WO2014067444A1 - 有害物质处理材料及其制造方法、有害物质的处理方法 - Google Patents

有害物质处理材料及其制造方法、有害物质的处理方法 Download PDF

Info

Publication number
WO2014067444A1
WO2014067444A1 PCT/CN2013/086125 CN2013086125W WO2014067444A1 WO 2014067444 A1 WO2014067444 A1 WO 2014067444A1 CN 2013086125 W CN2013086125 W CN 2013086125W WO 2014067444 A1 WO2014067444 A1 WO 2014067444A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium
calcium silicate
harmful substance
heavy metal
silicate particles
Prior art date
Application number
PCT/CN2013/086125
Other languages
English (en)
French (fr)
Inventor
大石徹
Original Assignee
日铁住金环境株式会社
阿酷尔商贸(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日铁住金环境株式会社, 阿酷尔商贸(上海)有限公司 filed Critical 日铁住金环境株式会社
Publication of WO2014067444A1 publication Critical patent/WO2014067444A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/02Loose filtering material, e.g. loose fibres
    • B01D39/06Inorganic material, e.g. asbestos fibres, glass beads or fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/041Oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/043Carbonates or bicarbonates, e.g. limestone, dolomite, aragonite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • B01J20/3236Inorganic material layers containing metal, other than zeolites, e.g. oxides, hydroxides, sulphides or salts
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds

Definitions

  • Hazardous substance treatment material its manufacturing method, and treatment method of harmful substance
  • the present invention relates to a treatment material for removing heavy metal elements such as arsenic, cadmium, selenium, chromium, antimony, zinc, and lead in water, and harmful substances such as phosphoric acid and fluorine, and a method for producing the same.
  • heavy metal elements such as arsenic, cadmium, selenium, chromium, antimony, zinc, and lead in water, and harmful substances such as phosphoric acid and fluorine
  • Adding slaked lime powder or mud to water is a common method of removing harmful substances from water.
  • the method has low drug cost and good treatment effect of harmful substances, but if the water contains a large amount of sulfate ions and iron ions, the iron ions are precipitated as a colloid of iron hydroxide as the pH value increases, and
  • the slaked lime reacts with the sulfate ion to form insoluble gypsum, and together with the unreacted material of the slaked lime used as the neutralizing material, forms a thick substance having high water content and poor dehydration and precipitates.
  • the viscous material is a highly hydrated slurry which is poor in dehydration and contains harmful substances.
  • Patent Document 1 discloses an acidic wastewater treatment material using a particulate solidified product of an inorganic binder such as mineral fiber such as asbestos and an blast furnace cement.
  • an inorganic binder such as mineral fiber such as asbestos and an blast furnace cement.
  • the material disclosed in Patent Document 1 is only applicable to the treatment of acidic wastewater containing a large amount of iron ions, and is not suitable for the treatment of water containing harmful substances such as arsenic.
  • the method disclosed in Patent Document 2 is to add any one of chemically synthesized Schneider minerals, goethite, jarosite, hydrated iron oxide to contaminated soil containing arsenic or heavy metals, and bind arsenic or heavy metals. , to make it inactive, thereby purifying contaminated soil, or extracting arsenic or heavy metals from contaminated soil containing arsenic or heavy metals, allowing the extract to contact the iron compound, and allowing the iron compound to bind arsenic or heavy metals to purify it.
  • the method disclosed in Patent Document 3 is a method in which magnesium oxide is added or mixed in a contaminated soil to solidify the contaminated soil to make the pollutant insoluble.
  • Patent Document 4 discloses a method of adding calcium silicate and phosphoric acid to a fluorine-containing wastewater to form a fluoroapatite-silica composite material, adsorbing and fixing fluorine, thereby removing fluorine in the wastewater, but The method is not suitable for the purpose of removing heavy metals.
  • Patent Document 5 discloses a method of allowing phosphorus-containing wastewater to contact calcium silicate hydrate to remove phosphorus.
  • Patent Document 6 discloses that when the lead-containing ion wastewater treatment is carried out, the pH is adjusted to between 5. 6 and 12, and then calcium silicate is added in a weight ratio of 75 times or more of lead to make lead ions insoluble. The method of separation.
  • the representative formula of magnesium aluminum carbonate is Mg 6 Al 2 (0H) 16 C (V 43 ⁇ 40, which has a layered crystal structure.
  • the magnesium aluminum carbonate has anion exchange property and can embed anions. Therefore, research is being conducted on the use of aluminum carbonate.
  • a method for removing harmful substances by magnesium adsorption for example, adsorption and removal of oxyanions such as selenium and chromium, and phosphate ions, etc.
  • oxyanions such as selenium and chromium, and phosphate ions, etc.
  • Aluminum magnesium carbonate can be 2 or 3 in Mg or A1
  • the mixed aqueous solution of the metal salt is synthesized by adding an alkali solution to coprecipitate, but the aluminum magnesium carbonate synthesized by this method is expensive and is not suitable for use as a wastewater treatment.
  • the object of the present invention is to provide effective and maintenance-free removal of heavy metals such as arsenic, lead, cadmium, selenium, chromium, antimony and zinc, as well as elements such as phosphoric acid and fluorine, and the stability after adsorption of heavy metals is not good.
  • heavy metals such as arsenic, lead, cadmium, selenium, chromium, antimony and zinc, as well as elements such as phosphoric acid and fluorine, and the stability after adsorption of heavy metals is not good.
  • a time-consuming or hazardous substance treatment material that re-dissolves harmful substances due to oxidation, and does not require a large amount of subsequent treatment, and a method of manufacturing the same.
  • the harmful substance treating material provided by the present invention is a processing material for adsorbing and removing harmful substances from water containing harmful substances of heavy metal ions, and is fixed and fixed from magnesium oxide and hydroxide in the active porous calcium silicate particles.
  • One or two or more kinds of magnesium compounds selected from magnesium, magnesium carbonate and aluminum magnesium carbonate are characteristic harmful substance treating materials.
  • the hazardous substance treatment material is a kind of one or more kinds of magnesium compounds selected from the group consisting of activated porous calcium silicate particles and magnesium oxide, magnesium hydroxide, magnesium carbonate and aluminum magnesium carbonate.
  • a hazardous substance treatment material characterized by a hydration reaction is obtained.
  • the heavy metal ions have one or more heavy metal ions selected from the group consisting of arsenic, cadmium, selenium, chromium, bismuth, zinc, and lead. Further, in addition to the above heavy metal ions, the above-mentioned harmful substance treating material can adsorb and remove harmful substances containing ions selected from phosphoric acid and fluorine.
  • the above-mentioned activated porous calcium silicate particles are one or more selected from the group consisting of tob mullite, xonotlite and calcium silicate hydrate (CSH gel) as a main component.
  • CSH gel calcium silicate hydrate
  • the activated porous calcium silicate granule is a hydrate which is obtained by adding a metal aluminum powder as a foaming agent to a slurry containing a silicic acid raw material and a calcareous raw material as a main component, and performing a hydrothermal reaction in an autoclave.
  • the magnesium compound is a powder having a diameter smaller than that of the active porous calcium silicate particles.
  • the magnesium compound in the activated porous calcium silicate particles is fixedly fixed in an amount of 100 parts by weight of the active porous calcium silicate particles corresponding to 10 to 150 parts by weight of the magnesium compound.
  • the present invention also provides a method of treating a harmful substance, which is characterized in that the above-mentioned hazardous substance treating material is brought into contact with water containing a harmful substance of heavy metal ions.
  • a method of treating harmful substances is provided, which is characterized in that the harmful substance treating material is contacted with soil or rocks which may generate water containing harmful substances of heavy metal ions, and is disposed or mixed.
  • the present invention also provides a method for producing the above-mentioned harmful substance treating material, characterized in that the active porous calcium silicate particle and one selected from magnesium oxide, magnesium hydroxide, magnesium carbonate and aluminum magnesium carbonate are or One or more selected from the group consisting of aluminum sulfate, aluminum chloride, iron sulfate, iron chloride, magnesium sulfate, magnesium chloride, calcium sulfate, and calcium chloride in a mixture of two or more kinds of magnesium compound powders
  • the pH adjusting agent and the water are subjected to a hydration reaction under normal pressure and below io °c, and the magnesium compound powder is attached and fixed to the activated porous calcium silicate particles.
  • Fig. 1 is a photomicrograph showing the crystal structure of the surface layer of the hazardous substance treatment material.
  • Fig. 2 is a microscopic enlarged photograph showing the crystal structure of the surface layer of the hazardous substance treatment material. detailed description
  • the harmful substance treating material of the present invention is obtained by adhering one or two or more kinds of magnesium compounds selected from magnesium oxide, magnesium hydroxide, magnesium carbonate and aluminum magnesium carbonate to the activated porous calcium silicate particles.
  • the activated porous calcium silicate particles may be mixed with a magnesium compound in a water-containing environment to cause a hydration reaction.
  • the activated porous calcium silicate granule is a hydrate or a molded product obtained by hydrothermally reacting a metal aluminum powder as a foaming agent in a slurry containing a silicic acid raw material and a calcareous raw material as a main component. Its void ratio is 50 to 90%.
  • the term "containing as a main component" as used herein means that the content thereof should be 50% by weight or more, and even more preferably 70% by weight or more.
  • calcium silicate boards or lightweight concrete slabs used as building materials are produced in large quantities in demolition work, and it is better if they can be effectively utilized.
  • the surface of the calcium silicate board and the lightweight bubble concrete board used in the building are inactive, but after they are pulverized, the active surface appears to become the active porous calcium silicate.
  • Porous calcium silicate such as calcium silicate board or lightweight concrete slab is easy to process into a granulated product, and has good water permeability and water retention, and is suitable for forming granules.
  • the active porous calcium silicate particles may have an adsorption ability, but if they are porous, they are more reactive with an acid. Crystalline natural wollastonite which has low reactivity with acid has poor adsorption properties and is difficult to adhere and fix in a large amount. Similarly, concrete, mortar, air-cooled blast furnace slag, non-ferrous metal slag, fly ash, concrete fragments, etc., due to low void ratio, have poor activity and are not suitable for use.
  • the granulated blast furnace slag which is produced by rapidly cooling the blast furnace slag of the ironmaking plant by the molten iron in the molten state is an active calcium silicate material, but the void ratio is low, so it is better to be combined with the calcium silicate board or the lightweight bubble concrete slab.
  • the powder obtained after the crushing is mixed and used. In this case, the mixing ratio is preferably 20 to 80% by weight of the granulated blast furnace slag.
  • the particle size of the active porous calcium silicate granule is 0. 05 ⁇ 10mm, 0. l ⁇ 7mm is better, 0. l ⁇ 5mm is the best.
  • the above particle diameter is an average particle diameter, and it is preferable that particles having a total weight of 90% or more are in the above range.
  • the magnesium compound adhered to the activated porous calcium silicate particles is a magnesium compound selected from the group consisting of magnesium oxide, magnesium hydroxide, magnesium carbonate, and aluminum magnesium carbonate. Further, a clay mineral containing 50% by weight or more of the above magnesium compound is also suitable as the magnesium compound.
  • the magnesium compound is an active component of a harmful substance treating material, and adsorbs and removes harmful substances.
  • the magnesium compound In order to attach and immobilize the magnesium compound to the activated porous calcium silicate particles, it is preferable to use a powder having a particle diameter smaller than that of the activated porous calcium silicate particles, and it is preferable that the particle diameter is 1/10 or less of the active porous calcium silicate particles.
  • the adhesion amount of the magnesium compound in the activated porous calcium silicate particles is such that 100 parts by weight of the activated porous calcium silicate particles correspond to 10 to 150 parts by weight of the magnesium compound, preferably 20 to 150 parts by weight of the magnesium compound.
  • the method for producing a harmful substance treating material of the present invention comprises a method of mixing the above-mentioned active porous calcium silicate particles with a powder of a magnesium compound or a precursor thereof in the presence of water.
  • the adhesion fixation described in the present invention includes the state in which the activated porous calcium silicate particles and the magnesium compound or a precursor thereof are mixed.
  • a mixture of activated porous calcium silicate particles and magnesium compound powder is added from aluminum sulfate, aluminum chloride, iron sulfate, ferric chloride, magnesium sulfate, magnesium chloride, calcium sulfate, or A method in which a pH adjuster selected from calcium chloride is mixed with water and then subjected to a hydration reaction under normal pressure and below locrc.
  • the hydration reaction is an exothermic reaction, and although it generates heat during the reaction, it is usually preferable to keep it below ioo °c.
  • the amount of water used is 10 to 50 parts by weight of water added to the mixture of the active porous calcium silicate particles and the magnesium compound powder in the loo weight unit, but if it is added too much, it may be required to be dried. After the hydration reaction is carried out, it is dried, shaped, pulverized, divided, etc. as needed, and then a hazardous material treatment material is prepared.
  • the activated porous calcium silicate particles are hydrated with a basic magnesium compound such as magnesium oxide, magnesium hydroxide or magnesium carbonate in the presence of a pH adjuster and water, and partially form a layered magnesium compound like magnesium aluminum carbonate. . Then, as time goes by, crystalline minerals like magnesium aluminum carbonate continue to grow. During the manufacture and use of the hazardous substance treating material of the present invention, the layered magnesium compound like magnesium aluminum carbonate is sufficiently grown, which can effectively treat harmful substances.
  • the method of treating a harmful substance using the harmful substance treating material of the present invention is to bring the harmful substance treating material into contact with water containing a heavy metal ion regarded as a harmful substance. At this time, the hazardous material treatment material adsorbs and removes heavy metal ions contained in the water.
  • the method of contact is to allow water containing harmful substances to pass through or remain in a container or sink filled with the hazardous substance treatment material.
  • the harmful substances which can be removed by the harmful substance treatment material of the present invention are heavy metal ions, and in particular, the ability to remove arsenic, cadmium, selenium, chromium, antimony, zinc, lead, etc. is excellent. Further, in addition to the above-mentioned heavy metal ions, it has excellent ability to adsorb and remove harmful substances such as phosphoric acid and fluorine, and therefore can also be used as a harmful substance treatment material such as phosphoric acid or fluorine ion.
  • the harmful substance treating material of the present invention, the active porous calcium silicate and the magnesium compound on the surface thereof or the layered magnesium compound produced therefrom have excellent ability to adsorb heavy metals and are insoluble. Therefore, by mixing it with soil containing contaminants, it can absorb pollutants and be insoluble. After adsorption and insolubility, the crystal structure can be maintained, thereby preventing re-dissolution of heavy metals and maintaining stability. Therefore, it can cope with various pollutants such as arsenic, lead, cadmium, antimony, and zinc, and it is also possible to cope with difficult-to-purify substances such as hexavalent selenium formed by recombination with a reducing auxiliary material such as metal iron powder. Since it has a pH buffering capacity, it is not easily affected by the pH value of the soil, and the heavy metal can be treated quickly, reliably, and stably as compared with the original insoluble material of the original magnesium oxide.
  • This effect is a combination of a layered magnesium compound such as aluminum magnesium carbonate and an active porous calcium silicate in a hazardous material treatment material, and cation replacement in the treatment material such as lead, cadmium, bismuth, zinc, etc., arsenic, selenium , fluorine and the like are replaced with anions in the treatment material, and react with the contaminated soil to improve the chemical dissolution characteristics of the soil.
  • a layered magnesium compound such as aluminum magnesium carbonate and an active porous calcium silicate in a hazardous material treatment material
  • cation replacement in the treatment material such as lead, cadmium, bismuth, zinc, etc., arsenic, selenium , fluorine and the like
  • treatment material for treating waste water containing harmful substances according to the present invention and a method for producing the same will be described in detail.
  • the magnesium raw material is a commercially available light-calcined magnesia (manufactured by Ube Material Co., Ltd.)
  • the pH adjuster is a commercially available aluminum sulfate powder (trade name: aluminum sulfate).
  • the chemical composition of the powdery reactant was Si0 2 : 14.5% A1 2 0 3 : 1.4% CaO: 11.9 % MgO: 52.9% Fe 2 0 3 : 1.4% S0 3 : 7.4%, moisture: 10.0%. Further, the particulate reactant was finely pulverized, and after analysis by an X-ray powder analyzer, it was found that peaks reflected by magnesium hydroxide, dihydrate gypsum, calcium silicate hydrate, silica, and the like were observed.
  • Fig. 1 and Fig. 2 are micrographs of the treated material 1 after storage for 1 month.
  • Fig. 1 is a surface layer in which crystals of a layered magnesium compound mainly composed of magnesium aluminum carbonate cover almost the entire surface, and the growth of crystals can be seen.
  • Fig. 2 is an enlarged photograph showing the crystal of the exposed porous calcium silicate. Further, after the treatment material 1 was produced, since the aluminum magnesium carbonate was newly formed, the crystallinity was still low, and no significant peak appeared. However, each of the examples showed a significant peak after several days.
  • Example 2 Using the same calcium silicate granules, magnesium raw materials, and aluminum sulfate as in Example 1, 10 parts by weight of calcium silicate particles, 3 parts by weight of light calcined magnesia, 1 part by weight of aluminum sulfate and 2 parts by weight using a mixing mixer The unit water was stirred and mixed at room temperature for 5 minutes, and then left to stand in a closed container for 12 hours to carry out a hydration reaction to obtain a powdery granular reactant (treated material 2) having an average particle diameter of 0.3 mm and a volume ratio of 0.76.
  • treated material 2 having an average particle diameter of 0.3 mm and a volume ratio of 0.76.
  • the chemical composition of the powdery reactant was Si0 2 : 21.3% A1 2 0 3 : 2.4% CaO: 16.5% MgO: 35.8% Fe 2 0 3 : 1.6% S0 3 : 7.5%, moisture: 14.3%. Further, the powdery granular reactant was finely pulverized, and after analysis by an X-ray powder analyzer, it was found that there were peaks in the presence of magnesium oxide, magnesium hydroxide, dihydrate gypsum, calcium silicate hydrate, silica, and the like.
  • Example 2 Using the same as in Example 1, a commercially available lightweight bubble concrete slab was pulverized and adjusted to a calcium silicate particle having a particle diameter of 4.0 1.2 mm. The same magnesium raw material and aluminum sulfate as in Example 1 were used.
  • the chemical composition of the granular reactant is Si0 2 : 20.4 % ⁇ 1 2 0 3 : 5.1 % CaO: 16.0%, MgO: 39.6%, Fe 2 0 3 : 1 ⁇ 8% S0 3 : 16.7%, Moisture: 25.2%. Further, the particulate reactant was finely pulverized, and after analysis by an X-ray powder analyzer, it was found that peaks reflected by magnesium hydroxide, dihydrate gypsum, calcium silicate hydrate, silica, and the like were observed.
  • Example 3 Using the same calcium silicate particles and magnesium raw material as in Example 3, 10 parts by weight of porous calcium silicate, 3 parts by weight of light calcined magnesia, 1 part by weight of aluminum sulfate and 3 parts by weight using a mixing mixer The mixture was stirred and mixed at room temperature for 2 minutes, and then allowed to stand in a closed container for 12 hours to carry out a hydration reaction to obtain a particulate reactant (treated material 4) having an average particle diameter of 4 mm and a volume ratio of 0.82.
  • treated material 4 10 parts by weight of porous calcium silicate, 3 parts by weight of light calcined magnesia, 1 part by weight of aluminum sulfate and 3 parts by weight using a mixing mixer The mixture was stirred and mixed at room temperature for 2 minutes, and then allowed to stand in a closed container for 12 hours to carry out a hydration reaction to obtain a particulate reactant (treated material 4) having an average particle diameter of 4 mm and a volume ratio of 0.82.
  • the chemical composition of the granular reactant was Si0 2 : 26.8%, A1 2 0 3 : 4.9%, CaO: 21.8%, MgO: 28.0%, Fe 2 0 3 : 2.1%, S0 3 : 15.7%, moisture: 27.9% . Further, the particulate reaction product was finely pulverized, and after analysis by an X-ray powder analyzer, it was found that peaks reflected by magnesium oxide, magnesium hydroxide, dihydrate gypsum, calcium silicate hydrate, silica, and the like were observed.
  • the test liquid is poured into 500ml, and the treatment material 1 and the treatment material 2 are each added in an amount of 0.5 ml, which is obtained by using a commercially available cerium chloride-based reagent.
  • a polyethylene container it was shaken at room temperature for 24 hours. After shaking, the mixture was centrifuged, and the supernatant was filtered with a ⁇ ⁇ ⁇ glass filter. The filtrate was measured by an atomic absorption spectrometer. From the concentration in the filtrate at this time, the adsorption capacity of hydrazine was determined.
  • the adsorption capacity is expressed by the amount of adsorption (mg) in terms of Cs atom per lg of the treated material, and the treatment material 1 is 8 mg/g, and the treatment material 2 is 6 mg/g.
  • the treatment materials obtained in Examples 2 and 3, and the treatment materials 3 were each added, and the test liquid was poured into a 300 ml polyethylene container and shaken at room temperature for 24 hours. After shaking, the mixture was centrifuged, and the supernatant was filtered with a ⁇ ⁇ ⁇ glass filter. The filtrate was measured using an ICP-AES analytical apparatus. The removal rate of zinc was determined from the concentration in the filtrate at this time. The zinc removal rate was 95% for the treated material 2 and 98% for the treated material 3.
  • the zinc concentration of the zinc treated waste liquid before the treatment is: 730 mg/L, pH: 3. 8.
  • the concentration of the heavy metal in the filtrate is As: less than 0.001 mg / L, Se: 0. 009 mg / L.
  • the concentration of the heavy metal in the filtrate is As: less than 0.001 mg / L.
  • Example 11 In 100 g of heavy metal contaminated soil, 7 g of the treatment material 2 obtained in Example 2 and 8 ml of pure water were added, stirred and mixed to prepare a treated soil, placed in a polyethylene container, and sealed and stored at room temperature for 24 hours. 1 L of pure water was added to 115 g of the treated soil, and shaken in a polyethylene container for 6 hours. After shaking, the mixture was centrifuged, and the supernatant was filtered with a ⁇ ⁇ ⁇ glass filter. Then, 30 ml of the filtrate was taken, 5 ml of HN0 3 was added , and after microwave decomposition, 50 ml of ultrapure water was used.
  • the lead concentration of the filtrate is 0. 8mg/L o.
  • the lead concentration of the filtrate is 0. 8mg/L o.
  • the commercially available magnesium heavy metal insoluble material "denight" made by Pacific Concrete Co., Ltd. 7g and 8ml of pure water were mixed and mixed to form a treated soil, which was placed in a polyethylene container.
  • 10 parts of pure water was added to 1 part of the treated soil, and shaken in a polyethylene container for 6 hours. After shaking, the mixture was centrifuged, and the supernatant was filtered with a 1 ⁇ m glass filter. Then, 30 ml of the filtrate was taken, 5 ml of the drawing 3 was added , and after microwave decomposition, 50 ml of the ultrapure water was used. After removing 10 ml of the decomposing solution, it was made up to 50 ml of ultrapure water in the remaining decomposition liquid, and then measured by ICP-MS. The concentration of lead in the filtrate is 0. 4mg / L.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Geology (AREA)
  • Water Treatment By Sorption (AREA)
  • Processing Of Solid Wastes (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

一种从含有重金属离子有害物质的水中吸附去除有害物质的处理材料,该材料是在活性多孔硅酸钙颗粒中附着固化氧化镁、氢氧化镁、碳酸镁以及铝碳酸镁中的一种或两种以上的镁化合物,或通过水合反应得到。该材料能有效去除水中的砷、铅、镉、硒、铬、铯、锌等重金属离子以及磷酸根、氟等离子。吸附重金属离子后,处理材料的稳定性好,不会随时间流逝或因氧化重新溶出有害物质,且无需大量后续处理。

Description

有害物质处理材料及其制造方法、 有害物质的处理方法 技术领域
本发明涉及的是去除水中的砷、 镉、 硒、 铬、 铯、 锌、 铅等重金属元素以 及磷酸、 氟等的有害物质的处理材料及其制造方法。 背景技术
在水中添加熟石灰粉或泥浆是常用的去除水中有害物质的方法。 该方法的 药剂成本低, 有害物质的处理效果也较佳, 但若水中含有大量的硫酸离子与铁 离子时, 随着 pH 值的升高, 铁离子会作为氢氧化铁的胶体被析出, 且熟石灰 与硫酸离子会反应生成不溶性的石膏, 与作为中和材料使用的熟石灰的未反应 物一起, 形成高含水且脱水性差的粘稠物而沉淀。 该粘稠物是脱水性差, 且含 有有害物质的高含水性泥浆, 为了处理这种泥浆, 必须配备高价的固液分离设 备、 沉淀池、 需要较多人手的压滤机等粘稠物的脱水减量设备, 并需要建设作 为最后处理设施的粘稠物堆积用堤堰, 处理费用的增加及对环境的影响成为了 一个难题。 且反应生成物的稳定性差, 随着时间流逝或氧化, 氢氧化铁上吸附 的砷等重金属物质有重新溶出的危险。
为了降低成本并提高生成粘稠物的脱水性能, 人们也尝试使用碳酸钙粉末 和石灰石颗粒等作为中和材料, 但其表面会被生成的石膏所覆盖, 阻碍中和反 应的继续, 产生中和材料利用率低的问题。 且碳酸钙类的中和材料由于 pH 的 上升效果小, 有时候需要事先进行氧化处理。
相关的现有技术, 在 W0 02/79100 号公报 (专利文献 1 ) 、 日本特开 2003-112162号公报 (专利文献 2 ) 、 日本特开 2003-334526号公报 (专利文 献 3 ) 、 日本特开 2008-188484号公报 (专利文献 4 ) 、 日本特开 2007-268409 号公报 (专利文献 5 ) 、 日本特开平 9-299962号公报 (专利文献 6 ) 中有所披 露。 其中, 专利文献 1中公开的是使用石棉等矿物纤维与高炉水泥等无机粘合 剂的颗粒状固化物的酸性废水处理材料。 但专利文献 1中公开的材料仅仅适用 于含有大量铁离子的酸性废水的处理, 不适用于含有砷等有害物质的水的处 理。
此外, 市场上还有一种石棉等的矿物纤维的表面附着活性氢氧化铁的废水 处理材料, 它能够吸附去除砷、 铅、 镉等重金属离子。 此外, 还有一种使用以 硅酸钙水合物为主要成分的多孔处理材料, 对含磷污水进行脱磷处理的方法, 但这种方法不适用于含有砷等有害物质的水的处理。
专利文献 2中披露的方法是在含砷或重金属的受污染土壤中添加化学合成 的施氏矿物、 针铁矿、 黄钾铁矾、 水合氧化铁中的任一种铁化合物, 束缚砷或 重金属, 使其不活动, 从而净化受污染土壤, 或从含有砷或重金属的受污染土 壤中将砷或重金属抽出, 让抽出液接触上述铁化合物, 让上述铁化合物束缚砷 或重金属, 将其净化。 专利文献 3中披露的方法是在受污染土壤中添加或混合 氧化镁, 使受污染土壤固化, 使污染物质不溶的方法。
此外还有使用硅酸钙作为有害物质处理材料的方法。 专利文献 4中披露的 方法是在含氟废水中添加硅酸钙与磷酸原, 使之生成氟磷灰石一二氧化硅复合 材料, 吸附固定氟, 从而去除废水中的氟的方法, 但该方法不适用于去除重金 属的目的。 专利文献 5中披露的是让含磷废水接触硅酸钙水合物, 从而去除磷 的方法。 专利文献 6 中披露的是在进行含铅离子废水处理时, 将 pH值调整到 5. 6〜12之间, 再添加重量比为铅的 75倍以上的硅酸钙, 使铅离子成为不溶物 进行分离的方法。
铝碳酸镁代表性的分子式为 Mg6Al2 (0H) 16C(V 4¾0, 是具有层状的晶体结 构。 该铝碳酸镁具有阴离子交换性, 可将阴离子嵌入。 因此人们正在研究使用 铝碳酸镁吸附去除有害物质的方法。 例如正在试验吸附去除硒、 铬等含氧阴离 子与磷酸离子等。 但存在的问题是, 如果有共存的阴离子, 这些含氧阴离子与 磷酸离子的吸附量便会减少。 另有报告显示, 阳离子的金属离子也可以通过与 铝碳酸镁中的金属离子置换去除, 或随着 pH 值升高, 部分金属离子变成氢化 物而被沉淀去除, 但其去除能力不强。 铝碳酸镁可以在 Mg或 A1等 2价或 3价 金属盐的混合水溶液中添加碱溶液共同沉淀后合成, 但用这种方法合成的铝碳 酸镁价格很高, 不适合于用作废水处理等。
如上所述, 去除水中或土壤中的重金属离子、 磷与氟等的方法虽有很多, 但效果令人满意的很少, 且价格很高。 发明内容
本发明的目的就在于提供能够有效且无需维护地去除水中的砷、 铅、 镉、 硒、 铬、 铯、 锌等重金属类以及磷酸、 氟等元素, 吸附重金属后的稳定性好, 不会随时间流逝或因氧化重新溶出有害物质, 且无需大量后续处理的有害物质 处理材料及其制造方法。
本发明提供的有害物质处理材料, 是一种从含有重金属离子的有害物质的 水中吸附去除有害物质的处理材料, 它是以在活性多孔硅酸钙颗粒中, 附着固 定有从氧化镁、 氢氧化镁、 碳酸镁以及铝碳酸镁中选出的一种或两种以上的镁 化合物为特征的有害物质处理材料。
较佳地, 有害物质处理材料是一种将活性多孔硅酸钙颗粒与从氧化镁、 氢 氧化镁、 碳酸镁以及铝碳酸镁中选出的一种或两种以上的镁化合物在有水的情 况下混合, 通过水合反应后而得到为特征的有害物质处理材料。
上述重金属离子具有从砷、 镉、 硒、 铬、 铯、 锌、 铅中选出的一种或两种 以上的重金属离子。 此外, 上述有害物质处理材料除了上述重金属离子外, 还 能吸附去除含有从磷酸、 氟中选出的离子的有害物质。
较佳地, 上述活性多孔硅酸钙颗粒是以从托勃莫来石、 硬硅钙石以及钙硅 酸盐水合物 (CSH凝胶) 中选出的一种或两种以上为主要成分。
较佳地, 上述活性多孔硅酸钙颗粒是在以硅酸质原料及石灰质原料为主要 成分的泥浆中, 添加作为发泡剂的金属铝粉末, 在高压釜中进行水热反应而得 到的水合物或成形物, 其空隙率为 50 90%
较佳地, 上述活性多孔硅酸钙颗粒的粒径为 0. 05 10
较佳地, 上述镁化合物, 为其直径比上述活性多孔硅酸钙颗粒的粒径小的 粉体。 较佳地, 上述活性多孔硅酸钙颗粒中的镁化合物的附着固定量为 100重量 单位的活性多孔硅酸钙颗粒对应 10〜150重量单位的镁化合物。
本发明还提供一种有害物质的处理方法, 其特征是让上述有害物质处理材 料接触含有重金属离子的有害物质的水。 此外还提供一种有害物质的处理方 法, 其特征是让这种有害物质处理材料接触可能会产生含有重金属离子有害物 质的水的土壤、 岩石, 进行配置或混合。
另外, 本发明还提供一种上述有害物质处理材料的制造方法, 其特征是, 在活性多孔硅酸钙颗粒与从氧化镁、 氢氧化镁、 碳酸镁以及铝碳酸镁中选择出 的一种或两种以上的镁化合物粉末的混合物中, 添加含有从硫酸铝、 氯化铝、 硫酸铁、 氯化铁、 硫酸镁、 氯化镁、 硫酸钙、 氯化钙中选择出的一种或两种以 上的 PH值调整剂及水分, 在常压和 ioo°c以下使其进行水合反应, 让镁化合物 粉末附着固定在活性多孔硅酸钙颗粒中。
采用本发明的有害物质处理材料, 便能够有效地去除水中的砷、 镉、 硒、 铅、 铯、 锌等重金属类以及磷酸、 氟等物质, 而且使用后仍可维持其透水性能, 可长时间重复使用。 附图说明
图 1是表示有害物质处理材料表面层的结晶构造的显微镜照片。
图 2是表示有害物质处理材料表面层的结晶构造的显微镜放大照片。 具体实施方式
本发明的有害物质处理材料, 是在活性多孔硅酸钙颗粒中附着固定从氧化 镁、 氢氧化镁、 碳酸镁以及铝碳酸镁中选出的一种或两种以上镁化合物而得来 的。 或者是将活性多孔硅酸钙颗粒与镁化合物在有水的环境下混合, 使其产生 水合反应而得来的。
活性多孔硅酸钙颗粒是在以硅酸质原料及石灰质原料为主要成分的泥浆 中, 添加作为发泡剂的金属铝粉末, 在高压釜中进行水热反应而得到的水合物 或成形物, 其空隙率为 50〜90%。 此外还可使用粒状高炉矿渣、 托勃莫来石、 硬硅钙石、 CSH 凝胶、 以及轻量气泡混凝土板、 硅酸钙板的碎片等。 最好是含 有以托勃莫来石、 硬硅钙石或 CSH凝胶为主要成分的东西。 这里所说的作为主 要成分含有, 是指其含量应达到 50wt %以上, 甚至最好是 70wt %以上。
此外, 作为建材使用的硅酸钙板或轻量气泡混凝土板在拆卸工程中会大量 产生, 如果能有效利用它们就更好了。 建筑物中使用的硅酸钙板与轻量气泡混 凝土板的表面是非活性的, 但将它们粉碎以后便会出现活性面, 成为活性多孔 质硅酸钙。 粉碎硅酸钙板或轻量气泡混凝土板时, 应将其粉碎为数 mn!〜 10mm 左右的颗粒状。 像硅酸钙板或轻量气泡混凝土板这样的多孔质硅酸钙容易加工 成颗粒状产品, 且透水性与保水性好, 适合形成颗粒。
活性多孔质硅酸钙颗粒只要具有吸附能力就可以, 但如果是多孔质的, 与 酸的反应性较高就更好。 与酸的反应性低的结晶质天然硅灰石由于镁化合物吸 附性差, 难以大量附着固定。 同样, 混凝土、 灰浆、 风冷式高炉渣、 有色金属 渣、 粉煤灰、 混泥土碎块等由于空隙率太低, 活性不好, 也不宜使用。
将炼铁厂副产品高炉渣在熔融状态下投入水中快速冷却生成的粒状高炉 矿渣是具有活性的硅酸钙材料, 但其空隙率低, 因此最好能与硅酸钙板或轻量 气泡混凝土板等敲碎后得到的粉末混合使用。 该情况下, 混合比例最好是粒状 高炉矿渣 20〜80wt%。
活性多孔质硅酸钙颗粒的粒径为 0. 05〜10mm, 0. l〜7mm更佳, 0. l〜5mm 最佳。 粒径越小则越有可能流出或堵塞装置, 太大则无法获得足够的镁化合物 附着固定量。 上述粒径为平均粒径, 最好是整体重量 90%以上的颗粒位于上述 范围内。
附着固定于活性多孔硅酸钙颗粒中的镁化合物, 有从氧化镁、 氢氧化镁、 碳酸镁、 以及铝碳酸镁之中选出的镁化合物。 此外, 含有上述镁化合物 50wt% 以上的粘土矿物类也适合作为镁化合物。 该镁化合物成为有害物质处理材料的 活性成分, 将有害物质吸附去除。
为了让镁化合物附着固定于活性多孔硅酸钙颗粒中, 最好是采用粒径比活 性多孔硅酸钙颗粒小的粉末, 以粒径为活性多孔硅酸钙颗粒的 1/10以下为佳。 活性多孔硅酸钙颗粒中的镁化合物的附着固定量为, 100重量单位的活性 多孔硅酸钙颗粒对应 10〜150重量单位的镁化合物, 最好为 20〜150重量单位 的镁化合物。
本发明的有害物质处理材料的制造方法, 采用将上述活性多孔硅酸钙颗粒 与镁化合物或其前驱体的粉末在有水存在的条件下进行混合的方法。 本发明中 所述的附着固定, 包括活性多孔硅酸钙颗粒与镁化合物或其前驱体处于被混合 的状态。
作为一种优选技术方案, 是一种在活性多孔硅酸钙颗粒与镁化合物粉末的 混合物中, 添加从硫酸铝、 氯化铝、 硫酸铁、 氯化铁、 硫酸镁、 氯化镁、 硫酸 钙、 或氯化钙中选出的 PH调整剂与水之后进行混合, 在常压及 locrc以下使其 进行水合反应的方法。 该水合反应为发热反应, 虽然在反应过程中会发热, 但 通常最好保持在 ioo°c以下。 水的用量是, 对于 loo重量单位的活性多孔硅酸 钙颗粒与镁化合物粉末的混合物添加 10〜50 重量单位的水, 但若加入过多, 有时会需要进行干燥处理。 在混合, 进行水合反应后, 根据需要进行干燥、 成 形、 粉碎、 划分等之后, 制成有害物质处理材料。
让活性多孔硅酸钙颗粒与氧化镁、氢氧化镁、碳酸镁等碱性镁化合物在 pH 值调整剂与水存在的条件下发生水合反应后, 部分生成像铝碳酸镁一样的层状 镁化合物。 然后随着时间的流逝, 像铝碳酸镁一样的结晶矿物就不断生长。 在 制造、 使用本发明的有害物质处理材料期间, 像铝碳酸镁一样的层状镁化合物 充分生长, 这对有害物质的处理能起到有效作用。
使用本发明的有害物质处理材料进行有害物质处理的方法是让有害物质 处理材料接触含有被看成有害物质的重金属离子的水。 此时, 有害物质处理材 料会吸附去除水中含有的重金属离子。 接触方法是, 让含有有害物质的水通过 或滞留于填充了有害物质处理材料的容器或水槽中。
作为其它的有害物质的处理方法, 还可以让其接触有可能产生含有重金属 离子有害物质的水的土壤或岩石。 让其接触土壤时, 可以让其分散混合在土壤 中, 也可重点将其配置在下游端的土壤周边。 让其接触土壤或岩石时, 仅放入 有害物质处理材料是没有效果的, 要等雨水等将土壤或岩石打湿后, 土壤或岩 石中含有的重金属离子等有害物质含在水中, 该水与有害物质处理材料接触, 才能将重金属离子吸附去除。
用本发明的有害物质处理材料能够去除的有害物质为重金属离子, 尤其是 去除砷、 镉、 硒、 铬、 铯、 锌、 铅等的能力极佳。 此外, 除上述重金属离子外, 还具有优异的吸附去除磷酸及氟等有害物质的能力, 因此也可作为磷酸或氟离 子等的有害物质处理材料使用。
本发明的有害物质处理材料, 其活性多孔质硅酸钙与其表面的镁化合物或 由它们生成的层状镁化合物具有出色的吸附重金属且不溶的能力。 因此, 将其 与含有污染物质的土壤混合, 便能吸收污染物质且不溶, 吸附且不溶之后, 可 保持结晶结构, 从而防止重金属的再次溶出, 保持稳定。 因此, 既能应对砷、 铅、 镉、 铯、 锌等多种污染物质, 也可应对与金属铁粉等具有还原性的辅助材 料复合形成的 6价硒等难净化物质。 由于其具有 pH缓冲能力, 不容易受到土 壤 pH 值等的影响, 与原有的氧化镁类的单独的不溶性材料相比, 能够迅速、 切实且稳定地进行重金属的处理。
这种效果是在有害物质处理材料中的铝碳酸镁等层状镁化合物与活性多 孔质硅酸钙的复合作用下, 铅、 镉、 铯、 锌等与处理材料中的阳离子置换, 砷、 硒、 氟等与处理材料中的阴离子置换, 与受污染土壤相互反应, 从而改善土壤 的化学性溶出特性而得到的。
以下就本发明对含有有害物质的废水进行处理的有害物质处理材料(以下 称 "处理材料" ) 与其制造方法进行详细说明。
实施例 1
活性多孔硅酸钙颗粒, 使用将市面销售的轻量气泡混凝土板 (Cl ion株式 会社制造, Si02 : 49. 5 % CaO: 35. 3 % A1203: 4. 4 % Fe203: 2. 6 % Si02 /CaO 比 = 1. 4 ) 干燥、 粉碎后, 调整成粒径 1. 2 以下、 0. 1mm以上的硅酸钙 颗粒。 此外, 镁原料使用市面销售的轻质煅烧氧化镁 (宇部 Material 株式会 社制造) , pH调整剂使用市面销售的硫酸铝粉末 (商品名称: 硫酸铝) 。
用混合搅拌机, 将 40重量单位的硅酸钙颗粒、 30重量单位的轻质煅烧氧 化镁、 10重量单位的硫酸铝与 8重量单位的水在室温下搅拌混合 5分钟后, 放 入密闭容器中静置 12小时, 使其进行水合反应, 得到平均粒径 0.3mm (0.1 2.0 的 99wt%) 、 容积比 0.80的粉粒状反应物 (处理材料 1)
该粉粒状反应物的化学组成为 Si02 : 14.5% A1203: 1.4% CaO: 11.9 % MgO: 52.9% Fe203: 1.4% S03: 7.4%、 水分: 10.0%。 此外, 将该颗粒 状反应物微粉碎后, 用 X射线粉末分析装置分析后, 发现了反映有氢氧化镁、 二水石膏、 硅酸钙水合物、 二氧化硅等存在的峰值 (peak)
图 1与图 2为处理材料 1保存 1个月后的显微镜照片。 图 1为表面层, 以 铝碳酸镁为主的层状镁化合物的结晶几乎覆盖了整个面, 可以看到结晶的生 长。 图 2为放大照片, 是露出的活性多孔质硅酸钙的结晶。 且在制造出处理材 料 1之后, 由于铝碳酸镁刚生成, 结晶度尚低, 尚不会出现明显的峰值。 但每 个实施例均在数日后出现了明显的峰值。
实施例 2
使用与实施例 1相同的硅酸钙颗粒、 镁原料、 硫酸铝, 用混合搅拌机将 10 重量单位的硅酸钙颗粒、 3 重量单位的轻质煅烧氧化镁、 1 重量单位的硫酸铝 与 2重量单位的水在室温下搅拌混合 5分钟后, 放入密闭容器中静置 12小时, 使其进行水合反应, 得到平均粒径 0.3mm, 容积比 0.76的粉粒状反应物(处理 材料 2) 。 该粉粒状反应物的化学组成为 Si02 : 21.3% A1203: 2.4% CaO: 16.5% MgO: 35.8% Fe203: 1.6% S03: 7.5%、 水分: 14.3%。 此外, 将该 粉粒状反应物微粉碎后,用 X射线粉末分析装置分析后,发现了反应有氧化镁、 氢氧化镁、 二水石膏、 硅酸钙水合物、 二氧化硅等存在的峰值。
实施例 3
使用与实施例 1相同的, 将市面销售的轻量气泡混凝土板粉碎后调整为粒 径 4.0 1.2mm的硅酸钙颗粒。 并使用与实施例 1中相同的镁原料和硫酸铝。
用混合搅拌机, 将 4重量单位的多孔质硅酸钙、 3重量单位的轻质煅烧氧 化镁、 1重量单位的硫酸铝与 3重量单位的水在室温下搅拌混合 2分钟后, 放 入密闭容器中静置 12 小时, 使其进行水合反应, 得到平均粒径 4mm、 容积比 0.91 的粒状反应物 (处理材料 3) 。 该粒状反应物的化学组成为 Si02 : 20.4 % Α1203: 5.1 % CaO: 16.0%, MgO: 39.6%, Fe203: 1· 8% S03: 16.7%, 水分: 25.2%。 此外, 将该颗粒状反应物微粉碎后, 用 X射线粉末分析装置分 析后, 发现了反映有氢氧化镁、 二水石膏、 硅酸钙水合物、 二氧化硅等存在的 峰值。
实施例 4
使用与实施例 3相同的硅酸钙颗粒和镁原料, 用混合搅拌机, 将 10重量 单位的多孔质硅酸钙、 3重量单位的轻质煅烧氧化镁、 1重量单位的硫酸铝与 3 重量单位的水在室温下搅拌混合 2分钟后, 放入密闭容器中静置 12小时, 使 其进行水合反应,得到平均粒径 4mm、容积比 0.82的粒状反应物(处理材料 4)。 该粒状反应物的化学组成为 Si02 : 26.8%、 A1203: 4.9%、 CaO: 21.8%、 MgO: 28.0%、 Fe203: 2.1%、 S03: 15.7%、 水分: 27.9%。 此外, 将该粒状反应物微 粉碎后, 用 X射线粉末分析装置分析后, 发现了反映有氧化镁、 氢氧化镁、 二 水石膏、 硅酸钙水合物、 二氧化硅等存在的峰值。
实施例 5
在 100ml含有用表 1所示市面销售的特级试剂调制的各种重金属的水溶液 中, 添加实施例 1〜4中获得的处理材料 1〜4各 lg, 将该试验液体倒入 500ml 的聚乙烯容器中, 在常温中振动 24小时。 振动后进行离心分离, 用 Ιμπι玻璃 杯过滤器吸引清液过滤。 然后取 30ml滤液, 添加 5ml 的画3, 微波分解后, 用超纯水兑成 50ml。 从中取走 10ml 的分解液后, 再在剩余的分解液中加超纯 水定容成 50ml, 然后用 ICP-MS测定。 表 2显示的是从此时的滤液中的重金属 浓度中求得的去除率。
调制重金属溶液使用的试剂
■ As溶液: 砷酸钠 +亚砷酸钠 (摩尔比: 1:1)
■ Pb溶液: 醋酸铅
■ F溶液: 氟化钠
■ Se溶液: 亚硒酸钠 +硒酸钠 (摩尔比: 1:1)
■ Cd溶液: 硫酸镉
【表 1】 As Pb F Se Cd 初始溶液浓度 7. 3 5. 2 7. 6 8. 0 7. 5
( mg/L )
去除率 (%)
处理材料 1 95. 9 99. 9 84. 2 58. 8 86. 7 处理材料 2 93. 2 99. 9 55. 3
处理材料 3 56. 2 99. 9
处理材料 4 50. 7 99. 9
注) 空白栏未测定
实施例 6
在含有使用市面销售的氯化铯特级试剂调制的铯 210mg/L的水溶液 200ml 中, 添加实施例 1与 2中获得的处理材料 1、 处理材料 2各 0. 5g, 将该试验液 体倒入 500ml的聚乙烯容器中, 在常温中振动 24小时。 振动后进行离心分离, 用 Ι μ πι 玻璃杯过滤器吸引清液过滤。 用原子吸光分析设备测定滤液。 从此时 的滤液中的浓度求取铯的吸附能力。 吸附能力用每 lg处理材料的 Cs原子换算 的吸附量 (mg ) 来表示, 处理材料 1为 8mg/g, 处理材料 2为 6mg/g。
实施例 7
在酸性的锌处理液 100ml中, 添加实施例 2与 3中获得的处理材料 2、 处 理材料 3各 lg, 将该试验液体倒入 300ml 的聚乙烯容器中, 在常温中振动 24 小时。 振动后进行离心分离, 用 Ι μ πι玻璃杯过滤器吸引清液过滤。 用 ICP-AES 分析设备测定滤液。 从此时的滤液中的浓度求取锌的去除率。 锌的去除率为, 处理材料 2是 95%, 处理材料 3是 98%。 且处理前的锌处理废液水质的锌浓度 为: 730mg/L、 pH: 3. 8。
实施例 8
在 10g土壤中加入 400ml纯水, 振动 24小时后进行离心分离与过滤, 获 得土壤浸出水。 在该液体中添加市面销售的醋酸 (特级试剂) 和重金属原子吸 光分析用标准液, 制作 pH4. 3、 重金属浓度为 As : 0. 3mg/L、 Se : 0. 3mg/L、 Cd :
0. 2mg/L、 Pb : 1. 5mg/L的人工废水。 将 100ml该试验液体放入聚乙烯容器中, 添加实施例 3与 4中获得的处理材料 3与 4各 5g, 振动 24小时。 振动后进行 离心分离, 用 Ι μ πι玻璃杯过滤器吸引清液过滤。 然后取 30ml滤液, 添加 5ml 的 HN03, 微波分解后, 用超纯水兑成 50ml。 从中取走 10ml的分解液后, 再在 剩余的分解液中加超纯水定容成 50ml, 然后用 ICP-MS测定。 表 2显示的是从 此时滤液中的重金属浓度中求得的去除率 (%) 。
【表 2】
Figure imgf000012_0001
实施例 9
在 1kg重金属汚染土壤中加入 10L纯水, 振动 24小时后进行离心分离与 过滤, 获得土壤浸出水。 该土壤浸出水的重金属浓度为 As : 0. 19mg/L、 Se : 0. 03mg/L。 将 1L该试验液体放入聚乙烯容器中, 添加 lg实施例 1中获得的处 理材料 1, 振动 24小时。 振动后进行离心分离, 用 Ι μ πι玻璃杯过滤器吸引清 液过滤。然后取 30ml滤液,添加 5ml的 HN03,微波分解后,用超纯水兑成 50ml。 取出 10ml 的分解液, 定容成 50ml后, 用 ICP-MS测定。 此时滤液中的重金属 浓度为 As : 小于 0. 001mg/L、 Se: 0. 009mg/L。
实施例 10
在 1kg重金属汚染土壤中加入 10L纯水, 振动 24小时后进行离心分离与 过滤, 获得土壤浸出水。 该土壤浸出水的重金属浓度为 As : 0. 05mg/L o 将 1L 该试验液体放入聚乙烯容器中, 添加 lg实施例 1 中获得的处理材料 1, 振动 24小时。 振动后进行离心分离, 用 Ι μ πι玻璃杯过滤器吸引清液过滤。 然后取 30ml滤液, 添加 5ml的画3, 微波分解后, 用超纯水兑成 50ml。从中取走 10ml 的分解液后, 再在剩余的分解液中加超纯水定容成 50ml, 然后用 ICP-MS测定。 此时滤液中的重金属浓度为 As : 小于 0. 001mg/L。
实施例 11 在 lOOg重金属污染土壤中, 添加 7g实施例 2中获得的处理材料 2与 8ml 纯水, 搅拌混合制成处理土壤, 放到聚乙烯容器中, 在常温下密封保存 24 小 时。 在 115g该处理土壤中添加 1L纯水, 放入聚乙烯容器中振动 6小时。 振动 后进行离心分离, 用 Ι μ πι玻璃杯过滤器吸引清液过滤。 然后取 30ml滤液, 添 加 5ml的 HN03, 微波分解后, 用超纯水兑成 50ml。 从中取走 10ml的分解液后, 再在剩余的分解液中加超纯水定容成 50ml, 然后用 ICP-MS测定。 此时滤液中 的铅浓度为 0. lmg/L o
省略制作处理土壤的操作, 在 100g重金属污染土壤中添加 1L纯水, 与上 述操作相同, 获得滤液的铅浓度为 0. 8mg/L o
比较例
使用与实施例 11 中相同的污染土壤, 加入市面销售的镁类重金属不溶材 料 " denight " (太平洋混凝土株式会社制造) 7g与 8ml纯水, 搅拌混合后制 成处理土壤, 放在聚乙烯容器中常温密封保存 24小时。 在 1份该处理土壤中 添加 10份纯水,放入聚乙烯容器中振动 6小时。振动后进行离心分离,用 1 μ m 玻璃杯过滤器吸引清液过滤。 然后取 30ml滤液, 添加 5ml 的画3, 微波分解 后, 用超纯水兑成 50ml。 从中取走 10ml 的分解液后, 再在剩余的分解液中加 超纯水定容成 50ml, 然后用 ICP-MS测定。 此时滤液中的铅浓度为 0. 4mg/L。

Claims

权 禾 iJ 要 求 书
、 一种用于从含有重金属离子的有害物质的水中吸附去除有害物质的处理 材料, 其特征在于, 该有害物质处理材料, 是在活性多孔硅酸钙颗粒中, 附着固定有从氧化镁、 氢氧化镁、 碳酸镁以及铝碳酸镁中选出的一种或 两种以上的镁化合物。
、 如权利要求 1 所述的有害物质处理材料, 其特征在于, 该有害物质处理 材料, 是将活性多孔硅酸钙颗粒, 与从氧化镁、 氢氧化镁、 碳酸镁以及 铝碳酸镁中选出的一种或两种以上的镁化合物, 在有水的情况下混合, 通过水合反应后得到的。
、 如权利要求 1或 2所述的有害物质处理材料, 其特征在于, 上述重金属 离子是从砷、 镉、 硒、 铬、 铯、 锌、 铅中选出的一种或两种以上的重金 属离子。
、 如权利要求 1或 2所述的有害物质处理材料, 其特征在于, 该有害物质 处理材料, 除了用于吸附去除含有上述重金属离子的有害物质以外, 还 能被用于吸附去除含有从磷酸、 氟中选出的离子的有害物质。
、 如权利要求 1或 2所述的有害物质处理材料, 其特征在于, 上述活性多 孔硅酸钙颗粒是以从托勃莫来石、 硬硅钙石以及钙硅酸盐水合物中选出 的一种或两种以上为主要成分的。
、 如权利要求 1或 2所述的有害物质处理材料, 其特征在于, 上述活性多 孔硅酸钙颗粒是在以硅酸质原料及石灰质原料为主要成分的泥浆中, 添 加作为发泡剂的金属铝粉末, 在高压釜中进行水热反应而得到的水合物 或成形物, 其空隙率为 50〜90%。
、 如权利要求 1或 2所述的有害物质处理材料, 其特征在于, 上述镁化合 物, 为其直径比上述活性多孔硅酸钙颗粒的粒径小的粉体。
、 如权利要求 1或 2所述的有害物质处理材料, 其特征在于, 上述活性多 孔硅酸钙颗粒中的上述镁化合物的附着固定量为 100 重量单位的活性多 孔硅酸钙颗粒对应 10〜150重量单位的镁化合物。
、 如权利要求 1或 2所述的有害物质处理材料, 其特征在于, 上述活性多 孔硅酸钙颗粒的粒径为 0. 05〜10
、 一种有害物质的处理方法, 其特征在于, 是将上述权利要求 1或 2所述 的有害物质处理材料与含有重金属有害物质的水接触来去除有害物质的 方法。
、 一种有害物质的处理方法, 其特征在于, 是将上述权利要求 1或 2所述 的有害物质处理材料与可能会产生含有重金属离子有害物质的水的土 壤、 岩石接触后, 进行配置或混合。
、 一种从含有重金属离子有害物质的水中吸附去除有害物质的处理材料的 制造方法, 其特征在于, 在活性多孔硅酸钙颗粒与从氧化镁、 氢氧化镁、 碳酸镁以及铝碳酸镁中选择出的一种或两种以上的镁化合物粉末的混合 物中, 添加含有从硫酸铝、 氯化铝、 硫酸铁、 氯化铁、 硫酸镁、 氯化镁、 硫酸钙、 氯化钙中选择出的一种或两种以上的 pH值调整剂及水分, 在常 压和 locrc以下使其进行水合反应,让镁化合物粉末附着固定在活性多孔 硅酸钙颗粒中。
PCT/CN2013/086125 2012-10-29 2013-10-29 有害物质处理材料及其制造方法、有害物质的处理方法 WO2014067444A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210419212.4 2012-10-29
CN201210419212.4A CN103785348B (zh) 2012-10-29 2012-10-29 有害物质处理材料及其制造方法、有害物质的处理方法

Publications (1)

Publication Number Publication Date
WO2014067444A1 true WO2014067444A1 (zh) 2014-05-08

Family

ID=50626490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/086125 WO2014067444A1 (zh) 2012-10-29 2013-10-29 有害物质处理材料及其制造方法、有害物质的处理方法

Country Status (3)

Country Link
CN (1) CN103785348B (zh)
TW (1) TWI597243B (zh)
WO (1) WO2014067444A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114873649A (zh) * 2022-04-26 2022-08-09 广州大学 一种用于修复砷污染土壤的纳米施氏矿物合成方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106040169A (zh) * 2016-06-08 2016-10-26 芜湖市长江起重设备制造有限公司 一种耐磨起重机电镀废水处理剂及其制作方法
CN107473319B (zh) * 2017-08-28 2020-04-28 华南理工大学 一种相变调控回收水中阳离子重金属的方法
CN107381705B (zh) * 2017-08-28 2020-04-28 华南理工大学 一种相变调控分离回收水中多种阳离子重金属的方法
CN109097568B (zh) * 2018-09-21 2020-06-26 中南大学 一种从含硒砷碱性浸出液中分离硒和砷的方法
CN109607947A (zh) * 2018-12-25 2019-04-12 贵州省分析测试研究院 一种除去洗煤厂废水中重金属砷的方法
CN110180492B (zh) * 2019-04-17 2022-09-23 中节能(合肥)可再生能源有限公司 一种用于去除镁离子的活性滤料及其制备方法和应用
CN110180495B (zh) * 2019-05-29 2022-04-12 北京化工大学常州先进材料研究院 一种多元共沉淀法制备硅酸镁基复合吸附材料的方法
CN110560473B (zh) 2019-08-21 2020-07-07 生态环境部环境规划院 一种对土壤氟化物和砷的稳定化方法
CN114259977A (zh) * 2021-12-10 2022-04-01 太原理工大学 一种粉煤灰负载水合碳酸镁复合材料的制备方法及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08215560A (ja) * 1995-02-15 1996-08-27 Asahi Chem Ind Co Ltd 気体中に含有される重金属成分の吸着除去材及び気体浄化方法
CN1527738A (zh) * 2001-02-06 2004-09-08 沃特维森斯国际公司 用于流体过滤的不溶性含镁矿物的组合物
JP2007152311A (ja) * 2005-12-08 2007-06-21 Ebara Jitsugyo Co Ltd 脱臭フィルター及び脱臭システム
CN101015755A (zh) * 2006-12-28 2007-08-15 中国科学院南京土壤研究所 一种水处理用多孔硅酸钙滤材

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6271173B1 (en) * 1999-11-01 2001-08-07 Phillips Petroleum Company Process for producing a desulfurization sorbent
CN1795979B (zh) * 2004-12-23 2010-11-10 韩国电力公社 高强度干式再生用co2吸附剂

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08215560A (ja) * 1995-02-15 1996-08-27 Asahi Chem Ind Co Ltd 気体中に含有される重金属成分の吸着除去材及び気体浄化方法
CN1527738A (zh) * 2001-02-06 2004-09-08 沃特维森斯国际公司 用于流体过滤的不溶性含镁矿物的组合物
JP2007152311A (ja) * 2005-12-08 2007-06-21 Ebara Jitsugyo Co Ltd 脱臭フィルター及び脱臭システム
CN101015755A (zh) * 2006-12-28 2007-08-15 中国科学院南京土壤研究所 一种水处理用多孔硅酸钙滤材

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114873649A (zh) * 2022-04-26 2022-08-09 广州大学 一种用于修复砷污染土壤的纳米施氏矿物合成方法
CN114873649B (zh) * 2022-04-26 2023-06-23 广州大学 一种用于修复砷污染土壤的纳米施氏矿物合成方法

Also Published As

Publication number Publication date
TWI597243B (zh) 2017-09-01
CN103785348B (zh) 2017-03-22
TW201416328A (zh) 2014-05-01
CN103785348A (zh) 2014-05-14

Similar Documents

Publication Publication Date Title
JP5905669B2 (ja) 有害物質の処理材及び有害物質の処理方法
TWI597243B (zh) Hazardous material handling materials and methods of their manufacture, handling of hazardous materials
Chen et al. Precipitation of heavy metals from wastewater using simulated flue gas: sequent additions of fly ash, lime and carbon dioxide
Fang et al. Evaluation of porous calcium silicate hydrate derived from carbide slag for removing phosphate from wastewater
Yi et al. Efficient preparation of red mud-based geopolymer microspheres (RM@ GMs) and adsorption of fluoride ions in wastewater
JP2005040685A (ja) 重金属吸着材及び重金属処理方法
WO2007062062A2 (en) Method and composition to reduce the amounts of arsenic in water
WO2001034294A1 (en) Silicate/aluminate materials
JP2016117050A (ja) 無機ポリマー質吸着剤及びその製造方法
Carvalheiras et al. Metakaolin/red mud-derived geopolymer monoliths: Novel bulk-type sorbents for lead removal from wastewaters
JP2005254077A (ja) 重金属吸着材の製造方法及び当該方法により得られた重金属吸着材
Oliveira et al. Phosphorus removal from eutrophic waters with an aluminium hybrid nanocomposite
Keppert et al. Application of heavy metals sorbent as reactive component in cementitious composites
WO2008015784A1 (fr) Matériau particulaire de type hydrotalcite et son procédé de fabrication
JP4709498B2 (ja) 結晶質層状複水酸化物粉末とその製造方法並びに成型体及び有害物質の固定化方法
JP5768293B2 (ja) フッ素含有無機系廃棄物を用いる土壌固化材の製造方法及び得られた土壌固化材並びに同土壌固化材を用いる軟弱な土壌の固化方法
JP4420634B2 (ja) 砒素と鉄を含有する酸性坑廃水の処理方法
JP4420636B2 (ja) 有害物質処理材とその製造方法
Lee et al. Removal of Cs and Sr ions by absorbent immobilized zeolite with PVA
Lee et al. Hybrid materials precursor to natural clay in the attenuation of bisphenol A from aqueous solutions
Falaciński et al. The use of extraction methods to assess the immobilization of metals in hardening slurries
JP2015196146A (ja) リン含有水のリン回収材、そのリン回収材を用いたリン回収方法
JPH0810739A (ja) 廃棄物処理材および廃棄物処理方法
RU2675866C1 (ru) Способ получения композиционного сорбента
JP3173528B2 (ja) 炭酸イオン又は重炭酸イオンの固定化方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13850469

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13850469

Country of ref document: EP

Kind code of ref document: A1