WO2014065377A1 - 耐コロナ性部材、耐コロナ性樹脂組成物及び樹脂成形品の耐コロナ性発現方法 - Google Patents

耐コロナ性部材、耐コロナ性樹脂組成物及び樹脂成形品の耐コロナ性発現方法 Download PDF

Info

Publication number
WO2014065377A1
WO2014065377A1 PCT/JP2013/078852 JP2013078852W WO2014065377A1 WO 2014065377 A1 WO2014065377 A1 WO 2014065377A1 JP 2013078852 W JP2013078852 W JP 2013078852W WO 2014065377 A1 WO2014065377 A1 WO 2014065377A1
Authority
WO
WIPO (PCT)
Prior art keywords
corona
mica
resin
resistant member
resistant
Prior art date
Application number
PCT/JP2013/078852
Other languages
English (en)
French (fr)
Inventor
博樹 荒井
Original Assignee
ポリプラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ポリプラスチックス株式会社 filed Critical ポリプラスチックス株式会社
Priority to JP2014543349A priority Critical patent/JP6294829B2/ja
Priority to US14/437,710 priority patent/US9695293B2/en
Publication of WO2014065377A1 publication Critical patent/WO2014065377A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/02Polythioethers; Polythioether-ethers

Definitions

  • the present invention relates to a corona-resistant member having durability against corona discharge, a corona-resistant resin composition used for molding the corona-resistant member, and a method for expressing the corona resistance of a resin molded product.
  • PAS resins polyarylene sulfide resins having the required performance
  • the corona resistance alone is insufficient with the PAS resin alone, and various proposals for imparting the corona resistance to the resin molded product (composition) have been made (see, for example, Patent Documents 1 to 3).
  • Patent Document 1 a material (biaxially stretched film) made of polyphenylene sulfide (hereinafter also referred to as “PPS resin”) whose corona resistance is improved by setting the sodium chloride content to 0.5% by weight or less. ) Is disclosed. Further, Patent Documents 2 and 3 describe molded products (cable parts, hard-to-snow rings) made of a resin composition containing a PAS resin, conductive carbon black, graphite, and an epoxy group-containing ⁇ -olefin copolymer. ) Is disclosed. This is the pursuit of various performances such as heat resistance, weather resistance, flame resistance, waterproofness, airtightness, and toughness as well as corona resistance, etc. by setting the volume resistivity of the resin composition to an appropriate value. is there.
  • PPS resin polyphenylene sulfide
  • JP 59-79903 A JP-A-11-53943 JP-A-11-150848
  • the resin compositions (molded articles) described in the above Patent Documents 1 to 3 provide a certain level of corona resistance, but are not sufficient and leave room for improvement.
  • the resin component (molded product) described in the above patent document is a PAS resin (PPS resin), but corona resistance is required regardless of the type of resin in an environment exposed to corona discharge. Is done.
  • the present invention has been made in view of the above-described conventional problems, and the problem is that a corona-resistant member having sufficient durability against corona discharge, a corona-resistant resin composition used for molding the corona-resistant member, And it is providing the corona-resistant expression method and corona-resistant member of a resin molded product.
  • a method of expressing the corona resistance of a resin molded product obtained by molding the resin composition by adding mica to the resin composition A method for expressing corona resistance of a resin molded product in which mica is added so that the mode diameter in a volume-based particle size distribution measured by a laser diffraction / scattering method after molding is 1 to 200 ⁇ m.
  • a corona-resistant member having sufficient durability against corona discharge a corona-resistant resin composition used for molding the corona-resistant member, a corona-resistant expression method and a corona resistance of a resin molded product A member can be provided.
  • the corona-resistant member of the present invention is a corona-resistant member formed by molding a corona-resistant resin composition obtained by melting and kneading at least a resin component and mica.
  • the mode diameter in the volume-based particle size distribution measured by the diffraction / scattering method is 1 to 200 ⁇ m.
  • the corona-resistant member of the present invention is formed by molding a corona-resistant resin composition containing mica, and is generated when the corona-resistant member is exposed to corona discharge, which is a dendritic local portion called an electric tree. It is assumed that the progress of destruction is effectively hindered and delayed by the plate shape of mica.
  • the corona-resistant resin composition used for molding the corona-resistant member of the present invention will be described below.
  • the corona-resistant resin composition of the present invention is used for molding the corona-resistant member of the present invention, and is obtained by melt-kneading a resin component and mica. Below, each component of the corona-resistant resin composition of this invention is explained in full detail.
  • the resin component is not particularly limited.
  • the resin component is not particularly limited.
  • Two or more kinds of resin components may be used in combination.
  • polyarylene sulfide resin polybutylene terephthalate resin (hereinafter also referred to as “PBT resin”)
  • PBT resin polybutylene terephthalate resin
  • polyacetal resin polyacetal resin
  • liquid crystal resin etc.
  • engineering plastic Because of its excellent and workability, it is generically called engineering plastic and is used in a wide range of applications such as automobiles, electrical / electronic parts, etc.
  • PAS resin and the PBT resin will be sequentially described.
  • the PAS resin is a polymer compound mainly composed of — (Ar—S) — (wherein Ar is an arylene group) as a repeating unit, and a PAS resin having a molecular structure generally known in the present invention is used. can do.
  • arylene group examples include p-phenylene group, m-phenylene group, o-phenylene group, substituted phenylene group, p, p′-diphenylene sulfone group, p, p′-biphenylene group, p, p′-.
  • examples thereof include a diphenylene ether group, p, p′-diphenylenecarbonyl group, naphthalene group and the like.
  • the PAS resin may be a homopolymer consisting only of the above repeating units, or a copolymer containing the following different types of repeating units may be preferable from the viewpoint of processability and the like.
  • a polyphenylene sulfide resin (hereinafter also referred to as “PPS resin”) in which p-phenylene group is used as an arylene group and p-phenylene sulfide group is a repeating unit is preferably used.
  • PPS resin polyphenylene sulfide resin
  • the copolymer among the arylene sulfide groups comprising the above-mentioned arylene groups, two or more different combinations can be used, and among them, a combination containing a p-phenylene sulfide group and an m-phenylene sulfide group is particularly preferably used. It is done.
  • those containing p-phenylene sulfide groups of 70 mol% or more, preferably 80 mol% or more are suitable from the viewpoint of physical properties such as heat resistance, moldability and mechanical properties.
  • a high molecular weight polymer having a substantially linear structure obtained by condensation polymerization from a monomer mainly composed of a bifunctional halogen aromatic compound can be particularly preferably used. Two or more different types of molecular weight PAS resins may be mixed and used.
  • a partially branched or crosslinked structure is formed by using a small amount of a monomer such as a polyhaloaromatic compound having 3 or more halogen substituents when performing condensation polymerization.
  • a monomer such as a polyhaloaromatic compound having 3 or more halogen substituents
  • examples thereof include polymers obtained by heating a polymer having a low molecular weight and a linear structure polymer having a low molecular weight at a high temperature in the presence of oxygen or the like to increase the melt viscosity by oxidative crosslinking or thermal crosslinking, thereby improving molding processability.
  • the melt viscosity (310 ° C., shear rate 1216 sec ⁇ 1 ) of the PAS resin as the base resin used in the present invention is preferably 600 Pa ⁇ s or less, including the above mixed system, and is in the range of 8 to 300 Pa ⁇ s. Those having a good balance between mechanical properties and fluidity are particularly preferred.
  • the PBT resin includes a dicarboxylic acid component containing at least terephthalic acid or an ester-forming derivative thereof (such as a lower alcohol ester), an alkylene glycol (1,4-butanediol) having at least 4 carbon atoms or an ester-forming derivative thereof (acetyl).
  • the PBT resin is not limited to a homo PBT resin, but may be a copolymer (copolymerized PBT resin) containing 60 mol% or more (particularly 75 mol% or more and 95 mol% or less) of a butylene terephthalate unit.
  • dicarboxylic acid components other than terephthalic acid and its ester-forming derivatives
  • aromatic dicarboxylic acid components isophthalic acid, phthalic acid, naphthalenedicarboxylic acid, diphenyl ether dicarboxylic acid, etc., C 6 -C 12 aryl dicarboxylic acid etc.
  • aliphatic dicarboxylic acid component C 4 -C 16 alkyl dicarboxylic acid such as succinic acid, adipic acid, azelaic acid, sebacic acid, etc.
  • C 5 -C 10 cyclo such as cyclohexane dicarboxylic acid, etc.
  • Alkyl dicarboxylic acids and the like or ester-forming derivatives of these dicarboxylic acid components.
  • These dicarboxylic acid components can be used alone or in combination of two or more.
  • Preferred dicarboxylic acid components include aromatic dicarboxylic acid components (especially C 6 -C 10 aryl dicarboxylic acids such as isophthalic acid) and aliphatic dicarboxylic acid components (particularly C such as adipic acid, azelaic acid and sebacic acid). 6 ⁇ C 12 alkyl dicarboxylic acids) are included.
  • an aliphatic diol component for example, alkylene glycol (ethylene glycol, propylene glycol, trimethylene glycol, 1,3-butylene glycol, hexamethylene glycol, neopentyl glycol, C 2 ⁇ C 10 alkylene glycols such as 1,3-octanediol, diethylene glycol, triethylene glycol, polyoxy C 2 ⁇ C 4 alkylene glycol such as dipropylene glycol), cyclohexane dimethanol, Alicyclic diols such as hydrogenated bisphenol A], aromatic diol components [aromatic alcohols such as bisphenol A 4,4-dihydroxybiphenyl, bisphenol A 2 ⁇ C 4 alkylene oxide adduct (e.g., ethylene oxide 2 mol adduct of bisphenol A, propylene oxide 3 mol ad
  • Preferred glycol components include aliphatic diol components (particularly polyoxy C 2 -C 3 alkylene glycols such as C 2 -C 6 alkylene glycol, diethylene glycol, and alicyclic diols such as cyclohexane dimethanol). .
  • any of the homo PBT resin or copolymer PBT resin produced by polycondensation using the above compound as a monomer component can be used as the resin component of the present invention.
  • the homo PBT resin and copolymer PBT resin can be used alone or in admixture of two or more.
  • Mica is a scaly aluminum silicate mineral, such as white mica (KAl 2 (AlSi 3 O 10 ) (OH) 2 ), gold mica (KMg 3 (AlSi 3 O 10 ) (OH) 2 ), Examples thereof include black mica (K (Mg, Fe) 3 (AlSi 3 O 10 ) (OH) 2 ), scale mica (KLi 2 Al (Si 4 O 10 ) (OH) 2 ), and the like. Among them, it is preferable to use gold mica because it can exhibit the corona resistance effect most.
  • gold mica includes 150-S (average particle diameter (50% d): 163 ⁇ m), 325-S (average particle diameter ( 50% d): 30 ⁇ m), 60-S (average particle size (50% d): 278 ⁇ m), and the like.
  • white mica AB-25S (average particle size) manufactured by Yamaguchi Mica Co., Ltd. (50% d): 24 ⁇ m).
  • the average particle diameter (50% d) means a median diameter of 50% integrated value in the particle size distribution measured by the laser diffraction / scattering method.
  • the mica content is preferably 25 to 101 parts by mass, more preferably 40 to 70 parts by mass with respect to 100 parts by mass of the PAS resin.
  • glass fibers may be added to improve mechanical properties (tensile strength, bending strength).
  • mechanical properties tensile strength, bending strength
  • a commercially available thing can be used.
  • Examples of commercially available products include chopped glass fibers (CS03DE 416A, average fiber diameter: 6 ⁇ m) manufactured by Owens Corning Manufacturing Co., Ltd., chopped glass fibers (ECS03T-747H, average) manufactured by Nippon Electric Glass Co., Ltd. Fiber diameter: 10 ⁇ m), manufactured by Nippon Electric Glass Co., Ltd., chopped glass fiber (ECS03T-747, average fiber diameter: 13 ⁇ m), and the like.
  • the corona-resistant resin composition according to the present invention is a lubricant, carbon black, a nucleating agent, a flame retardant, a flame retardant aid, an antioxidant, a metal deactivator, and other anti-aging agents as long as the effects of the present invention are not impaired. It may contain an additive, a polymer such as a UV absorber, a stabilizer, a plasticizer, a pigment, a dye, a colorant, an antistatic agent, a foaming agent, other resins, and additives.
  • a polymer such as a UV absorber, a stabilizer, a plasticizer, a pigment, a dye, a colorant, an antistatic agent, a foaming agent, other resins, and additives.
  • the corona resistance expression method of the resin molded product of the present invention is a method of expressing the corona resistance of a resin molded product obtained by molding the resin composition by adding mica to the resin composition, The mica is added such that the mica after molding has a mode diameter of 1 to 200 ⁇ m in a volume-based particle size distribution measured by a laser diffraction / scattering method.
  • the corona-resistant member of the present invention exhibits corona resistance by adding mica. In other words, by adding predetermined mica to the resin composition and molding so that the mode diameter of the mica in the molded member is within the above specified range, the member that is the molded product has corona resistance.
  • the resin component and mica in the method for expressing corona resistance of the resin molded product of the present invention are the same as the resin component and mica in the corona resistant resin composition of the present invention described above, and each for expressing the corona resistance. The same applies to preferable examples and addition amounts of components and other components that can be added.
  • the corona-resistant member of the present invention is formed by molding the corona-resistant resin composition of the present invention described above, but there is no particular limitation on the production method, and a known method can be adopted.
  • the corona-resistant resin composition of the present invention which will be described later, is put into an extruder, melted and kneaded into pellets, and the pellets are put into an injection molding machine equipped with a predetermined mold and produced by injection molding. can do.
  • the mode diameter in the volume-based particle size distribution of mica in the corona-resistant member measured by the laser diffraction / scattering method is 1 to 200 ⁇ m, preferably 15 to 150 ⁇ m. 40 to 130 ⁇ m is more preferable. If the mode diameter of the mica in the corona-resistant member is out of the range of 1 to 200 ⁇ m, the corona-resistant effect tends to decrease.
  • the mode diameter of mica in the corona-resistant member can be measured using a laser diffraction / scattering particle size distribution analyzer LA-920 manufactured by Horiba, Ltd.
  • the mica is preferably oriented so as to be orthogonal to the voltage direction due to corona discharge.
  • the mica is oriented to be orthogonal to the voltage application direction, in other words, to be orthogonal to the voltage direction due to corona discharge. It is preferable to orient in one direction so that the mica in the member is parallel to each other.
  • that the orientation direction of mica is orthogonal to the voltage direction due to corona discharge means that the normal direction of mica and the voltage direction due to corona discharge coincide with each other. The direction does not have to be completely coincident with each other, and may be deviated as long as the effect of the present invention is not impaired.
  • the orientation state of the mica will be described below with reference to FIGS.
  • FIG. 2 and 3 schematically show how a high voltage is applied to the corona-resistant member.
  • the high voltage electrode 12 is disposed above the flat corona-resistant members 10A and 10B, and the ground side electrode 14 is disposed below the high voltage electrode when high frequency / high voltage is applied by both electrodes.
  • Corona discharge is generated in the vicinity of the tip of 12, and the surfaces of the corona-resistant members 10A and 10B are exposed to corona discharge.
  • the mica 16 is oriented in the corona-resistant member 10A so as to be orthogonal to the voltage application direction.
  • the corona-resistant member 10B has a voltage direction.
  • the mica 16 is oriented so as to be parallel.
  • the mica 16 is oriented so as to hinder the progress of the electrical tree even if it occurs. , Can delay its progress. As a result, it is thought that the lifetime improvement of 10 A of corona-resistant members can be achieved.
  • the configuration of FIG. 3 there are many gaps in the traveling direction of the electric tree, and the obstruction effect of the electric tree is small.
  • the corona-resistant member having mica oriented as shown in FIG. 2 is arranged so that the mica inside thereof is orthogonal to the direction of voltage application caused by corona discharge, thereby further improving the corona-resistant effect. It can be demonstrated effectively.
  • the desired direction for orienting the mica is the resin flow direction. This can be realized by setting the gate position.
  • the shape of the corona-resistant member can be, for example, a sheet shape, a plate shape, a cylindrical shape, or a film shape.
  • the mica in each shape member, if the mica is oriented so as to be orthogonal to the thickness direction, excellent durability against corona discharge generated due to the voltage applied in the thickness direction of the member is obtained.
  • the electrical tree advances in the sheet thickness direction by corona discharge.
  • the mica when the mica is oriented as described above, the progress of the electric tree can be most effectively prevented, and the life of the sheet-like corona-resistant member can be prolonged. The same applies to other shapes.
  • the corona-resistant member of the present invention can be used as a member that requires corona resistance.
  • Examples of such a member include a casing of an ignition coil, an insulated wire, and an electrical insulating sheet.
  • Examples 1 to 5 Comparative Examples 1 to 3
  • the mixture obtained by dry blending the raw material components shown in Tables 1 and 2 was put into a twin-screw extruder having a cylinder temperature of 320 ° C. (Mica and glass fiber are the sides of the extruder). Separately added from the feed part), melt-kneaded and pelletized. The detail of each raw material component shown in Table 1 and Table 2 is described below.
  • PAS resin component PPS resin manufactured by Kureha Corporation, Fortron KPS W214A (melt viscosity: 130 Pa ⁇ s (shear rate: 1216 sec ⁇ 1 , 310 ° C.))
  • the melt viscosity of the PPS resin was measured as follows. (Measurement of melt viscosity of PPS resin) Using a Capillograph manufactured by Toyo Seiki Co., Ltd., a melt viscosity at a barrel temperature of 310 ° C. and a shear rate of 1216 sec ⁇ 1 was measured using a 1 mm ⁇ ⁇ 20 mmL / flat die as a capillary.
  • the average particle size (50% d) of the filler was measured as follows. (Measurement of average particle size (50% d) of filler) Using a laser diffraction / scattering particle size distribution analyzer LA-920 manufactured by HORIBA, Ltd. Under the following measurement conditions, the particle size distribution of each filler and the integrated value in the particle size distribution measured by the laser diffraction / scattering method A median diameter of 50% was measured.
  • test piece 10 produced in each of the examples and comparative examples was fixed between a high voltage side electrode 12 ( ⁇ 9.5 mm) and a ground side electrode 14 ( ⁇ 25 mm), and a withstand voltage tester (Yamayo) Using a test machine YST-243WS-28), a temperature of 130 ° C., a frequency of 200 Hz and an applied voltage of 18 kV was applied in air, and the time until dielectric breakdown occurred was measured. The measurement results are shown in Tables 1 and 2.
  • FIG. 4 shows the relationship between the mode diameter of each mica in the molded product and the corona fracture life for Examples 1 to 3 and Comparative Example 2 using gold mica as a filler and Examples 4 to 5 using white mica. Shown in FIG. 4 shows that the corona fracture characteristics change depending on the mode diameter of mica in the molded product. In particular, for gold mica, the corona fracture characteristics are particularly excellent at a mode diameter of 124 ⁇ m.
  • Examples 1 to 5 in which mica is used and the mode diameter of the mica in the molded product (corona-resistant member) is within the range specified in the present invention are longer than 50 hours in the corona-resistance test. While the durability of time was obtained, in Comparative Examples 1 to 3, the result of the test was less than 50 hours, indicating that satisfactory results were not obtained.

Abstract

 コロナ放電に対する十分な耐久性を有する耐コロナ性樹脂組成物及び耐コロナ性部材を提供する。少なくとも、樹脂成分とマイカとを溶融混練して得られる耐コロナ性樹脂組成物を成形してなる耐コロナ性部材であって、成形後における前記マイカの、レーザー回折・散乱法で測定した体積基準の粒度分布におけるモード径が1~200μmである耐コロナ性部材である。マイカは、樹脂成分100質量部に対して25~101質量部含むことが好ましい。

Description

耐コロナ性部材、耐コロナ性樹脂組成物及び樹脂成形品の耐コロナ性発現方法
 本発明は、コロナ放電に対する耐久性を有する耐コロナ性部材、当該耐コロナ性部材の成形に用いる耐コロナ性樹脂組成物、及び樹脂成形品の耐コロナ性発現方法に関する。
 近年、電気機器類においては、筐体や内部の電気系統部品に種々の樹脂成形品が用いられている。電気機器類としては、一般的な家庭用電化製品や産業用電気製品のみならず、例えば、自動車、自動二輪車、又はトラックなどの車両内の電気系統を司る機器類も挙げられ、そのような機器類にも樹脂成形品が広く用いられている。車両内の電気機器類として、特にエンジンルーム内に配される機器に使用される樹脂成形品としては、イグニションコイル等に起因するコロナ放電に耐えることができるものが要求される。つまり、樹脂成形品がコロナ放電に晒されると、電気トリーと呼ばれる樹枝状の局部破壊が進行し樹脂成形品の寿命を縮めることになるがこれを未然に防ぐためである。
 一方、車両内の電気機器類に使用される樹脂としては、耐熱性、難燃性等が要求されるため、その要求性能を具備するポリアリーレンスルフィド樹脂(以下、「PAS樹脂」とも呼ぶ。)が好適に使用される。しかし、PAS樹脂のみでは耐コロナ性が不十分であり、樹脂成形品(組成物)に耐コロナ性を付与するための提案が種々なされている(例えば、特許文献1~3参照)。
 特許文献1には、塩化ナトリウムの含有量を0.5重量%以下とすることで耐コロナ性を向上させたポリフェニレンスルフィド(以下、「PPS樹脂」とも呼ぶ。)からなる材料(2軸延伸フィルム)が開示されている。
 また、特許文献2及び3には、PAS樹脂と、導電性カーボンブラック、黒鉛、エポキシ基含有α-オレフィン系共重合体を含有する樹脂組成物からなる成形品(ケーブル用部品、難着雪リング)が開示されている。これは、樹脂組成物の体積抵抗率を適度な値にすることで耐コロナ性等とともに、耐熱性、耐候性、難燃性、防水性、気密性、靱性などの諸性能を追求したものである。
特開昭59-79903号公報 特開平11-53943号公報 特開平11-150848号公報
 上記特許文献1~3に記載の樹脂組成物(成形品)により、一定以上の耐コロナ性の効果が得られるが十分のものではなく改善の余地が残されていた。また、上記特許文献に記載された樹脂組成物(成形品)の樹脂成分はいずれもPAS樹脂(PPS樹脂)であるが、コロナ放電に晒される環境では樹脂の種類を問わず耐コロナ性が要求される。
 本発明は上記従来の問題点に鑑みなされたものであり、その課題は、コロナ放電に対する十分な耐久性を有する耐コロナ性部材、当該耐コロナ性部材の成形に用いる耐コロナ性樹脂組成物、及び樹脂成形品の耐コロナ性発現方法及び耐コロナ性部材を提供することにある。
 前記課題を解決する本発明は以下の通りである。
(1)少なくとも、樹脂成分とマイカとを溶融混練して得られる耐コロナ性樹脂組成物を成形してなる耐コロナ性部材であって、
 成形後における前記マイカの、レーザー回折・散乱法で測定した体積基準の粒度分布におけるモード径が1~200μmである耐コロナ性部材。
(2)前記樹脂成分が、ポリアリーレンスルフィド樹脂又はポリブチレンテレフタレート樹脂である前記(1)に記載の耐コロナ性部材。
(3)前記マイカを、前記樹脂成分100質量部に対して25~101質量部含む前記(1)又は(2)に記載の耐コロナ性部材。
(4)前記マイカが、コロナ放電に起因する電圧方向と直交するように配向している前記(1)~(3)のいずれかに記載の耐コロナ性部材。
(5)形状が、シート状、板状、筒状、又は被膜状であることを特徴とする前記(1)~(4)のいずれかに記載の耐コロナ性部材。
(6)前記(1)~(5)のいずれかに記載の耐コロナ性部材の成形に用いる耐コロナ性樹脂組成物。
(7)樹脂組成物にマイカを添加することにより、該樹脂組成物を成形して得られる樹脂成形品の耐コロナ性を発現させる方法であって、
 成形後におけるマイカの、レーザー回折・散乱法で測定した体積基準の粒度分布におけるモード径が1~200μmとなるように前記マイカを添加する樹脂成形品の耐コロナ性発現方法。
 本発明によれば、コロナ放電に対する十分な耐久性を有する耐コロナ性部材、当該耐コロナ性部材の成形に用いる耐コロナ性樹脂組成物、及び樹脂成形品の耐コロナ性発現方法及び耐コロナ性部材を提供することができる。
耐コロナ性試験における、試験片と各電極の配置について概念的に示す図である。 耐コロナ性の効果が最も大きく発現するようにマイカを配向させた耐コロナ性部材に電圧印加する様子を模式的に示す図である。 マイカの配向方向を図2とは異ならせた耐コロナ性部材に高電圧を印加する様子を模式的に示す図である。 金マイカと白マイカを用いた場合における、成形品中の各マイカのモード径とコロナ破壊寿命との関係を示すグラフである。
 本発明の耐コロナ性部材は、少なくとも、樹脂成分とマイカとを溶融混練して得られる耐コロナ性樹脂組成物を成形してなる耐コロナ性部材であって、成形後における前記マイカの、レーザー回折・散乱法で測定した体積基準の粒度分布におけるモード径が1~200μmであることを特徴としている。
 本発明の耐コロナ性部材は、マイカを含む耐コロナ性樹脂組成物を成形してなるものであり、当該耐コロナ性部材がコロナ放電に晒されるときに生じる、電気トリーと呼ばれる樹枝状の局部破壊の進行を、マイカの板状形状が効率よく妨害し、遅延させると推察される。
 以下に先ず、本発明の耐コロナ性部材の成形に用いる耐コロナ性樹脂組成物について説明する。
<耐コロナ性樹脂組成物>
 本発明の耐コロナ性樹脂組成物は、本発明の耐コロナ性部材の成形に用いられるものであって、樹脂成分と、マイカとを溶融混練して得られる。
 以下に、本発明の耐コロナ性樹脂組成物の各成分について詳述する。
[樹脂成分]
 樹脂成分としては、特に限定はなく、例えば、ポリエチレン樹脂、ポリプロピレン樹脂、ポリアミド樹脂、ポリアセタール樹脂、変性ポリフェニレンエーテル樹脂、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、ポリアリーレンサルファイド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、ポリサルフォン樹脂、ポリエーテルサルフォン樹脂、ポリエーテルケトン樹脂、ポリエーテルエーテルケトン樹脂、液晶樹脂、弗素樹脂、熱可塑性エラストマー、各種の生分解性樹脂等が挙げられる。また、2種類以上の樹脂成分を併用してもよい。その中でも、ポリアリーレンサルファイド樹脂、ポリブチレンテレフタレート樹脂(以下、「PBT樹脂」とも言う。)、ポリアセタール樹脂、液晶樹脂等は、機械的性質、電気的性質、耐熱性その他物理的・化学的特性に優れ、且つ加工性が良好であるがゆえにエンジニアリングプラスチックと総称され自動車、電気・電子部品等の広範な用途に使用されている。
 以下、PAS樹脂、PBT樹脂について順次説明する。
(ポリアリーレンスルフィド樹脂)
 PAS樹脂は、主として、繰返し単位として-(Ar-S)-(但しArはアリーレン基)で構成された高分子化合物であり、本発明では一般的に知られている分子構造のPAS樹脂を使用することができる。
 上記アリーレン基としては、例えば、p-フェニレン基、m-フェニレン基、o-フェニレン基、置換フェニレン基、p,p’-ジフェニレンスルフォン基、p,p’-ビフェニレン基、p,p’-ジフェニレンエーテル基、p,p’-ジフェニレンカルボニル基、ナフタレン基などが挙げられる。PAS樹脂は、上記繰返し単位のみからなるホモポリマーでもよいし、下記の異種繰返し単位を含んだコポリマーが加工性等の点から好ましい場合もある。
 ホモポリマーとしては、アリーレン基としてp-フェニレン基を用いた、p-フェニレンサルファイド基を繰返し単位とするポリフェニレンスルフィド樹脂(以下、「PPS樹脂」とも言う。)が好ましく用いられる。また、コポリマーとしては、前記のアリーレン基からなるアリーレンサルファイド基の中で、相異なる2種以上の組み合わせが使用できるが、中でもp-フェニレンサルファイド基とm-フェニレンサルファイド基を含む組み合わせが特に好ましく用いられる。この中で、p-フェニレンサルファイド基を70モル%以上、好ましくは80モル%以上含むものが、耐熱性、成形性、機械的特性等の物性上の点から適当である。また、これらのPAS樹脂の中で、2官能性ハロゲン芳香族化合物を主体とするモノマーから縮重合によって得られる実質的に直鎖状構造の高分子量ポリマーが、特に好ましく使用できる。尚、異なる2種類以上の分子量のPAS樹脂を混合して用いてもよい。
 尚、直鎖状構造のPAS樹脂以外にも、縮重合させるときに、3個以上のハロゲン置換基を有するポリハロ芳香族化合物等のモノマーを少量用いて、部分的に分岐構造または架橋構造を形成させたポリマーや、低分子量の直鎖状構造ポリマーを酸素等の存在下、高温で加熱して酸化架橋または熱架橋により溶融粘度を上昇させ、成形加工性を改良したポリマーも挙げられる。
 本発明に使用する基体樹脂としてのPAS樹脂の溶融粘度(310℃・せん断速度1216sec-1)は、上記混合系の場合も含め600Pa・s以下が好ましく、中でも8~300Pa・sの範囲にあるものは、機械的物性と流動性のバランスが優れており、特に好ましい。
(ポリブチレンテレフタレート樹脂)
 PBT樹脂は、少なくともテレフタル酸又はそのエステル形成性誘導体(低級アルコールエステルなど)を含むジカルボン酸成分と、少なくとも炭素原子数4のアルキレングリコール(1,4-ブタンジオール)又はそのエステル形成性誘導体(アセチル化物等)を含むグリコール成分とを重縮合して得られるポリブチレンテレフタレート系樹脂である。PBT樹脂は、ホモPBT樹脂に限らず、ブチレンテレフタレート単位を60モル%以上(特に75モル%以上95モル%以下)含有する共重合体(共重合PBT樹脂)であってもよい。
 共重合PBT樹脂において、テレフタル酸及びそのエステル形成性誘導体以外のジカルボン酸成分(コモノマー成分)としては、例えば、芳香族ジカルボン酸成分(イソフタル酸、フタル酸、ナフタレンジカルボン酸、ジフェニルエーテルジカルボン酸等の、C~C12アリールジカルボン酸等)、脂肪族ジカルボン酸成分(コハク酸、アジピン酸、アゼライン酸、セバシン酸等のC~C16アルキルジカルボン酸、シクロヘキサンジカルボン酸等のC~C10シクロアルキルジカルボン酸等)、またはそれらのジカルボン酸成分のエステル形成性誘導体が挙げられる。これらのジカルボン酸成分は、単独で又は2種以上を組み合わせて使用できる。
 好ましいジカルボン酸成分(コモノマー成分)には、芳香族ジカルボン酸成分(特にイソフタル酸などのC~C10アリールジカルボン酸)、脂肪族ジカルボン酸成分(特にアジピン酸、アゼライン酸、セバシン酸などのC~C12アルキルジカルボン酸) が含まれる。
 PBT樹脂において、1,4-ブタンジオール以外のグリコール成分(コモノマー成分)としては、例えば、脂肪族ジオール成分〔例えば、アルキレングリコール(エチレングリコール、プロピレングリコール、トリメチレングリコール、1,3-ブチレングリコール、ヘキサメチレングリコール、ネオペンチルグリコール、1,3-オクタンジオールなどのC~C10アルキレングリコール、ジエチレングリコール、トリエチレングリコール、ジプロピレングリコールなどのポリオキシC~Cアルキレングリコールなど)、シクロヘキサンジメタノール、水素化ビスフェノールAなどの脂環式ジオールなど〕、芳香族ジオール成分〔ビスフェノールA、4,4-ジヒドロキシビフェニルなどの芳香族アルコール、ビスフェノールAのC~Cアルキレンオキサイド付加体(例えば、ビスフェノールAのエチレンオキサイド2モル付加体、ビスフェノールAのプロピレンオキサイド3モル付加体など)など〕、またはそれらのエステル形成誘導体などが挙げられる。これらのグリコール成分は、単独で又は2種以上を組み合わせて使用できる。
 好ましいグリコール成分(コモノマー成分)には、脂肪族ジオール成分(特に、C~Cアルキレングリコール、ジエチレングリコールなどのポリオキシC~Cアルキレングリコール、シクロヘキサンジメタノールなどの脂環式ジオール)が含まれる。
 前記化合物をモノマー成分とする重縮合により生成するホモPBT樹脂又は共重合PBT樹脂は、いずれも本発明の樹脂成分として使用できる。ホモPBT樹脂及び共重合PBT樹脂は、それぞれ単独でまたは2種以上混合して使用できる。
[マイカ]
 マイカは、鱗片状のケイ酸アルミニウム系鉱物であり、例えば、白マイカ(KAl2(AlSi3O10)(OH)2)、金マイカ(KMg3(AlSi3O10)(OH)2)、黒マイカ(K(Mg,Fe)3(AlSi3O10)(OH)2)、鱗マイカ(KLi2Al(Si4O10)(OH)2)等が挙げられる。
 中でも、耐コロナ性の効果を最も発揮し得る点で金マイカを用いることが好ましい。
 本発明において使用可能なマイカ(上市品)として、金マイカとしては、西日本貿易(株)製、150-S(平均粒子径(50%d):163μm)、同325-S(平均粒子径(50%d):30μm)、同60-S(平均粒子径(50%d):278μm)などが挙げられる、また、白マイカとしては、(株)ヤマグチマイカ製、AB-25S(平均粒子径(50%d):24μm)などが挙げられる。
 尚、平均粒径(50%d)とは、レーザー回折・散乱法により測定した粒度分布における積算値50%のメジアン径を意味する。
 マイカの含有量は、十分な耐コロナ性を得る観点から、PAS樹脂100質量部に対して25~101質量部であることが好ましく、40~70質量部であることがより好ましい。
 本発明においては、機械物性(引張り強度、曲げ強度)向上のためにガラス繊維を添加してもよい。当該ガラス繊維としては特に制限はなく、市販のものを用いることができる。上市しているものとしては、例えば、オーウェンスコーニング製造(株)製、チョップドガラス繊維(CS03DE 416A、平均繊維径:6μm)、日本電気硝子(株)製、チョップドガラス繊維(ECS03T-747H、平均繊維径:10μm)、日本電気硝子(株)製、チョップドガラス繊維(ECS03T-747、平均繊維径:13μm)等が挙げられる。
[他の成分]
 本発明に係る耐コロナ性樹脂組成物は、本発明の効果を妨げない範囲で、滑剤、カーボンブラック、核剤、難燃剤、難燃助剤、酸化防止剤、金属不活性剤、その他老化防止剤、及びUV吸収剤、安定剤、可塑剤、顔料、染料、着色剤、帯電防止剤、発泡剤、その他の樹脂等の高分子や、添加剤を含有していてもよい。
<樹脂成形品の耐コロナ性発現方法>
 本発明の樹脂成形品の耐コロナ性発現方法は、樹脂組成物にマイカを添加することにより、該樹脂組成物を成形して得られる樹脂成形品の耐コロナ性を発現させる方法であって、成形後におけるマイカの、レーザー回折・散乱法で測定した体積基準の粒度分布におけるモード径が1~200μmとなるように前記マイカを添加することを特徴としている。
 既述の通り、本発明の耐コロナ性部材は、マイカを添加することで耐コロナ性を発現させている。換言すると、成形後の部材におけるマイカのモード径等が上記規定の範囲内となるように、樹脂組成物に所定のマイカを添加して成形することにより、その成形品たる部材に耐コロナ性を発現させることができる。
 本発明の樹脂成形品の耐コロナ性発現方法における樹脂成分及びマイカは、既述の本発明の耐コロナ性樹脂組成物における樹脂成分及びマイカと同じであり、耐コロナ性を発現させるための各成分の好ましい例や添加量、添加し得る他の成分も同様である。
 <耐コロナ性部材>
 本発明の耐コロナ性部材は、既述の本発明の耐コロナ性樹脂組成物を成形してなるが、作製する方法としては特に限定はなく、公知の方法を採用することができる。例えば、後述する本発明の耐コロナ性樹脂組成物を押出機に投入して溶融混練してペレット化し、このペレットを所定の金型を装備した射出成形機に投入し、射出成形することで作製することができる。
 本発明の耐コロナ性部材は、耐コロナ性部材中の、マイカの、レーザー回折・散乱法で測定した体積基準の粒度分布におけるモード径は1~200μmであり、15~150μmであることが好ましく、40~130μmであることがより好ましい。耐コロナ性部材中における当該マイカのモード径が1~200μmの範囲を外れると、耐コロナ性の効果が低下する傾向がある。
 尚、耐コロナ性部材中におけるマイカのモード径は、(株)堀場製作所製、レーザ回折/散乱式粒度分布測定装置LA-920を用いて測定することができる。
 本発明の耐コロナ性部材は、マイカは、コロナ放電に起因する電圧方向と直交するように配向していることが好ましい。具体的には、耐コロナ性部材に電圧が印加された場合において、マイカが電圧の印加方向と直交するように配向させる、換言するとコロナ放電に起因する電圧方向と直交するように、耐コロナ性部材中のマイカが互いに平行となるように一方向に配向させることが好ましい。ここで、マイカの配向方向が、コロナ放電に起因する電圧方向と直交するとは、マイカの法線方向とコロナ放電に起因する電圧方向とが一致する状態を意味するが、当該法線方向と電圧方向とが完全に一致する必要はなく、本発明の効果を損なわない範囲においてずれていても構わない。
 以下に、上記マイカの配向状態について図2及び図3を参照して説明する。
 図2、図3は、耐コロナ性部材に高電圧を印加する様子を模式的に示している。図2、図3において、平板状の耐コロナ性部材10A、10Bの上方に高圧電極12、下方にアース側電極14が配置されており、両電極により高周波・高電圧を印加した場合に高圧電極12の先端近傍にコロナ放電が発生し、耐コロナ性部材10A、10Bの表面がコロナ放電に晒される。そして、図2においては、耐コロナ性部材10Aの内部には電圧の印加方向と直交するようにマイカ16が配向しており、図3においては、耐コロナ性部材10Bの内部には電圧方向と平行になるようにマイカ16が配向している。このような構成において、高周波・高電圧を印加してコロナ放電を発生させた場合、図2の構成では、電気トリーが発生してもその進行を妨害するようにマイカ16が配向しているため、その進行を遅らせることができる。ひいては、耐コロナ性部材10Aの長寿命化を達成することができると考えられる。一方、図3の構成では、電気トリーの進行方向には隙間が多く存在し、電気トリーの進行の妨害効果は小さい。
 以上より、図2に示すようにマイカを配向した耐コロナ性部材を、その内部のマイカがコロナ放電に起因する電圧の印加方向と直交するように配置することで、耐コロナ性の効果をより効果的に発揮することができる。
 上記のように、耐コロナ性部材中のマイカを上記のような方向に配向させるには、例えば、射出成形時において、マイカを配向させる所望の方向が樹脂の流動方向となるように金型のゲート位置を設定することで実現することができる。
 耐コロナ性部材中のマイカを上記のように配向させる場合において、当該耐コロナ性部材の形状としては、例えば、シート状、板状、筒状、または被膜状とすることができる。この場合、各形状の部材において、その肉厚方向と直交するようにマイカを配向させると、部材の肉厚方向に印加される電圧に起因して発生するコロナ放電に対して優れた耐久性を発現させることができる。
 例えば、シート状の耐コロナ性部材においては、そのシートの肉厚方向、すなわちシート面と直交する方向に高周波・高電圧が印加された場合、コロナ放電によりシートの肉厚方向に電気トリーが進行するが、マイカが上記のように配向していると電気トリーの進行を最も効果的に阻止することができ、シート状の耐コロナ性部材の寿命を長くすることが可能となる。他の形状においても同様である。
 本発明の耐コロナ性部材は、耐コロナ性が要求される部材として用いることができる。このような部材としては、例えば、イグニションコイルの筐体、絶縁電線、電気絶縁シートが挙げられる。
 以下に、実施例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。
[実施例1~5、比較例1~3]
 各実施例・比較例において、表1及び表2に示す各原料成分をドライブレンドして得た混合物を、シリンダー温度320℃の二軸押出機に投入し(マイカ、ガラス繊維は押出機のサイドフィード部より別添加)、溶融混練し、ペレット化した。表1及び表2に示す各原料成分の詳細を以下に記す。
(1)PAS樹脂成分
 PPS樹脂:(株)クレハ製、フォートロンKPS W214A (溶融粘度:130Pa・s(せん断速度:1216sec-1、310℃))
 尚、上記PPS樹脂の溶融粘度は以下のようにして測定した。
(PPS樹脂の溶融粘度の測定)
 東洋精機(株)製キャピログラフを用い、キャピラリーとして1mmφ×20mmL/フラットダイを使用し、バレル温度310℃、せん断速度1216sec-1での溶融粘度を測定した。
(2)充填剤
 金マイカ1: 西日本貿易(株)製 150-S、平均粒子径(50%d):163μm
 金マイカ2:西日本貿易(株)製、325-S(平均粒子径(50%d):30μm)
 金マイカ3:西日本貿易(株)製、60-S(平均粒子径(50%d):278μm)
 金マイカ4:西日本貿易(株)製、40-S(平均粒子径(50%d):351μm)
 白マイカ1:(株)ヤマグチマイカ製、AB-25S)、平均粒子径(50%d):24μm
 白マイカ2:(株)ヤマグチマイカ製、B-82)、平均粒子径(50%d):137μm
 ガラス繊維1:チョップドガラス繊維(日本電気硝子(株)製、ECS03T747)、平均繊維径:13μm
 尚、上記充填剤の平均粒径(50%d)は以下のようにして測定した。
(充填剤の平均粒径(50%d)の測定)
 (株)堀場製作所製、レーザ回折/散乱式粒度分布測定装置LA-920を用いて、以下の測定条件の下、各充填剤の粒度分布、レーザー回折・散乱法により測定した粒度分布における積算値50%のメジアン径を測定した。
~測定条件~
・循環速度:10
・レーザー光源:632.8nm He‐Neレーザ 1mW、タングステンランプ50W
・検出器:リング状75分割シリコンフォトダイオード×1、シリコンフォトダイオード×12
・分散媒:超純水
・超音波:有り
・透過率:80%
 ・水との相対屈折率:1.18(白マイカ、金マイカ)
 上述のようにして作製したペレットから、射出成形機(住友重機械工業(株)製、SE100D)により、シリンダー温度320℃、金型温度150℃で縦80mm、横80mm、厚み1mmの試験片(平板)を作製し、以下の評価を行った。
 尚、金マイカ1~4、白マイカ1~2を用いた試験片の作製においては、試験片の肉厚方向と直交する方向に各マイカを配向させるため、その配向方向が樹脂の流動方向となるように金型のゲート位置を設定した。
(耐コロナ性試験)
 各実施例・比較例において作製した試験片10を、図1に示すように、高圧側電極12(φ9.5mm)とアース側電極14(φ25mm)の間に固定し、耐電圧試験機(ヤマヨ試験機有限会社製 YST-243WS-28)を用いて、空気中で、130℃、周波数200Hz、印加電圧18kVを加え、絶縁破壊が生じるまでの時間を測定した。測定結果を表1及び表2に示す。
(成形品中での充填剤のモード径の測定)
 各実施例・比較例において作製した80mm×1mmの平板試験片を空気中600℃で5時間放置し、樹脂成分を完全に除去した。得られた灰分から、(株)堀場製作所製、レーザ回折/散乱式粒度分布測定装置LA-920を用いて、以下の測定条件の下、各充填剤の粒度分布、モード径を測定した。
~測定条件~
・循環速度:10
・レーザー光源:632.8nm He‐Neレーザ 1mW、タングステンランプ50W
・検出器:リング状75分割シリコンフォトダイオード×1、シリコンフォトダイオード×12
・分散媒:超純水
・超音波:有り
・透過率:80%
・水との相対屈折率:1.18(白マイカ、金マイカ)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 充填剤として金マイカを用いた実施例1~3及び比較例2、並びに白マイカを用いた実施例4~5について、成形品中の各マイカのモード径とコロナ破壊寿命との関係を図4に示す。図4より、成形品中のマイカのモード径によりコロナ破壊特性が変化することが分かり、特に、金マイカについてはモード径124μmにおいてコロナ破壊特性が特に優れている。
 表1及び表2より、マイカを用い、成形品(耐コロナ性部材)中のマイカのモード径が本発明において規定する範囲内の実施例1~5は耐コロナ性試験において50時間超という長時間の耐久性が得られたのに対し、比較例1~3においては当該試験の結果は50時間未満であり、満足できる結果が得られなかったことが分かる。
10 試験片
10A 耐コロナ性部材
10B 耐コロナ性部材
12 高圧側電極
14 アース側電極
16 マイカ

Claims (7)

  1.  少なくとも、樹脂成分とマイカとを溶融混練して得られる耐コロナ性樹脂組成物を成形してなる耐コロナ性部材であって、
     成形後における前記マイカの、レーザー回折・散乱法で測定した体積基準の粒度分布におけるモード径が1~200μmである耐コロナ性部材。
  2.  前記樹脂成分が、ポリアリーレンスルフィド樹脂又はポリブチレンテレフタレート樹脂である請求項1に記載の耐コロナ性部材。
  3.  前記マイカを、前記樹脂成分100質量部に対して25~101質量部含む請求項1又は2に記載の耐コロナ性部材。
  4.  前記マイカが、コロナ放電に起因する電圧方向と直交するように配向している請求項1~3のいずれか1項に記載の耐コロナ性部材。
  5.  形状が、シート状、板状、筒状、又は被膜状であることを特徴とする請求項1~4のいずれか1項に記載の耐コロナ性部材。
  6.  請求項1~5のいずれか1項に記載の耐コロナ性部材の成形に用いる耐コロナ性樹脂組成物。
  7.  樹脂組成物にマイカを添加することにより、該樹脂組成物を成形して得られる樹脂成形品の耐コロナ性を発現させる方法であって、
     成形後におけるマイカの、レーザー回折・散乱法で測定した体積基準の粒度分布におけるモード径が1~200μmとなるように前記マイカを添加する樹脂成形品の耐コロナ性発現方法。
PCT/JP2013/078852 2012-10-26 2013-10-24 耐コロナ性部材、耐コロナ性樹脂組成物及び樹脂成形品の耐コロナ性発現方法 WO2014065377A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014543349A JP6294829B2 (ja) 2012-10-26 2013-10-24 耐コロナ性部材、耐コロナ性樹脂組成物及び樹脂成形品の耐コロナ性発現方法
US14/437,710 US9695293B2 (en) 2012-10-26 2013-10-24 Corona-resistant member, corona-resistant resin composition, and method for developing corona resistance of resin molded article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-236807 2012-10-26
JP2012236807 2012-10-26

Publications (1)

Publication Number Publication Date
WO2014065377A1 true WO2014065377A1 (ja) 2014-05-01

Family

ID=50544749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/078852 WO2014065377A1 (ja) 2012-10-26 2013-10-24 耐コロナ性部材、耐コロナ性樹脂組成物及び樹脂成形品の耐コロナ性発現方法

Country Status (3)

Country Link
US (1) US9695293B2 (ja)
JP (1) JP6294829B2 (ja)
WO (1) WO2014065377A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015064499A1 (ja) * 2013-10-29 2015-05-07 ポリプラスチックス株式会社 耐コロナ性樹脂組成物、樹脂組成物の耐コロナ性発現方法及び耐コロナ性部材
JP2019182967A (ja) * 2018-04-06 2019-10-24 ポリプラスチックス株式会社 耐コロナ性ポリアリーレンスルフィド樹脂組成物、耐コロナ性部材、並びにポリアリーレンスルフィド樹脂組成物の耐コロナ性及び絶縁性の発現方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116144128A (zh) * 2023-01-10 2023-05-23 天蔚蓝电驱动科技(江苏)有限公司 耐电晕塑料基复合材料及其制备方法、耐电晕复合片材和电机定子

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4066604A (en) * 1976-10-28 1978-01-03 Standard Oil Company (Indiana) Branched polyphenylene-mica composites
JP2007254716A (ja) * 2006-02-27 2007-10-04 Toray Ind Inc 液晶性樹脂組成物およびそれからなる成形品
JP2008075049A (ja) * 2006-09-25 2008-04-03 Toray Ind Inc ポリフェニレンスルフィド樹脂組成物および成形品
WO2009104292A1 (ja) * 2008-02-18 2009-08-27 株式会社 東芝 耐部分放電性樹脂組成物の製造方法、耐部分放電性樹脂組成物、および耐部分放電性絶縁材料

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5979903A (ja) 1982-10-29 1984-05-09 大日本インキ化学工業株式会社 電気絶縁材料
JP3578288B2 (ja) * 1995-04-28 2004-10-20 出光石油化学株式会社 ポリアリーレンスルフィド樹脂組成物
JPH1153943A (ja) 1997-08-01 1999-02-26 Kureha Chem Ind Co Ltd ケーブル用部品
US5965273A (en) * 1997-01-31 1999-10-12 Hoechst Celanese Corporation Polymeric compositions having a temperature-stable dielectric constant
JP3969465B2 (ja) 1997-11-13 2007-09-05 株式会社クレハ 難着雪リング
WO2003034103A1 (fr) * 2001-10-12 2003-04-24 Daicel Chemical Industries, Ltd. Feuille de dosage de la lumiere et procede de fabrication de cette feuille
US7205354B2 (en) * 2003-09-04 2007-04-17 Asahi Kasei Kabushiki Kaisha Resin-made mechanical element with excellent heat resistance and dimensional precision for optical disk drive

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4066604A (en) * 1976-10-28 1978-01-03 Standard Oil Company (Indiana) Branched polyphenylene-mica composites
JP2007254716A (ja) * 2006-02-27 2007-10-04 Toray Ind Inc 液晶性樹脂組成物およびそれからなる成形品
JP2008075049A (ja) * 2006-09-25 2008-04-03 Toray Ind Inc ポリフェニレンスルフィド樹脂組成物および成形品
WO2009104292A1 (ja) * 2008-02-18 2009-08-27 株式会社 東芝 耐部分放電性樹脂組成物の製造方法、耐部分放電性樹脂組成物、および耐部分放電性絶縁材料

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015064499A1 (ja) * 2013-10-29 2015-05-07 ポリプラスチックス株式会社 耐コロナ性樹脂組成物、樹脂組成物の耐コロナ性発現方法及び耐コロナ性部材
US10017643B2 (en) 2013-10-29 2018-07-10 Polyplastics Co., Ltd. Corona-resistant resin composition, method for developing corona resistance of resin composition, and corona-resistant member
JP2019182967A (ja) * 2018-04-06 2019-10-24 ポリプラスチックス株式会社 耐コロナ性ポリアリーレンスルフィド樹脂組成物、耐コロナ性部材、並びにポリアリーレンスルフィド樹脂組成物の耐コロナ性及び絶縁性の発現方法

Also Published As

Publication number Publication date
US20150299420A1 (en) 2015-10-22
JPWO2014065377A1 (ja) 2016-09-08
JP6294829B2 (ja) 2018-03-14
US9695293B2 (en) 2017-07-04

Similar Documents

Publication Publication Date Title
JP6240688B2 (ja) 耐コロナ性樹脂組成物、樹脂組成物の耐コロナ性発現方法及び耐コロナ性部材
US20230250255A1 (en) Thermoplastic resin composition and member, and method of manufacturing member formed from thermoplastic resin composition and method of enhancing mechanical strength
JP7431970B2 (ja) 熱可塑性樹脂組成物、部材及びその製造方法、並びに熱可塑性樹脂組成物の導電性発現方法
JPH03296557A (ja) 高導電性ポリオキシメチレン系樹脂成形体
JP6294829B2 (ja) 耐コロナ性部材、耐コロナ性樹脂組成物及び樹脂成形品の耐コロナ性発現方法
WO2022004235A1 (ja) 熱可塑性樹脂組成物、部材及びその製造方法、並びに熱可塑性樹脂組成物の導電性発現方法
KR101276480B1 (ko) 내열성 전선용 수지 조성물 및 내열성 전선
WO2014065376A1 (ja) 耐コロナ性部材、耐コロナ性樹脂組成物及び樹脂成形品の耐コロナ性発現方法
JP6100983B1 (ja) ポリブチレンテレフタレート樹脂組成物
JP7025604B1 (ja) 樹脂組成物、成形品およびメッキ付成形品の製造方法
KR102201207B1 (ko) 폴리아릴렌 설파이드 수지 조성물
JP6751160B2 (ja) ポリアリーレンスルフィド樹脂成形品の耐コロナ性向上方法
JP2019182967A (ja) 耐コロナ性ポリアリーレンスルフィド樹脂組成物、耐コロナ性部材、並びにポリアリーレンスルフィド樹脂組成物の耐コロナ性及び絶縁性の発現方法
WO2017179706A1 (ja) 耐コロナ性樹脂組成物、樹脂組成物の耐コロナ性発現方法及び耐コロナ性部材
US20230242762A1 (en) Method of suppressing burr of polyarylene sulfide resin composition
JP2015081331A (ja) 樹脂組成物及びそれを用いた被覆材料
JP2022096861A (ja) ポリアリーレンサルファイド樹脂組成物
JP7126879B2 (ja) ガスバリア性部材用樹脂組成物
JP2020019861A (ja) ポリアミド樹脂組成物およびそれを含む成形品
US20220403159A1 (en) Thermoplastic Polymer Composition With Increased Electrical Tracking Resistance and Polymer Articles Made Therefrom
JP2005239972A (ja) 電離放射線架橋用ポリブチレンテレフタレート樹脂組成物
JP2007137983A (ja) 円筒形状部位保有成形品用ポリアリーレンサルファイド樹脂組成物
JP2014177617A (ja) 樹脂組成物及びそれを用いた被覆材料及び絶縁材
KR20130078773A (ko) 폴리에스터 수지 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13848239

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014543349

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14437710

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13848239

Country of ref document: EP

Kind code of ref document: A1