WO2014065349A1 - 広角レンズ - Google Patents

広角レンズ Download PDF

Info

Publication number
WO2014065349A1
WO2014065349A1 PCT/JP2013/078763 JP2013078763W WO2014065349A1 WO 2014065349 A1 WO2014065349 A1 WO 2014065349A1 JP 2013078763 W JP2013078763 W JP 2013078763W WO 2014065349 A1 WO2014065349 A1 WO 2014065349A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
cemented
plastic
lens group
wide
Prior art date
Application number
PCT/JP2013/078763
Other languages
English (en)
French (fr)
Inventor
小宮山忠史
Original Assignee
日本電産サンキョー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産サンキョー株式会社 filed Critical 日本電産サンキョー株式会社
Priority to EP13849165.9A priority Critical patent/EP2913696A4/en
Publication of WO2014065349A1 publication Critical patent/WO2014065349A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces

Definitions

  • the present invention relates to a wide-angle lens using a plastic lens.
  • ⁇ Wide angle and high resolution are required for lenses used in recent surveillance and in-vehicle applications.
  • a wide-angle lens it is necessary to correct the chromatic aberration of magnification in order to obtain a high resolution. Therefore, the chromatic aberration of magnification is corrected by forming a wide-angle lens by combining a plurality of lenses. For example, as shown in FIG. 8, a lens configuration in which the angle of view is widened with a lens configuration of five elements in four groups has been proposed (see Patent Document 1).
  • the wide-angle lens shown in FIG. 8 includes, in order from the object side (subject side / front side), a first lens group 11 having negative power, a second lens group 12 having negative power, and a third lens having positive power.
  • a lens group 13 and a fourth lens group 14 having positive power are included, and a diaphragm 91 is provided between the third lens group 13 and the fourth lens group 14.
  • An infrared filter 92 is disposed on the rear side of the fourth lens group 14 (on the side opposite to the image side / subject side).
  • the first lens group 11 includes a glass lens 81 having negative power
  • the lens 81 is a spherical lens in which the object side surface and the image side surface are spherical.
  • the second lens group 12 includes a plastic lens 82 having negative power, and both surfaces are aspherical.
  • the third lens group 13 includes a plastic lens 83 having a positive power, and both surfaces are aspheric.
  • the fourth lens group 14 is composed of a cemented lens of a plastic lens 84 having a negative power and a plastic lens 85 having a positive power. Both of the plastic lenses 84 and 85 are aspheric.
  • FIG. 9A a solid line L91 indicates an OTF (Optical Transfer Function) coefficient in the center of the lens, a dotted line L92 indicates an OTF coefficient in the radial direction of the lens peripheral portion, and an alternate long and short dash line L93 indicates the lens periphery.
  • OTF Optical Transfer Function
  • FIG. 9B collectively shows the condensing state of red light, green light, and blue light.
  • an object of the present invention is to provide a wide-angle lens that can improve the resolution while reducing the cost.
  • a wide-angle lens according to the present invention includes six or more plastic lenses, and the six or more plastic lenses include a first cemented lens in which aspheric surfaces of plastic lenses are bonded to each other. It is included.
  • the number of lenses is six or more to correct the lateral chromatic aberration by increasing the number of aspherical lenses, and the lateral chromatic aberration is reduced by using the first cemented lens in which the aspherical surfaces are cemented together. It has been corrected to increase the resolution.
  • all of the six or more lenses are made of plastic lenses for cost reduction. Therefore, both cost reduction and resolution improvement can be achieved.
  • the six or more plastic lenses further include a second cemented lens in which at least one of the object side and the image side is aspherical, and the first cemented lens.
  • the second cemented lens is preferably disposed on both sides of the diaphragm.
  • the wide-angle lens includes, in order from the object side, a first lens group having a negative power, a second lens group having a negative power, a third lens group having a positive power, and a positive lens.
  • a fourth lens group having a power and a fourth lens group has six lens groups, and a diaphragm is disposed between the third lens group and the fourth lens group.
  • the third lens group is a second cemented lens formed by cementing the spherical surfaces of two plastic lenses, and is configured such that at least one side other than the cemented surface is an aspherical surface. Can do. According to this configuration, the correction of the chromatic aberration of magnification can be shared by the two sets of cemented lenses, so that the chromatic aberration of magnification can be corrected more reliably. In addition, since the stop is disposed between the two sets of cemented lenses, astigmatism can be corrected efficiently.
  • the refractive index of the cemented plastic lens is symmetrical with respect to the stop.
  • the refractive index of the object side plastic lens in the second cemented lens is equal to the refractive index of the image side plastic lens in the first cemented lens, and the image side of the second cemented lens is in the image side.
  • the refractive index of the plastic lens is equal to the refractive index of the plastic lens on the object side in the first cemented lens, and the refractive index of the plastic lens on the image side in the first cemented lens and the plastic on the object side in the first cemented lens. It can be configured to be different from the refractive index of the lens.
  • the first and second cemented lenses are symmetrically arranged with respect to the diaphragm with respect to the nature of the material of the cemented plastic lens.
  • the same lens material is used for the object side plastic lens in the second cemented lens and the image side plastic lens in the first cemented lens, and the image side plastic lens in the second cemented lens is used.
  • the plastic lens and the object side plastic lens in the first cemented lens can be configured such that the same lens material is used.
  • the first cemented lens and the second cemented lens can adopt a configuration in which power is positive.
  • the image side surface of the plastic lens located closest to the object side among the six or more plastic lenses is an aspherical surface. According to such a configuration, it is possible to correct aberrations even with the lens located closest to the object side.
  • At least six of the six or more plastic lenses are aspheric on at least one of the object side and the image side. According to such a configuration, the lateral chromatic aberration can be reliably corrected.
  • the present invention is effective when applied when the angle of view is 130 ° or more.
  • the wide-angle lens of the present invention includes, in order from the object side, a first lens group having negative power, a second lens group having negative power, a third lens group having positive or negative power, and positive power. And a fifth lens group having a positive power and a fifth lens group having a positive power, and a stop is disposed between the fourth lens group and the fifth lens group.
  • the fifth lens group can be configured to be the first cemented lens. In this case as well, the same effects as in the case of a four-group six-lens configuration in which the third lens group and the fourth lens group are configured as the second cemented lens can be obtained.
  • the number of lenses is six or more to correct the lateral chromatic aberration by increasing the number of aspherical lenses, and the lateral chromatic aberration is reduced by using the first cemented lens in which the aspherical surfaces are cemented together. It has been corrected to increase the resolution.
  • all of the six or more lenses are made of plastic lenses for cost reduction. Therefore, both cost reduction and resolution improvement can be achieved.
  • the wide-angle lens to which the present invention is applied will be described with reference to the drawings.
  • the unit is mm unless otherwise specified.
  • the same reference numerals are given to corresponding portions so that the correspondence with the configuration described with reference to FIG. 8 is easily understood.
  • the description will be made as an “aspheric lens” regardless of whether the other side is a spherical surface or an aspheric surface.
  • the face numbers are indicated by parentheses attached to consecutive numbers.
  • FIG. 1 is an explanatory diagram of a wide-angle lens according to Embodiment 1 of the present invention
  • FIGS. 1A and 1B are a sectional view of a lens unit and an explanatory diagram of surface numbers.
  • the “*” added after the surface number indicates that the surface with “*” is an aspherical surface.
  • the lens unit of this embodiment includes a wide-angle lens 20 having an angle of view of 190 ° and a resin holder 90 that holds the wide-angle lens 20 inside.
  • the wide angle lens 20 includes four lens groups. More specifically, the wide-angle lens 20 has, in order from the object side (subject / front side), a first lens group 11 having a negative power, a second lens group 12 having a negative power, and a positive power. A third lens group 13 having a positive power and a fourth lens group 14 having a positive power, and a diaphragm 91 between the third lens group 13 and the fourth lens group 14. Further, the lens unit 1 has an infrared filter 92 on the rear side (image side / opposite side of the subject side) from the fourth lens group 14. A light shielding sheet 93 is disposed between the second lens group 12 and the third lens group 13.
  • the wide-angle lens 20 has a total of six lenses, and has a four-group six-lens configuration.
  • the wide-angle lens 20 has six plastic lenses. More specifically, the first lens group 11 includes a plastic lens 21 having a negative power, and the second lens group 12 includes a plastic lens 22 having a negative power.
  • the third lens group 13 includes a cemented lens of a plastic lens 23 having a positive power and a plastic lens 24 having a positive power, and the fourth lens group 14 includes a plastic lens 25 having a positive power and a negative power. It consists of a cemented lens with a plastic lens 26 having The two sets of cemented lenses (the third lens group 13 and the fourth lens group 14) are arranged on both sides of the diaphragm 91.
  • Each lens data and aspheric coefficient in the wide-angle lens 20 having such a configuration are as shown in Tables 1 and 2.
  • Table 1 shows the radius (Radius), thickness (Thickness), refractive index (Nd), Abbe number (Abbe number / ⁇ d), focal length as a single lens, and focal length as a cemented lens.
  • the second surface (2), the third surface (3), the fourth surface (4), the fifth surface (5), the seventh surface ( 7), the ninth surface (9), the tenth surface (10), and the eleventh surface (11) are aspherical in total.
  • the plastic lens 21 (first lens group 11) has a spherical surface on the object side and an aspheric surface on the image side.
  • the plastic lens 22 (second lens group 12) has an aspheric object side surface and an image side surface.
  • the object-side plastic lens 23 has an aspheric surface on the object side and a spherical surface on the image side.
  • the image side plastic lens 24 has a spherical surface on the object side and an aspheric surface on the image side. Therefore, the third lens group 13 is a cemented lens (second cemented lens) in which the spherical surface on the image side of the plastic lens 23 and the spherical surface on the object side of the plastic lens 24 are cemented.
  • the object-side plastic lens 25 has an aspheric surface on the object side and on the image side.
  • the image-side plastic lens 26 has an aspheric object-side surface and an image-side surface.
  • the fourth lens group 14 is a cemented lens (first cemented lens) in which the aspherical surface on the image side of the plastic lens 25 and the aspherical surface on the object side of the plastic lens 26 are cemented.
  • a lens material having a refractive index of 1.63552 is used for the plastic lens 23 on the object side located on the side opposite to the stop 91 side.
  • a lens material having a refractive index of 1.53157 is used for the plastic lens 24 on the image side located at the position.
  • a lens material having a refractive index of 1.63552 is used for the image-side plastic lens 26 located on the side opposite to the stop 91 side.
  • a lens material having a refractive index of 1.53157 is used for the plastic lens 25 on the object side located on the 91 side.
  • the magnitude relationship of the refractive indices of the cemented plastic lenses is symmetrical with the stop 91 interposed therebetween.
  • the refractive index of the object side plastic lens in the second cemented lens is equal to the refractive index of the image side plastic lens in the first cemented lens
  • the image side plastic lens of the second cemented lens has the same refractive index.
  • the refractive index is equal to the refractive index of the plastic lens on the object side in the first cemented lens.
  • the same lens material is used for the image side plastic lens 26, and the image side plastic lens 24 positioned on the diaphragm 91 side in the third lens group 13 and the lens 91 side on the fourth lens group 14.
  • the same lens material is used for the plastic lens 25 on the object side.
  • the same lens material is used for the object side plastic lens in the second cemented lens and the image side plastic lens in the first cemented lens, and the image side plastic lens in the second cemented lens and the first The same lens material is used for the plastic lens on the object side in the cemented lens.
  • the arrangement of the properties of the cemented plastic lens material is symmetric with respect to the stop 91.
  • FIG. 2 is an explanatory diagram showing characteristics of the wide-angle lens 20 according to Embodiment 1 of the present invention.
  • FIG. 3 is an explanatory diagram showing a spot diagram of the wide-angle lens 20 according to Embodiment 1 of the present invention.
  • a solid line L91 indicates an OTF (Optical Transfer Function) coefficient in the center of the lens
  • a dotted line L92 indicates an OTF coefficient in the radial direction of the lens periphery
  • a one-dot chain line L93 indicates the lens periphery.
  • the OTF coefficient in the concentric direction of the part is shown.
  • FIG. 2B collectively shows the condensing states of red light, green light, and blue light.
  • the number of lenses is six or more, so that the number of aspherical lenses is increased to correct lateral chromatic aberration and the fourth aspherical surface is joined.
  • the lens group 14 first cemented lens
  • the lateral chromatic aberration is corrected and the resolution is improved.
  • the image side surface of the first lens group 11 plastic lens 21 located closest to the object side is also an aspherical surface
  • aberration correction can also be performed by the first lens group 11.
  • all of the six plastic lenses are aspheric lenses, the lateral chromatic aberration can be reliably corrected. Therefore, as can be seen by comparing FIG. 2A and FIG.
  • the OTF coefficient in the defocus MTF characteristics, particularly in the radial direction of the lens periphery, is significantly improved. Can do. Therefore, as can be seen from a comparison between FIG. 2B and FIG. 9B, since any color light can be condensed well, it is possible to sufficiently cope with a resolution of 2M pixels or the like. . In addition, all six lenses are made of plastic lenses for cost reduction. Therefore, both cost reduction and resolution improvement can be achieved.
  • the six or more plastic lenses include a third lens group 13 (second cemented lens) in which aspheric plastic lenses are cemented together, and a fourth lens group 14 (first cemented lens) and a third lens group.
  • the lens group 13 (second cemented lens) is disposed on both sides of the diaphragm 91. For this reason, since the correction of the chromatic aberration of magnification can be shared by the two sets of cemented lenses, the chromatic aberration of magnification can be corrected more reliably. In addition, since the stop is disposed between the two sets of cemented lenses, astigmatism can be corrected efficiently.
  • FIG. 3 is an explanatory diagram of a wide-angle lens according to Embodiment 2 of the present invention.
  • the third lens group 13 is composed of a cemented lens of a plastic lens having a positive power and a plastic lens having a positive power.
  • the three lens group 13 is composed of a cemented lens of a plastic lens having a negative power and a plastic lens having a positive power.
  • the wide-angle lens 30 of this embodiment also has a lens configuration of 6 elements in 4 groups, and an angle of view is 190 °, as in the first embodiment. More specifically, the wide-angle lens 30 has, in order from the object side (subject side / front side), a first lens group 11 having a negative power, a second lens group 12 having a negative power, and a positive power. A third lens group 13 having a positive power and a fourth lens group 14 having a positive power, and a diaphragm 91 between the third lens group 13 and the fourth lens group 14.
  • the wide-angle lens 30 has a total of six plastic lenses. More specifically, the first lens group 11 includes a plastic lens 31 having a negative power, and the second lens group 12 includes a plastic lens 32 having a negative power.
  • the third lens group 13 is composed of a cemented lens of a plastic lens 33 having a negative power and a plastic lens 34 having a positive power, and the fourth lens group 14 is a plastic lens 35 having a negative power and a positive power. It consists of a cemented lens with a plastic lens 36 having The two sets of cemented lenses (the third lens group 13 and the fourth lens group 14) are arranged on both sides of the diaphragm 91.
  • Each lens data and aspheric coefficient in the wide-angle lens 30 having such a configuration are as shown in Tables 3 and 4.
  • the second surface (2), the third surface (3), the fourth surface (4), the fifth surface (5), the seventh surface ( 7), the ninth surface (9), the tenth surface (10), and the eleventh surface (11) are aspherical in total.
  • the plastic lens 31 (first lens group 11) has a spherical surface on the object side and an aspheric surface on the image side.
  • the plastic lens 32 (second lens group 12) has an aspheric object side surface and an image side surface.
  • the plastic lens 33 has an aspheric object side surface and a spherical image side surface.
  • the plastic lens 34 has a spherical surface on the object side and an aspheric surface on the image side.
  • the third lens group 13 is a cemented lens (second cemented lens) in which the image-side spherical surface of the plastic lens 33 and the object-side spherical surface of the plastic lens 34 are cemented.
  • the plastic lens 35 has an aspheric object side surface and an image side surface.
  • the plastic lens 36 has an aspheric surface on the object side and an image side.
  • the fourth lens group 14 is a cemented lens (first cemented lens) in which the aspherical surface on the image side of the plastic lens 35 and the aspherical surface on the object side of the plastic lens 36 are cemented.
  • the third lens group 13 that is, in the third lens group 13 (second cemented lens) disposed on the object side with respect to the diaphragm 91, on the side opposite to the diaphragm 91 side.
  • the refractive index of the plastic lens 33 positioned is smaller than the refractive index of the plastic lens 34 positioned on the stop 91 side
  • the fourth lens group 14 (first cemented lens) disposed on the image side with respect to the stop 91 also has
  • the refractive index of the plastic lens 36 located on the side opposite to the diaphragm 91 side is smaller than the refractive index of the plastic lens 35 located on the diaphragm 91 side.
  • the same lens material is used for 36, and the same lens is used for the plastic lens 34 located on the diaphragm 91 side in the third lens group 13 and the plastic lens 35 located on the diaphragm 91 side in the fourth lens group 14. Material is used.
  • the arrangement of the properties of the cemented plastic lens material is symmetric with respect to the stop 91.
  • the wide-angle lens 30 having such a configuration by increasing the number of lenses to six or more, the number of aspheric lenses is increased to correct lateral chromatic aberration, and the aspheric surfaces are joined.
  • the fourth lens group 14 first cemented lens
  • the configuration is the same as that of the first embodiment, such as correcting the lateral chromatic aberration and increasing the resolution. For this reason, the same effects as those of the first embodiment can be achieved, such as cost reduction and resolution improvement.
  • FIG. 4 is an explanatory diagram of a wide-angle lens according to Embodiment 3 of the present invention.
  • the lens configuration is 6 lenses in 4 groups, but in this embodiment, the lens configuration is 6 lenses in 5 groups.
  • the wide-angle lens 40 of this embodiment has a lens configuration of five groups and six lenses unlike the first embodiment, but the angle of view is 190 ° as in the first embodiment. It is.
  • the wide-angle lens 40 includes, in order from the object side (subject / front side), a first lens group 11 having a negative power, a second lens group 12 having a negative power, and a third lens group having a positive power. 13, a fourth lens group 14 having positive power, and a fifth lens group 15 having positive power, and a diaphragm 91 is provided between the fourth lens group 14 and the fifth lens group 15.
  • a diaphragm 91 is provided between the fourth lens group 14 and the fifth lens group 15.
  • the wide-angle lens 40 has a total of six plastic lenses. More specifically, the first lens group 11 includes a plastic lens 41 having a negative power, and the second lens group 12 includes a plastic lens 42 having a negative power.
  • the third lens group 13 is composed of a plastic lens 43 having a positive power
  • the fourth lens group 14 is composed of a plastic lens 44 having a positive power.
  • the fifth lens group 15 includes a cemented lens of a plastic lens 45 having a positive power and a plastic lens 46 having a negative power.
  • Each lens data and aspherical coefficient in the wide-angle lens 40 having such a configuration are as shown in Table 5 and Table 6.
  • the second surface (2), the third surface (3), the fourth surface (4), the fifth surface (5), the eighth surface ( 8) The tenth surface (10), the eleventh surface (11), and the twelfth surface (12) are aspherical in total.
  • the plastic lens 41 (first lens group 11) has a spherical surface on the object side and an aspheric surface on the image side.
  • the plastic lens 42 (second lens group 12) has an aspheric object side surface and an image side surface.
  • the plastic lens 43 (third lens group 13) has an aspheric object side surface and a spherical image side surface.
  • the plastic lens 44 (fourth lens group 14) has a spherical surface on the object side and an aspheric surface on the image side.
  • the plastic lens 45 has an aspheric object side surface and an image side surface.
  • the plastic lens 46 has an aspheric object side surface and an image side surface. Therefore, the fifth lens group 15 is a cemented lens (first cemented lens) in which the aspherical surface on the image side of the plastic lens 45 and the aspherical surface on the object side of the plastic lens 46 are cemented.
  • a lens material having a refractive index of 1.63552 is used for the plastic lens 43 (third lens group 13) located on the side opposite to the stop 91 side.
  • a lens material having a refractive index of 1.53157 is used for the plastic lens 44 (fourth lens group 14) located on the diaphragm 91 side.
  • a lens material having a refractive index of 1.63552 is used for the image-side plastic lens 46 located on the side opposite to the stop 91 side.
  • a lens material having a refractive index of 1.53157 is used for the plastic lens 45 on the object side located on the 91 side.
  • the magnitude relationship of the refractive index of the plastic lens is symmetric with respect to the stop 91. That is, the refractive index of the plastic lens in the third lens group is equal to the refractive index of the plastic lens on the image side in the first cemented lens, and the refractive index of the plastic lens in the fourth lens group and the object in the first cemented lens.
  • the refractive index of the side plastic lens is set equal.
  • the same lens material is used for the plastic lens of the third lens group and the image side plastic lens of the first cemented lens, and the plastic lens of the fourth lens group and the first cemented lens are used. The same lens material is used for the plastic lens on the object side in the lens.
  • the wide-angle lens 40 having such a configuration by increasing the number of lenses to six or more, the number of aspheric lenses is increased to correct lateral chromatic aberration, and the aspheric surfaces are joined.
  • the fifth lens group 15 first cemented lens
  • it has the same configuration as in the first embodiment, such as correcting the lateral chromatic aberration and increasing the resolution. For this reason, there are substantially the same effects as those of the first embodiment, such as reduction in cost and improvement in resolution.
  • FIG. 5 is an explanatory diagram of a wide-angle lens according to Embodiment 4 of the present invention.
  • the lens configuration includes four groups and six lenses.
  • the lens configuration includes five groups and six lenses.
  • the wide-angle lens 50 of this embodiment has a lens configuration of 6 elements in 5 groups unlike the first embodiment, but the angle of view is 190 ° as in the first embodiment. It is. More specifically, the wide-angle lens 50 has, in order from the object side (subject side / front side), a first lens group 11 having a negative power, a second lens group 12 having a negative power, and a negative power. A third lens group 13, a fourth lens group 14 having a positive power, and a fifth lens group 15 having a positive power, and the fourth lens group 14 and the fifth lens group 15. A diaphragm 91 is provided between them.
  • the wide-angle lens 50 has a total of six plastic lenses. More specifically, the first lens group 11 includes a plastic lens 51 having negative power, and the second lens group 12 includes a plastic lens 52 having negative power.
  • the third lens group 13 is composed of a plastic lens 53 having negative power
  • the fourth lens group 14 is composed of a plastic lens 54 having positive power.
  • the fifth lens group 15 is composed of a cemented lens of a plastic lens 55 having negative power and a plastic lens 56 having positive power.
  • Table 7 and Table 8 show the lens data and aspherical coefficients of the wide-angle lens 50 having such a configuration.
  • the second surface (2), the third surface (3), the fourth surface (4), the fifth surface (5), the eighth surface ( 8) The tenth surface (10), the eleventh surface (11), and the twelfth surface (12) are aspherical in total.
  • the plastic lens 51 (first lens group 11) has a spherical surface on the object side and an aspheric surface on the image side.
  • the plastic lens 52 (second lens group 12) has an aspheric object side surface and an image side surface.
  • the plastic lens 53 (third lens group 13) has an aspheric object side surface and a spherical image side surface.
  • the plastic lens 54 (fourth lens group 14) has a spherical surface on the object side and an aspheric surface on the image side.
  • the plastic lens 55 has an aspheric object side surface and an image side surface.
  • the plastic lens 56 is aspheric on the object side surface and the image side surface. Therefore, the fifth lens group 15 is a cemented lens (first cemented lens) in which the aspherical surface on the image side of the plastic lens 55 and the aspherical surface on the object side of the plastic lens 56 are cemented.
  • a lens material having a refractive index of 1.53157 is used for the plastic lens 53 (third lens group 13) located on the side opposite to the stop 91 side.
  • a lens material having a refractive index of 1.58305 is used for the plastic lens 54 (fourth lens group 14) located on the diaphragm 91 side.
  • the fifth lens group 15 first cemented lens
  • a lens material having a refractive index of 1.53157 is used for the image-side plastic lens 56 located on the side opposite to the stop 91 side.
  • a lens material having a refractive index of 1.63281 is used for the plastic lens 55 on the object side located on the 91 side.
  • the magnitude relationship of the refractive index of the plastic lens is symmetric with respect to the stop 91.
  • the wide-angle lens 50 having such a configuration by increasing the number of lenses to six or more, the number of aspheric lenses is increased to correct lateral chromatic aberration, and the aspheric surfaces are joined to each other.
  • the fifth lens group 15 first cemented lens
  • it has the same configuration as in the first embodiment, such as correcting the lateral chromatic aberration and increasing the resolution. For this reason, there are substantially the same effects as those of the first embodiment, such as reduction in cost and improvement in resolution.
  • FIG. 6 is an explanatory diagram of a wide-angle lens according to Embodiment 5 of the present invention.
  • the angle of view is 190 °.
  • the angle of view is 150 ° as described below.
  • the wide-angle lens 60 of this embodiment also has a four-group six-lens configuration as in the first embodiment. More specifically, the wide-angle lens 60 has, in order from the object side (subject side / front side), a first lens group 11 having a negative power, a second lens group 12 having a negative power, and a positive power. A third lens group 13 having a positive power and a fourth lens group 14 having a positive power, and a diaphragm 91 between the third lens group 13 and the fourth lens group 14.
  • the wide-angle lens 60 has a total of six plastic lenses. More specifically, the first lens group 11 includes a plastic lens 61 having negative power, and the second lens group 12 includes a plastic lens 62 having negative power.
  • the third lens group 13 includes a cemented lens of a plastic lens 63 having a positive power and a plastic lens 64 having a positive power.
  • the fourth lens group 14 includes a plastic lens 65 having a positive power and a negative power. It consists of a cemented lens with a plastic lens 66 having The two sets of cemented lenses (the third lens group 13 and the fourth lens group 14) are arranged on both sides of the diaphragm 91.
  • Table 9 and Table 10 show the lens data and aspherical coefficients of the wide-angle lens 60 having such a configuration.
  • the second surface (2), the third surface (3), the fourth surface (4), the fifth surface (5), the seventh surface ( 7), the ninth surface (9), the tenth surface (10), and the eleventh surface (11) are aspherical in total.
  • the plastic lens 61 (first lens group 11) has a spherical surface on the object side and an aspheric surface on the image side.
  • the plastic lens 62 (second lens group 12) has an aspheric object side surface and an image side surface.
  • the plastic lens 63 has an aspheric surface on the object side and a spherical surface on the image side.
  • the plastic lens 64 has a spherical surface on the object side and an aspheric surface on the image side. Therefore, the third lens group 13 is a cemented lens (second cemented lens) in which the image-side spherical surface of the plastic lens 63 and the object-side spherical surface of the plastic lens 64 are cemented.
  • the plastic lens 65 has an aspheric object side surface and an image side surface.
  • the plastic lens 66 is aspheric on the object side surface and the image side surface. Therefore, the fourth lens group 14 is a cemented lens (first cemented lens) in which the image-side aspheric surface of the plastic lens 65 and the object-side aspheric surface of the plastic lens 66 are cemented.
  • a lens material having a refractive index of 1.63551 is used for the plastic lens 63 located on the side opposite to the diaphragm 91 side, and located on the diaphragm 91 side.
  • a lens material having a refractive index of 1.53157 is used for the plastic lens 64.
  • a lens material having a refractive index of 1.63551 is used for the plastic lens 66 located on the side opposite to the stop 91 side.
  • a lens material having a refractive index of 1.53157 is used for the plastic lens 65 positioned.
  • the magnitude relationship of the refractive indices of the cemented plastic lenses is symmetrical with the stop 91 interposed therebetween.
  • the plastic lens 63 positioned on the side opposite to the stop 91 side
  • the plastic lens positioned on the side opposite to the stop 91 side in the third lens group 13, the plastic lens 63 positioned on the side opposite to the stop 91 side, and in the fourth lens group 14, the plastic lens positioned on the side opposite to the stop 91 side.
  • the same lens material is used for 66, and the same lens is used for the plastic lens 64 located on the diaphragm 91 side in the third lens group 13 and the plastic lens 65 located on the diaphragm 91 side in the fourth lens group 14. Material is used.
  • the arrangement of the properties of the cemented plastic lens material is symmetric with respect to the stop 91.
  • the wide-angle lens 60 having such a configuration by increasing the number of lenses to six or more, the number of aspheric lenses is increased to correct lateral chromatic aberration, and the aspheric surfaces are joined to each other.
  • the fourth lens group 14 first cemented lens
  • the configuration is the same as that of the first embodiment, such as correcting the lateral chromatic aberration and increasing the resolution. For this reason, the same effects as those of the first embodiment can be achieved, such as cost reduction and resolution improvement.
  • FIG. 7 is an explanatory diagram of a wide-angle lens according to Embodiment 6 of the present invention.
  • the field angle is 190 °
  • the field angle is 150 °
  • the field angle is 130 ° as described below.
  • the wide-angle lens 70 of this embodiment also has a four-group, six-lens configuration as in the first embodiment. More specifically, the wide-angle lens 70 has, in order from the object side (subject side / front side), a first lens group 11 having a negative power, a second lens group 12 having a negative power, and a positive power. A third lens group 13 having a positive power and a fourth lens group 14 having a positive power, and a diaphragm 91 between the third lens group 13 and the fourth lens group 14.
  • the wide-angle lens 70 has a total of six plastic lenses. More specifically, the first lens group 11 includes a plastic lens 71 having negative power, and the second lens group 12 includes a plastic lens 72 having negative power.
  • the third lens group 13 includes a cemented lens of a plastic lens 73 having a positive power and a plastic lens 74 having a positive power, and the fourth lens group 14 includes a plastic lens 75 having a positive power and a negative power. It consists of a cemented lens with a plastic lens 76 having The two sets of cemented lenses (the third lens group 13 and the fourth lens group 14) are arranged on both sides of the diaphragm 91.
  • Table 11 and Table 12 show the lens data and aspherical coefficients of the wide-angle lens 70 having such a configuration.
  • the second surface (2), the third surface (3), the fourth surface (4), the fifth surface (5), the seventh surface ( 7), the ninth surface (9), the tenth surface (10), and the eleventh surface (11) are aspherical in total.
  • the plastic lens 71 (first lens group 11) has a spherical surface on the object side and an aspheric surface on the image side.
  • the plastic lens 72 (second lens group 12) has an aspheric object side surface and an image side surface.
  • the plastic lens 73 has an aspheric object side surface and a spherical image side surface.
  • the plastic lens 74 has a spherical surface on the object side and an aspheric surface on the image side. Therefore, the third lens group 13 is a cemented lens (second cemented lens) in which the spherical surface on the image side of the plastic lens 73 and the spherical surface on the object side of the plastic lens 74 are cemented.
  • the plastic lens 75 has an aspheric object side surface and an image side surface.
  • the plastic lens 76 has an aspheric object side surface and an image side surface. Therefore, the fourth lens group 14 is a cemented lens (first cemented lens) in which the aspherical surface on the image side of the plastic lens 75 and the aspherical surface on the object side of the plastic lens 76 are cemented.
  • a lens material having a refractive index of 1.63551 is used for the plastic lens 73 located on the side opposite to the stop 91 side, and located on the stop 91 side.
  • the plastic lens 74 is made of a lens material having a refractive index of 1.53157.
  • a lens material having a refractive index of 1.63551 is used for the plastic lens 76 located on the side opposite to the stop 91 side.
  • a lens material having a refractive index of 1.53157 is used for the plastic lens 75 positioned.
  • the magnitude relationship of the refractive indices of the cemented plastic lenses is symmetrical with the stop 91 interposed therebetween.
  • a plastic lens 73 positioned on the side opposite to the stop 91 side
  • a plastic lens positioned on the side opposite to the stop 91 side.
  • the same lens material is used for 76, and the same lens is used for the plastic lens 74 located on the diaphragm 91 side in the third lens group 13 and the plastic lens 75 located on the diaphragm 91 side in the fourth lens group 14. Material is used.
  • the arrangement of the properties of the cemented plastic lens material is symmetric with respect to the stop 91.
  • the wide-angle lens 70 having such a configuration by increasing the number of lenses to six or more, the number of aspheric lenses is increased to correct lateral chromatic aberration, and the aspheric surfaces are joined to each other.
  • the fourth lens group 14 first cemented lens
  • the configuration is the same as that of the first embodiment, such as correcting the lateral chromatic aberration and increasing the resolution. For this reason, the same effects as those of the first embodiment can be achieved, such as cost reduction and resolution improvement.
  • the second cemented lens used as the third lens group 13 in the first embodiment has the spherical surfaces joined together, but a configuration in which aspherical surfaces are joined may be adopted.
  • six plastic lenses are used.
  • the present invention is applied to a case where seven or more plastics are used, or a wide-angle lens using a combination of six plastic lenses and a glass lens. Also good.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

 低コスト化を図りながら解像度を向上させることのできる広角レンズを提供すること。広角レンズ20は、4群6枚のレンズ構成を有しており、6枚のレンズは各々、物体側および像側の少なくとも一方が非球面のプラスチックレンズである。6枚のレンズには、非球面同士が接合された第4レンズ群14(第1接合レンズ)が含まれている。また、第4レンズ群14に対して絞り91を挟む反対側には非球面のプラスチックレンズ同士が接合された第3レンズ群13(第2接合レンズ)が含まれている。第4レンズ群14(第1接合レンズ)と第3レンズ群13(第2接合レンズ)とでは、接合されたプラスチックレンズの屈折率の大小関係が絞り91を挟んで対称である。

Description

広角レンズ
 本発明は、プラスチックレンズを用いた広角レンズに関するものである。
 最近の監視用途や車載用途で使用されるレンズには、広角および高解像度が要求されている。かかる広角レンズにおいて、高解像度を得るには倍率色収差を補正する必要があるため、複数枚のレンズを組み合わせて広角レンズを構成することにより、倍率色収差補正をしている。例えば、図8に示すように、4群5枚のレンズ構成で画角を広げたものが提案されている(特許文献1参照)。
 図8に示す広角レンズは、物体側(被写体側/前側)から順に、負のパワーを持つ第1レンズ群11と、負のパワーを持つ第2レンズ群12と、正のパワーを有する第3レンズ群13と、正のパワーを有する第4レンズ群14とを有しており、第3レンズ群13と第4レンズ群14との間に絞り91を有している。なお、第4レンズ群14の後側(像側/被写体側とは反対側)には赤外線フィルタ92が配置されている。ここで、第1レンズ群11は、負のパワーをもつガラスレンズ81からなり、かかるレンズ81は、物体側の面および像側の面が球面になっている球面レンズである。第2レンズ群12は、負のパワーをもつプラスチックレンズ82からなり、両面が非球面である。第3レンズ群13は、正のパワーをもつプラスチックレンズ83からなり、両面が非球面である。第4レンズ群14は、負のパワーをもつプラスチックレンズ84と正のパワーをもつプラスチックレンズ85との接合レンズからなり、プラスチックレンズ84、85はいずれも両面が非球面である。
特開2009-63877号公報
 しかしながら、広角レンズの低コスト化を図りながら解像度をさらに高めようとしても、図8に示す構成では、倍率色収差を十分に補正できない。より具体的には、図9(a)に示す広角レンズのデフォーカスMTF(Modulation Transfer Function)特性、および図9(b)に示す広角レンズのスポットダイアグラムからわかるように、2Mピクセル等に対応できるような高解像度を得ることができない。なお、図9(a)において、実線L91は、レンズ中心部におけるOTF(Optical Transfer Function)係数を示し、点線L92は、レンズ周辺部の放射方向におけるOTF係数を示し、一点鎖線L93は、レンズ周辺部の同心円方向におけるOTF係数を示している。また、図9(b)には、赤色光、緑色光および青色光における集光状態をまとめて表してある。
 以上の問題点に鑑みて、本発明の課題は、低コスト化を図りながら解像度を向上させることのできる広角レンズを提供することにある。
 上記課題を解決するために、本発明に係る広角レンズは、6枚以上のプラスチックレンズを備え、前記6枚以上のプラスチックレンズには、プラスチックレンズの非球面同士が接合された第1接合レンズが含まれていることを特徴とする。
 本発明では、レンズの枚数を6枚以上とすることにより、非球面レンズの数を増やして倍率色収差を補正するとともに、非球面同士が接合された第1接合レンズを用いることにより、倍率色収差を補正して解像度を高めてある。また、6枚以上のレンズをいずれもプラスチックレンズとして低コスト化を図ってある。このため、低コスト化、および解像度の向上の双方を図ることができる。
 本発明において、前記6枚以上のプラスチックレンズには、さらに、物体側および像側のうちの少なくとも一方が非球面のプラスチックレンズ同士が接合された第2接合レンズが含まれ、前記第1接合レンズと前記第2接合レンズは、絞りを挟む両側に配置されていることが好ましい。具体的には、前記広角レンズは、物体側から順に、負のパワーを持つ第1レンズ群と、負のパワーを持つ第2レンズ群と、正のパワーを有する第3レンズ群と、正のパワーを有する第4レンズ群とからなる4群6枚のレンズ構成を有し、前記第3レンズ群と第4レンズ群との間には絞りが配置され、前記第4レンズ群は、前記第1接合レンズであり、前記第3レンズ群は、2枚のプラスチックレンズの球面同士を接合してなる第2接合レンズであり、接合面以外の少なくとも一方側は非球面であるように構成することができる。かかる構成によれば、倍率色収差の補正を2組の接合レンズで分担することができるので、倍率色収差をより確実に補正することができる。また、2組の接合レンズの間に絞りが配置されているので、非点収差を効率よく補正することができる。
 本発明において、接合されたプラスチックレンズの屈折率の大小関係が前記絞りを挟んで対称であることが好ましい。具体的には、前記第2接合レンズにおける物体側のプラスチックレンズの屈折率と、前記第1接合レンズにおける像側のプラスチックレンズの屈折率とは等しく、且つ、前記第2接合レンズにおける像側のプラスチックレンズの屈折率と、前記第1接合レンズにおける物体側のプラスチックレンズの屈折率とは等しく、前記第1接合レンズにおける像側のプラスチックレンズの屈折率と前記第1接合レンズにおける物体側のプラスチックレンズの屈折率とは異なるように構成することができる。
 本発明において、前記第1接合レンズと前記第2接合レンズとでは、接合されたプラスチックレンズの材料のもっている性質の配置が前記絞りを挟んで対称であることが好ましい。具体的には、前記第2接合レンズにおける物体側のプラスチックレンズと、前記第1接合レンズにおける像側のプラスチックレンズとは同一のレンズ材料が用いられ、且つ、前記第2接合レンズにおける像側のプラスチックレンズと、前記第1接合レンズにおける物体側のプラスチックレンズとは同一のレンズ材料が用いられているように構成することができる。
 本発明において、前記第1接合レンズおよび前記第2接合レンズはパワーが正である構成を採用することができる。
 本発明において、前記6枚以上のプラスチックレンズのうち、最も物体側に位置するプラスチックレンズの像側の面が非球面であることが好ましい。かかる構成によれば、最も物体側に位置するレンズによっても収差の補正を行うことができる。
 本発明において、前記6枚以上のプラスチックレンズのうち、少なくとも6枚のプラスチックレンズは各々、物体側および像側のうちの少なくとも一方側が非球面であることが好ましい。かかる構成によれば、倍率色収差の補正を確実に行うことができる。
 本発明は、画角が130°以上である場合に適用すると効果的である。
本発明の広角レンズは、物体側から順に、負のパワーを持つ第1レンズ群と、負のパワーを持つ第2レンズ群と、正または負のパワーを有する第3レンズ群と、正のパワーを有する第4レンズ群と、正のパワーを有する第5レンズ群とからなる5群6枚のレンズ構成を有し、前記第4レンズ群と第5レンズ群との間には絞りが配置され、前記第5レンズ群が前記第1接合レンズであるように構成することができる。この場合も、第3レンズ群と第4レンズ群とを前記第2接合レンズとして構成した4群6枚のレンズ構成の場合と同様の効果を奏することができる。
 本発明では、レンズの枚数を6枚以上とすることにより、非球面レンズの数を増やして倍率色収差を補正するとともに、非球面同士が接合された第1接合レンズを用いることにより、倍率色収差を補正して解像度を高めてある。また、6枚以上のレンズをいずれもプラスチックレンズとして低コスト化を図ってある。このため、低コスト化、および解像度の向上の双方を図ることができる。
本発明の実施の形態1に係る広角レンズの説明図である。 本発明の実施の形態1に係る広角レンズの特性を示す説明図である。 本発明の実施の形態2に係る広角レンズの説明図である。 本発明の実施の形態3に係る広角レンズの説明図である。 本発明の実施の形態4に係る広角レンズの説明図である。 本発明の実施の形態5に係る広角レンズの説明図である。 本発明の実施の形態6に係る広角レンズの説明図である。 従来の広角レンズの説明図である。 従来の広角レンズの特性を示す説明図である。
20、30、40、50、60、70 広角レンズ
11 第1レンズ群
12 第2レンズ群
13 第3レンズ群
14 第4レンズ群
15 第5レンズ群
91 絞り
 図面を参照して、本発明を適用した広角レンズを説明する。なお、以下の説明においては、特別な指示がない限り、その単位はmmである。また、以下の説明においては、図8を参照して説明した構成との対応が分かりやすいように、対応する部分には同一の符号を付してある。さらに、以下の説明においては、物体側および像側のうちの少なくとも一方側が非球面であれば、他方側が球面であるか非球面であるかにかかわらず、「非球面レンズ」として説明する。また、面番号には、連続した番号にかっこを付して示してある。
 [実施の形態1]
 (レンズユニットの構成)
 図1は、本発明の実施の形態1に係る広角レンズの説明図であり、図1(a)、(b)は、レンズユニットの断面図、および面番号の説明図である。なお、図1(b)では、面番号の後ろに付した「*」は、「*」が付された面が非球面であることを示す。
 図1に示すように、本形態のレンズユニットは、画角が190°の広角レンズ20と、広角レンズ20を内側に保持する樹脂製のホルダ90とを有している。本形態において、広角レンズ20は、4群のレンズ群を備えている。より具体的には、広角レンズ20は、物体側(被写体側/前側)から順に、負のパワーを持つ第1レンズ群11と、負のパワーを持つ第2レンズ群12と、正のパワーを有する第3レンズ群13と、正のパワーを有する第4レンズ群14とを有しており、第3レンズ群13と第4レンズ群14との間に絞り91を有している。また、レンズユニット1は、第4レンズ群14より後側(像側/被写体側とは反対側)に赤外線フィルタ92を有している。また、第2レンズ群12と第3レンズ群13との間には遮光シート93が配置されている。
 ここで、広角レンズ20は計6枚のレンズを有しており、4群6枚のレンズ構成を有している。また、広角レンズ20は6枚のプラスチックレンズを有している。より具体的には、第1レンズ群11は、負のパワーをもつプラスチックレンズ21からなり、第2レンズ群12は、負のパワーをもつプラスチックレンズ22からなる。第3レンズ群13は、正のパワーをもつプラスチックレンズ23と正のパワーをもつプラスチックレンズ24との接合レンズからなり、第4レンズ群14は、正のパワーをもつプラスチックレンズ25と負のパワーをもつプラスチックレンズ26との接合レンズからなる。かかる2組の接合レンズ(第3レンズ群13および第4レンズ群14)は、絞り91を挟む両側に配置されている。
 かかる構成の広角レンズ20における各レンズデータおよび非球面係数は、表1および表2に示す通りである。表1には、各面の半径(Radius)、厚さ(Thickness)、屈折率(Nd)、アッベ数(Abbe数/νd)、単レンズとしての焦点距離、接合レンズとしての焦点距離が示されている。なお、表2に示す非球面係数は、下記の非球面関数
  X=(1/R)Y2/〔1+√{1-(K+1)(1/R)22}〕
     +AY4+BY6+CY8
における各係数K、A、B、Cに相当する。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1および表2から分かるように、本形態の広角レンズ20において、第2面(2)、第3面(3)、第4面(4)、第5面(5)、第7面(7)、第9面(9)、第10面(10)、および第11面(11)の計8面が非球面である。
 すなわち、プラスチックレンズ21(第1レンズ群11)は、物体側の面が球面であり、像側の面が非球面である。プラスチックレンズ22(第2レンズ群12)は、物体側の面および像側の面が非球面である。
 第3レンズ群13において、物体側のプラスチックレンズ23は、物体側の面が非球面であり、像側の面が球面である。像側のプラスチックレンズ24は、物体側の面が球面であり、像側の面が非球面である。このため、第3レンズ群13は、プラスチックレンズ23の像側の球面とプラスチックレンズ24の物体側の球面とが接合された接合レンズ(第2接合レンズ)である。
 第4レンズ群14において、物体側のプラスチックレンズ25は、物体側の面および像側の面が非球面である。像側のプラスチックレンズ26は、物体側の面および像側の面が非球面である。このため、第4レンズ群14は、プラスチックレンズ25の像側の非球面とプラスチックレンズ26の物体側の非球面とが接合された接合レンズ(第1接合レンズ)である。
 ここで、第3レンズ群13(第2接合レンズ)において、絞り91側とは反対側に位置する物体側のプラスチックレンズ23には屈折率が1.63552のレンズ材料が用いられ、絞り91側に位置する像側のプラスチックレンズ24には屈折率が1.53157のレンズ材料が用いられている。これに対して、第4レンズ群14(第1接合レンズ)において、絞り91側とは反対側に位置する像側のプラスチックレンズ26には屈折率が1.63552のレンズ材料が用いられ、絞り91側に位置する物体側のプラスチックレンズ25には屈折率が1.53157のレンズ材料が用いられている。このため、2組の接合レンズ(第3レンズ群13および第4レンズ群14)では、接合されたプラスチックレンズの屈折率の大小関係が絞り91を挟んで対称である。具体的には、第2接合レンズにおける物体側のプラスチックレンズの屈折率と、第1接合レンズにおける像側のプラスチックレンズの屈折率とは等しく、且つ、第2接合レンズにおける像側のプラスチックレンズの屈折率と、第1接合レンズにおける物体側のプラスチックレンズの屈折率とは等しくなっている。かかる構成を実現するにあたって、本形態では、第3レンズ群13において絞り91側とは反対側に位置する物体側のプラスチックレンズ23と、第4レンズ群14において絞り91側とは反対側に位置する像側のプラスチックレンズ26とには同一のレンズ材料が用いられ、第3レンズ群13において絞り91側に位置する像側のプラスチックレンズ24と、第4レンズ群14において絞り91側に位置する物体側のプラスチックレンズ25とには同一のレンズ材料が用いられている。即ち、第2接合レンズにおける物体側のプラスチックレンズと、第1接合レンズにおける像側のプラスチックレンズとは同一のレンズ材料が用いられ、且つ、第2接合レンズにおける像側のプラスチックレンズと、第1接合レンズにおける物体側のプラスチックレンズとは同一のレンズ材料が用いられている。このため、2組の接合レンズ(第3レンズ群13および第4レンズ群14)では、接合されたプラスチックレンズの材料のもっている性質の配置が絞り91を挟んで対称である。
 (広角レンズ20の解像特性、および本形態の主な効果)
 図2は、本発明の実施の形態1に係る広角レンズ20の特性を示す説明図である。図3は、本発明の実施の形態1に係る広角レンズ20のスポットダイアグラムを示す説明図である。なお、図2(a)において、実線L91は、レンズ中心部におけるOTF(Optical Transfer Function)係数を示し、点線L92は、レンズ周辺部の放射方向におけるOTF係数を示し、一点鎖線L93は、レンズ周辺部の同心円方向におけるOTF係数を示している。また、図2(b)には、赤色光、緑色光および青色光における集光状態をまとめて示してある。
 以上説明したように、本形態の広角レンズ20では、レンズの枚数を6枚以上とすることにより、非球面レンズの数を増やして倍率色収差を補正するとともに、非球面同士が接合された第4レンズ群14(第1接合レンズ)を用いることにより、倍率色収差を補正して解像度を高めてある。また、最も物体側に位置する第1レンズ群11(プラスチックレンズ21)の像側の面も非球面であるため、かかる第1レンズ群11によっても収差の補正を行うことができる。しかも、6枚のプラスチックレンズのいずれもが非球面レンズであるため、倍率色収差の補正を確実に行うことができる。それ故、図2(a)と図9(a)とを比較すれば分かるように、本形態によれば、デフォーカスMTF特性において、特にレンズ周辺部の放射方向におけるOTF係数を著しく向上することができる。従って、図2(b)と図9(b)とを比較すれば分かるように、いずれの色光においても良好に集光することができるので、2Mピクセル等の解像度にも十分対応することができる。また、6枚のレンズをいずれもプラスチックレンズとして低コスト化を図ってある。このため、低コスト化、および解像度の向上の双方を図ることができる。
 また、6枚以上のプラスチックレンズには、非球面のプラスチックレンズ同士が接合された第3レンズ群13(第2接合レンズ)が含まれ、第4レンズ群14(第1接合レンズ)と第3レンズ群13(第2接合レンズ)とは、絞り91を挟む両側に配置されている。このため、倍率色収差の補正を2組の接合レンズで分担することができるので、倍率色収差をより確実に補正することができる。また、2組の接合レンズの間に絞りが配置されているので、非点収差を効率よく補正することができる。
 [実施の形態2]
 図3は、本発明の実施の形態2に係る広角レンズの説明図である。実施の形態1では、第3レンズ群13が、正のパワーをもつプラスチックレンズと正のパワーをもつプラスチックレンズとの接合レンズからなっていたが、本形態では、以下に説明するように、第3レンズ群13が、負のパワーをもつプラスチックレンズと正のパワーをもつプラスチックレンズとの接合レンズからなっている。
 図3に示すように、本形態の広角レンズ30も、実施の形態1と同様、4群6枚のレンズ構成を有しており、画角が190°である。より具体的には、広角レンズ30は、物体側(被写体側/前側)から順に、負のパワーを持つ第1レンズ群11と、負のパワーを持つ第2レンズ群12と、正のパワーを有する第3レンズ群13と、正のパワーを有する第4レンズ群14とを有しており、第3レンズ群13と第4レンズ群14との間に絞り91を有している。
 ここで、広角レンズ30は計6枚のプラスチックレンズを有している。より具体的には、第1レンズ群11は、負のパワーをもつプラスチックレンズ31からなり、第2レンズ群12は、負のパワーをもつプラスチックレンズ32からなる。第3レンズ群13は、負のパワーをもつプラスチックレンズ33と正のパワーをもつプラスチックレンズ34との接合レンズからなり、第4レンズ群14は、負のパワーをもつプラスチックレンズ35と正のパワーをもつプラスチックレンズ36との接合レンズからなる。かかる2組の接合レンズ(第3レンズ群13および第4レンズ群14)は、絞り91を挟む両側に配置されている。
 かかる構成の広角レンズ30における各レンズデータおよび非球面係数は、表3および表4に示す通りである。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表3および表4から分かるように、本形態の広角レンズ30において、第2面(2)、第3面(3)、第4面(4)、第5面(5)、第7面(7)、第9面(9)、第10面(10)、および第11面(11)の計8面が非球面である。
 すなわち、プラスチックレンズ31(第1レンズ群11)は、物体側の面が球面であり、像側の面が非球面である。プラスチックレンズ32(第2レンズ群12)は、物体側の面および像側の面が非球面である。
 第3レンズ群13において、プラスチックレンズ33は、物体側の面が非球面であり、像側の面が球面である。プラスチックレンズ34は、物体側の面が球面であり、像側の面が非球面である。このため、第3レンズ群13は、プラスチックレンズ33の像側の球面とプラスチックレンズ34の物体側の球面とが接合された接合レンズ(第2接合レンズ)である。
 第4レンズ群14において、プラスチックレンズ35は、物体側の面および像側の面が非球面である。プラスチックレンズ36は、物体側の面および像側の面が非球面である。このため、第4レンズ群14は、プラスチックレンズ35の像側の非球面とプラスチックレンズ36の物体側の非球面とが接合された接合レンズ(第1接合レンズ)である。
 ここで、第3レンズ群13(第2接合レンズ)において、すなわち、絞り91に対して物体側に配置された第3レンズ群13(第2接合レンズ)では、絞り91側とは反対側に位置するプラスチックレンズ33の屈折率が絞り91側に位置するプラスチックレンズ34の屈折率より小であり、絞り91に対して像側に配置された第4レンズ群14(第1接合レンズ)でも、絞り91側とは反対側に位置するプラスチックレンズ36の屈折率が絞り91側に位置するプラスチックレンズ35の屈折率より小である。かかる構成を実現するにあたって、本形態では、第3レンズ群13において絞り91側とは反対側に位置するプラスチックレンズ33と、第4レンズ群14において絞り91側とは反対側に位置するプラスチックレンズ36とには同一のレンズ材料が用いられ、第3レンズ群13において絞り91側に位置するプラスチックレンズ34と、第4レンズ群14において絞り91側に位置するプラスチックレンズ35とには同一のレンズ材料が用いられている。このため、2組の接合レンズ(第3レンズ群13および第4レンズ群14)では、接合されたプラスチックレンズの材料のもっている性質の配置が絞り91を挟んで対称である。
 かかる構成の広角レンズ30においても、実施の形態1と同様、レンズの枚数を6枚以上とすることにより、非球面レンズの数を増やして倍率色収差を補正するとともに、非球面同士が接合された第4レンズ群14(第1接合レンズ)を用いることにより、倍率色収差を補正して解像度を高める等、実施の形態1と同様な構成を有している。このため、低コスト化、および解像度の向上の双方を図ることができる等、実施の形態1と同様な効果を奏する。
 [実施の形態3]
 図4は、本発明の実施の形態3に係る広角レンズの説明図である。実施の形態1、2では、4群6枚のレンズ構成であったが、本形態では、5群6枚のレンズ構成である。
 図4に示すように、本形態の広角レンズ40は、実施の形態1と違って、5群6枚のレンズ構成を有しているが、画角は、実施の形態1と同様、190°である。かかる広角レンズ40は、物体側(被写体側/前側)から順に、負のパワーを持つ第1レンズ群11と、負のパワーを持つ第2レンズ群12と、正のパワーを有する第3レンズ群13と、正のパワーを有する第4レンズ群14と、正のパワーを有する第5レンズ群15とを有しており、第4レンズ群14と第5レンズ群15との間に絞り91を有している。
 ここで、広角レンズ40は計6枚のプラスチックレンズを有している。より具体的には、第1レンズ群11は、負のパワーをもつプラスチックレンズ41からなり、第2レンズ群12は、負のパワーをもつプラスチックレンズ42からなる。
 第3レンズ群13は、正のパワーをもつプラスチックレンズ43からなり、第4レンズ群14は、正のパワーをもつプラスチックレンズ44からなる。ここで、第3レンズ群13(プラスチックレンズ43)と第4レンズ群14(プラスチックレンズ44)との間には隙間が空いている。
 第5レンズ群15は、正のパワーをもつプラスチックレンズ45と負のパワーをもつプラスチックレンズ46との接合レンズからなる。
 かかる構成の広角レンズ40における各レンズデータおよび非球面係数は、表5および表6に示す通りである。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表5および表6から分かるように、本形態の広角レンズ40において、第2面(2)、第3面(3)、第4面(4)、第5面(5)、第8面(8)、第10面(10)、第11面(11)、および第12面(12)の計8面が非球面である。
 すなわち、プラスチックレンズ41(第1レンズ群11)は、物体側の面が球面であり、像側の面が非球面である。プラスチックレンズ42(第2レンズ群12)は、物体側の面および像側の面が非球面である。
 プラスチックレンズ43(第3レンズ群13)は、物体側の面が非球面であり、像側の面が球面である。プラスチックレンズ44(第4レンズ群14)は、物体側の面が球面であり、像側の面が非球面である。
 第5レンズ群15において、プラスチックレンズ45は、物体側の面および像側の面が非球面である。プラスチックレンズ46は、物体側の面および像側の面が非球面である。このため、第5レンズ群15は、プラスチックレンズ45の像側の非球面とプラスチックレンズ46の物体側の非球面とが接合された接合レンズ(第1接合レンズ)である。
 ここで、第3レンズ群13および第4レンズ群14において、絞り91側とは反対側に位置するプラスチックレンズ43(第3レンズ群13)には屈折率が1.63552のレンズ材料が用いられ、絞り91側に位置するプラスチックレンズ44(第4レンズ群14)には屈折率が1.53157のレンズ材料が用いられている。これに対して、第5レンズ群15(第1接合レンズ)において、絞り91側とは反対側に位置する像側のプラスチックレンズ46には屈折率が1.63552のレンズ材料が用いられ、絞り91側に位置する物体側のプラスチックレンズ45には屈折率が1.53157のレンズ材料が用いられている。このため、第3レンズ群13、第4レンズ群14および第5レンズ群15では、プラスチックレンズの屈折率の大小関係が絞り91を挟んで対称である。即ち、前記第3レンズ群のプラスチックレンズの屈折率と第1接合レンズにおける像側のプラスチックレンズの屈折率とは等しく、且つ、第4レンズ群のプラスチックレンズの屈折率と第1接合レンズにおける物体側のプラスチックレンズの屈折率とは等しく設定されている。また、実施の形態1と同様、第3レンズ群のプラスチックレンズと第1接合レンズにおける像側のプラスチックレンズとは同一のレンズ材料が用いられ、且つ、第4レンズ群のプラスチックレンズと第1接合レンズにおける物体側のプラスチックレンズとは同一のレンズ材料が用いられている。
 かかる構成の広角レンズ40においても、実施の形態1と同様、レンズの枚数を6枚以上とすることにより、非球面レンズの数を増やして倍率色収差を補正するとともに、非球面同士が接合された第5レンズ群15(第1接合レンズ)を用いることにより、倍率色収差を補正して解像度を高める等、実施の形態1と同様な構成を有している。このため、低コスト化、および解像度の向上の双方を図ることができる等、実施の形態1と略同様な効果を奏する。
 [実施の形態4]
 図5は、本発明の実施の形態4に係る広角レンズの説明図である。実施の形態1、2では、4群6枚のレンズ構成であったが、本形態では、実施の形態3と同様、5群6枚のレンズ構成である。
 図5に示すように、本形態の広角レンズ50は、実施の形態1と違って、5群6枚のレンズ構成を有しているが、画角は、実施の形態1と同様、190°である。より具体的には、広角レンズ50は、物体側(被写体側/前側)から順に、負のパワーを持つ第1レンズ群11と、負のパワーを持つ第2レンズ群12と、負のパワーを有する第3レンズ群13と、正のパワーを有する第4レンズ群14と、正のパワーを有する第5レンズ群15とを有しており、第4レンズ群14と第5レンズ群15との間に絞り91を有している。
 ここで、広角レンズ50は計6枚のプラスチックレンズを有している。より具体的には、第1レンズ群11は、負のパワーをもつプラスチックレンズ51からなり、第2レンズ群12は、負のパワーをもつプラスチックレンズ52からなる。
 第3レンズ群13は、負のパワーをもつプラスチックレンズ53からなり、第4レンズ群14は、正のパワーをもつプラスチックレンズ54からなる。ここで、第3レンズ群13(プラスチックレンズ53)と第4レンズ群14(プラスチックレンズ54)との間には隙間が空いている。
 第5レンズ群15は、負のパワーをもつプラスチックレンズ55と正のパワーをもつプラスチックレンズ56との接合レンズからなる。
 かかる構成の広角レンズ50における各レンズデータおよび非球面係数は、表7および表8に示す通りである。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 表7および表8から分かるように、本形態の広角レンズ50において、第2面(2)、第3面(3)、第4面(4)、第5面(5)、第8面(8)、第10面(10)、第11面(11)、および第12面(12)の計8面が非球面である。
 すなわち、プラスチックレンズ51(第1レンズ群11)は、物体側の面が球面であり、像側の面が非球面である。プラスチックレンズ52(第2レンズ群12)は、物体側の面および像側の面が非球面である。
 プラスチックレンズ53(第3レンズ群13)は、物体側の面が非球面であり、像側の面が球面である。プラスチックレンズ54(第4レンズ群14)は、物体側の面が球面であり、像側の面が非球面である。
 第5レンズ群15において、プラスチックレンズ55は、物体側の面および像側の面が非球面である。プラスチックレンズ56は、物体側の面および像側の面が非球面である。このため、第5レンズ群15は、プラスチックレンズ55の像側の非球面とプラスチックレンズ56の物体側の非球面とが接合された接合レンズ(第1接合レンズ)である。
 ここで、第3レンズ群13および第4レンズ群14において、絞り91側とは反対側に位置するプラスチックレンズ53(第3レンズ群13)には屈折率が1.53157のレンズ材料が用いられ、絞り91側に位置するプラスチックレンズ54(第4レンズ群14)には屈折率が1.58305のレンズ材料が用いられている。これに対して、第5レンズ群15(第1接合レンズ)において、絞り91側とは反対側に位置する像側のプラスチックレンズ56には屈折率が1.53157のレンズ材料が用いられ、絞り91側に位置する物体側のプラスチックレンズ55には屈折率が1.63281のレンズ材料が用いられている。このため、第3レンズ群13、第4レンズ群14および第5レンズ群15では、プラスチックレンズの屈折率の大小関係が絞り91を挟んで対称である。
 かかる構成の広角レンズ50においても、実施の形態1と同様、レンズの枚数を6枚以上とすることにより、非球面レンズの数を増やして倍率色収差を補正するとともに、非球面同士が接合された第5レンズ群15(第1接合レンズ)を用いることにより、倍率色収差を補正して解像度を高める等、実施の形態1と同様な構成を有している。このため、低コスト化、および解像度の向上の双方を図ることができる等、実施の形態1と略同様な効果を奏する。
 [実施の形態5]
 図6は、本発明の実施の形態5に係る広角レンズの説明図である。実施の形態1~4では、画角が190°であったが、本形態では、以下に説明するように、画角が150°である。
 図6に示すように、本形態の広角レンズ60も、実施の形態1と同様、4群6枚のレンズ構成を有している。より具体的には、広角レンズ60は、物体側(被写体側/前側)から順に、負のパワーを持つ第1レンズ群11と、負のパワーを持つ第2レンズ群12と、正のパワーを有する第3レンズ群13と、正のパワーを有する第4レンズ群14とを有しており、第3レンズ群13と第4レンズ群14との間に絞り91を有している。
 ここで、広角レンズ60は計6枚のプラスチックレンズを有している。より具体的には、第1レンズ群11は、負のパワーをもつプラスチックレンズ61からなり、第2レンズ群12は、負のパワーをもつプラスチックレンズ62からなる。第3レンズ群13は、正のパワーをもつプラスチックレンズ63と正のパワーをもつプラスチックレンズ64との接合レンズからなり、第4レンズ群14は、正のパワーをもつプラスチックレンズ65と負のパワーをもつプラスチックレンズ66との接合レンズからなる。かかる2組の接合レンズ(第3レンズ群13および第4レンズ群14)は、絞り91を挟む両側に配置されている。
 かかる構成の広角レンズ60における各レンズデータおよび非球面係数は、表9および表10に示す通りである。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 表9および表10から分かるように、本形態の広角レンズ60において、第2面(2)、第3面(3)、第4面(4)、第5面(5)、第7面(7)、第9面(9)、第10面(10)、および第11面(11)の計8面が非球面である。
 すなわち、プラスチックレンズ61(第1レンズ群11)は、物体側の面が球面であり、像側の面が非球面である。プラスチックレンズ62(第2レンズ群12)は、物体側の面および像側の面が非球面である。
 第3レンズ群13において、プラスチックレンズ63は、物体側の面が非球面であり、像側の面が球面である。プラスチックレンズ64は、物体側の面が球面であり、像側の面が非球面である。このため、第3レンズ群13は、プラスチックレンズ63の像側の球面とプラスチックレンズ64の物体側の球面とが接合された接合レンズ(第2接合レンズ)である。
 第4レンズ群14において、プラスチックレンズ65は、物体側の面および像側の面が非球面である。プラスチックレンズ66は、物体側の面および像側の面が非球面である。このため、第4レンズ群14は、プラスチックレンズ65の像側の非球面とプラスチックレンズ66の物体側の非球面とが接合された接合レンズ(第1接合レンズ)である。
 ここで、第3レンズ群13(第2接合レンズ)において、絞り91側とは反対側に位置するプラスチックレンズ63には屈折率が1.63551のレンズ材料が用いられ、絞り91側に位置するプラスチックレンズ64には屈折率が1.53157のレンズ材料が用いられている。これに対して、第4レンズ群14(第1接合レンズ)において、絞り91側とは反対側に位置するプラスチックレンズ66には屈折率が1.63551のレンズ材料が用いられ、絞り91側に位置するプラスチックレンズ65には屈折率が1.53157のレンズ材料が用いられている。このため、2組の接合レンズ(第3レンズ群13および第4レンズ群14)では、接合されたプラスチックレンズの屈折率の大小関係が絞り91を挟んで対称である。かかる構成を実現するにあたって、本形態では、第3レンズ群13において絞り91側とは反対側に位置するプラスチックレンズ63と、第4レンズ群14において絞り91側とは反対側に位置するプラスチックレンズ66とには同一のレンズ材料が用いられ、第3レンズ群13において絞り91側に位置するプラスチックレンズ64と、第4レンズ群14において絞り91側に位置するプラスチックレンズ65とには同一のレンズ材料が用いられている。このため、2組の接合レンズ(第3レンズ群13および第4レンズ群14)では、接合されたプラスチックレンズの材料のもっている性質の配置が絞り91を挟んで対称である。
 かかる構成の広角レンズ60においても、実施の形態1と同様、レンズの枚数を6枚以上とすることにより、非球面レンズの数を増やして倍率色収差を補正するとともに、非球面同士が接合された第4レンズ群14(第1接合レンズ)を用いることにより、倍率色収差を補正して解像度を高める等、実施の形態1と同様な構成を有している。このため、低コスト化、および解像度の向上の双方を図ることができる等、実施の形態1と同様な効果を奏する。
 [実施の形態6]
 図7は、本発明の実施の形態6に係る広角レンズの説明図である。実施の形態1~4では、画角が190°であり、実施の形態5では画角が150°であったが、本形態では、以下に説明するように、画角が130°である。
 図7に示すように、本形態の広角レンズ70も、実施の形態1と同様、4群6枚のレンズ構成を有している。より具体的には、広角レンズ70は、物体側(被写体側/前側)から順に、負のパワーを持つ第1レンズ群11と、負のパワーを持つ第2レンズ群12と、正のパワーを有する第3レンズ群13と、正のパワーを有する第4レンズ群14とを有しており、第3レンズ群13と第4レンズ群14との間に絞り91を有している。
 ここで、広角レンズ70は計6枚のプラスチックレンズを有している。より具体的には、第1レンズ群11は、負のパワーをもつプラスチックレンズ71からなり、第2レンズ群12は、負のパワーをもつプラスチックレンズ72からなる。第3レンズ群13は、正のパワーをもつプラスチックレンズ73と正のパワーをもつプラスチックレンズ74との接合レンズからなり、第4レンズ群14は、正のパワーをもつプラスチックレンズ75と負のパワーをもつプラスチックレンズ76との接合レンズからなる。かかる2組の接合レンズ(第3レンズ群13および第4レンズ群14)は、絞り91を挟む両側に配置されている。
 かかる構成の広角レンズ70における各レンズデータおよび非球面係数は、表11および表12に示す通りである。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 表11および表12から分かるように、本形態の広角レンズ70において、第2面(2)、第3面(3)、第4面(4)、第5面(5)、第7面(7)、第9面(9)、第10面(10)、および第11面(11)の計8面が非球面である。
 すなわち、プラスチックレンズ71(第1レンズ群11)は、物体側の面が球面であり、像側の面が非球面である。プラスチックレンズ72(第2レンズ群12)は、物体側の面および像側の面が非球面である。
 第3レンズ群13において、プラスチックレンズ73は、物体側の面が非球面であり、像側の面が球面である。プラスチックレンズ74は、物体側の面が球面であり、像側の面が非球面である。このため、第3レンズ群13は、プラスチックレンズ73の像側の球面とプラスチックレンズ74の物体側の球面とが接合された接合レンズ(第2接合レンズ)である。
 第4レンズ群14において、プラスチックレンズ75は、物体側の面および像側の面が非球面である。プラスチックレンズ76は、物体側の面および像側の面が非球面である。このため、第4レンズ群14は、プラスチックレンズ75の像側の非球面とプラスチックレンズ76の物体側の非球面とが接合された接合レンズ(第1接合レンズ)である。
 ここで、第3レンズ群13(第2接合レンズ)において、絞り91側とは反対側に位置するプラスチックレンズ73には屈折率が1.63551のレンズ材料が用いられ、絞り91側に位置するプラスチックレンズ74には屈折率が1.53157のレンズ材料が用いられている。これに対して、第4レンズ群14(第1接合レンズ)において、絞り91側とは反対側に位置するプラスチックレンズ76には屈折率が1.63551のレンズ材料が用いられ、絞り91側に位置するプラスチックレンズ75には屈折率が1.53157のレンズ材料が用いられている。このため、2組の接合レンズ(第3レンズ群13および第4レンズ群14)では、接合されたプラスチックレンズの屈折率の大小関係が絞り91を挟んで対称である。かかる構成を実現するにあたって、本形態では、第3レンズ群13において絞り91側とは反対側に位置するプラスチックレンズ73と、第4レンズ群14において絞り91側とは反対側に位置するプラスチックレンズ76とには同一のレンズ材料が用いられ、第3レンズ群13において絞り91側に位置するプラスチックレンズ74と、第4レンズ群14において絞り91側に位置するプラスチックレンズ75とには同一のレンズ材料が用いられている。このため、2組の接合レンズ(第3レンズ群13および第4レンズ群14)では、接合されたプラスチックレンズの材料のもっている性質の配置が絞り91を挟んで対称である。
 かかる構成の広角レンズ70においても、実施の形態1と同様、レンズの枚数を6枚以上とすることにより、非球面レンズの数を増やして倍率色収差を補正するとともに、非球面同士が接合された第4レンズ群14(第1接合レンズ)を用いることにより、倍率色収差を補正して解像度を高める等、実施の形態1と同様な構成を有している。このため、低コスト化、および解像度の向上の双方を図ることができる等、実施の形態1と同様な効果を奏する。
 [他の実施の形態]
 上記実施の形態において、実施の形態1で第3レンズ群13として用いた第2接合レンズでは球面同士を接合したが、非球面同士で接合した構成を採用してもよい。また、上記実施の形態では、6枚のプラスチックレンズを用いたが、7枚以上のプラスチックを用いた場合や、6枚のプラスチックレンズとガラスレンズとを併用した広角レンズに本発明を適用してもよい。

Claims (19)

  1.  6枚以上のプラスチックレンズを備え、
     前記6枚以上のプラスチックレンズには、プラスチックレンズの非球面同士が接合された第1接合レンズが含まれていることを特徴とする広角レンズ。
  2.  前記6枚以上のプラスチックレンズには、さらに、物体側および像側のうちの少なくとも一方側が非球面のプラスチックレンズ同士が接合された第2接合レンズが含まれ、
     前記第1接合レンズと前記第2接合レンズは、絞りを挟む両側に配置されていることを特徴とする請求項1に記載の広角レンズ。
  3.  前記第1接合レンズと前記第2接合レンズとでは、接合されたプラスチックレンズの屈折率の大小関係が前記絞りを挟んで対称であることを特徴とする請求項2に記載の広角レンズ。
  4.  前記第1接合レンズと前記第2の接合レンズとでは、接合されたプラスチックレンズの材料のもっている性質の配置が前記絞りを挟んで対称であることを特徴とする請求項3に記載の広角レンズ。
  5.  前記第1接合レンズおよび前記第2接合レンズはパワーが正であることを特徴とする請求項2乃至4の何れか一項に記載の広角レンズ。
  6.  前記6枚以上のプラスチックレンズのうち、最も物体側に位置するプラスチックレンズの像側の面が非球面であることを特徴とする請求項1乃至4の何れか一項に記載の広角レンズ。
  7.  前記6枚以上のプラスチックレンズのうち、少なくとも6枚のプラスチックレンズは各々、物体側および像側のうちの少なくとも一方側が非球面であることを特徴とする請求項1乃至4の何れか一項に記載の広角レンズ。
  8.  画角が130°以上であることを特徴とする請求項1乃至4の何れか一項に記載の広角レンズ。
  9.  前記広角レンズは、物体側から順に、負のパワーを持つ第1レンズ群と、負のパワーを持つ第2レンズ群と、正のパワーを有する第3レンズ群と、正のパワーを有する第4レンズ群とからなる4群6枚のレンズ構成を有し、
    前記第3レンズ群と第4レンズ群との間には絞りが配置され、
    前記第4レンズ群は、前記第1接合レンズであり、
    前記第3レンズ群は、2枚のプラスチックレンズの球面同士を接合してなる第2接合レンズであり、接合面以外の少なくとも一方側は非球面であることを特徴とする請求項1に記載の広角レンズ。
  10.  前記第1接合レンズと前記第2接合レンズとでは、接合されたプラスチックレンズの屈折率の大小関係が前記絞りを挟んで対称であることを特徴とする請求項9に記載の広角レンズ。
  11.  前記第2接合レンズにおける物体側のプラスチックレンズの屈折率と、前記第1接合レンズにおける像側のプラスチックレンズの屈折率とは等しく、且つ、前記第2接合レンズにおける像側のプラスチックレンズの屈折率と、前記第1接合レンズにおける物体側のプラスチックレンズの屈折率とは等しく、
    前記第1接合レンズにおける像側のプラスチックレンズの屈折率と前記第1接合レンズにおける物体側のプラスチックレンズの屈折率とは異なることを特徴とする請求項10に記載の広角レンズ。
  12.  前記第1接合レンズと前記第2の接合レンズとでは、接合されたプラスチックレンズの材料のもっている性質の配置が前記絞りを挟んで対称であることを特徴とする請求項10に記載の広角レンズ。
  13.  前記第2接合レンズにおける物体側のプラスチックレンズと、前記第1接合レンズにおける像側のプラスチックレンズとは同一のレンズ材料が用いられ、且つ、前記第2接合レンズにおける像側のプラスチックレンズと、前記第1接合レンズにおける物体側のプラスチックレンズとは同一のレンズ材料が用いられていることを特徴とする請求項12に記載の広角レンズ。
  14. 前記第1レンズ群は、像側の面が非球面である非球面レンズであり、前記第2レンズ群は、物体側と像側の双方の面が非球面である非球面レンズであることを特徴とする請求項13に記載の広角レンズ。
  15.  前記広角レンズは、物体側から順に、負のパワーを持つ第1レンズ群と、負のパワーを持つ第2レンズ群と、正または負のパワーを有する第3レンズ群と、正のパワーを有する第4レンズ群と、正のパワーを有する第5レンズ群とからなる5群6枚のレンズ構成を有し、
    前記第4レンズ群と第5レンズ群との間には絞りが配置され、
    前記第5レンズ群が前記第1接合レンズであることを特徴とする請求項1に記載の広角レンズ。
  16. 前記第3レンズ群は、物体側の面が非球面であり、像側の面が球面であるプラスチックレンズであり、前記第4レンズ群は、物体側の面が球面であり、像側の面が非球面であるプラスチックレンズであり、
     2枚のプラスチックレンズの非球面同士が接合された前記第1接合レンズと、前記第3レンズ群の前記プラスチックレンズおよび前記第4レンズ群の前記プラスチックレンズとでは、前記プラスチックレンズの屈折率の大小関係が前記絞りを挟んで対称であることを特徴とする請求項15に記載の広角レンズ。
  17.  前記第3レンズ群のプラスチックレンズの屈折率と前記第1接合レンズにおける像側のプラスチックレンズの屈折率とは等しく、且つ、前記第4レンズ群のプラスチックレンズの屈折率と前記第1接合レンズにおける物体側のプラスチックレンズの屈折率とは等しく、
    前記第1接合レンズにおける像側のプラスチックレンズの屈折率と前記第1接合レンズにおける物体側のプラスチックレンズの屈折率とは異なることを特徴とする請求項16に記載の広角レンズ。
  18.  前記第3レンズ群のプラスチックレンズと前記第1接合レンズにおける像側のプラスチックレンズとは同一のレンズ材料が用いられ、且つ、前記第4レンズ群のプラスチックレンズと前記第1接合レンズにおける物体側のプラスチックレンズとは同一のレンズ材料が用いられていることを特徴とする請求項17に記載の広角レンズ。
  19. 前記第1レンズ群は、像側の面が非球面である非球面レンズであり、前記第2レンズ群は、物体側と像側の双方の面が非球面である非球面レンズであることを特徴とする請求項18に記載の広角レンズ。
PCT/JP2013/078763 2012-10-25 2013-10-24 広角レンズ WO2014065349A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP13849165.9A EP2913696A4 (en) 2012-10-25 2013-10-24 WIDE ANGLE LENS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-235227 2012-10-25
JP2012235227A JP6000802B2 (ja) 2012-10-25 2012-10-25 広角レンズ

Publications (1)

Publication Number Publication Date
WO2014065349A1 true WO2014065349A1 (ja) 2014-05-01

Family

ID=50544722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/078763 WO2014065349A1 (ja) 2012-10-25 2013-10-24 広角レンズ

Country Status (5)

Country Link
US (1) US9459432B2 (ja)
EP (1) EP2913696A4 (ja)
JP (1) JP6000802B2 (ja)
CN (1) CN103777328B (ja)
WO (1) WO2014065349A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6050087B2 (ja) * 2012-10-30 2016-12-21 日本電産サンキョー株式会社 レンズユニットおよびレンズユニットの製造方法
JP2015034922A (ja) * 2013-08-09 2015-02-19 日本電産サンキョー株式会社 広角レンズ
TWI601975B (zh) 2015-11-27 2017-10-11 大立光電股份有限公司 攝影用光學鏡頭組、取像裝置及電子裝置
JP6663222B2 (ja) * 2016-01-07 2020-03-11 ナンチャン オー−フィルム オプティカル−エレクトロニック テック カンパニー リミテッド 撮像レンズおよび撮像装置
CN105572847B (zh) * 2016-03-02 2018-08-17 浙江舜宇光学有限公司 超广角摄像镜头
TWI582457B (zh) 2016-04-20 2017-05-11 大立光電股份有限公司 取像光學系統鏡組、取像裝置及電子裝置
WO2017213110A1 (ja) * 2016-06-06 2017-12-14 コニカミノルタ株式会社 撮像光学系、レンズユニット及び撮像装置
WO2018021205A1 (ja) 2016-07-25 2018-02-01 日本電産サンキョー株式会社 広角レンズ
KR101832627B1 (ko) 2016-11-25 2018-02-26 삼성전기주식회사 촬상 광학계
JP6758170B2 (ja) * 2016-12-08 2020-09-23 日本電産サンキョー株式会社 レンズユニットおよび撮像装置
US20200081231A1 (en) * 2016-12-15 2020-03-12 Nidec Sankyo Corporation Wide angle lens
CN109324385B (zh) * 2017-07-31 2021-09-17 宁波舜宇车载光学技术有限公司 光学镜头
JP2019056786A (ja) * 2017-09-21 2019-04-11 日本電産サンキョー株式会社 レンズユニット
TWI641865B (zh) 2017-09-27 2018-11-21 大立光電股份有限公司 光學成像鏡組、取像裝置及電子裝置
TWI670516B (zh) 2018-06-13 2019-09-01 大立光電股份有限公司 攝影光學鏡頭、取像裝置及電子裝置
JP7418249B2 (ja) 2020-03-10 2024-01-19 ニデックプレシジョン株式会社 撮像レンズ及び撮像装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6236622A (ja) * 1985-06-24 1987-02-17 ロルフ・ミュラー 魚眼レンズ機構
JPH04267212A (ja) * 1991-02-21 1992-09-22 Copal Co Ltd 超広角レンズ
JPH10111454A (ja) * 1996-10-03 1998-04-28 Nisca Corp 広角レンズ
JP2006284620A (ja) * 2005-03-31 2006-10-19 Nidec Nissin Corp 広角レンズおよび接合レンズ
WO2006115107A1 (ja) * 2005-04-22 2006-11-02 Konica Minolta Opto, Inc. 変倍光学系、撮像レンズ装置及びデジタル機器
JP2009036877A (ja) 2007-07-31 2009-02-19 Toshiba Corp 光回路装置及びその製造方法
JP2009063877A (ja) 2007-09-07 2009-03-26 Nidec Nissin Corp 超広角レンズ
JP2009092798A (ja) * 2007-10-05 2009-04-30 Fujinon Corp 撮像レンズおよび撮像装置
JP2011017918A (ja) * 2009-07-09 2011-01-27 Olympus Medical Systems Corp 対物レンズ
JP2011150196A (ja) * 2010-01-22 2011-08-04 Nikon Corp 広角レンズ、撮像装置、広角レンズの製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4647161A (en) * 1981-05-20 1987-03-03 Mueller Rolf Fish eye lens system
JP4103475B2 (ja) * 2002-07-05 2008-06-18 コニカミノルタオプト株式会社 撮像レンズ装置
JP5042767B2 (ja) * 2007-10-05 2012-10-03 富士フイルム株式会社 撮像レンズおよび撮像装置
KR100961124B1 (ko) * 2008-04-04 2010-06-07 삼성전기주식회사 초광각 광학계

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6236622A (ja) * 1985-06-24 1987-02-17 ロルフ・ミュラー 魚眼レンズ機構
JPH04267212A (ja) * 1991-02-21 1992-09-22 Copal Co Ltd 超広角レンズ
JPH10111454A (ja) * 1996-10-03 1998-04-28 Nisca Corp 広角レンズ
JP2006284620A (ja) * 2005-03-31 2006-10-19 Nidec Nissin Corp 広角レンズおよび接合レンズ
WO2006115107A1 (ja) * 2005-04-22 2006-11-02 Konica Minolta Opto, Inc. 変倍光学系、撮像レンズ装置及びデジタル機器
JP2009036877A (ja) 2007-07-31 2009-02-19 Toshiba Corp 光回路装置及びその製造方法
JP2009063877A (ja) 2007-09-07 2009-03-26 Nidec Nissin Corp 超広角レンズ
JP2009092798A (ja) * 2007-10-05 2009-04-30 Fujinon Corp 撮像レンズおよび撮像装置
JP2011017918A (ja) * 2009-07-09 2011-01-27 Olympus Medical Systems Corp 対物レンズ
JP2011150196A (ja) * 2010-01-22 2011-08-04 Nikon Corp 広角レンズ、撮像装置、広角レンズの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2913696A4

Also Published As

Publication number Publication date
CN103777328B (zh) 2016-08-17
JP2014085559A (ja) 2014-05-12
US9459432B2 (en) 2016-10-04
JP6000802B2 (ja) 2016-10-05
US20140118845A1 (en) 2014-05-01
CN103777328A (zh) 2014-05-07
EP2913696A4 (en) 2016-07-06
EP2913696A1 (en) 2015-09-02

Similar Documents

Publication Publication Date Title
JP6000802B2 (ja) 広角レンズ
TWI453457B (zh) Ultra wide angle lens
CN108139569B (zh) 广角镜头
WO2013145538A1 (ja) 撮像レンズおよび撮像装置
WO2015020006A1 (ja) 広角レンズ
US7518810B1 (en) Wide-angle lens with high resolution
CN109491049B (zh) 投影光学系统及具有其的增强现实眼镜
JP6125796B2 (ja) 広角レンズおよび広角レンズユニット
JP2006317916A (ja) 撮像レンズ
US20150248050A1 (en) Rear converter
WO2017022670A1 (ja) 接眼光学系および電子ビューファインダー
WO2019021831A1 (ja) 広角レンズ
JP6142560B2 (ja) 結像レンズおよび撮影装置
US6894847B2 (en) Retrofocus, wide-angle lens
JP2006030581A (ja) 大口径広角レンズ
TW201326889A (zh) 變焦鏡頭
TWI410671B (zh) 投影鏡頭
JP2019040117A (ja) 広角レンズ
JP5544559B1 (ja) 撮像光学系
JP6830645B2 (ja) 撮像用の光学系および撮像装置
JPH10301021A (ja) 小型レンズ
US20210072516A1 (en) Lens system and image pickup apparatus
JPH11119094A (ja) レトロフォーカス型大口径比広角レンズ
JP6526335B2 (ja) 撮像用の光学系および撮像装置
JP2006146016A (ja) 広角レンズ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13849165

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013849165

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE