水であるが、共重合組成によっては、重合体の溶解性を調節するために他の有機溶剤を含有する混合溶媒を使用しても差し支えない。前記有機溶媒の具体例としては、メタノール、エタノール、イソプロパノール、アセトン、アセトニトリル等が挙げられる。
 また、溶媒中に中性塩類を含有していてもよい。塩類の具体例としては、塩化ナトリウム、塩化カリウム、塩化アンモニウム、塩化カルシウム、塩化亜鉛などの塩化物、硝酸ナトリウム、硝酸カリウム等の硝酸塩、硫酸ナトリウム、硫酸アンモニウム等の硫酸塩、燐酸ナトリウム、燐酸アンモニウム等の燐酸塩、酢酸ナトリウム、蟻酸ナトリウム等の有機酸塩類などが挙げられる。これら塩類は溶液粘度を調整する作用がある。
 更に、加水分解はゲル化防止剤の存在下に行う。ゲル化防止剤としては公知の任意の化合物を使用し得るが、本発明においてはアルカリ性において安定で且つアルデヒド捕捉能を有するものが好適に使用される。このようなゲル化防止剤の具体例としては、亜二チオン酸塩、亜硫酸塩、重亜硫酸塩、二亜硫酸塩、ロンガリット(スルホキシル酸塩ホルムアルデヒド付加物)、二酸化チオ尿素、水素化ホウ素ナトリウム等が例示される。塩の場合、その種類は任意に選ぶことができ、例えばナトリウム、カリウム、リチウム等のアルカリ金属塩、カルシウム、マグネシウム、亜鉛等のアルカリ土類金属塩、アンモニウム塩などが例示される。これらのゲル化防止剤は任意の一種類以上を混合物として使用し得る。
 これらゲル化防止剤の中で、亜硫酸塩、重亜硫酸塩、二亜硫酸塩は、アルデヒド捕捉能力が他のゲル化防止剤に比べてやや弱いので、添加量を多くする必要がある。従って、性能的には、亜二チオン酸塩、ロンガリット、二酸化チオ尿素、水素化ホウ素ナトリウムが特に優れている。これらの中で、亜二チオン酸塩は、空気中でやや不安定で取り扱いに注意を要する。また、水素化ホウ素ナトリウムは、反応中および製品保存中に水素気泡を発生することがあり注意を要する。
 ゲル化防止剤の添加量は、(共)重合体中の残存モノマー量にも依存するが、(共)重合体に対し、通常0.01~20質量%、好ましくは0.1~10質量%、更に好ましくは0.2~5質量%である。
 ゲル化防止剤は、(共)重合体粉末を溶解する以前に、水性溶媒に予め溶解しておくことが好ましい。後から溶解したり追加したりすることも勿論可能であるが、(共)重合体溶液は粘度が極めて大きいので、ゲル化防止剤を後から加えると均一な混合が難しい。また、ゲル化防止剤は(共)重合体粉末と共に同時に溶解させてもよい。更に、通常、前記のゲル化防止剤は粉末として市販されているので、(共)重合体粉末に配合して組成物とすることもできる。また、前記のゲル化防止剤は比較的安定であり、組成物として長期間保存することができ有利である。この組成物は簡便に取り扱い可能であり、(共)重合体に対するゲル化防止剤の配合比率も一定しているため、そのまま組成物をアルカリ水溶液に溶解し、加水分解に供することができる。
 水性溶媒中の(共)重合体濃度は均一な加水分解を行うため、適切に選択する必要がある。(共)重合体濃度は、溶解装置の能力と製造効率、輸送費等の経済性との兼ね合いで決定される。前記濃度は、1質量%以上が好ましく、2質量%以上がより好ましく、3質量%以上がさらに好ましく、5質量%以上が特に好ましい。また前記濃度は、30質量%以下が好ましく、25質量%以下がより好ましく、20質量%以下がさらに好ましい。
 溶解装置の形式は、特に限定されないが、高粘度液体を効果的に攪拌できることが必須である。具体的には、攪拌槽式、ポンプ式、押出機式、捏和式などの固液混合装置を使用し得る。また、撹拌翼も高粘性液体の撹拌に適するヘリカルリボン翼などを使用し得る。
 (共)重合体を溶解した後、溶解液を加熱して加水分解を行う。加水分解の条件は、(共)重合体濃度、アルカリ濃度によって変化するが、通常30~180℃、好ましくは40~140℃、更に好ましくは50~100℃である。加熱時間は所望の加水分解率に応じて定めればよいが、高温で長時間加熱すると劣化を促進する恐れがある。従って、加熱時間は、通常48時間以内、好ましくは24時間以内、更に好ましくは12時間以内である。ゲル化防止をより効果的に行うために、加水分解の初期はやや低温で反応を行うことは好適である。通常、初期反応の条件は、30~60℃において0.5~24時間である。その後、加水分解に適した温度に昇温して反応を継続する。
 加水分解に使用する装置は、(共)重合体溶液を加熱できるものであれば特に制限されない。通常は、攪拌槽式、ポンプ式、押出機式、捏和式などの高粘度液体の攪拌に適した装置を使用し、外部から、温水、蒸気、熱オイル等の熱媒による加熱方法が採用される。(共)重合体の溶解を行った装置で、引き続き反応を行ってもよい。一方、反応温度を高くすれば、極く短い加熱時間でも加水分解は可能であり、その場合、装置の選択がより幅広くなり、例えば、多管式、プレート式、濡壁式、薄膜式などの熱交換器、マイクロウエーブ、赤外線などによる加熱方法が挙げられる。
 上記のような加熱装置を使用して、ポリビニルアミンの使用場所、例えば、製紙工場や、廃水処理施設において、加水分解反応を行うことが可能である。すなわち、(共)重合体を粉末で搬入し、溶解液を調整後、必要時に加熱加水分解し、使用機器、すなわち、抄紙装置や廃水処理装置に直接導入することが可能である。ポリビニルアミンの使用場所における必要時製造は、希薄なポリビニルアミン水溶液の製造、貯蔵のための大きな設備を保有する必要がない。また、使用場所までは(共)重合体粉末として輸送できるので、希薄な溶液を輸送する必要がなく、輸送コストを低減でき経済的に有利である。更に、劣化し易いポリビニルアミン水溶液を長期保存する必要がないので、品質的にも有利である。このように必要時調製したポリビニルアミン水溶液は、使用機器への導入直前において、更に、希釈、pH調整、他の薬剤の添加などを行ってもよい。なお、前記加水分解により得られるビニルアミン単位含有(共)重合体溶液の濃度は、使用目的に応じて適宜設定される。
[ポリビニルアミン水溶液]
 加水分解が終了するとポリビニルアミンの水溶液となる。加水分解時の濃度により異なるが、1~30質量%の水溶液が得られる。濃度は取り扱い性がよいように調節してもよい。好ましい濃度は(共)重合体の分子量にもよるが2~25質量%より好ましくは3~30質量%である。これより低濃度の場合、分子量分布にかかわらず、液粘性が低くなり取り扱い性は良くなるが、運搬等のコストが増大する。これより高い場合、重合体の分子量にもよるが分子量分布にかかわらず液粘性が高くなりすぎる。
 ポリビニルアミンは各種分野に適用でき、特に製紙工業での抄紙薬剤、中でも歩留まり濾水剤、廃水処理での凝集剤などとして使用する場合には、高分子量のポリビニルアミンが有効であるとされているが、本発明によれば、従来より推奨されていた還元粘度9以上のポリビニルアミンを使用せずとも、同等以上の性能が得られる。さらに水溶液としての取り扱い性も良好である。
 本発明によれば、高分子量のポリビニルアミン溶液製品を、アルカリ性条件下で工業的に効率よく製造することができる。アルカリ条件は、製品の製造、輸送、貯蔵、使用における装置上の制約が少なく有利である。また、装置の選択の余地が幅広くなる結果、加水分解反応を製紙工場や廃水処理施設において行うことも可能となり、経済的、品質的に有利である。
 次に、本発明を実施例により更に詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。なお、実施例及び比較例において(共)重合体の物性は、以下の方法により測定した。
(還元粘度の測定)
 (共)重合体サンプルを1Nの食塩水中に、純分0.1g/dlの濃度に溶解し、25℃において、オストワルド粘度計を使用して流下時間を測定した。同様に、1N食塩水の流下時間を測定し、下記の式1によって還元粘度を求めた。
  [数1]
 還元粘度 ηsp/C = (t-t)/t/0.1 [dl/g]・・・・(式1)
 t:サンプル溶液の流下時間(秒)
 t:1N食塩水の流下時間(秒)
(重合転化率の測定)
 (共)重合体粉末をメタノール水で抽出し、残存単量体を液体クロマトグラフィーを使用して分析した。主たる不純物として、N-ビニルカルボン酸アミドと、N-ビニルカルボン酸アミドの水付加体が検出され、これらの合計をN-ビニルカルボン酸アミド換算で求めて残存モノマー量とし、別途求めた揮発分量を補正して転化率を算出した。
(揮発分量)
 (共)重合体粉末を105℃で90分加熱し、減少分を重量法で求めた。
(水溶液粘度の測定)
重合体水溶液の温度を25℃とし、ブルックフィールド粘度計、6rpm、ローターNo.4の条件にて測定した。なお、粘度は、mPa・sと表記した。
「実施例1」
(重合体Aの合成及び性能評価;水溶液静置断熱重合法)
 脱イオン水70質量部に対しポリエチレングリコール(平均分子量20000) 0.3質量部を溶解し、次いで、N-ビニルホルムアミド(純度99重量%)30質量部を混合した。更に、酢酸ソーダ0.1質量部を添加後リン酸により単量体水溶液がpH=6.3となるように調整し、単量体調製液を得た。
 この単量体調製液を0℃まで冷却した後、温度計を取り付けた断熱反応容器に移して15分間窒素曝気を行った後に2,2’-アゾビス(2-アミジノプロパン)二塩酸塩(商品名:和光純薬社製「V-50」)1500ppm(対単量体)とt-ブチルハイドロパーオキサイド(商品名:日本油脂社製「パーブチルH-69」)200ppm(対単量体)を10質量%水溶液として添加し、その後に硫酸第一鉄7水和物600ppm(対単量体)を10質量%水溶液として添加することにより重合を開始した。
 重合開始から240分後に系内温度の最高点を確認し、その後、更に、60分反応容器内に保持した。その後、反応容器より生成重合体を取り出し、取り扱い性に優れたN-ビニルホルムアミド重合体ゲルを得た。
 N-ビニルホルムアミドゲル重合体ゲルを3cm角に切断し、切断されたゲル片をダイスの穴径が4.8mmのミートチョッパーで処理し、ゲル片を5mm角以下に小粒化された粒状物とした。得られたゲル粒状物は、細粒の形状を維持し、取り扱い性も良好であった。
 次いで、粒状物を80℃で2時間乾燥し、乾燥粒状物をウィレータイプの粉砕機により粉砕して粉末状(粒度10メッシュパス~100メッシュオン:95%以上)とした。得られたN-ビニルホルムアミド重合体の粉末について物性を測定した結果、還元粘度:7.2[dl/g]、重合転化率:99.7%、揮発分3.2質量%であった。また、GPC法により測定したMw/Mnは11.58であった。この重合体を重合体Aとして、以下の重合体溶液の物性と性能評価を実施した。
「実施例2」
(重合体Bの合成及び性能評価;水溶液静置断熱重合法)
 2,2’-アゾビス(2-アミジノプロパン)二塩酸塩を2000ppmに増量したほかは重合体Aと同様方法で重合を行い還元粘度5.8dl/gのN-ビニルホルムアミド重合体粉末を得た。重合転化率は99.8%、揮発分量は4.5質量%であった。GPC法により測定したMw/Mnは6.5であった。この製品を重合体Bとして、以下の重合体溶液の物性と性能評価を実施した。
(重合体Cの合成;水溶液静置断熱重合法)
 2,2’-アゾビス(2-アミジノプロパン)二塩酸塩を2500ppmに増量したほかは重合体Aと同様方法で重合を行い還元粘度3.9dl/gのN-ビニルホルムアミド重合体粉末を得た。重合転化率は99.8%、揮発分量は4.5質量%であった。GPC法により測定したMw/Mnは5.1であった。この製品を重合体Cとした。
「実施例3」
(重合体Dの調製及び性能評価)
 前記重合体Cと重合体Aを70質量%/30質量%となるよう混合し、重合体Dとした。重合体Dを分析したところ、還元粘度6.4dl/g、重合転化率は99.8%、揮発分量は4.5質量%であった。GPC法により測定したMw/Mnは9.1であった。この重合体Dを以下の重合体溶液の物性と性能評価を実施した。
「比較例1」
(重合体Eの合成及び性能評価;光重合法)
 モノマーとしてN-ビニルホルムアミド333.3g(純度99%)、開始剤としてジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキサイド0.11g、塩化アンモニウム5.5g、「サニゾールB50」(花王製塩化ベンザルコニウム系界面活性剤、純度50%)0.55g、「AF108」(東邦化学製界面活性剤)0.055g、脱塩水210.5gを均一に溶解してモノマー溶液を調製し、窒素ガスを通気して溶存酸素を除去した。
 底面がステンレス製のトレー状容器(底面235mm×235mm)の底面に、ポリエチレンテレフタレートフィルム(ベースフィルム12μm厚、PVDCコート4μm厚)を敷き、ここに前記モノマー溶液を入れ、上部をポリエチレンテレフタレートフィルムでカバーした。上方より蛍光ケミカルランプを照射面で3W/mの強度になるように照射した。照射期間中は、容器のステンレス面に10℃の冷水を噴霧して重合熱を除熱した。照射前に15℃であった温度は、90分後に最高42℃に達した。照射開始後から120分後、照射強度を6.5W/mに上げ、更に、60分間重合を継続した。N-ビニルホルムアミド重合体である無色透明なゲルが得られた。
 ゲルをミートチョッパで粉砕し、約4~5mmの粒子とした後、80℃の通風乾燥機で2時間乾燥した。その後、1mmφのスクリーンを有する回転式粉砕器で再粉砕し、N-ビニルホルムアミド重合体の粉末を得た。揮発分量は4.7質量%、重合転化率は98.7%であった。また還元粘度は11.6dl/gであった。GPC法により測定したMw/Mnは4.6であった。この製品を重合体Eとして、以下の重合体溶液の物性と性能評価を実施した。
「比較例2」
(重合体Fの合成及び性能評価)
 ジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキサイドを0.55gに増量したほかは重合体Bと同様方法で重合を行い還元粘度8.3dl/gのN-ビニルホルムアミド重合体粉末を得た。重合転化率は99.0%、揮発分量は4質量%であった。GPC法により測定したMw/Mnは4.2であった。この製品を重合体Fとして、以下の重合体溶液の物性と性能評価を実施した。
(溶液加水分解方法)
 攪拌機を有するガラス製セパラブルフラスコに、脱塩水275.2gを入れ、水酸化ナトリウム8.45g、ゲル化防止剤として亜二チオン酸ナトリウム0.75gを溶解し、ここに前記N-ビニルカルボン酸アミド重合体純分15gを撹拌下少しづつ加え、室温で1時間攪拌後、50℃に昇温した。2時間後、更に、80℃に昇温し、80℃で2時間保持して加水分解を行った。冷却後、内容物のポリビニルアミン溶液を取り出した。ポリビニルアミンの水溶液粘度を測定し、表1に示す。
(濾水性および搾水性の評価方法)
 段ボールを水に浸した後ビーターを使用して20分叩解して濃度を調節し、カナダ標準濾水量(CFS)=90、濃度1%、pH6.91の試験用スラリーを得た。そして、濾水性は、次のようにして評価した。すなわち、スラリー500mlに濾水剤として前記ポリビニルアミン溶液を重合体純分として200ppm(対段ボール)を添加し、パドル翼で900rpmで20秒撹拌、その後、ダイナミックドレネージジャー試験機(熊谷理機工業社製)にて10秒後の濾水量を測定した。一方、同一スラリーを使用して角型シートマシンを使用して手抄きにて抄紙、紙葉を濾布に挟み、0.4MPaプレス機で5分、更に、0.4MPaで2分プレス、その状態で含水率を調べ搾水性の目安とした。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、重合体A、B、D、及びEを加水分解したポリビニルアミンは、略同様の濾水性と搾水性を示すが、重合体Eは溶液粘度が高く取り扱い性に劣る。重合体Fを加水分解したポリビニルアミンは、重合体A、B、及びDと略同じ取り扱い性であるが、性能面(濾水性と搾水性)で劣る。

Claims (12)

  1.  N-ビニルカルボン酸アミド単量体単位を含有する、重量平均分子量Mw/数平均分子量Mnの値が5以上である重合体を水溶液静置断熱重合法にて製造した後、前記重合体をアルカリ及びゲル化防止剤の存在下に水性溶媒中で加水分解を行うことを特徴とする、ビニルアミン単位含有重合体溶液の製造方法。
  2.  ビニルアミン単位含有重合体溶液が製紙用内添薬剤である請求項1に記載の製造方法。
  3.  重合体中のN-ビニルカルボン酸アミド単量体単位が50モル%以上である請求項1又は2に記載の製造方法。
  4.  N-ビニルカルボン酸アミド単量体単位がN-ビニルホルムアミド単量体単位である請求項1~3の何れかに記載の製造方法。
  5.  ゲル化防止剤が、亜二チオン酸塩、亜硫酸塩、重亜硫酸塩、二亜硫酸塩、ロンガリット、二酸化チオ尿素、水素化ホウ素ナトリウムの群から選ばれる少なくとも一つである請求項1~4の何れかに記載の製造方法。
  6.  ビニルアミン単位含有重合体溶液が製紙用歩留まり濾水剤である請求項1に記載の製造方法。
  7.  重合体の1N食塩水中0.1g/dlの還元粘度が2~9である。請求項1~6の何れかに記載の製造方法。
  8.  加水分解を行う際の水性溶媒中の重合体濃度が3質量%以上である請求項1~7の何れかに記載の製造方法。
  9.  水性溶媒中の重合体濃度が3質量%以上である請求項1~7の何れかに記載の製造方法。
  10.  水溶液静置断熱重合にてN-ビニルカルボン酸アミド単量体単位を含有する重合体を製造した後、乾燥粉末化して揮発分が0.1~12質量%の重合体粉末を得、次いで、得られた前記粉末をアルカリ及びゲル化防止剤の存在下に水性溶媒中で加水分解を行う、請求項1に記載の重合体溶液の製造方法。
  11.  得られた重合体粉末を重合体溶液の使用場所に搬送し、当該使用場所において、重合体粉末をアルカリ及びゲル化防止剤の存在下に水性溶媒中で加水分解を行う、請求項10に記載の重合体溶液の製造方法。
  12.  重合体が還元粘度の異なる2種以上のN-ビニルカルボン酸アミド重合体の混合物である請求項1の方法。
PCT/JP2013/079554 2012-11-02 2013-10-31 ビニルアミン単位含有重合体溶液の製造方法 WO2014069571A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020177013326A KR20170059012A (ko) 2012-11-02 2013-10-31 비닐아민 단위 함유 중합체 용액의 제조 방법
JP2014544581A JP6350286B2 (ja) 2012-11-02 2013-10-31 ビニルアミン単位含有重合体溶液の製造方法
KR1020157010865A KR20150063123A (ko) 2012-11-02 2013-10-31 비닐아민 단위 함유 중합체 용액의 제조 방법
CN201380056642.7A CN104768979B (zh) 2012-11-02 2013-10-31 含乙烯胺单元的聚合物溶液的制造方法
CA2890957A CA2890957C (en) 2012-11-02 2013-10-31 Method for producing vinyl amine unit-containing polymer solution
EP13851445.0A EP2915823B1 (en) 2012-11-02 2013-10-31 Method for producing vinyl amine unit-containing polymer solution
US14/436,762 US9745448B2 (en) 2012-11-02 2013-10-31 Method for producing vinyl amine unit-containing polymer solution

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-242947 2012-11-02
JP2012242947 2012-11-02
JP2013223271 2013-10-28
JP2013-223271 2013-10-28

Publications (1)

Publication Number Publication Date
WO2014069571A1 true WO2014069571A1 (ja) 2014-05-08

Family

ID=50627469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/079554 WO2014069571A1 (ja) 2012-11-02 2013-10-31 ビニルアミン単位含有重合体溶液の製造方法

Country Status (7)

Country Link
US (1) US9745448B2 (ja)
EP (1) EP2915823B1 (ja)
JP (1) JP6350286B2 (ja)
KR (2) KR20150063123A (ja)
CN (1) CN104768979B (ja)
CA (1) CA2890957C (ja)
WO (1) WO2014069571A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6245374B2 (ja) * 2015-07-31 2017-12-13 三菱ケミカル株式会社 ビニルアミン単位含有重合体水溶液の使用方法
CN116217763A (zh) * 2017-07-05 2023-06-06 日东纺绩株式会社 高纯度烯丙胺(共)聚合物及其制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004027015A (ja) 2002-06-25 2004-01-29 Daiyanitorikkusu Kk ポリビニルアミンの製造方法
US6797785B1 (en) * 1999-03-29 2004-09-28 Snf S.A. Methods for synthesizing polyvinyl amine (PVA) type flocculating and coagulating agents, novel agents thus obtained, uses thereof and improved paper types thus obtained
JP2006257287A (ja) * 2005-03-17 2006-09-28 Daiyanitorikkusu Kk 水溶性ビニルアミン重合体の製造方法
JP2010059220A (ja) 2008-09-01 2010-03-18 Daiyanitorikkusu Kk N−ビニルカルボン酸アミド系重合体の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX168601B (es) * 1986-10-01 1993-06-01 Air Prod & Chem Procedimiento para la preparacion de un homopolimero de vinilamina de alto peso molecular
JPH11292908A (ja) * 1998-04-10 1999-10-26 Mitsubishi Chemical Corp N−ビニルカルボン酸アミドの重合方法、重合体及び重合体の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6797785B1 (en) * 1999-03-29 2004-09-28 Snf S.A. Methods for synthesizing polyvinyl amine (PVA) type flocculating and coagulating agents, novel agents thus obtained, uses thereof and improved paper types thus obtained
JP2004027015A (ja) 2002-06-25 2004-01-29 Daiyanitorikkusu Kk ポリビニルアミンの製造方法
JP2006257287A (ja) * 2005-03-17 2006-09-28 Daiyanitorikkusu Kk 水溶性ビニルアミン重合体の製造方法
JP2010059220A (ja) 2008-09-01 2010-03-18 Daiyanitorikkusu Kk N−ビニルカルボン酸アミド系重合体の製造方法

Also Published As

Publication number Publication date
JPWO2014069571A1 (ja) 2016-09-08
KR20170059012A (ko) 2017-05-29
CN104768979B (zh) 2017-08-25
CN104768979A (zh) 2015-07-08
CA2890957A1 (en) 2014-05-08
EP2915823A4 (en) 2015-09-09
EP2915823B1 (en) 2019-06-26
US9745448B2 (en) 2017-08-29
KR20150063123A (ko) 2015-06-08
US20150259508A1 (en) 2015-09-17
CA2890957C (en) 2019-02-12
EP2915823A1 (en) 2015-09-09
JP6350286B2 (ja) 2018-07-04

Similar Documents

Publication Publication Date Title
JP5584962B2 (ja) N−ビニルカルボン酸アミド系重合体の製造方法
JP4744170B2 (ja) 水溶性ビニルアミン重合体の製造方法
JP6350286B2 (ja) ビニルアミン単位含有重合体溶液の製造方法
JP3851232B2 (ja) ポリビニルアミンの製造方法
JP5753530B2 (ja) 抄紙用粘剤、その製造方法及びこの抄紙用粘剤を用いる抄紙方法
JP2019143158A (ja) 粉末状n−ビニルカルボン酸アミド重合体組成物及びポリビニルアミン水溶液の製造方法
JP5604891B2 (ja) 粉体状ポリビニルアミンの製造方法
JP5843426B2 (ja) N−ビニルホルムアミド重合体の加水分解物を含む組成物及びその製造方法
WO2020085431A1 (ja) ゲル状組成物及び分散液並びにゲル状組成物の製造方法
WO2011122405A1 (ja) ポリアクリルアミド系抄紙用粘剤及びその製造方法
WO2015068806A1 (ja) ビニルアミン(共)重合体の製造方法
JP2005126880A (ja) ノニオン性抄紙用粘剤
JP2005154978A (ja) 抄紙用粘剤
JP4992371B2 (ja) 粉末状カチオン系水溶性高分子化合物の製造方法
JP2011127077A (ja) アクリルアミド系水溶性重合体の製造方法
JP2010155901A (ja) 含水ゲル状アクリル酸塩系水溶性重合体の製造方法
JPS59226009A (ja) 低重合度アミド基含有重合体の製法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13851445

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014544581

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2890957

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2013851445

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14436762

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157010865

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE