WO2014065308A1 - リニアモータ及びリニアモータ駆動システム - Google Patents

リニアモータ及びリニアモータ駆動システム Download PDF

Info

Publication number
WO2014065308A1
WO2014065308A1 PCT/JP2013/078667 JP2013078667W WO2014065308A1 WO 2014065308 A1 WO2014065308 A1 WO 2014065308A1 JP 2013078667 W JP2013078667 W JP 2013078667W WO 2014065308 A1 WO2014065308 A1 WO 2014065308A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic pole
magnetic
pole teeth
linear motor
armature
Prior art date
Application number
PCT/JP2013/078667
Other languages
English (en)
French (fr)
Inventor
康明 青山
小村 昭義
岩路 善尚
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to CN201380044985.1A priority Critical patent/CN104584403B/zh
Priority to JP2014543317A priority patent/JP5941551B2/ja
Priority to US14/424,300 priority patent/US9712032B2/en
Publication of WO2014065308A1 publication Critical patent/WO2014065308A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • H02K41/031Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/02Machines with one stator and two or more rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/12Machines characterised by the modularity of some components

Definitions

  • the present invention relates to a linear motor and a linear motor drive system, and more particularly to a linear motor and a linear motor drive system suitable for generating a thrust for moving relatively horizontally between a permanent magnet and an armature of a mover. About.
  • Patent Documents 1 to 3 relate to linear motors that generate thrust for moving horizontally between a permanent magnet of a mover and an armature.
  • Patent Documents 1 to 3 a linear motor in which an armature composed of magnetic poles and windings and a mover having a permanent magnet are relatively movable in the horizontal direction, and the magnetic poles are arranged on both sides of the permanent magnet. Are formed by windings disposed in the armature, and having a plurality of magnetic poles in the moving direction of the mover.
  • the magnetic poles having the same polarity in a plurality of magnetic poles, a plurality of magnetic pole teeth arranged opposite to each other, and the distance between the magnetic pole teeth can be varied for each magnetic pole tooth arranged opposite to each other. Is described.
  • the present invention has been made in view of the above-mentioned points.
  • the object of the present invention is not only to reduce the size of the apparatus, but also to share effective magnetic flux between adjacent magnetic poles, and to move the armature and the armature. It is an object of the present invention to provide a linear motor and a linear motor drive system in which a magnetic attractive force acting between a child and a child is canceled.
  • the linear motor of the present invention is arranged so that a mover formed by arranging a plurality of permanent magnets or magnetic materials while reversing the magnetization direction and the permanent magnets or magnetic materials are sandwiched from above and below.
  • An armature comprising windings respectively disposed on teeth and arranged in parallel in the moving direction of the mover or armature and both connected by the magnetic body, the mover
  • the armature generates a thrust for relatively horizontal movement, and has at least two different magnetic paths through which the magnetic flux from the winding passes.
  • At least two different magnetic paths through which the magnetic flux from the winding passes are such that the magnetic flux from the winding passes from the magnetic body to the first magnetic pole tooth, and from the first magnetic pole tooth to the second magnetic pole tooth.
  • the windings respectively disposed on the first magnetic pole teeth and the second magnetic pole teeth are respectively disposed on the first magnetic pole teeth and the second magnetic pole teeth adjacent to the moving direction of the mover or armature.
  • the winding direction of the wound winding is reversed.
  • the magnetic flux generated by the windings respectively disposed on the first magnetic pole teeth and the second magnetic pole teeth is the first magnetic pole teeth and the second magnetic pole teeth adjacent to each other in the moving direction of the mover or armature.
  • the magnetic fluxes produced by the windings respectively arranged in the direction and the direction are staggered.
  • first magnetic pole teeth and the second magnetic pole teeth the magnetic material connecting the first magnetic pole teeth and the second magnetic pole teeth to form a magnetic path
  • first magnetic pole teeth and the second magnetic pole teeth At least two stages of windings respectively arranged on the magnetic pole teeth of the magnetic pole teeth, each having a movable element between the first magnetic pole tooth and the second magnetic pole tooth of each stage, and a plurality of movable elements. It has a feature.
  • the apparatus not only can the apparatus be reduced in size, but also effective magnetic flux sharing between adjacent magnetic poles can be achieved, and the linear magnetic attraction acting between the armature and the mover can be offset.
  • a motor and linear motor drive system can be obtained.
  • FIG. 2 is a perspective view showing a state where FIG. 1 is cross-sectioned along a YZ plane.
  • FIG. 2 is a perspective view showing a state in which FIG. 1 with the permanent magnet removed from FIG. 1 is taken along the XZ plane.
  • FIG. 2 shows the direction of the magnetic flux which the coil
  • FIG. 1 which shows the path
  • FIG. 1 shows the path
  • FIG. 8 is a perspective view showing a state in which the one-phase armature shown in FIG. 7 is cut in the XY plane.
  • FIG. 8 is a perspective view showing a state in which the one-phase armature shown in FIG. 7 is cut in the YZ plane. It is the figure which looked at FIG. 8 from the arrow A direction. It is the figure which looked at FIG. 9 from the arrow B direction. It is a perspective view which shows Example 2 of the linear motor of this invention.
  • Example 2 of the linear motor of this invention it is a figure which shows the structure which arranged six magnetic pole teeth in the Z direction with respect to five permanent magnets.
  • Example 2 of the linear motor of this invention it is a figure which shows the structure which arranged six magnetic pole teeth in the Z direction with respect to seven permanent magnets.
  • Example 2 of the linear motor of this invention it is a figure which shows the structure which arranged nine magnetic pole teeth in the Z direction with respect to eight permanent magnets.
  • Example 2 of the linear motor of this invention it is a figure which shows the structure which arranged nine magnetic pole teeth in the Z direction with respect to ten permanent magnets.
  • Example 2 of the linear motor of this invention it is a figure which shows the structure which arranged the structure shown in FIG. 14 two in Z direction, and arranged 12 magnetic pole teeth in the Z direction with respect to ten permanent magnets.
  • FIG. 18 is a diagram showing a configuration in which two configurations shown in FIG. 17 are arranged in the Z direction and 18 magnetic pole teeth are arranged in the Z direction with respect to 20 permanent magnets in the second embodiment of the linear motor of the present invention. It is a perspective view equivalent to FIG. 1 which shows Example 3 of the linear motor of this invention. It is a side view of FIG.
  • FIG. 23 is a perspective view showing a state where FIG. 22 is sectioned along a YZ plane. It is a perspective view which shows Example 5 of the linear motor of this invention.
  • FIG. 25 is a perspective view showing a state where FIG. 24 is cross-sectioned along the YZ plane.
  • FIG. 10 is a perspective view showing a sixth embodiment of the linear motor of the present invention and showing a cross section taken along the YZ plane. It is a perspective view which shows Example 7 of the linear motor of this invention.
  • FIG. 28 is a cross-sectional view showing a state where FIG. 27 is taken along the YZ plane.
  • Example 8 of the linear motor of the present invention is shown, and the relationship between the gap g between the first magnetic pole teeth and the second magnetic pole teeth and the magnetic pole spacing W in the traveling direction of the mover of the first and second magnetic pole teeth will be described.
  • FIG. It is a characteristic view which shows the relationship between the ratio (W / g) of magnetic pole space
  • FIG. It is a perspective view which shows Example 9 of the linear motor of this invention. It is a perspective view which shows Example 10 of the linear motor of this invention. It is a front view of FIG. FIG.
  • FIG. 33 is a cross-sectional view showing a state where FIG. 32 is taken along the YZ plane. It is a perspective view which shows Example 11 of the linear motor of this invention.
  • FIG. 36 is a side view of FIG. 35.
  • FIG. 37 is a cross-sectional view taken along line AA in FIG. 36.
  • FIG. 37 is a sectional view taken along line BB in FIG. 36.
  • It is a characteristic diagram of the thrust density which shows the effect of Example 11 of the linear motor of this invention.
  • It is a perspective view which shows Example 12 of the linear motor of this invention. It is a perspective view of the linear motor which cut off a part of magnetic body which connects the 1st magnetic pole tooth and the 2nd magnetic pole tooth in Example 12.
  • FIG. 36 is a side view of FIG. 35.
  • FIG. 37 is a cross-sectional view taken along line AA in FIG. 36.
  • FIG. 37 is a sectional view taken along line BB in FIG. 36.
  • It is
  • FIG. 20 is a diagram showing a magnetic flux generated by a winding on an XY plane in Example 12.
  • FIG. 20 is a diagram showing a magnetic flux generated by a winding in the XZ plane in Example 12. It is a perspective view which shows the application example of Example 12 which provided the side plate. It is a perspective view of the linear motor of the application example shown in FIG. It is a front view of the linear motor which shows the direction of the magnetic flux of the application example shown in FIG. It is a perspective view which shows Example 13 of the linear motor of this invention. It is a figure explaining the direction of the magnetic flux of Example 13 shown in FIG. It is a perspective view which shows the modification of the linear motor of Example 3.
  • FIG. 20 is a diagram showing a magnetic flux generated by a winding on an XY plane in Example 12.
  • FIG. 20 is a diagram showing a magnetic flux generated by a winding in the XZ plane in Example 12. It is a perspective view which shows the application example of Example 12 which provided the side plate. It is
  • FIG. 1 to 11 show a linear motor according to a first embodiment of the present invention.
  • the present embodiment shown in the figure is an example in which a three-phase motor is configured so that the stator composed of three armatures 100, 101, 102 and the magnetization directions 51 of the adjacent permanent magnets 5 are alternated.
  • This is a linear motor in which a mover in which a plurality of permanent magnets 5 are arranged relatively linearly moves (horizontal movement).
  • a three-phase linear motor can be configured by arranging a stator composed of three armatures 100, 101, and 102 so that the phases are electrically shifted by 120 °, respectively.
  • m armatures can be used for m-phase driving.
  • a linear motor can be configured.
  • the permanent magnet 5 is fixed to a member (not shown) that holds the permanent magnet 5, and the permanent magnet 5 and the member that holds the permanent magnet 5 constitute a mover.
  • the mover and the stator are held by support means capable of relatively linear movement. It is also possible to fix the mover and move the stator (armature) side.
  • One armature 100 includes an upper first magnetic pole tooth 11 that faces the permanent magnet 5, a lower second magnetic pole tooth 12 that faces the permanent magnet 5, an upper first magnetic pole tooth 11, and a lower arm It consists of a magnetic body 13 that connects the second magnetic pole teeth 12 on the side, and is arranged side by side in the traveling direction (Z direction) of the permanent magnet 5.
  • the first magnetic pole tooth 11 and the second magnetic pole tooth 12 of each of the armatures 100 arranged side by side are respectively provided with the winding 2a and the winding 2b, and the first magnetic pole tooth 11 and the second magnetic pole tooth 12 are arranged.
  • the magnetic pole teeth 12 are arranged at positions facing the permanent magnet 5.
  • the armatures 101 and 102 have the same configuration.
  • FIG. 4 shows the direction of magnetic flux generated by the winding 2a and the winding 2b in the gap between the first magnetic pole tooth 11 and the second magnetic pole tooth 12 (in general, the winding of the linear motor is a permanent magnet).
  • the magnitude of the current and the direction of the current are changed with time according to the position of Fig. 4.
  • Fig. 4 shows the magnetic flux generated in the gap by the current flowing through the windings 2a and 2b at a certain time).
  • the winding 2a generates a magnetic flux 61a from the bottom to the top
  • the winding 2b generates a magnetic flux 61b from the top to the bottom.
  • one of two different magnetic paths through which the magnetic fluxes 71 and 72 generated by the windings 2a and 2b pass is that the magnetic flux 71a generated by the winding 2a is the first as shown in FIG. This is a first path that passes through the magnetic pole teeth 11a, the magnetic body 13a, the magnetic body 13b, and the magnetic body 13c to reach the second magnetic pole teeth 12a.
  • the other path is that the magnetic flux 72a generated by the winding 2a and the winding 2b is converted into the first magnetic pole tooth 11a, the magnetic body 13a, the second magnetic pole tooth 11b, and the second magnetic pole tooth. 12b, a second path that passes through the magnetic body 13c and reaches the second magnetic pole teeth 12a.
  • the magnetic flux 71 from the windings 2a and 2b is transferred from the magnetic body 13 to the first magnetic pole tooth 11, from the first magnetic pole tooth 11 to the second magnetic pole tooth 12,
  • the other magnetic path is a direction in which the magnetic flux 72 from the windings 2a and 2b is orthogonal to the first path (traveling direction of the permanent magnet 5). (Z direction)) and the second path to the magnetic pole teeth adjacent to the moving direction of the mover.
  • the second path through which the magnetic flux 72 passes is, as shown in FIG. 6, between the first magnetic pole teeth 11 on the upper side of the armature adjacent to the moving direction of the mover. And 2b flows through the magnetic body 13 and flows to the second magnetic pole teeth 12 on the lower side of the armature, and the magnetic flux 72 is magnetized between the second magnetic pole teeth 12 on the lower side.
  • a circulation path flows through the body 13.
  • the magnetic flux from winding 2a and 2b will pass the 1st and 2nd path
  • the magnetic flux 71a to be generated includes the first magnetic pole tooth 11 from the magnetic body 13 of the armature adjacent to the traveling direction (Z direction) of the permanent magnet 5, and the second magnetic pole tooth from the first magnetic pole tooth 11. 12, since the magnetic flux 71b flows from the second magnetic pole teeth 12 to the magnetic body 13 as a path, there is an effect that the magnetic saturation can be relaxed. As a result, the linear motor can be reduced in size and iron loss can be reduced.
  • the magnetic body 13a connecting the first magnetic pole teeth 11 and the second magnetic pole teeth 12 and the adjacent first magnetic teeth 13a.
  • the direction of the magnetic flux (the magnetic fluxes 61a and 61b in FIG. 4) is reversed, the magnetic flux density is reduced, and magnetic saturation can be relaxed. effective. This effect makes it possible to reduce the magnetic path cross-sectional area of the magnetic bodies 13a and 13b that connect the first magnetic pole teeth 11 and the second magnetic pole teeth 12, leading to a reduction in the size of the linear motor.
  • the side surface portion of the magnetic body 13a connecting the first magnetic pole teeth 11 and the second magnetic pole teeth 12, and the first magnetic pole teeth 11 and the second magnetic pole teeth adjacent to each other in the moving direction of the mover Since a space 81 (see FIGS. 1 and 3) is formed in a part between the side surface portion of the magnetic body 13b that connects 12 and the cooling air flow through the space 81, the cooling performance of the winding is improved. The improvement can be achieved, and the use of the space 81 can be expected to improve the ease of drawing out the wires of the windings 2a and 2b. Furthermore, the space 81 can be used as a space for installing a member for mechanically holding the mover.
  • the armatures of each phase are independent and unbalance is unlikely to occur in the three-phase armature, so that reduction of thrust pulsation and low detent can be realized.
  • first magnetic pole teeth 11 and the second magnetic pole teeth 12 They are opposed to each other, so that the attractive force between the permanent magnet 5 and each of the magnetic pole teeth is offset, and the magnetic attractive force acting between the armature and the mover is reduced.
  • FIG. 12 to 19 show a second embodiment of the linear motor of the present invention. Since the configuration of the linear motor of this embodiment shown in FIG. 12 is substantially the same as that of the first embodiment, detailed description thereof is omitted here.
  • the current phases of the windings 2a and 2b wound around the armatures 100, 101, and 102 are shown in FIG. 13, but the first magnetic pole teeth 11 adjacent to the Z direction and the Z direction For each adjacent second magnetic pole tooth 12, the windings 2a and 2b are arranged so that each phase is inverted (electrically having a phase difference of 180 °).
  • Such an arrangement can be configured by changing the winding direction of the windings 2a, 2b of the adjacent first and second magnetic pole teeth 11 and 12, or by changing the entrance and exit lines of the windings 2a, 2b.
  • the winding directions are opposite between the adjacent first and second magnetic pole teeth 11 and 12
  • magnetic flux similar to that in FIG. 4 of the first embodiment is generated, and there is an effect of suppressing magnetic saturation.
  • the magnetic circuit for each of the adjacent first and second magnetic pole teeth 11 and 12 has a mirror image arrangement, and there is an advantage that permeance can be increased.
  • the directions of the magnetic flux 71a and the magnetic flux 71b are reversed, and the magnetic saturation can be relaxed. This has the advantage that thrust can be improved and pulsation due to magnetic saturation can be reduced.
  • the performance of the linear motor can be improved by providing windings with the same phase and reversed phase on adjacent magnetic pole teeth.
  • the U phase, -U phase, -V phase, V phase, W phase, -W phase (the U phase, V phase, W phase in FIG.
  • the phase difference is 120 °
  • the electrical phase difference between the V phase and the W phase is 120 °
  • the electrical phase difference between the U phase and the ⁇ U phase is 180 °.
  • FIG. 14 shows the relationship between the magnet pitch ⁇ m and the pitch ⁇ p of the magnetic pole teeth in the Z direction.
  • a plurality of windings of adjacent magnetic pole teeth can be connected to the same phase (+ U phase and + U phase).
  • Winding of -U phase) having a phase difference of 180 ° relative to the phase can be arranged side by side. Thereby, the magnetic saturation of the magnetic path can be eliminated.
  • a plurality of windings of adjacent magnetic pole teeth can be arranged side by side. Thereby, the magnetic saturation of the magnetic path can be eliminated.
  • the armatures of the respective phases are independent, and the adjacent armatures
  • the armature end phase is one (the armature of one phase has one armature of the other phase in the Z direction and the other armature has no armature of the other phase)
  • the armature of the other phase is on both sides of the armature of one phase.
  • the armatures of the respective phases are independent, the three-phase armature is less likely to be unbalanced, and there is an effect that thrust pulsation can be reduced and low detent can be realized.
  • the configuration is substantially the same as that of the linear motor shown in the first embodiment, but the magnetic body 13 connecting the first magnetic pole teeth 11 and the second magnetic pole teeth 12 and the movement of the mover.
  • the magnetic body 13 that connects the first magnetic pole teeth 11 and the second magnetic pole teeth 12 adjacent to each other in the direction (Z direction) is divided in the Z direction.
  • the same effect as that of the first embodiment can be obtained, and the magnetic body 13 that connects the first magnetic pole teeth 11 and the second magnetic pole teeth 12 has the traveling direction of the permanent magnet 5. It is effective even when not connected to. Further, the winding 2 can be held and cooled by using the gaps between the magnetic bodies 13 connecting the first magnetic pole teeth 11 and the second magnetic pole teeth 12.
  • the configuration is substantially the same as that of the linear motor shown in the first embodiment.
  • the space 81 between the bodies 13 is filled with a magnetic material.
  • the windings 2a and 2b are pulled out from the spaces of the armatures 100, 101, and 102, and the magnetic body 13 that connects the first magnetic pole teeth 11 and the second magnetic pole teeth 12 is used.
  • the magnetic path cross-sectional area is increased.
  • the same effects as those of the first embodiment can be obtained, and the size of the magnetic body 13 connecting the first magnetic pole teeth 11 and the second magnetic pole teeth 12 is reduced, and the size is further reduced.
  • the linear motor can be configured.
  • This embodiment shown in the figure has a configuration in which two armatures 100 of the linear motor shown in FIG. 1 are arranged in the moving direction (Z direction) of the mover, and the interval between the two armatures is an electrical angle. It arrange
  • the same effect as in the first embodiment can be obtained, and the interval between the adjacent first magnetic pole teeth 11 of the armature 100 shown in FIG. 1 is set to 150 °.
  • the space 81a provided in the magnetic body 13 connecting the first magnetic pole teeth 11 and the second magnetic pole teeth 12 is enlarged. It becomes possible to do.
  • the three-phase armatures 100, 101, 102 can be arranged in a line. That is, it can arrange
  • FIG. 25 shows an example of the arrangement of winding phases.
  • the winding phases of the armatures 100, 101, and 102 are windings having a 180 ° phase difference with the windings of the same phase in the same armature. Since the wires are adjacent to each other, there is an effect that the wiring of the winding becomes easy.
  • FIG. 26 shows a sixth embodiment of the linear motor of the present invention. Since the configuration of the linear motor of this embodiment shown in the figure is substantially the same as that of the first embodiment, detailed description thereof is omitted here.
  • the armatures 100, 101, and 102 are arranged so that the electrical angle is 360 ° + 120 °.
  • the same effects as those of the first embodiment can be obtained, and the interval between the armature 100 and the armature 101 is set to an electrical angle of 360 ° + 120 °, so Magnetic interference can be reduced, and there is an effect of reducing thrust pulsation and interference of inductance between phases.
  • the controllability is improved due to the effect of reducing the interference of inductance.
  • the space between the armatures can be used as a space for holding the winding or the mover or cooling the winding.
  • the present embodiment shown in the figure has a linear motor configuration in which a plurality of armatures are arranged with respect to the permanent magnets 5 arranged such that the magnetization directions 51 of the adjacent permanent magnets 5 are alternate, and one movable element.
  • armatures are arranged with respect to the permanent magnets 5 arranged such that the magnetization directions 51 of the adjacent permanent magnets 5 are alternate, and one movable element.
  • it is the structure which has the armature of two or more linear motors.
  • the drive device 91 is connected to two linear motors, a linear motor 200 composed of three armatures 100, 101, 102 and a linear motor 201 composed of three armatures 100, 101, 102, respectively. .
  • thrust can be individually generated in the linear motor 200 and the linear motor 201 by the respective driving devices 91.
  • a large thrust can be generated. It is also possible to operate as a brake by working in the reverse direction.
  • produce differs is also possible.
  • the configuration of this embodiment has an advantage that a drive system can be configured with a small capacity drive device by supplying current necessary for thrust generation from the two drive devices 91.
  • no wiring is required between the two linear motors 200 and 201, so that a space for wiring can be reduced, and the entire linear motor drive system can be reduced in size.
  • the drive device 91 is a device that supplies current to the winding, and an inverter, a servo amplifier, or the like is used. When supplying a current to one phase, it is possible to connect with a single-phase amplifier.
  • FIG. 29 shows an eighth embodiment of the linear motor of the present invention. Since the configuration of the linear motor of this embodiment shown in the figure is substantially the same as that of the first embodiment, detailed description thereof is omitted here.
  • the gap formed between the first magnetic pole teeth 11 and the second magnetic pole teeth 12 is g, and the first and second magnetic pole teeth 11 and 12 are adjacent to each other.
  • the relationship between the gap g and the magnetic pole interval W is W ⁇ 1.2 ⁇ g, where W is the magnetic pole interval in the moving direction (Z direction) of the mover or armature with the second magnetic pole teeth 11 and 12. It is what.
  • the thrust characteristics are greatly changed by the change of the magnetic pole interval W in the traveling direction of the mover.
  • the gap g is made constant and the magnetic pole interval W is made narrow, the magnetic flux between the magnetic pole teeth adjacent in the traveling direction of the mover increases, and the thrust decreases.
  • the magnetic flux that does not act on the permanent magnet 5 and extends to the adjacent magnetic pole teeth becomes a leakage magnetic flux, and does not contribute to thrust. Reducing the leakage flux makes it possible to reduce reactive power and leakage inductance.
  • the leakage magnetic flux is reduced by setting the relationship between the dimension of the gap g and the magnetic pole interval W to be the magnetic pole interval W ⁇ 1.2 ⁇ gap g.
  • FIG. 30 shows the ineffective magnetic flux (leakage magnetic flux) A and effective magnetic flux (contributing to thrust) when the horizontal axis represents the ratio of magnetic pole interval W to gap g (W / g) and the vertical axis represents the amount of magnetic flux. ) It is a figure showing the characteristic of B.
  • the same effect as in the first embodiment can be obtained, the leakage magnetic flux is reduced, the reactive power can be reduced and the leakage inductance can be reduced, and the thrust is not lowered.
  • a linear motor having a relatively large thrust can be obtained.
  • FIG. 31 shows a ninth embodiment of the linear motor of the present invention. Since the configuration of the linear motor of this embodiment shown in the figure is substantially the same as that of the first embodiment, detailed description thereof is omitted here.
  • the present embodiment shown in the figure is an embodiment showing an example of how to hold the permanent magnet 5 described in the first to eighth embodiments.
  • the permanent magnet 5 is fixed to the permanent magnet holding member 52.
  • the mover 55 is constituted by the permanent magnet 5 and the permanent magnet holding member 52, and the armatures 100, 101, 102 are attached and fixed to a base (not shown), and the armatures 100, 101, 102 and / or Alternatively, the mover 55 is held by support means attached to the base.
  • the number of rows of permanent magnets 5 is composed of two rows up and down, and the armatures 100, 101 and 102 in the upper and lower rows are made common. That is, as shown in FIG. 33, the first magnetic pole teeth 11a and the second magnetic pole teeth 12a are arranged so as to sandwich the upper permanent magnet 5a, and the first magnetic pole teeth 11b are interposed so as to sandwich the lower permanent magnet 5b. The second magnetic pole teeth 12b are arranged.
  • the linear motor can be miniaturized by using it in common.
  • the same effect as that of the first embodiment can be obtained, and the magnetic body 13 that connects the first magnetic pole teeth 11 and the second magnetic pole teeth 12 can be shared.
  • the size of the magnetic circuit can be reduced.
  • the structure of the present Example mentioned above is a structural example in case the number of rows of the permanent magnet 5 is two rows, if there is a similar effect, it is not limited to the number of rows of the permanent magnet 5. You may comprise in multiple rows up and down.
  • 35 to 37 (B) show an eleventh embodiment of the linear motor of the present invention. Since the configuration of the linear motor of this embodiment shown in the figure is substantially the same as that of the first embodiment, detailed description thereof is omitted here.
  • FIG. 35 to FIG. 37 (B) are miniaturized by stacking the linear motor shown in the first embodiment in two stages in the Y-axis direction and sharing the armature.
  • the linear motor of the present embodiment includes a first magnetic pole tooth 11, a second magnetic pole tooth 12, a first magnetic pole tooth 11, and a second magnetic pole tooth.
  • the magnetic body 13 that connects the magnetic pole teeth 12 has a three-part structure.
  • the upper magnetic body 13a1 that connects the upper first magnetic pole teeth 11a, the first magnetic pole teeth 11 and the second magnetic pole teeth 12, and the lower stage.
  • the lower magnetic body 13a2 that connects the second magnetic pole teeth 12b, the first magnetic pole teeth 11 and the second magnetic pole teeth 12, the upper second magnetic pole teeth 12a, and the lower first magnetic pole teeth 11b.
  • the upper first magnetic pole teeth 11a have a winding 2a
  • the upper second magnetic pole teeth 12a have a winding 2b
  • the lower first magnetic pole teeth 11b have a winding 2c
  • the lower first magnetic teeth 11a have a winding 2d
  • the windings 2d are respectively arranged on the second magnetic pole teeth 12b.
  • the magnetic flux 61a acting on the upper stage mover 55 and the magnetic flux 61b acting on the lower stage mover 55 are in the same direction, and the upper magnetic body 13a1, the lower lower magnetic body 13a2, and the central part
  • the magnetic flux generated by the windings 2a and 2b facing the upper permanent magnet 5a also acts on the lower permanent magnet 5b.
  • the magnetic flux generated by the windings 2c and 2d facing the lower permanent magnet 5b also acts on the upper permanent magnet 5a.
  • FIG. 37A is a BB cross section of FIG.
  • the magnetic flux generated by the windings 2e and 2f acts on the lower permanent magnet 5b via the upper magnetic body 13a1, the lower lower magnetic body 13a2, and the central magnetic body 13b.
  • the magnetic flux generated by the windings 2g and 2h acts on the upper permanent magnet 5a via the upper upper magnetic body 13a1, the lower lower magnetic body 13a2, and the central magnetic body 13b.
  • the armature 100 is provided with two magnetic pole teeth in the Z direction.
  • the movable element 55 is multi-staged and the magnetic circuit is arranged. By making them common, the magnetic fluxes generated by the windings interact with each other, and the linear motor can be reduced by the effect A. Further, by arranging a plurality of magnetic poles in the Z direction, the cross-sectional area of the magnetic path can be increased, and further miniaturization can be achieved.
  • the effect A is not limited to the case where a mover is provided in the Z direction.
  • the magnetic flux generated by the multi-stage winding is made the same direction so that the multi-stage magnetic flux interacts.
  • the effect can be obtained by using a common magnetic circuit.
  • FIG. 38 shows the results of magnetic field analysis of the thrust density when the magnetic flux generated in the winding with the Y direction in two stages is the same direction and the thrust density when the direction is reversed in the linear motor of this embodiment.
  • FIG. 8 shows the direction of the magnetic flux generated by the winding when the rated thrust at the rated current of 1.0 (pu) is 1.0 (pu) when the direction of the magnetic flux generated by the winding is reversed. The result of having compared the thrust when making the same is shown.
  • the thrust density is 1.36 times that in the case where the direction of the magnetic flux generated from the windings is reversed.
  • the present Example demonstrated the case where the needle
  • thrust density can be improved similarly also about the structure of 3 steps
  • the upper and lower magnetic circuits are divided into an upper upper magnetic body 13a1, a lower lower magnetic body 13a2, and a central magnetic body 13b, so that the upper upper magnetic body 13a1 and the lower lower magnetic body 13a2 are separated. It is possible to easily increase the number of the magnetic bodies 13b in the middle between them to make a multistage configuration. At this time, the physique of the armature can be reduced by the mutual action of the magnetic fluxes of the plurality of windings.
  • this embodiment can realize a reduction in the linear motor physique by sharing the magnetic circuit and an improvement in thrust by reducing the magnetic resistance.
  • the strength of the mover 55 is improved without increasing the thickness of the mover 55 by installing the side plates 57 on both sides of the permanent magnet holding member 52 on which the permanent magnet 5 is disposed. it can. Furthermore, by making the movable element 55 to which the side plate 57 is attached in a multi-stage configuration and attaching the connecting plate 56 to the end portion of the movable element 55, the rigidity of the movable element 55 can be significantly improved. Thereby, since the rigidity of the movable element 55 can be improved without increasing the magnetic resistance, the problem of the strength of the movable element 55 which is a problem with a linear motor having a large thrust and a large thrust and a large thrust can be solved.
  • FIGS. 39 to 42 show a twelfth embodiment of the linear motor of the present invention. Since the configuration of the linear motor of this embodiment shown in FIGS. 39 to 42 is substantially the same as that of Embodiments 1 and 2, detailed description thereof is omitted here.
  • the linear motor of this embodiment shown in the figure is an embodiment in which the magnetic body 13 connecting the first magnetic pole teeth 11 and the second magnetic pole teeth 12 is cut (cut) in order to improve the rigidity of the mover 55. is there.
  • the magnetic body 13 connecting the first magnetic pole teeth 11 and the second magnetic pole teeth 12 constituting the armatures 100 to 102 is cut.
  • positioned the permanent magnet 5 is fastened to the base board 53, and the deformation
  • FIG. 40 shows an example of a linear motor in which the magnetic body 13 that connects the first magnetic pole teeth 11 and the second magnetic pole teeth 12 is cut.
  • FIG. 41 shows the magnetic flux in the XY plane of the linear motor shown in FIG. 40, and
  • FIG. 42 shows the magnetic flux in the XZ plane.
  • the permanent magnet holding member 52 in which the permanent magnet 5 is arranged is fixed to the base plate 53 and becomes the fixed side, the armatures 100, 101, and 102 become the movable side, and the fixed side and the movable side have the fixed side. Move relatively.
  • a movable portion support tool 85 is provided between the fixed side and the movable side to hold the position relatively.
  • a guide roller, an LM guide, or the like is used, but is not limited thereto.
  • FIG. 43 to 45 show a structure of an application example of this embodiment in which a side plate 57 is provided on the permanent magnet holding member 52 and the deformation of the permanent magnet holding member 52 is suppressed.
  • a guide roller or the like may be provided on the upper portion of the side plate 57 to keep the positions of the fixed side and the movable side relatively.
  • FIGS. 46 and 47 show an embodiment 13 of the linear motor of the present invention.
  • the configuration of the linear motor of this embodiment shown in FIGS. 46 and 47 is substantially the same as that of Embodiments 1 and 2, and detailed description thereof is omitted here.
  • the linear motor of the present embodiment shown in the figure is an embodiment in which the number of stages of the mover 55 is four and two sets of armatures 100, 101, 102 are arranged in the Z direction.
  • the linear motor of the present embodiment has a magnetic body 14 (shape) that includes a first magnetic pole tooth 11 and a magnetic body that connects the first magnetic pole tooth 11 and the second magnetic pole tooth 12 to form a magnetic flux path.
  • A a second magnetic pole tooth 12
  • a magnetic body 16 (shape B) composed of a magnetic body that connects the first magnetic pole tooth 11 and the second magnetic pole tooth 12 to form a path of magnetic flux
  • a magnetic body 15 (shape B) composed of a magnetic body that connects the first magnetic pole tooth 11 and the second magnetic pole tooth 12 and the first magnetic pole tooth 11 and the second magnetic pole tooth 12 to form a magnetic flux path
  • each magnetic pole tooth Armatures 100, 101, 102 made of wound windings are provided.
  • the magnetic flux 61 generated by the windings arranged on the magnetic pole teeth is directed in the same direction, and the magnetic fluxes of the windings interact to increase permeance.
  • first magnetic pole tooth 11, the first magnetic pole tooth 11 and the second magnetic pole tooth 12 are connected to each other, a magnetic body 14 formed of a magnetic body forming a magnetic flux path, the second magnetic pole tooth 12 and the first magnetic pole tooth 12.
  • the first magnetic pole teeth 11 and the second magnetic pole teeth 12 and the first magnetic pole teeth are provided between the magnetic poles 11 and 12 and the magnetic body 16 formed of a magnetic body that forms a magnetic flux path.
  • the structure that sandwiches the magnetic body 15 composed of the magnetic body that connects the teeth 11 and the second magnetic pole teeth 12 and forms the path of the magnetic flux can easily be multistaged by combining two shapes of magnetic bodies (shape A and shape B).
  • the thrust and the thrust density can be improved by sharing the magnetic flux and the magnetic circuit by multistage.
  • the rigidity of the movable element can be improved by connecting the multistage movable elements.
  • the present embodiment is not limited to a multi-stage configuration as long as the same effect can be obtained.
  • the number of stages of the mover 55 is one and the armatures 100, 101, 102 are A configuration in which one set is arranged in the Z direction is also possible.
  • a space is provided in the lateral part of the armature to pass the wiring of the windings, but the presence or absence of the main hole does not limit the present invention.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Linear Motors (AREA)

Abstract

 本発明は、装置の小型化が図れることは勿論、隣り合う磁極間の有効な磁束の共有化が図れ、かつ、電機子と可動子との間に働く磁気吸引力が相殺されるリニアモータを提供する。 本発明によるリニアモータは、永久磁石又は磁性材を磁化方向を反転させつつ複数個並べて形成された可動子と、前記永久磁石又は磁性材を上下から挟み込むように配置された第1の磁極歯及び第2の磁極歯、前記第1の磁極歯と前記第2の磁極歯をつなぎ磁束の経路を形成する磁性体、前記第1の磁極歯と前記第2の磁極歯にそれぞれ配置された巻線から成ると共に、前記可動子若しくは電機子の進行方向に少なくとも2つ並設され、かつ、両者が前記磁性体で連結されている電機子とを備え、前記可動子と前記電機子が相対的に水平移動するための推力を発生するものであって、前記巻線からの磁束が通る少なくとも2つの異なる磁路を有することを特徴とする。

Description

リニアモータ及びリニアモータ駆動システム
 本発明はリニアモータ及びリニアモータ駆動システムに係り、特に、可動子の永久磁石と電機子との間に相対的に水平移動するための推力を発生するものに好適なリニアモータ及びリニアモータ駆動システムに関する。
 可動子の永久磁石と電機子との間に相対的に水平移動するための推力を発生するリニアモータに関しては、特許文献1乃至3に記載されたものがある。
 この特許文献1乃至3には、磁極と巻線から成る電機子と、永久磁石を有する可動子とが相対的に水平方向に移動可能であるリニアモータであって、前記磁極が永久磁石の両側に空隙を介して対向配置された磁極歯と、この磁極歯をつなぐ磁性体とを備え、前記磁極を可動子の進行方向に複数個有し、かつ、電機子に配置された巻線により発生する磁束が、複数個の磁極において同じ極性を有し、複数個の対向配置された磁極歯が単独で構成され、しかも、対向配置された磁極歯ごとに、該磁極歯間の距離が可変できることが記載されている。
特開2011-223697号公報 特開2010-141978号公報 国際公開2010/103575号
 しかしながら、特許文献1乃至3に記載のリニアモータは、複数個の磁極において同じ極性を有しているため、可動子の進行方向に並んだ複数個の間において漏れ磁束を低減するという効果はあるものの、磁極の間隔が広くなり装置が大型化すると共に、隣り合う磁極間の有効な磁束の共有ができない問題があった。
 本発明は上述の点に鑑みなされたもので、その目的とするところは、装置の小型化が図れることは勿論、隣り合う磁極間の有効な磁束の共有化が図れ、かつ、電機子と可動子との間に働く磁気吸引力が相殺されるリニアモータ及びリニアモータ駆動システムを提供することにある。
 本発明のリニアモータは、上記目的を達成するために、永久磁石又は磁性材を磁化方向を反転させつつ複数個並べて形成された可動子と、前記永久磁石又は磁性材を上下から挟み込むように配置された第1の磁極歯及び第2の磁極歯、前記第1の磁極歯と前記第2の磁極歯をつなぎ磁束の経路を形成する磁性体、前記第1の磁極歯と前記第2の磁極歯にそれぞれ配置された巻線から成ると共に、前記可動子若しくは電機子の進行方向に少なくとも2つ並設され、かつ、両者が前記磁性体で連結されている電機子とを備え、前記可動子と前記電機子が相対的に水平移動するための推力を発生するものであって、前記巻線からの磁束が通る少なくとも2つの異なる磁路を有することを特徴とする。
 また、前記巻線からの磁束が通る少なくとも2つの異なる磁路は、前記巻線からの磁束が、前記磁性体から前記第1の磁極歯、該第1の磁極歯から前記第2の磁極歯、該第2の磁極歯から前記磁性体に至る第1の経路と、該第1の経路と直交する方向で、かつ、前記それぞれの電機子内で前記可動子若しくは電機子の進行方向に隣接する前記磁極歯に至る第2の経路とから成ることを特徴とする。
 また、前記第1の磁極歯と前記第2の磁極歯にそれぞれ配置された巻線は、前記可動子若しくは電機子の進行方向に隣接する第1の磁極歯と第2の磁極歯にそれぞれ配置された巻線との巻方向が逆になっていることを特徴とする。
 また、前記第1の磁極歯と前記第2の磁極歯にそれぞれ配置された巻線が作る磁束は、前記可動子若しくは電機子の進行方向に隣接する第1の磁極歯と第2の磁極歯にそれぞれ配置された巻線が作る磁束と、その向きが互い違いになっていることを特徴とする。
 また、前記第1の磁極歯と前記第2の磁極歯、前記第1の磁極歯と前記第2の磁極歯をつなぎ磁束の経路を形成する磁性体、前記第1の磁極歯と前記第2の磁極歯にそれぞれ配置された巻線を少なくとも2段以上有すると共に、各段の前記第1の磁極歯と前記第2の磁極歯間に各々可動子を有し、該可動子の本数を複数個有することを特徴とする。
 本発明によれば、装置の小型化が図れることは勿論、隣り合う磁極間の有効な磁束の共有化が図れ、かつ、電機子と可動子との間に働く磁気吸引力が相殺されるリニアモータ及びリニアモータ駆動システムを得ることができる。
本発明のリニアモータの実施例1を示す斜視図である。 図1をY-Z平面で断面した状態を示す斜視図である。 図1から永久磁石を抜き取った状態の図1をX-Z平面で断面した状態を示す斜視図である。 本発明の実施例1における巻線が、第1の磁極歯と第2の磁極歯のギャップに作る磁束の向きを示す図2に相当する図である。 本発明のリニアモータの実施例1における第1の磁束の経路と第2の磁束の経路を示す図1に相当する図である。 本発明のリニアモータの実施例1における第1の磁束の経路と第2の磁束の経路を示す図2に相当する図である。 図5に示したリニアモータの1相分の電機子を示す斜視図である。 図7に示した1相分の電機子をX-Y平面で断面した状態を示す斜視図である。 図7に示した1相分の電機子をY-Z平面で断面した状態を示す斜視図である。 図8を矢印A方向から見た図である。 図9を矢印B方向から見た図である。 本発明のリニアモータの実施例2を示す斜視図である。 本発明のリニアモータの実施例2における3相の電機子に巻かれる巻線の位相を説明するための図である。 本発明のリニアモータの実施例2において、5個の永久磁石に対しZ方向に磁極歯を6個並べた構成を示す図である。 本発明のリニアモータの実施例2において、7個の永久磁石に対しZ方向に磁極歯を6個並べた構成を示す図である。 本発明のリニアモータの実施例2において、8個の永久磁石に対しZ方向に磁極歯を9個並べた構成を示す図である。 本発明のリニアモータの実施例2において、10個の永久磁石に対しZ方向に磁極歯を9個並べた構成を示す図である。 本発明のリニアモータの実施例2において、図14に示した構成をZ方向に2つ並べ、10個の永久磁石に対しZ方向に磁極歯を12個並べた構成を示す図である。 本発明のリニアモータの実施例2において、図17に示した構成をZ方向に2つ並べ、20個の永久磁石に対しZ方向に磁極歯を18個並べた構成を示す図である。 本発明のリニアモータの実施例3を示す図1に相当する斜視図である。 図17の側面図である。 本発明のリニアモータの実施例4を示す図1に相当する斜視図である。 図22をY-Z平面で断面した状態を示す斜視図である。 本発明のリニアモータの実施例5を示す斜視図である。 図24をY-Z平面で断面した状態を示す斜視図である。 本発明のリニアモータの実施例6を示し、Y-Z平面で断面した状態を示す斜視図である。 本発明のリニアモータの実施例7を示す斜視図である。 図27をY-Z平面で断面した状態を示す断面図である。 本発明のリニアモータの実施例8を示し、第1の磁極歯と第2の磁極歯のギャップg、第1及び第2の磁極歯の可動子の進行方向の磁極間隔Wの関係を説明するための図である。 実施例8における磁極間隔W及びギャップgの比(W/g)と磁束量との関係を示す特性図であり、無効な磁束(漏れ磁束)及び有効な磁束(推力に寄与)の特性を示す図である。 本発明のリニアモータの実施例9を示す斜視図である。 本発明のリニアモータの実施例10を示す斜視図である。 図32の正面図である。 図32をY-Z平面で断面した状態を示す断面図である 本発明のリニアモータの実施例11を示す斜視図である。 図35の側面図である。 図36のA-A断面図である。 図36のB-B断面図である。 本発明のリニアモータの実施例11の効果を示す推力密度の特性図である。 本発明のリニアモータの実施例12を示す斜視図である。 実施例12における第1の磁極歯と第2の磁極歯をつなぐ磁性体の一部を切り取ったリニアモータの斜視図である。 実施例12におけるX-Y平面で巻線が作る磁束を示す図である。 実施例12におけるX-Z平面で巻線が作る磁束を示す図である。 サイドプレートを設けた実施例12の応用例を示す斜視図である。 図43に示す応用例のリニアモータの斜視図である。 図43に示す応用例の磁束の向きを示すリニアモータの正面図である。 本発明のリニアモータの実施例13を示す斜視図である。 図46に示す実施例13の磁束の向きを説明する図である。 実施例3のリニアモータの変形例を示す斜視図である。
 以下、図示した実施例に基づいて本発明のリニアモータを説明する。なお、各実施例において、同一構成部品には同符号を使用する。
 図1乃至図11に、本発明のリニアモータの実施例1を示す。該図に示す本実施例は、3相のモータを構成した例であり、3つの電機子100、101、102からなる固定子と、隣り合う永久磁石5の磁化方向51が交互になるように複数個の永久磁石5が配置されている可動子とが相対的に直線運動(水平移動)をするリニアモータである。3つの電機子100、101、102からなる固定子を、電気的に位相が各120°ずれるように配置することで3相リニアモータが構成でき、同様にm個の電機子でm相駆動のリニアモータを構成できる。
 永久磁石5は、永久磁石5を保持する部材(図示しない)に固着され、永久磁石5と永久磁石5を保持する部材とで可動子を構成する。可動子と固定子は、相対的に直線運動が可能な支持手段により保持される。なお、可動子を固定し、固定子(電機子)側を移動させることも可能である。
 1つの電機子100は、永久磁石5に対向した上側の第1の磁極歯11と、永久磁石5に対向した下側の第2の磁極歯12と、上側の第1の磁極歯11と下側の第2の磁極歯12をつなぐ磁性体13とから成り、永久磁石5の進行方向(Z方向)に2つ並べて構成されている。2つ並べて構成された電機子100の各々の第1の磁極歯11と第2の磁極歯12には、それぞれ巻線2aと巻線2bが配置され、第1の磁極歯11と第2の磁極歯12は、永久磁石5に対向する位置に配置されている。なお、電機子101、102も同様な構成である。
 図4に、巻線2a及び巻線2bが、第1の磁極歯11と第2の磁極歯12との間のギャップに作る磁束の向きを示す(一般に、リニアモータの巻線は、永久磁石の位置によって時間的に電流の大きさや電流の向きを変化させる。図4は、ある時間において巻線2a、2bに流れる電流が、ギャップに作る磁束を示している)。
 該図に示す如く、巻線2aは下から上への磁束61aを発生させ、巻線2bは上から下への磁束61bを発生させる。
 本実施例では、図5及び図6に示す如く、巻線2a及び2bによって発生する磁束71及び72が通る2つの異なる磁路を形成している。
 以下、この詳細を図7乃至図11を用いて説明する。該図に示す如く、巻線2a及び2bによって発生する磁束71及び72が通る2つの異なる磁路のうち1つは、図10に示すように、巻線2aにより生じた磁束71aが、第1の磁極歯11a、磁性体13a、磁性体13b、磁性体13cを通り、第2の磁極歯12aに至る第1の経路である。もう1つの経路は、図11に示すように、巻線2aと巻線2bにより生じた磁束72aが、第1の磁極歯11a、磁性体13a、第2の磁極歯11b、第2の磁極歯12b、磁性体13cを通り、第2の磁極歯12aに至る第2の経路である。
 即ち、2つの異なる磁路の1つは、巻線2a及び2bからの磁束71が、磁性体13から第1の磁極歯11、第1の磁極歯11から第2の磁極歯12、第2の磁極歯12から磁性体13に至る第1の経路であり、もう1つの磁路は、巻線2a及び2bからの磁束72が、第1の通路と直交する方向(永久磁石5の進行方向(Z方向))で、かつ、可動子の進行方向に隣接する磁極歯に至る第2の経路である。
 上記した磁束72が通る第2の経路は、詳述すれば、図6に示す如く、可動子の進行方向に隣接する電機子の上側の各々の第1の磁極歯11間を、巻線2a及び2bからの磁束72が磁性体13を介して流れ、それが電機子の下側の第2の磁極歯12に流れ、下側の各々の第2の磁極歯12間を、磁束72が磁性体13を介して流れる循環経路となる。
 このように構成することにより、巻線2a及び2bからの磁束が第1及び第2の経路を通ることになり、磁束の経路の断面積が増加し、効率的に推力を発生することができる。
 従って、小型のリニアモータが提供でき、更に、磁性体13から第1の磁極歯11、第1の磁極歯11から第2の磁極歯12、第2の磁極歯12から磁性体13を経路とする磁束71aは、図5に示す如く、永久磁石5の進行方向(Z方向)に隣り合う電機子の磁性体13から第1の磁極歯11、第1の磁極歯11から第2の磁極歯12、第2の磁極歯12から磁性体13を経路とする磁束71bとは逆向きに流れているため、磁気飽和が緩和できるという効果もある。これにより、リニアモータの小型化や鉄損の低減が可能となる。
 図3に示す如く、巻線2aの作る磁束と巻線2bの作る磁束の向きが互い違いになるため、第1の磁極歯11と第2の磁極歯12をつなぐ磁性体13aと、隣接する第1の磁極歯11と第2の磁極歯12をつなぐ磁性体13bとにおいては、磁束の方向(図4の磁束61a及び61b)が逆向きになり、磁束密度が低減し磁気飽和を緩和できるという効果がある。この効果により、第1の磁極歯11と第2の磁極歯12をつなぐ磁性体13a及び13bの磁路断面積を小さくすることが可能になり、リニアモータの小型化につながる。
 また、本実施例では、第1の磁極歯11と第2の磁極歯12をつなぐ磁性体13aの側面部と、可動子の進行方向に隣接する第1の磁極歯11と第2の磁極歯12をつなぐ磁性体13bとの側面部との間の一部に空間81(図1及び図3参照)を形成しているので、この空間81に冷却風を流すことで巻線の冷却性能の向上が図れ、また、空間81を利用することで巻線2a、2bの配線の引き出し易さが向上するなどの効果が期待できる。更に、空間81を、可動子を機械的保持する部材の設置のための空間として利用することも可能である。
 また、本実施例のリニアモータは、各相の電機子が独立しており、3相の電機子に不平衡が生じにくいため、推力脈動の低減、低ディテントが実現できる。
 このような本実施例によれば、装置の小型化が図れることは勿論、隣り合う磁極間の有効な磁束の共有化が図れ、かつ、第1の磁極歯11と第2の磁極歯12が対向しており、永久磁石5と、それぞれの磁極歯間での吸引力が相殺され、電機子と可動子との間に働く磁気吸引力が小さくなる効果がある。
 図12乃至図19に、本発明のリニアモータの実施例2を示す。図12に示す本実施例のリニアモータは、その構成は実施例1と略同様なので、ここでの詳細説明は省略する。
 一般に、リニアモータを用いて大推力、高速駆動を実現するためには、リニアモータの巻線に大きな電流を流す必要がある。しかし、巻線に流す電流の増加に従って、巻線の径も増加する傾向にある。例えば、3相モータではU相、V相、W相の巻線が用いられるが、1つの相で複数の巻線を備えたケースでは、同相の巻線の間隔が離れている場合、各相の巻線が交差する場合など、複数の巻線を接続する渡り線の占める空間が増加し、リニアモータの体格の増加、インダクタンスが増加してしまう課題もあった。特に、大推力、高速駆動の必要なリニアモータでは、それらの影響が顕著にあらわれる。
 そこで、本実施例では、各電機子100、101、102のそれぞれに巻かれる巻線2a、2bの電流位相を図13に示すが、Z方向に隣り合う第1の磁極歯11及びZ方向に隣り合う第2の磁極歯12毎に、各相の反転した位相(電気的に180°位相差を有する位相)となるように巻線2a、2bを配置している。
 このような配置は、隣り合う第1及び第2の磁極歯11及び12の巻線2a、2bの巻方向を変えるか、或いは巻線2a、2bの出入り口の線を入れ替えることで構成できる。
 図13に示すように、隣り合う第1及び第2の磁極歯11及び12で巻線2a、2bの位相を180°変えることにより、隣り合う巻線2a、2bで結線が可能になり、渡り線の空間を削減できる。また、各相の巻線間で交差する渡り線がないため、小型のリニアモータが構成できる。
 本実施例では、隣り合う第1及び第2の磁極歯11及び12で巻線方向が反対になるため、実施例1の図4と同様な磁束が発生し、磁気飽和抑制の効果もある。また、隣り合う第1及び第2の磁極歯11及び12毎の磁気回路が鏡像配置になり、パーミアンスを高くできる利点もある。また、上記した図5に示すように、磁束71aと磁束71bの向きが逆になり、磁気飽和を緩和できる。これにより推力の向上、磁気飽和による脈動を低減できる利点がある。
 このように、隣り合う磁極歯に同相で位相の反転した巻線を施すことにより、リニアモータの性能を向上できる。
 例えば、図13に示すように、U相、-U相、-V相、V相、W相、-W相(図13のU相、V相、W相は、U相とV相間で電気的な位相差が120°、V相とW相間で電気的な位相差が120°であり、U相と-U相間で電気的な位相差が180°となることを示す)となるように配置することで、5個の永久磁石5に対して、Z方向に磁極歯を6個並べることが可能となり、各電機子100、101、102を整列させることができる。
 また、図14に磁石のピッチτmと、磁極歯のZ方向のピッチτpの関係を示す。
 図14に示した5個の永久磁石5に対して、Z方向に磁極歯を6個並べた(5τm=6τpの関係のある)構成は一例であり、隣り合う磁極の巻線2a、2bを同じ相になるように配置することで、同様の効果が得られれば、本構成に限定されるものではない。
 例えば、図15に示すように、7個の永久磁石5とZ方向に磁極歯を6個並べることにより(7τm=6τp)、隣り合う磁極歯の複数の巻線を同じ相(+U相と+U相に対して180°位相の異なる-U相)の巻線を並べて配置できる。これにより、磁路の磁気飽和を解消できる。
 また、図16には、8個の永久磁石5とZ方向に9個の磁極歯を並べた(8τm=9τp)場合の構成例を示す。また、図17には、10個の永久磁石5とZ方向に9個の磁極歯を並べた(10τm=9τp)場合の構成例を示す。図16及び図17ともに、隣り合う磁極歯の複数の巻線を同じ相の巻線を並べて配置できる。これにより、磁路の磁気飽和を解消できる。
 即ち、3相のリニアモータの場合には、Z方向に並んだ磁極歯の数を3m(m=2、3、4・・・の整数)とした場合、要は3m±1個配置されていればよい。
 本発明のリニアモータは、逆方向の磁束を利用して磁気飽和を緩和する効果があるため、mは2以上の整数となる。従って、磁石のピッチτmと、磁極歯のZ方向のピッチτpの関係を(3m±1)τm=3mτpとすればよい。
 更に、図18に示すように、5τm=6τpの関係有する電機子100、101、102をZ方向に2つ並べ、10τm=12τpとした構成も可能である。即ち、磁石のピッチτmと、磁極歯のZ方向のピッチτpの関係をn(3m±1)τm=3mnτpとすればよい(n=1、2、3、4・・・の整数)。
 また、図19は、n=2、m=3とした場合の実施例であり、2×(3×3+1)τm=3×3×2τpであり、20τm=18τpとした例である。
 このような本実施例によれば、実施例1と同様な効果が得られることは勿論、本実施例のリニアモータは、各相の電機子が独立しており、隣り合う電機子間での磁束の干渉が小さく、電機子端部の相の(ある相の電機子のZ方向に一方は他相の電機子があり、もう一方には他相の電機子がない)場合と、中央部の相の(ある相の電機子の両側に他相の電機子がある)場合と推力特性に差が生じる。それぞれの相の電機子間の干渉が大きい場合、電機子端部の相の推力と、電機子中央部の相の推力差が大きくなり、推力の脈動やディテントが大きくなる。
 本発明のリニアモータは、各相の電機子が独立しているため、3相の電機子に不平衡が生じにくく、推力脈動の低減、低ディテントが実現できるという効果がある。
 図20及び図21に、本発明のリニアモータの実施例3を示す。該図に示す本実施例のリニアモータは、その構成は実施例1と略同様なので、ここでの詳細説明は省略する。
 該図に示す本実施例では、実施例1に示したリニアモータと略同様な構成であるが、第1の磁極歯11と第2の磁極歯12をつなぐ磁性体13と、可動子の進行方向(Z方向)に隣接する第1の磁極歯11と第2の磁極歯12をつなぐ磁性体13とを、Z方向に分割したものである。
 例えば、積層鋼板などで電機子を作成した場合、実際にはわずかな隙間が生じるため、この隙間で可動子の進行方向(Z方向)に磁性体13が分割されることになる。この隙間は、ギャップが広がるにつれてZ方向の磁路72の磁束が減少していくが、Z方向の磁路72を遮断しない程度の隙間とすることが必要である。
 図20及び図21に示すように、第1の磁極歯11と第2の磁極歯12をつなぐ磁性体13を、Z方向に分割した場合においても、磁性体13から第1の磁極歯11、第1の磁極歯11から第2の磁極歯12、第2の磁極歯12から磁性体13を経路とする磁束と、これと直交する永久磁石5の進行方向を経路とする磁束とが発生し、磁束の経路の断面積が拡大するため、磁気抵抗が低減される。
 このような本実施例によれば、実施例1と同様な効果が得られることは勿論、第1の磁極歯11と第2の磁極歯12をつなぐ磁性体13は、永久磁石5の進行方向につながっていない場合においても効果がある。更に、各々の第1の磁極歯11と第2の磁極歯12をつなぐ磁性体13の隙間を利用して、巻線2の保持や冷却が可能となる。
 図22及び図23に、本発明のリニアモータの実施例4を示す。該図に示す本実施例のリニアモータは、その構成は実施例1と略同様なので、ここでの詳細説明は省略する。
 該図に示す本実施例では、実施例1に示したリニアモータと略同様な構成であるが、図1に示したリニアモータの第1の磁極歯11と第2の磁極歯12をつなぐ磁性体13の間の空間81(図1及び図3参照)を磁性体で埋めた構造としたものである。
 即ち、本実施例は、巻線2a、2bの引き出しなどは、電機子100、101、102のそれぞれの空間から行い、第1の磁極歯11と第2の磁極歯12をつなぐ磁性体13の磁路断面積を大きくしたものである。
 このような本実施例によれば、実施例1と同様な効果が得られることは勿論、第1の磁極歯11と第2の磁極歯12をつなぐ磁性体13の寸法が小さくなり、より小型のリニアモータを構成できる。
 図24及び図25に、本発明のリニアモータの実施例5を示す。該図に示す本実施例のリニアモータは、その構成は実施例1と略同様なので、ここでの詳細説明は省略する。
 該図に示す本実施例は、図1に示したリニアモータの電機子100を可動子の進行方向(Z方向)に2つ並べた構成とし、かつ、その2つの電機子の間隔を電気角360°となるように配置したものである。
 このような本実施例によれば、実施例1と同様な効果が得られることは勿論、図1に示した電機子100の隣り合う第1の磁極歯11の間隔を150°となるように配置し、その電機子100を可動子の進行方向に360°位相をずらして配置することにより、第1の磁極歯11と第2の磁極歯12をつなぐ磁性体13に設けた空間81aを大きくすることが可能になる。更に、3相の電機子100、101、102は、整列して構成できる。つまり、各相の電機子間に無駄な隙間を生じないで配列できる。
 また、本実施例の構成により設けられた空間81aを用いて電機子100、101、102の内部の確認や、巻線2a、2bの冷却性能の向上、可動子の保持などが可能となる。電機子100、101、102を分解せず電機子内部が確認できるためメンテナンス性も向上する。
 図25は、巻線位相の配置の例を示すが、図25において、各電機子100、101、102の巻線位相は、同一電機子において同位相の巻線と180°位相差を持つ巻線が隣同志となるため、巻線の配線が容易になる効果がある。
 図26に、本発明のリニアモータの実施例6を示す。該図に示す本実施例のリニアモータは、その構成は実施例1と略同様なので、ここでの詳細説明は省略する。
 該図に示す本実施例は、電機子100、101、102の間隔を、電気角360°+120°となるように配置したものである。
 このような本実施例によれば、実施例1と同様な効果が得られることは勿論、電機子100と電機子101の間隔を電気角360°+120°の間隔にすることで、各相間の磁気的な干渉を低減することが可能となり、推力脈動の低減や相間のインダクタンスの干渉を低減できる効果がある。また、インダクタンスの干渉を低減する効果により、制御性も向上する。更に、各電機子の間の空間を、巻線や可動子の保持或いは巻線の冷却などのための空間として利用できる効果がある。
 図27及び図28に、本発明のリニアモータの実施例7を示す。該図に示す本実施例のリニアモータは、その構成は実施例1と略同様なので、ここでの詳細説明は省略する。
 該図に示す本実施例は、隣り合う永久磁石5の磁化方向51が交互になるように配置された永久磁石5に対し、複数の電機子を配置したリニアモータの構成で、1つの可動子に対し、2つ以上のリニアモータの電機子を有する構成である。
 即ち、3つの電機子100、101、102から成るリニアモータ200と、3つの電機子100、101、102から成るリニアモータ201との2つのリニアモータに、それぞれ駆動装置91を接続した構成である。
 このような本実施例の構成においては、それぞれの駆動装置91でリニアモータ200と、リニアモータ201に個別に推力が発生させることができる。2つのリニアモータ200と201の推力を同方向に発生させることにより、大推力を発生することができる。また、逆方向に働かせることによりブレーキとして動作することも可能である。更に、2つのリニアモータ200と201が発生することのできる推力が異なった構成も可能である。
 また、本実施例の構成により、推力発生に必要な電流を2つの駆動装置91から供給することにより、小容量の駆動装置で駆動システムが構成できるメリットがある。また、2つのリニアモータ200と201間に配線が不要となり、配線のための空間を削減可能となり、リニアモータ駆動システム全体の小型化が実現できる。
 なお、駆動装置91は、巻線に電流を供給する装置で、インバータやサーボアンプなどが用いられる。1つの相に電流を供給する場合は、単相のアンプで接続することも可能である。
 また、各々の電機子100、101、102に個別の電源を接続し、電機子毎に電流を調整し推力を制御することも可能である。
 図29に、本発明のリニアモータの実施例8を示す。該図に示す本実施例のリニアモータは、その構成は実施例1と略同様なので、ここでの詳細説明は省略する。
 該図に示す本実施例は、第1の磁極歯11と第2の磁極歯12との間に形成されるギャップをg、第1の及び第2の磁極歯11及び12と隣接する第1の及び第2の磁極歯11及び12との可動子若しくは電機子の進行方向(Z方向)の磁極間隔をWとしたとき、ギャップgと磁極間隔Wの関係を、W≧1.2×gとしたものである。
 即ち、第1の磁極歯11と第2の磁極歯12とのギャップgの寸法と、第1及び第2の磁極歯11及び12と隣接する第1の及び第2の磁極歯11及び12との可動子の進行方向の磁極間隔Wの変化によって、大きく推力特性が変化する。例えば、ギャップgを一定とし、磁極間隔Wを狭く製作した場合、可動子の進行方向に隣り合う磁極歯間をわたる磁束が増加し、推力が低下する。永久磁石5に作用せずに隣り合う磁極歯へわたる磁束は漏れ磁束となり、推力に寄与しない磁束となる。漏れ磁束の低減により、無効電力の低減や漏れインダクタンスの低減が可能となる。
 そこで、本実施例では、ギャップgの寸法と磁極間隔Wとの関係を、磁極間隔W≧1.2×ギャップgとすることで、漏れ磁束を低減するものである。
 この磁極間隔W≧1.2×ギャップgの根拠につて、図30を用いて説明する。
 図30は、横軸に磁極間隔Wとギャップgの比(W/g)を取り、縦軸に磁束量を取った時の、無効な磁束(漏れ磁束)A及び有効な磁束(推力に寄与)Bの特性を示す図である。
 該図に示す如く、W/g=1において、無効な磁束A、有効な磁束Bの値を1として、W/gが変化したときの磁束の変化をみると、W/g=1.2以下では無効な磁束Aが急激に増加し、有効な磁束Bが減少している。これに対して、磁極間隔W/ギャップg≧1.2では、推力に寄与する有効な磁束Bが増加していることが分かる。
 この結果より、上式を満足することで、相対的に推力の大きなリニアモータが提供できることが理解される。
 このような本実施例によれば、実施例1と同様な効果が得られることは勿論、漏れ磁束が低減され、無効電力の低減や漏れインダクタンスの低減が可能となり、推力の低下がなくなるので、相対的に推力の大きなリニアモータを得ることができる。
 図31に、本発明のリニアモータの実施例9を示す。該図に示す本実施例のリニアモータは、その構成は実施例1と略同様なので、ここでの詳細説明は省略する。
 該図に示す本実施例は、実施例1乃至8で説明した永久磁石5の保持の仕方の一例を示す実施例である。
 該図に示す如く、本実施例では、永久磁石5を永久磁石保持部材52に固着している。本実施例では、永久磁石5と永久磁石保持部材52とで可動子55が構成され、電機子100、101、102を土台(図示しない)に取り付け固定し、電機子100、101、102及び/又は土台に取り付けられた支持手段により、可動子55が保持される。
 このような本実施例の構成とすることでも、実施例1と同様な効果が得られる。
 図32乃至図34に、本発明のリニアモータの実施例10を示す。該図に示す本実施例のリニアモータは、その構成は実施例1と略同様なので、ここでの詳細説明は省略する。
 該図に示す本実施例は、永久磁石5の列数を上下に2列で構成し、上下列の電機子100、101、102を共通化しているものである。即ち、図33に示す如く、上段の永久磁石5aを挟み込むように第1の磁極歯11aと、第2の磁極歯12aが配置され、下段の永久磁石5bを挟み込むように第1の磁極歯11bと、第2の磁極歯12bが配置されている。
 これにより、上段の巻線2a、2bの発生させる磁束と、下段の巻線2c、2dの発生させる磁束が、上下段の永久磁石5a、5bに作用し、推力を向上できると共に、磁気回路を共通化することでリニアモータの小型化が図れる。
 このような本実施例の構成としても、実施例1と同様な効果が得られることは勿論、第1の磁極歯11と第2の磁極歯12をつなぐ磁性体13の共通化が可能になり、磁気回路の小型化ができる。
 なお、上述した本実施例の構成は、永久磁石5の列数を2列の場合の構成例であるが、同様の効果があれば、永久磁石5の列数に限定されるわけではなく、上下に多数列で構成しても良い。
 また、上述した本発明の各実施例は、可動子に永久磁石を配置した構成で説明したが、永久磁石を磁性材に変えた場合にも推力を発生することが可能である。
 図35乃至図37(B)に、本発明のリニアモータの実施例11を示す。該図に示す本実施例のリニアモータは、その構成は実施例1と略同様なので、ここでの詳細説明は省略する。
 図35乃至図37(B)は、実施例1で示したリニアモータをY軸方向に2段重ね、電機子を共通化しすることにより小型化したものである。
 図37(A)及び図37(B)を用いて本実施例のリニアモータの磁気回路について説明する。
 図36のA-A断面である図37(A)において、本実施例のリニアモータは、第1の磁極歯11と、第2の磁極歯12と、第1の磁極歯11と第2の磁極歯12をつなぐ磁性体13は3分割構造になっており、上段の第1の磁極歯11aと第1の磁極歯11及び第2の磁極歯12をつなぐ上段上側の磁性体13a1と、下段の第2の磁極歯12bと第1の磁極歯11と第2の磁極歯12をつなぐ下段下側の磁性体13a2と、上段の第2の磁極歯12aと下段の第1の磁極歯11bと第1の磁極歯11と第2の磁極歯12をつなぐ中央部の磁性体13bとからなる。そして、上段の第1の磁極歯11aには巻線2aが、上段の第2の磁極歯12aには巻線2bが、下段の第1の磁極歯11bには巻線2cが、下段の第2の磁極歯12bには巻線2dが、それぞれ配置されている。
 図37(A)及び図37(B)において、巻線2a及び2bにより生じる磁束の方向を矢印61aで、また、巻線2c及び巻線2dによって生じる磁束の方向を矢印61bで示す。
 該図に示す如く、上段の可動子55に働く磁束61aと、下段の可動子55に働く磁束61bを同一方向にし、上段上側の磁性体13a1と、下段下側の磁性体13a2及び中央部の磁性体13bにより磁路を形成することで、上段の永久磁石5aに対向する巻線2aと2bが作る磁束が、下段の永久磁石5bにも作用する。一方、下段の永久磁石5bに対向する巻線2cと2dが作る磁束が、上段の永久磁石5aにも作用する。この効果により、実施例1で説明した可動子55を1段にしたリニアモータに対し、体積当たりの推力(推力密度)を向上できる(効果A)。
 更に、A-A断面(図37(A))に示す部分と隣り合う磁性体の磁気回路について説明する。A-A断面の磁極歯と隣り合う磁極歯の磁気回路構成を図36のB-B断面である図37(B)を用いて説明する。
 図37(B)において、巻線2eと2fが作る磁束は、上段上側の磁性体13a1と、下段下側の磁性体13a2及び中央部の磁性体13bを介して下側の永久磁石5bに作用し、巻線2gと2hが作る磁束は、上段上側の磁性体13a1と、下段下側の磁性体13a2及び中央部の磁性体13bを介して上側の永久磁石5aに作用する。隣り合う磁極に生じる磁束を逆方向にすることで、図37(A)及び図37(B)に示すX-Y断面内に発生する磁束経路と、図36に示すY-Z面内で発生する磁束経路により、磁路断面積を大きくすることが可能になり、更に推力密度を向上できる(効果B)。
 本実施例は、電機子100を磁極歯がZ方向に2つ併設された場合について説明したが、磁極歯がZ方向に1つ設置された場合においても可動子55を多段にし、磁気回路を共通化することにより、巻線の作る磁束が相互的に作用し、前記効果Aによりリニアモータの小型化が可能である。更に、複数個の磁極をZ方向に併設することにより磁路断面積の拡大が図ることができ、更なる小型化ができる。
 従って、前記効果Aについては、Z方向に可動子を併設した場合に限定されるものではなく、多段構成にした巻線の生じる磁束を同一方向にし、多段構成の磁束が相互的に作用するように磁気回路を共通化することで効果が得られる。
 本実施例のリニアモータにおいて、Y方向を2段にした巻線に生じる磁束を同一方向にした場合の推力密度と、逆方向にした場合の推力密度の磁界解析の結果を図38に示す。
 図8は、巻線により生じる磁束の方向を逆にした場合の定格電流1.0(p.u.)における定格推力を1.0(p.u.)とし、巻線により生じる磁束の方向を同一にした場合の推力を比較した結果を示す。
 該図に示す如く、2段の巻線より生じる磁束の方向を同一にすることにより、巻線より生じる磁束の方向を逆にした場合に比べ推力密度が1.36倍になることが分かる。
 なお、本実施例では、可動子55を2段構成にした場合について説明したが、3段以上の構成についても同様に推力密度を向上できる。また、上下段の磁気回路を上段上側の磁性体13a1と下段下側の磁性体13a2及び中央部の磁性体13bに分割することにより、上段上側の磁性体13a1と下段下側の磁性体13a2の間の中央部の磁性体13bの数を増やし、多段構成にすることが容易に可能となる。この際、複数の巻線の磁束が相互的に作用することにより、電機子の体格を小さくできる。
 このように本実施例は、磁気回路の共通化によるリニアモータ体格の削減と、磁気抵抗低減による推力向上を実現できる。
 また、本実施例のリニアモータは、推力向上により可動子55の強度向上する必要があるが、可動子55の強度を上げるため可動子55を厚くすることが考えられる。しかし、可動子55を厚くすることにより磁気抵抗が増加し、推力密度が低減する。
 そこで、図35に示すように、永久磁石5を配置した永久磁石保持部材52の両側にサイドプレート57を設置することにより、可動子55の厚さを厚くすることなく可動子55の強度を向上できる。更に、サイドプレート57を取り付けた可動子55を多段構成にし、可動子55の端部に連結板56を取り付けることにより、可動子55の大幅な剛性向上を実現できる。これにより、磁気抵抗の増加なく可動子55の剛性を向上できるため、推力と推力密度が大きく、推力の大きなリニアモータで課題となる可動子55の強度の問題を解決できる。
 図39乃至図42に、本発明のリニアモータの実施例12を示す。図39乃至図42に示す本実施例のリニアモータは、その構成は実施例1及び実施例2と略同様なので、ここでの詳細説明は省略する。
 該図に示す本実施例のリニアモータは、可動子55の剛性向上するため、第1の磁極歯11と第2の磁極歯12をつなぐ磁性体13を切り取る(カット)ようにした実施例である。
 即ち、図39に示すように、電機子100乃至102を構成する第1の磁極歯11と第2の磁極歯12をつなぐ磁性体13をカットしたものである。そして、永久磁石5を配置した永久磁石保持部材52をベース板53に締結することで、大きな推力に対する永久磁石保持部材52の変形を低減している。
 図40に、第1の磁極歯11と第2の磁極歯12をつなぐ磁性体13をカットしたリニアモータの一例を示す。また、図40に示すリニアモータのX-Y平面での磁束を図41に、X-Z面内での磁束を図42に示す。複数の磁路を構成することにより磁気抵抗を低減し、リニアモータを小型化できる。
 また、実施例3の構成は永久磁石5を配置した永久磁石保持部材52がベース板53に固定され、固定側となると共に、電機子100、101、102が可動側となり、固定側と可動側が相対的に移動する。
 この場合の固定側の保持方法の一例として、図41に示すように、固定側と可動側の間に可動部支持具85を設け相対的に位置を保持する。この可動部支持具85は、ガイドローラやLMガイドなどが用いられるが、それらに限定されるものではない。
 図43乃至図45に、永久磁石保持部材52にサイドプレート57を設け、永久磁石保持部材52の変形を抑制する本実施例の応用例の構造を示す。例えば、図45において、サイドプレート57の上部にガイドローラ等を設け、固定側と可動側の位置を相対的に保つことも可能である。
 このような本実施例の構成であっても、実施例11と同様な効果を得ることができる。
 図46及び図47に、本発明のリニアモータの実施例13を示す。図46及び図47に示す本実施例のリニアモータは、その構成は実施例1乃至実施例2と略同様なので、ここでの詳細説明は省略する。
 該図に示す本実施例のリニアモータは、可動子55の段数を4段、電機子100、101、102をZ方向へ2組配置した実施例である。
 即ち、本実施例のリニアモータは、第1の磁極歯11と、この第1の磁極歯11と第2の磁極歯12をつなぎ磁束の経路を形成する磁性体とからなる磁性体14(形状A)と、第2の磁極歯12と、第1の磁極歯11と第2の磁極歯12をつなぎ磁束の経路を形成する磁性体とからなる磁性体16(形状B)と、第1の磁極歯11と第2の磁極歯12及び第1の磁極歯11と第2の磁極歯12をつなぎ磁束の経路を形成する磁性体とからなる磁性体15(形状B)と、各磁極歯に巻かれた巻線からなる電機子100、101、102とを備えている。そして、各磁極歯に配置された巻線によって生じる磁束61は同一方向を向いており、各巻線の磁束が相互的に作用し、パーミアンスを大きくできる。
 また、第1の磁極歯11と第1の磁極歯11及び第2の磁極歯12をつなぎ磁束の経路を形成する磁性体とからなる磁性体14と、第2の磁極歯12と第1の磁極歯11及び第2の磁極歯12をつなぎ磁束の経路を形成する磁性体とからなる磁性体16との間に、第1の磁極歯11及び第2の磁極歯12と、第1の磁極歯11と第2の磁極歯12をつなぎ磁束の経路を形成する磁性体とからなる磁性体15を挟み込む構造により、2つの形状の磁性体(形状Aと形状B)の組み合わせで多段化が容易にでき、更に、多段化により磁束と磁気回路の共有化により推力と推力密度が向上できる。また、多段化した可動子を連結することにより、可動子の剛性を向上できる。
 なお、本実施例は、同様の効果が得られれば多段構成に限定されるものではなく、例えば、図48に示すように、可動子55の段数を1段、電機子100、101、102をZ方向へ1組配置した構成でも可能である。
 本発明の実施例11乃至実施例13において、電機子の横部に巻線の配線等を通す空間を設けているが、本穴の有無は本発明を限定するものではない。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成を置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 2a、2b、2c、2d、2e、2f、2g、2h…巻線、5…永久磁石、5a…上段の永久磁石、5b…下段の永久磁石、11…第1の磁極歯、11a…上段の第1の磁極歯、11b…下段の第1の磁極歯、12…第2の磁極歯、12a…上段の第2の磁極歯、12b…下段の第2の磁極歯、13、14、15、16…磁性体、13a1…上段上側の磁性体、13a2…下段下側の磁性体、13b…中央部の磁性体、51…永久磁石の磁化方向、52…永久磁石保持部材、53…ベース板、55…可動子、56…連結板、57…サイドプレート、60、61a、61b、61c、61d、71、72…磁束、81、81a…空間、85…可動部支持具、91…駆動装置、100、101、102…電機子、200、201…リニアモータ。

Claims (18)

  1.  永久磁石又は磁性材を磁化方向を反転させつつ複数個並べて形成された可動子と、前記永久磁石又は磁性材を上下から挟み込むように配置された第1の磁極歯及び第2の磁極歯、前記第1の磁極歯と前記第2の磁極歯をつなぎ磁束の経路を形成する磁性体、前記第1の磁極歯と前記第2の磁極歯にそれぞれ配置された巻線から成ると共に、前記可動子若しくは電機子の進行方向に少なくとも2つ並設され、かつ、両者が前記磁性体で連結されている電機子とを備え、前記可動子と前記電機子が相対的に水平移動するための推力を発生するものであって、
     前記巻線からの磁束が通る少なくとも2つの異なる磁路を有することを特徴とするリニアモータ。
  2.  請求項1に記載のリニアモータにおいて、
     前記巻線からの磁束が通る少なくとも2つの異なる磁路は、前記巻線からの磁束が、前記磁性体から前記第1の磁極歯、該第1の磁極歯から前記第2の磁極歯、該第2の磁極歯から前記磁性体に至る第1の経路と、該第1の経路と直交する方向で、かつ、前記それぞれの電機子内で前記可動子若しくは電機子の進行方向に隣接する前記磁極歯に至る第2の経路とから成ることを特徴とするリニアモータ。
  3.  磁化方向を反転させた永久磁石又は磁性材を複数個並べて形成された可動子と、前記永久磁石又は磁性材を上下から挟み込むように配置された第1の磁極歯及び第2の磁極歯、前記第1の磁極歯と前記第2の磁極歯をつなぎ磁束の経路を形成する磁性体、前記第1の磁極歯と前記第2の磁極歯にそれぞれ配置された巻線から成ると共に、前記可動子若しくは電機子の進行方向に対し交差する方向に少なくとも2つ併設され、かつ、両者が前記磁性体で連結されている電機子とを備え、前記可動子と前記電機子が相対的に水平移動するための推力を発生するものであって、
     2つの前記電機子の前記巻線によって生じる磁束の方向が同一となることを特徴とするリニアモータ。
  4.  磁化方向を反転させた永久磁石又は磁性材を複数個並べて形成された可動子と、前記永久磁石又は磁性材を上下から挟み込むように配置された第1の磁極歯及び第2の磁極歯、前記第1の磁極歯と前記第2の磁極歯をつなぎ磁束の経路を形成する磁性体、前記第1の磁極歯と前記第2の磁極歯にそれぞれ配置された巻線から成ると共に、
    前記第1の磁極歯と前記第1の磁極歯と前記第2の磁極歯をつなぎ磁束の経路を形成する磁性体、前記第2の磁極歯と前記第1の磁極歯と前記第2の磁極歯をつなぎ磁束の経路を形成する磁性体、前記第1の磁極歯と前記第2の磁極歯と前記第1の磁極歯と前記第2の磁極歯をつなぎ磁束の経路を形成する磁性体、を有し、
     少なくとも2つ以上の前記第1の磁極歯と前記第2の磁極歯と前記第1の磁極歯と前記第2の磁極歯をつなぎ磁束の経路を形成する磁性体を、前記第1の磁極歯と前記第1の磁極歯と前記第2の磁極歯をつなぎ磁束の経路を形成する磁性体と、前記第2の磁極歯と前記第1の磁極歯と前記第2の磁極歯をつなぎ磁束の経路を形成する磁性体と、の間に前記第1の磁極歯と前記第2の磁極歯と前記第1の磁極歯と前記第2の磁極歯をつなぎ磁束の経路を形成する磁性体を配置したことを特徴とするリニアモータ。
  5.  請求項1又は2に記載のリニアモータにおいて、
     前記第1の磁極歯と前記第2の磁極歯にそれぞれ配置された巻線は、前記可動子若しくは電機子の進行方向に隣接する第1の磁極歯と第2の磁極歯にそれぞれ配置された巻線との巻方向が逆になっていることを特徴とするリニアモータ。
  6.  請求項1又は2に記載のリニアモータにおいて、
     前記第1の磁極歯と前記第2の磁極歯にそれぞれ配置された巻線が作る磁束は、前記可動子若しくは電機子の進行方向に隣接する第1の磁極歯と第2の磁極歯にそれぞれ配置された巻線が作る磁束と、その向きが互い違いになっていることを特徴とするリニアモータ。
  7.  請求項1又は2に記載のリニアモータにおいて、
     前記第1の磁極歯と前記第2の磁極歯をつなぐ磁性体の側面部と、前記可動子若しくは電機子の進行方向に隣接する第1の磁極歯と第2の磁極歯をつなぐ磁性体との側面部との間の一部に空間が形成されていることを特徴とするリニアモータ。
  8.  請求項1又は2に記載のリニアモータにおいて、
     前記第1の磁極歯と前記第2の磁極歯をつなぐ前記磁性体と、前記可動子若しくは電機子の進行方向に隣接する第1の磁極歯と第2の磁極歯をつなぐ磁性体とが分割されていることを特徴とするリニアモータ。
  9.  請求項1又は2に記載のリニアモータにおいて、
     前記第1の磁極歯と前記第2の磁極歯にそれぞれ配置された巻線は、前記可動子若しくは電機子の進行方向に隣接する磁極歯毎に位相が同じか、或いは180°異なっていることを特徴とするリニアモータ。
  10.  請求項1又は2に記載のリニアモータにおいて、
     前記可動子若しくは電機子の進行方向に複数個並んだ第1及び第2の磁極歯を有し、かつ、磁石のピッチτmと磁極歯のZ方向のピッチτpとに対し、(3m±1)τm=3mτp(m=2、3、4・・・)の関係を有することを特徴とするリニアモータ。
  11.  請求項1又は2に記載のリニアモータにおいて、
     前記可動子若しくは電機子の進行方向に複数個並んだ第1及び第2の磁極歯を有し、かつ、磁石のピッチτmと、磁極歯のZ方向のピッチτpとに対し、n(3m±1)τm=3mnτp(n=1、2、3・・・、m=2、3、4・・・)の関係を有することを特徴とするリニアモータ。
  12.  請求項1又は2に記載のリニアモータにおいて、
     前記永久磁石は、上下に多数列配置されていることを特徴とするリニアモータ。
  13.  請求項1又は2に記載のリニアモータにおいて、
     前記永久磁石は、上下に2列配置されていることを特徴とするリニアモータ。
  14.  請求項1又は2に記載のリニアモータを複数個有し、前記リニアモータのそれぞれに駆動装置を備えていることを特徴とするリニアモータ駆動システム。
  15.  請求項1、請求項3、又は請求項4に記載のリニアモータであって、
     前記可動子を少なくとも2つ以上有することを特徴とするリニアモータ。
  16.  請求項1、請求項3、又は請求項4に記載のリニアモータであって、
     前記永久磁石が配置される永久磁石保持部材にサイドプレートが設置されていることを特徴とするリニアモータ。
  17.  請求項15に記載のリニアモータにおいて、
     前記可動子を複数連結したことを特徴とするリニアモータ。
  18.  請求項1、請求項3、又は請求項4記載のリニアモータであって、
     前記永久磁石が配置される永久磁石保持部材は、ベース板に締結されていることを特徴とするリニアモータ。
PCT/JP2013/078667 2012-10-24 2013-10-23 リニアモータ及びリニアモータ駆動システム WO2014065308A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380044985.1A CN104584403B (zh) 2012-10-24 2013-10-23 线性电机和线性电机驱动系统
JP2014543317A JP5941551B2 (ja) 2012-10-24 2013-10-23 リニアモータ及びリニアモータ駆動システム
US14/424,300 US9712032B2 (en) 2012-10-24 2013-10-23 Linear motor and linear motor drive system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2012/077501 2012-10-24
PCT/JP2012/077501 WO2014064785A1 (ja) 2012-10-24 2012-10-24 リニアモータ及びリニアモータ駆動システム

Publications (1)

Publication Number Publication Date
WO2014065308A1 true WO2014065308A1 (ja) 2014-05-01

Family

ID=50544183

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2012/077501 WO2014064785A1 (ja) 2012-10-24 2012-10-24 リニアモータ及びリニアモータ駆動システム
PCT/JP2013/078667 WO2014065308A1 (ja) 2012-10-24 2013-10-23 リニアモータ及びリニアモータ駆動システム

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077501 WO2014064785A1 (ja) 2012-10-24 2012-10-24 リニアモータ及びリニアモータ駆動システム

Country Status (5)

Country Link
US (1) US9712032B2 (ja)
JP (4) JP5941551B2 (ja)
CN (1) CN104584403B (ja)
TW (1) TWI509946B (ja)
WO (2) WO2014064785A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016051855A1 (ja) * 2014-10-02 2016-04-07 株式会社日立製作所 リニアモータ
WO2016132465A1 (ja) * 2015-02-18 2016-08-25 株式会社日立製作所 リニアモータ
EP3091646A1 (en) * 2015-05-07 2016-11-09 Sikorsky Aircraft Corporation Linear electromechanical actuators

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104205280A (zh) * 2012-04-06 2014-12-10 株式会社日立制作所 气体断路器
WO2015177883A1 (ja) * 2014-05-21 2015-11-26 株式会社日立製作所 リニアモータ及びリニアモータを搭載した機器
US10549954B2 (en) * 2014-12-23 2020-02-04 Otis Elevator Company Elevator system having linear drive
CN106350966B (zh) * 2015-07-15 2020-11-03 青岛海尔洗衣机有限公司 一种自动投放装置及洗衣机
WO2017017746A1 (ja) * 2015-07-27 2017-02-02 株式会社日立製作所 モータ
JP5937263B1 (ja) 2015-08-18 2016-06-22 山洋電気株式会社 リニアモータ
US10326398B2 (en) 2016-10-06 2019-06-18 Hamilton Sundstrand Corporation Linear motor actuators
TWI644500B (zh) * 2017-06-09 2018-12-11 宇生自然能源科技股份有限公司 Magnetic pole offset electric device with magnetic gap
CN111406361B (zh) * 2017-09-26 2023-01-03 三菱电机株式会社 电动机及其制造方法
CN109450216A (zh) * 2018-12-22 2019-03-08 中国科学院宁波材料技术与工程研究所 一种具有轻量化动子的直线电机
DE112019007676T5 (de) * 2019-08-27 2022-06-15 Mitsubishi Electric Corporation Linearmotorsystem
KR20210054730A (ko) * 2019-11-06 2021-05-14 주식회사 코베리 선형 전동기 및 선형 전동기를 이용한 반송 시스템
CN111030415A (zh) * 2019-12-30 2020-04-17 中国科学院宁波材料技术与工程研究所 一种直线电机
JP7140868B1 (ja) 2021-03-22 2022-09-21 本田技研工業株式会社 トレーリングアームの製造方法
FR3124660A1 (fr) * 2021-06-28 2022-12-30 Finx Machine electromagnetique a mouvement lineaire comprenant des tiges associées à des éléments magnétiques

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005245108A (ja) * 2004-02-25 2005-09-08 Mitsubishi Heavy Ind Ltd リニアモータ
JP2011223697A (ja) * 2010-04-07 2011-11-04 Hitachi Metals Ltd リニアモータ

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6253167A (ja) * 1985-08-30 1987-03-07 Canon Inc リニアモ−タ
JPS63257450A (ja) * 1987-04-13 1988-10-25 Hitachi Ltd ステツプアクチユエ−タ
US5010262A (en) * 1988-07-20 1991-04-23 Shinko Electric Company Ltd. Strong magnetic thrust force type actuator
DE68910649T2 (de) * 1988-11-22 1994-05-19 Shinko Electric Co Ltd Betätigungsgerät mit starker magnetischer Schiebekraft.
WO1991012648A1 (en) * 1990-02-13 1991-08-22 Hitachi Metals, Ltd. Linear dc motor
JP3419504B2 (ja) * 1993-07-05 2003-06-23 国際技術開発株式会社 往復動ポンプ
JP3227320B2 (ja) * 1994-11-07 2001-11-12 日本トムソン株式会社 リニア直流モータ
IL135650A0 (en) * 1997-10-15 2001-05-20 Advanced Motion Tech Llc A linear electromagnetic machine
JP3945149B2 (ja) * 2000-11-06 2007-07-18 株式会社日立製作所 リニアモータとその製造方法
US6583527B2 (en) * 2001-05-15 2003-06-24 Hitachi Metals, Ltd. Linear motor and apparatus and method for protecting it
US20030016107A1 (en) * 2001-07-20 2003-01-23 Hazelton Andrew J. Circulating system for a voice coil conductor
JP2003164137A (ja) * 2001-11-27 2003-06-06 Fuji Electric Co Ltd 電磁アクチュエータ
JP3470293B2 (ja) * 2001-12-17 2003-11-25 山崎 恒彦 リニアモータ
JP2004297977A (ja) * 2003-03-28 2004-10-21 Mitsubishi Electric Corp リニアモータ
JP4938355B2 (ja) * 2006-05-23 2012-05-23 オークマ株式会社 リニアモータ
EP1919063A1 (en) * 2006-11-02 2008-05-07 Sy.Tra.Ma. S.R.L. Flux-reversal linear motor
US7994742B2 (en) * 2008-03-25 2011-08-09 Bose Corporation Position measurement using magnetic fields
US8648514B2 (en) 2008-05-08 2014-02-11 Mitsubishi Electric Corporation Rotary electric motor and blower that uses the same
JP5434917B2 (ja) * 2008-11-18 2014-03-05 日立金属株式会社 電機子及びリニアモータ
CN102246401B (zh) 2008-12-10 2015-10-21 株式会社日立制作所 推力产生机构、驱动装置、xy工作台以及xyz工作台
JP2010141978A (ja) 2008-12-10 2010-06-24 Hitachi Ltd 推力発生機構
CN102326324A (zh) * 2009-03-13 2012-01-18 株式会社日立制作所 线性马达
TWI435514B (zh) * 2010-01-14 2014-04-21 Hiwin Mikrosystem Corp 輕量化線性馬達磁鐵軛部
TWI519043B (zh) * 2010-03-23 2016-01-21 日立金屬股份有限公司 線性馬達
WO2011154995A1 (ja) * 2010-06-09 2011-12-15 株式会社 日立製作所 リニアモータおよびそれを用いた位置決め装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005245108A (ja) * 2004-02-25 2005-09-08 Mitsubishi Heavy Ind Ltd リニアモータ
JP2011223697A (ja) * 2010-04-07 2011-11-04 Hitachi Metals Ltd リニアモータ

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016051855A1 (ja) * 2014-10-02 2016-04-07 株式会社日立製作所 リニアモータ
JP2016073164A (ja) * 2014-10-02 2016-05-09 株式会社日立製作所 リニアモータ
WO2016132465A1 (ja) * 2015-02-18 2016-08-25 株式会社日立製作所 リニアモータ
JPWO2016132465A1 (ja) * 2015-02-18 2017-08-31 株式会社日立製作所 リニアモータ
EP3261236A4 (en) * 2015-02-18 2018-10-17 Hitachi, Ltd. Linear motor
EP3091646A1 (en) * 2015-05-07 2016-11-09 Sikorsky Aircraft Corporation Linear electromechanical actuators
US10560011B2 (en) 2015-05-07 2020-02-11 Sikorsky Aircraft Corporation Linear electromechanical actuators

Also Published As

Publication number Publication date
JP6584619B2 (ja) 2019-10-02
TWI509946B (zh) 2015-11-21
TW201440392A (zh) 2014-10-16
JP5941551B2 (ja) 2016-06-29
JP2018033311A (ja) 2018-03-01
JP6417018B2 (ja) 2018-10-31
JP6235110B2 (ja) 2017-11-22
CN104584403B (zh) 2016-12-07
JP2017046588A (ja) 2017-03-02
US20150222167A1 (en) 2015-08-06
US9712032B2 (en) 2017-07-18
JPWO2014065308A1 (ja) 2016-09-08
CN104584403A (zh) 2015-04-29
JP2019037127A (ja) 2019-03-07
WO2014064785A1 (ja) 2014-05-01

Similar Documents

Publication Publication Date Title
JP6584619B2 (ja) リニアモータ
JP5477126B2 (ja) リニアモータ
JP5796575B2 (ja) リニアモータおよびそれを用いた位置決め装置
JP5387570B2 (ja) 多自由度アクチュエータおよびステージ装置
KR101810202B1 (ko) 자석 배열 및 자기 서스팬션 평면 모터
JP3360606B2 (ja) リニアモータ
KR101473049B1 (ko) 코어를 갖는 멀티헤드형 리니어 모터
JP2010141978A (ja) 推力発生機構
JP5511713B2 (ja) リニアモータ
JP2009219199A (ja) リニアモータ
JP5678025B2 (ja) 推力発生機構
JP6349136B2 (ja) リニアモータ及びそれを用いた機器
US10651718B2 (en) Transverse flux linear motor
JP6058114B2 (ja) リニアモータ
KR20120036286A (ko) 리니어 모터 및 스테이지 장치
JP2018148760A (ja) リニアモータ
JP4708078B2 (ja) リニアモータ
JP5470990B2 (ja) 多自由度アクチュエータ
EP3261236B1 (en) Linear motor
JP6197346B2 (ja) リニアモータ
JP2012147517A (ja) リニアモータ装置及びリニアモータ
JP2013138572A (ja) リニアモータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13848849

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014543317

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14424300

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13848849

Country of ref document: EP

Kind code of ref document: A1