WO2014065128A1 - 光学異方性粒子群およびその製造方法、ならびにそれを用いた複合体および表示装置 - Google Patents

光学異方性粒子群およびその製造方法、ならびにそれを用いた複合体および表示装置 Download PDF

Info

Publication number
WO2014065128A1
WO2014065128A1 PCT/JP2013/077555 JP2013077555W WO2014065128A1 WO 2014065128 A1 WO2014065128 A1 WO 2014065128A1 JP 2013077555 W JP2013077555 W JP 2013077555W WO 2014065128 A1 WO2014065128 A1 WO 2014065128A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
optically anisotropic
particles
matrix material
composite
Prior art date
Application number
PCT/JP2013/077555
Other languages
English (en)
French (fr)
Inventor
酒井丈也
Original Assignee
林テレンプ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 林テレンプ株式会社 filed Critical 林テレンプ株式会社
Priority to KR1020157010388A priority Critical patent/KR102059099B1/ko
Priority to CN201380053767.4A priority patent/CN104718471B/zh
Priority to JP2014543229A priority patent/JP6424090B2/ja
Publication of WO2014065128A1 publication Critical patent/WO2014065128A1/ja
Priority to US14/694,078 priority patent/US20150225496A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F122/00Homopolymers of compounds having one or more unsaturated aliphatic radicals each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides or nitriles thereof
    • C08F122/10Esters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09J133/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • C09K19/3804Polymers with mesogenic groups in the main chain
    • C09K19/3809Polyesters; Polyester derivatives, e.g. polyamides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/542Macromolecular compounds
    • C09K19/544Macromolecular compounds as dispersing or encapsulating medium around the liquid crystal
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/286Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising for controlling or changing the state of polarisation, e.g. transforming one polarisation state into another
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0242Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/36Micro- or nanomaterials

Definitions

  • the present invention relates to an optically anisotropic particle group, a method for producing the same, a composite using the same, and a display device.
  • the present invention provides an optically anisotropic particle group that can be suitably used for imparting depolarization ability.
  • a liquid crystal display device generally has a structure in which a liquid crystal cell in which a liquid crystal composition is sealed between two transparent substrates and a pair of polarizing plates are arranged on the front and back surfaces of the liquid crystal cell.
  • this liquid crystal display device when a voltage is applied to the liquid crystal with a transparent electrode provided on the inner surface of the transparent substrate, the orientation (alignment) changes. By using this change in arrangement, transmission / shielding of light from the rear light source device is controlled. Is displayed.
  • Such liquid crystal display devices are classified into various types, such as TN mode, STN mode, VA mode, IPS mode, and OCB mode, depending on the liquid crystal molecule alignment method.
  • a cell and a set of polarizing plates are used. Therefore, in such a liquid crystal display device, an observer observes linearly polarized light transmitted through a polarizing plate arranged on the surface of the liquid crystal cell.
  • the organic EL display device is a self-luminous display device, external light is reflected by a metal electrode having a high reflectivity and the contrast is lowered.
  • a circularly polarizing plate in which a quarter wavelength plate and a polarizing plate are laminated is used. Therefore, even in the organic EL display device, the viewer observes linearly polarized light transmitted through the polarizing plate disposed on the surface of the organic EL display device.
  • Polarized glasses eliminate the loss of visibility due to the reflection on the windshield of the dashboard while driving the vehicle, eliminate glare caused by sunlight reflected on the rear window of the vehicle in front of the vehicle, fishing, and marine sports. It is effective for reducing glare on the water surface. For this reason, the observer often observes the liquid crystal display device and the organic EL display device using polarized glasses. However, when an observer observes a liquid crystal display device and an organic EL display device using polarized glasses, the display becomes dark when the polarization absorption axis of the polarized glasses matches the polarization axis of light from the liquid crystal display device, There is a problem that the visibility is remarkably lowered.
  • Patent Document 1 proposes to provide a depolarization means on the liquid crystal display surface, and a depolarization plate formed by combining two quartz plates is used as the depolarization means.
  • Patent Document 2 proposes to provide a birefringent plate such as a quarter-wave plate for changing the display light emitted to the liquid crystal display surface from linearly polarized light to circularly polarized light or elliptically polarized light.
  • Patent Document 1 it is not practical to cover the entire screen of a liquid crystal display device with depolarization means combining two quartz plates.
  • the method of Patent Document 2 does not darken even when wearing polarized glasses, but it causes a problem that the color tone of the image greatly deviates depending on the left and right directions of tilting the neck.
  • Patent Document 1 For mobile phones and mobile terminals, further thinning and structure simplification are required.
  • Patent Document 2 birefringent plates such as separate crystal plates and quarter-wave plates are used. It is necessary to provide this, which causes a complicated and thick structure.
  • the present inventor when observing a display device such as a liquid crystal display device or an organic EL display device with polarized glasses, the display becomes dark even with a simple configuration. A method for suppressing the deterioration of visibility has been proposed.
  • Patent Document 3 proposes a method of dispersing a volume region having optical anisotropy in an optically isotropic hard coat layer and pressure-sensitive adhesive layer, and a material that exhibits anisotropy by polarized irradiation is used as a particle. And a method of irradiating the particles with polarized light and a method of dispersing the optically anisotropic crystal material as a powder.
  • Patent Document 1 it is not practical to cover the entire screen of a liquid crystal display device with depolarization means combining two quartz plates.
  • the method of Patent Document 2 does not darken even when wearing polarized glasses, but it causes a problem that the color tone of the image greatly deviates depending on the left and right directions of tilting the neck.
  • Patent Document 1 and Patent Document 2 birefringent plates such as separate crystal plates and quarter-wave plates are used. It is necessary to provide, and the structure is complicated and causes a thick mold.
  • anisotropy in a certain direction occurs in the particle group, and the direction of the optical anisotropy is aligned, which may cause unevenness of the depolarization function.
  • the particles are arranged in a direction perpendicular to or parallel to the absorption axis (or transmission axis) of the polarizing plate, the depolarization function cannot be obtained, and thus desired characteristics may not be sufficiently obtained.
  • An object of the present invention is to provide an optically anisotropic particle group having optical anisotropies independent of each other and capable of exhibiting an excellent depolarization function.
  • Another object of the present invention is to provide a group of optically anisotropic particles that can be applied to a wide variety of matrix materials.
  • Still another object of the present invention is to provide a composite and a display device that can exhibit an excellent depolarization function.
  • Another object of the present invention is to provide a production method capable of efficiently producing such an optically anisotropic particle group.
  • the present inventor dispersed a polymerizable liquid crystal compound as liquid crystal droplets in a dispersion medium at a liquid crystal transition temperature or higher, and then less than the isotropic phase transition temperature of the polymerizable liquid crystal compound. It was found that the liquid crystal droplets are fixed in a liquid crystal state by polymerization and particles having optical anisotropy can be formed in the dispersion medium.
  • the present invention is an optically anisotropic particle group used for dispersing in a matrix material
  • the particle group includes a plurality of particles in which the alignment state of liquid crystal droplets is fixed independently of each other.
  • It is an optical material composed of
  • the average particle diameter of the particle group may be, for example, 50 ⁇ m or less.
  • the particle may have a substantially spherical shape or a substantially spheroidal shape.
  • the said particle group, ie, each particle which comprises a particle group is not substantially compatible with a matrix material.
  • the present invention also includes, as an optical material, for example, a composite composed of a translucent matrix material and the optically anisotropic particle group.
  • an optical material for example, a composite composed of a translucent matrix material and the optically anisotropic particle group.
  • Each particle of the optically anisotropic particle group is dispersed in a state where the alignment state of the liquid crystal droplets is aligned independently of each other.
  • the matrix material a material forming the film itself, a hard coat agent, an adhesive, or the like may be used.
  • the present invention includes a display device including a polarizing plate on the light emitting side, wherein the composite is disposed on the viewer side of the polarizing plate.
  • the present invention also includes a method for producing optically anisotropic particles, wherein the production method comprises: A preparation step of preparing a polymerizable liquid crystal compound; A dispersion step of dispersing the polymerizable liquid crystal compound in a dispersion medium at a liquid crystal transition temperature or higher to form liquid crystal droplets; A polymerization step of polymerizing the liquid crystal droplets in the presence of a polymerization initiator at a temperature lower than the isotropic phase transition temperature of the polymerizable liquid crystal compound; Is provided.
  • the dispersion medium may contain water and a surfactant.
  • the polymerizable liquid crystal compound is preferably dispersed in an emulsion state.
  • the composite in which the optically anisotropic particle group of the present invention is dispersed in a matrix material such as a material forming the film itself, a hard coat agent, and an adhesive is in a state in which each particle has a different orientation independently of each other. Therefore, it is possible to exhibit a depolarization function while suppressing a decrease in luminance of the composite.
  • a matrix material such as a material forming the film itself, a hard coat agent, and an adhesive is in a state in which each particle has a different orientation independently of each other. Therefore, it is possible to exhibit a depolarization function while suppressing a decrease in luminance of the composite.
  • the alignment states of the molecules of the liquid crystal droplets are independent from each other, it is possible to suppress the occurrence of spots that cannot depolarize even when the particle groups are arranged in a certain direction.
  • the orientation is once fixed and combined with the matrix material, it can be applied to a wide variety of matrix materials without considering the compatibility between the optically anisotropic particles and the matrix material.
  • the polymerizable liquid crystal compound dispersed in the dispersion medium is polymerized in an optically aligned state, it is possible to easily and efficiently produce such a particle group.
  • FIG. 1 shows a schematic diagram of one embodiment of the composite of the present invention.
  • the optically anisotropic particle group 1 according to the present invention is dispersed in a translucent matrix material 2.
  • the particle group 1 is composed of a plurality of particles, and each particle is a liquid crystal droplet in which a liquid crystal phase is aligned independently of each other.
  • each particle is present in a state where the alignment state of the liquid crystal droplets is fixed independently of each other. Therefore, the orientation state of the liquid crystal droplets in the particle group usually has a different directionality among the particles.
  • the matrix material 2 includes a particle group 1 having optical anisotropy, and the particle group 1 is formed of a plurality of particles, and the plurality of particles are independent of the alignment state of the liquid crystal droplets. By dispersing in an oriented state, a depolarization function can be exhibited.
  • the matrix material that disperses the optically anisotropic particle group is light-transmitting, and is immobilized while holding the optically anisotropic particle group in a substantially uniform dispersed state.
  • the matrix material a known or commonly used thermoplastic resin, thermosetting resin, photocurable resin, or moisture curable resin can be used depending on the purpose.
  • the optically anisotropic particle group of the present invention already exhibits anisotropy in a solidified state and does not cause problems such as bleeding, a wide variety of resins can be used.
  • the coating agent layer include a pressure-sensitive adhesive layer as illustrated in the schematic diagram of FIG. 2, 3, and 4, 12 is a material for forming the film itself, 22 is a hard coat agent, and 32 is an adhesive. 11, 21, and 31 are optically anisotropic particle groups, 23 is a base film, and 33 and 34 are adherends, respectively.
  • the alignment state of the liquid crystal droplets of the particles is fixed independently of each other in the translucent matrix material.
  • the composite can exhibit an excellent depolarization function.
  • the optically anisotropic particle group is dispersed substantially uniformly, and this substantially uniform dispersion is performed by stirring and mixing the matrix material and the particle group by a known or conventional method. Etc.
  • the matrix material is a material that forms the film itself (film-forming material)
  • the optically anisotropic particles are added to the melt of the matrix material or the matrix material solution, stirred, and optically different.
  • a composite material containing isotropic particles is obtained.
  • the matrix material and the optically anisotropic particle group may be mixed at one time, or once a master batch including a part of the matrix material and the optically anisotropic particle group is prepared, and then the remaining A matrix material may be added to form a composite material.
  • the composite material can be formed into a film by a known or conventional method such as extrusion molding, or can be formed by coating and film formation. Can be formed as a composite in which is dispersed and immobilized.
  • the hard coating agent containing the optically anisotropic particle group is obtained by applying a hard coat solution in which the optically anisotropic particle group is dispersed to the substrate. A layer is formed.
  • the hard coat agent layer is irradiated with electromagnetic waves such as ultraviolet rays and electron beams, or is cured by heating, moisture application, or a combination thereof, and the fluidity is reduced or lost, A composite in which particulate matter having optical anisotropy is dispersed and fixed can be formed.
  • the optically anisotropic particle group is added to the curable adhesive and stirred to obtain a composite material containing the optically anisotropic particle group.
  • the composite material as in the case of the film-forming material described above, they may be mixed at one time, or a master batch may be once produced and then the desired composite material may be obtained.
  • the adhesive layer may be formed by injecting the composite material into the gap between the opposite adhesive surfaces, or the composite material may be applied to one adhesive surface, and the other adhesive surface may be applied to the application surface.
  • the pressure-sensitive adhesive layer may be formed by pressure bonding.
  • the pressure-sensitive adhesive layer can also be cured in the same manner as the hard coat agent layer to reduce or eliminate the fluidity, thereby forming a composite in which particulate matter having optical anisotropy is dispersed and fixed.
  • optically anisotropic particles is an optically anisotropic particle group used to disperse in a matrix material, and the particle group has the liquid crystal droplet orientation state fixed independently of each other. It is composed of a plurality of particles.
  • the optically anisotropic particles constituting the optically anisotropic particle group are: A preparation step of preparing a polymerizable liquid crystal compound; A dispersion step of mixing the polymerizable liquid crystal compound and a polymerization initiator, and dispersing the mixture in a dispersion medium by stirring the mixture at a liquid crystal transition temperature or higher to form liquid crystal droplets;
  • the liquid crystal droplets can be produced by a method comprising at least a polymerization step in which the liquid crystal droplets are polymerized at a temperature lower than the isotropic phase transition temperature in the presence of the polymerization initiator.
  • the average particle diameter of the optically anisotropic particles is smaller than the pixels of the display device.
  • the average particle diameter of the optically anisotropic particles may be, for example, 50 ⁇ m or less, preferably 30 ⁇ m or less. In general, the average particle size is often 0.5 ⁇ m or more.
  • the average particle size is an average particle size measured with a particle size distribution measuring device (“Multisizer” manufactured by Beckman Coulter, Inc.) using a pore electrical resistance method (electric detection zone method). It means the diameter.
  • the polymerizable liquid crystal compound is not particularly limited as long as it has units composed of mesogen-forming groups and can form a liquid crystal droplet structure, and various polymerizable liquid crystal compounds can be used.
  • Examples of polymerizable liquid crystal compounds include Schiff base, biphenyl, terphenyl, ester, thioester, stilbene, tolan, azoxy, azo, phenylcyclohexane, pyrimidine, cyclohexylcyclohexane, and trimesin.
  • liquid crystal compounds having an acid-based, triphenylene-based, torquesen-based, phthalocyanine-based, porphyrin-based molecular skeleton, or a mixture of these compounds, and any compound that exhibits a nematic, cholesteric or smectic liquid crystal phase Good.
  • the unit composed of the mesogen forming group may be in the main chain or the side chain of the liquid crystal polymer.
  • the main chain type liquid crystal polymer polyester, polyamide, polycarbonate, polyimide, polyurethane, polybenzimidazole, polybenzoxazole, polybenzthiazole, polyazomethine, polyesteramide, polyester carbonate, Examples thereof include a polyesterimide-based liquid crystal polymer or a mixture thereof.
  • the side chain type liquid crystalline polymer as a side chain on a polymer having a skeleton chain of a linear or cyclic structure such as polyacrylate, polymethacrylate, polyvinyl, polysiloxane, polyether, and polymalonate. Examples thereof include a liquid crystal polymer having a mesogenic group bonded thereto, or a mixture thereof.
  • the polymerizable liquid crystal compound can be crosslinked (thermally crosslinked or photocrosslinked) in a liquid crystal state or in a state cooled to a liquid crystal transition temperature or lower by a blend of a crosslinkable group or an appropriate crosslinking agent introduced as necessary.
  • It may be a liquid crystal polymer that can be aligned and fixed by means.
  • Such a liquid crystal polymer may be any polymer as long as it has a nematic, cholesteric or smectic liquid crystal phase, and is not particularly limited as long as it has a unit composed of a mesogen forming group.
  • crosslinkable group examples include a vinyl group, vinyloxy group, 1-chlorovinyl group, isopropenyl group, 4-vinylphenyl group, acryloyloxy group, methacryloyloxy group, oxiranyl group, and oxetanyl group.
  • acryloyloxy group, methacryloyloxy group, vinyloxy group, oxiranyl group and oxetanyl group are preferable, and acryloyloxy group is particularly preferable.
  • the polymerizable liquid crystal compound is stirred at a temperature higher than the liquid crystal transition temperature to stir the dispersion medium to form dispersed liquid crystal droplets.
  • the dispersion medium various solvents can be used as long as the polymerizable liquid crystal compound can be dispersed, and examples thereof include water, alcohols, ethers, ketones, and esters.
  • the dispersion medium is not particularly limited as long as the polymerizable liquid crystal compound can be dispersed, but preferably contains a solvent and a surfactant in order to disperse the polymerizable liquid crystal compound satisfactorily.
  • the solvent include solvents that are incompatible with polymerizable liquid crystal compounds such as water and alcohols.
  • the surfactant include fatty acid sodium, monoalkyl sulfate, and alkyl polyoxyethylene sulfate.
  • Anionic surfactants such as alkylbenzene sulfonate and monoalkyl phosphate, cationic surfactants such as alkyltrimethylammonium salt and dialkyldimethylammonium salt, amphoteric interfaces such as alkyldimethylamine oxide and alkylcarboxybetaine
  • Nonionic surfactants such as activators, polyoxyethylene alkyl ethers, fatty acid sorbitan esters, alkyl polyglucosides, polyethylene glycols, and polyvinyl alcohols can be used.
  • the polymerizable liquid crystal compound is dispersed in an emulsion state in the dispersion medium from the viewpoint of forming a polymerizable liquid crystal compound having a small particle size.
  • liquid crystal droplets are polymerized in the presence of a polymerization initiator at a temperature lower than the isotropic phase transition temperature of the polymerizable liquid crystal compound.
  • the isotropic phase transition temperature means a temperature at which the liquid crystal changes to an isotropic phase by heating. Below the isotropic phase transition temperature, a liquid crystal transition temperature that is lower than the isotropic phase transition temperature. Less than is included.
  • the polymerization initiator may be a photopolymerization initiator or a thermal polymerization initiator, and can be appropriately selected according to the type of the polymerizable liquid crystal compound.
  • Irgacure 907, Irgacure 184, Irgacure 651, Irgacure 819, Irgacure 250, Irgacure 369 all are manufactured by Ciba Japan Co., Ltd.), Sake All BZ, Sequol Z, Sequol BEE (and above) All manufactured by Seiko Chemical Co., Ltd.), kayacure BP100 (manufactured by Nippon Kayaku Co., Ltd.), Kayacure UVI-6992 (manufactured by Dow), Adeka optomer SP-152 or Adeka optomer SP-170 (or more)
  • Photopolymerization initiators such as ADEKA Co., Ltd., TAZ-A, TAZ-PP (manufactured by Nippon Shibel Hegner) and TAZ-104 (manufactured by Sanwa Chemical Co., Ltd.) can be used.
  • thermal polymerization initiator examples include azo compounds such as azobisisobutyronitrile; peroxides such as hydrogen peroxide, persulfate, and benzoyl peroxide.
  • the content of the polymerization initiator is preferably 0.1 to 30 parts by mass, more preferably 0.5 to 10 parts by mass, and further preferably 0.5 to 8 parts by mass with respect to 100 parts by mass of the polymerizable liquid crystal compound. . If it is in the said range, it can superpose
  • a photosensitizer when using a photoinitiator as a polymerization initiator, you may use a photosensitizer together.
  • the photosensitizer include anthracene such as xanthone compounds such as xanthone and thioxanthone (for example, 2,4-diethylthioxanthone and 2-isopropylthioxanthone); anthracene and an anthracene containing an alkoxy group (for example, dibutoxyanthracene). Compound; phenothiazine; rubrene and the like.
  • the alignment state of the liquid crystal droplets can be fixed to obtain optically anisotropic particles.
  • optically anisotropic particles can generally maintain the shape of liquid crystal droplets present in a substantially spherical or substantially spheroidal shape in a dispersion medium.
  • the particles since the particles are already present as particles in which the alignment state is fixed, they can usually exist substantially incompatible with the matrix material.
  • optically anisotropic particles can be dispersed in a matrix material by washing with water, drying after polymerization, if necessary.
  • Display device The composite obtained as described above is a polarized light disposed on a light emitting side of an LCD panel or an OLED panel (hereinafter referred to as a display unit) having a polarizing plate in a display device such as a liquid crystal display device or an organic EL display device. It arrange
  • the LCD panel includes, for example, at least a liquid crystal cell, a first polarizing plate disposed on the light incident side of the liquid crystal cell, and a second polarizing plate disposed on the light emitting side of the liquid crystal cell.
  • the composite may be disposed on the light exit side of the second polarizing plate disposed on the light exit side.
  • the OLED panel includes, for example, at least an organic EL element and a circularly polarizing plate disposed on the light emitting side of the organic EL element, and the composite is a circle disposed on the light emitting side. You may arrange
  • the composite can be used as a laminated film laminated on the polarizing film, a hard coat layer applied to the base film, and the like.
  • the composite is an adhesive layer, between the front surface of the display unit and the rear surface of the protective glass, between the front surface of the display unit and the rear surface of the touch panel, between the front surface of the display unit and the rear surface of the design glass, It can be used by filling and curing the adhesive layer.
  • a display device provided with such a composite can solve the problem of a significant decrease in visibility even when the polarization absorption axis of the polarizing glasses of the viewer matches the polarization axis of light from the display device. . Furthermore, even when polarized glasses are worn, it is possible to prevent the display from becoming dark, and to reduce the color tone of the image from being greatly shifted depending on the left and right directions of tilting the neck.
  • Example 1 A polymerization initiator (Ciba Specialty) was added to 100 parts by weight of an acrylic polymerizable liquid crystal material obtained as Polymer 1 (BASF, “Palio Color LC-242”, liquid crystal transition temperature 65 ° C., isotropic phase transition temperature 118 ° C.). Manufactured, “Irgacure 907”) was mixed. This mixture was added to a 10 wt% aqueous polyvinyl alcohol solution, heated to 80 ° C. and sufficiently stirred. After stirring, it was confirmed that the mixed solution was in an emulsion state. While stirring the emulsion, light (3 W / cm 2 ) from a high-pressure mercury lamp was applied at 60 to 70 ° C.
  • liquid crystal droplets fixed by polymerization were separated from the dispersion medium, washed sufficiently with water, and dried to obtain optically anisotropic particles (average particle diameter of 4.1 ⁇ m).
  • 10 wt% of the optically anisotropic particles thus obtained were mixed and dispersed in an ultraviolet curable hard coat agent.
  • This hard coat agent was applied to a TAC (triacetyl cellulose) film at a weight per area of 10 g / m 2 , and then irradiated with light from an ultraviolet irradiation device using a high-pressure mercury lamp as a light source for 100 seconds.
  • the hard coating agent was cured by irradiation and lost its fluidity.
  • the display screen darkens even if the transmission axis of the polarizing plate is rotated. I could recognize the image.
  • the surface of the TAC film was uneven, and external light was reflected.
  • Example 2 2 wt% of optically anisotropic particles obtained in the same manner as in Example 1 was mixed with an acrylic pressure-sensitive adhesive (solvent: ethyl acetate, toluene, mixed solvent, solid content 20 wt%) and stirred to prepare a pressure-sensitive adhesive solution.
  • This pressure-sensitive adhesive solution was applied to a TAC film and dried to form a pressure-sensitive adhesive layer having a thickness of 25 ⁇ m on the TAC film.
  • the TAC film produced in this way was bonded to the front surface of the liquid crystal display device via the adhesive, and the image from the polarizing plate of the liquid crystal display device was observed. The image could be recognized without darkening the screen.
  • Example 3 The optically anisotropic particles obtained in the same manner as in Example 1 were mixed with 5 wt% of an ultraviolet curable adhesive and stirred to obtain a composite material (or light-transmitting filling material) containing optically anisotropic particles. Produced. After filling this filling material into a gap between two opposed glass plates using a spacer of 80 ⁇ m, the light was irradiated for 100 seconds by an ultraviolet irradiation device using a high-pressure mercury lamp as a light source.
  • the light-transmitting filling material was cured by irradiation and lost its fluidity, and it was in close contact with the two opposing glasses and no air interface was formed.
  • the liquid crystal droplets of the liquid crystal material are dispersed almost uniformly throughout the light-transmitting filling material in the crossed Nicols observation, forming a group of optically anisotropic polymer particles.
  • the display screen did not darken even if the transmission axis of the polarizing plate was rotated. I was able to recognize.
  • Example 4 The optically anisotropic particles obtained in the same manner as in Example 1 were mixed with a two-part curable pressure-sensitive adhesive in an amount of 5 wt% and stirred to prepare a light-transmitting filling material. This filling material was filled into the gap between two opposed glass plates using an 80 ⁇ m spacer, and then left in a constant temperature bath at 80 ° C. for 60 minutes.
  • the light-transmitting filling material was cured by heating and lost its fluidity, and was in close contact with the two opposing glass plates, and no air interface was generated. Observation with a polarizing microscope confirmed that the liquid crystal droplets of the liquid crystal material were dispersed throughout the light-transmitting filling material and formed optically anisotropic polymer particles in the crossed Nicols observation. . In addition, when a test sample was placed in front of the liquid crystal display device and the image from the polarizing plate of the liquid crystal display device was observed, the display screen did not darken even if the transmission axis of the polarizing plate was rotated. I was able to recognize.
  • a composite in which the optically anisotropic particles of the present invention are dispersed in a hard coat agent, a pressure-sensitive adhesive, and a material forming the film itself can impart a depolarization function. Therefore, a display device using such a composite has industrial applicability because it can prevent a decrease in visibility when wearing polarized glasses and observing.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

 光学的に異方性を有する粒子群およびその製造方法、ならびにそれを用いた複合体および表示装置を提供する。前記粒子群1は、マトリックス材2へ分散するために用いられ、粒子群1は、液晶滴の配向状態が互いに独立に固定されている複数の粒子で構成されている。このような粒子は、重合性液晶化合物を準備する準備工程と、前記重合性液晶化合物を、液晶転移温度以上で分散媒中に分散させて液晶滴を形成させる分散工程と、前記液晶滴を、重合開始剤の存在下、等方相転移温度未満で重合させる重合工程と、を備える方法で、製造することができる。

Description

光学異方性粒子群およびその製造方法、ならびにそれを用いた複合体および表示装置 関連出願
 本願は2012年10月26日出願の特願2012-236477の優先権を利用するものであり、その全体を参照により本出願の一部をなすものとして引用する。
 本発明は、光学的に異方性を有する粒子群およびその製造方法、ならびにそれを用いた複合体および表示装置に関するものである。特に、本発明は、偏光解消能を付与するのに好適に利用することができる光学的に異方性を有する粒子群を提供する。
 液晶表示装置は、一般的に2枚の透明基板間に液晶組成物を封入した液晶セルと、その液晶セルの表裏面に一組の偏光板を配置した構造を有している。この液晶表示装置では、透明基板の内面に設けられた透明電極で液晶に電圧を加えると向き(配列)が変化し、この配列変化を利用して背面光源装置からの光の透過/遮光を制御して表示が行われる。
 このような液晶表示装置は、液晶分子の配列方式によって、TN方式、STN方式、VA方式、IPS方式、OCB方式など種々に分類されるが、いずれの配列方式の液晶表示装置であっても液晶セルと一組の偏光板が用いられている。したがって、このような液晶表示装置では、観察者は液晶セル表面に配置された偏光板を透過した直線偏光性の光を観察している。
 また、有機EL表示装置は、自発光表示装置であるが、反射率の高い金属電極で外光が反射してコントラストを低下させてしまう。この外光反射を防ぐために1/4波長板と偏光板を積層した円偏光板が使われている。したがって、有機EL表示装置でも、視認者は有機EL表示装置表面に配置された偏光板を透過した直線偏光性の光を観察している。
 近年、携帯電話などの携帯機器を受信対象とする地上デジタルテレビジョン放送の普及による、「携帯電話・移動体端末向けの1セグメント部分受信サービス」の視聴、自動車用計器盤、カーナビゲーション装置への液晶表示装置、有機EL表示装置の使用の拡大により液晶表示装置、有機EL表示装置を屋外や外光の強い場所で利用する機会が増えている。
 一方、偏光眼鏡は、車両運転中のダッシュボードのフロントガラスへの映り込みによる視認性低下の解消、前走行車両のリヤウィンドウでの太陽光の反射による眩しさの解消、釣り、マリンスポーツでの水面のギラツキ軽減などに有効である。このため、観察者が偏光眼鏡を使用して液晶表示装置、有機EL表示装置を観察する場面も少なくない。しかしながら、観察者が偏光眼鏡を使用して液晶表示装置、有機EL表示装置を観察した場合、偏光眼鏡の偏光吸収軸と液晶表示装置からの光の偏光軸が一致した場合に表示が暗くなり、著しく視認性が低下してしまう問題がある。
 このような問題点に対して、特許文献1では、液晶表示面に偏光解消手段を設けることが提案され、2枚の水晶板を組み合わせてなる偏光解消板が偏光解消手段として用いられている。また、特許文献2には、液晶表示面に出射する表示光を直線偏光から円偏光あるいは楕円偏光に変更する1/4波長板のような複屈折板を設けることが提案されている。
 特許文献1において、2枚の水晶板を組み合わせた偏光解消手段で液晶表示装置画面全体を覆うことは実用的でない。特許文献2の方法では、偏光眼鏡を掛けた場合でも暗くなることはないが、首を傾ける左右の方向により、画像の色調が大きくずれてしまうことが問題となる。
 また、携帯電話・移動体端末向けでは一層の薄型化、構造簡素化が求められており、特許文献1、特許文献2では、別体の水晶板や1/4波長板のような複屈折板を設けることが必要であり、構造が煩雑、厚くなってしまう原因となる。
 本発明者は、このような課題に対して、液晶表示装置、有機EL表示装置などの表示装置を、偏光眼鏡を装着して観察する場合に、簡素な構成であっても、表示が暗くなり視認性が低下するのを抑制する方法を提案している。
 特許文献3では、光学的に等方性なハードコート層、粘着剤層に光学的な異方性を有する体積領域を分散させる方法を提案し、偏光照射によって異方性を発現する材料を粒子化して分散させ、その粒子に偏光照射を行う方法や、光学異方性結晶材料を粉末として分散する方法を提案している。
特開平10-10522号公報 特開平10-10523号公報 WO2010/101140号パンフレット
 特許文献1において、2枚の水晶板を組み合わせた偏光解消手段で液晶表示装置画面全体を覆うことは実用的でない。特許文献2の方法では、偏光眼鏡を掛けた場合でも暗くなることはないが、首を傾ける左右の方向により、画像の色調が大きくずれてしまうことが問題となる。
 また、携帯電話・移動体端末向けでは一層の薄型化、構造簡素化が求められており、特許文献1、特許文献2では、別体の水晶板や1/4波長板のような複屈折板を設けることが必要であり、構造が煩雑、厚型の原因となってしまう。
 特許文献3の方法では、簡易的な構成で偏光眼鏡を装着して観察する場合に、簡素な構成で表示が暗くなり視認性が低下することを抑制することが可能であるが、特許文献3では、ハードコート剤に分散した状態の微粒子を、偏光照射および加熱徐冷により光学的異方性を付与するものであるため、各微粒子に対して、異なる配向性を互いに独立して誘起することは不可能である。
 このような場合、粒子群において一定方向の異方性が発生し、光学的異方性の方向が揃うことにより、偏光解消機能の斑となる可能性がある。例えば、粒子が偏光板の吸収軸(あるいは透過軸)に対して垂直方向または並行方向に配置した場合、偏光解消機能が得られないことから、所望の特性が十分に得られないことがある。
 本発明の目的は、互いに独立した光学的異方性を有し、優れた偏光解消機能を発現することができる光学異方性粒子群を提供することである。
 本発明の別の目的は、幅広い種類のマトリックス材に対して適用することができる光学異方性粒子群を提供することである。
 本発明のさらに別の目的は、優れた偏光解消機能を発現できる複合体および表示装置を提供することである。
 本発明の他の目的は、このような光学異方性粒子群を、効率的に製造することが可能な製造方法を提供することである。
 本発明者は、上記の問題を解決するために鋭意研究した結果、重合性液晶化合物を液晶転移温度以上で分散媒において液晶滴として分散させ、次いでその重合性液晶化合物の等方相転移温度未満で重合させると、これらの液晶滴が重合により液晶状態を固定され、分散媒中で光学的異方性を有する粒子群を形成できることを見出した。そして、この分散媒から分離することにより得られたこれらの粒子群では、各粒子において、液晶滴の配向状態が互いに独立して固定されているため、これらをマトリックス材と組合わせて形成した複合体は、それぞれの液晶滴が有する独立した液晶配向性によって優れた偏光解消機能を発現できることを見出し、本発明を完成した。
 すなわち、本発明は、マトリックス材へ分散するために用いられる光学的に異方性を有する粒子群であって、前記粒子群は、液晶滴の配向状態が互いに独立に固定されている複数の粒子で構成されている光学材料である。例えば、前記粒子群の平均粒子径は、例えば50μm以下であってもよい。前記粒子の形状は、略球状または略回転楕円形状であってもよい。また、前記粒子群、すなわち粒子群を構成する各粒子は、マトリックス材に対して、実質的に相溶しないのが好ましい。
 本発明は、光学材料として、例えば、透光性のマトリックス材と、前記光学的異方性粒子群とで構成された複合体についても包含し、前記複合体では、マトリックス材に対して、前記光学的異方性粒子群の各粒子が、液晶滴の配向状態を互いに独立に配向させた状態で分散している。マトリックス材としては、フィルム自体を形成する材料、ハードコート剤、または粘着剤などを用いてもよい。
 さらに本発明は、偏光板を光出射側に備える表示装置であって、前記複合体が、偏光板の視認者側に配設された表示装置についても包含する。
 さらにまた、本発明は、光学的異方性粒子を製造する方法についても包含し、前記製造方法は、
 重合性液晶化合物を準備する準備工程と、
 前記重合性液晶化合物を、その液晶転移温度以上で分散媒中に分散させて液晶滴を形成させる分散工程と、
 前記液晶滴を、重合開始剤の存在下、前記重合性液晶化合物の等方相転移温度未満で重合させる重合工程と、
を備える。
 前記製造方法の分散工程で、分散媒は、水および界面活性剤を含んでいてもよい。また、分散工程では、重合性液晶化合物が、乳濁状態で分散されるのが好ましい。
 なお、請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成要素のどのような組み合わせも、本発明に含まれる。特に、請求の範囲に記載された請求項の2つ以上のどのような組み合わせも本発明に含まれる。
 本発明の光学異方性粒子群を、フィルム自体を形成する材料、ハードコート剤、粘着剤などのマトリックス材へ分散した複合体は、各粒子が互いに独立して、異なる配向性を有した状態でマトリックス材に存在することが可能であるため、複合体の輝度の低下を抑制しつつ、偏光解消機能を発現することができる。特に、液晶滴の分子の配向状態が互いに独立しているため、たとえ粒子群が一定方向の向きに配置された場合でも、偏光を解消できない斑が発生するのを抑制できる。
 また、一旦配向を固定させてマトリックス材と複合化するため、光学異方性粒子とマトリックス材との相溶性を考慮することなく、幅広い種類のマトリックス材に対して適用することが可能となる。
 さらに、このような複合材を液晶表示装置、有機EL表示装置などの表示装置の視認者側に配置すると、偏光眼鏡を装着して観察する場合であっても、表示が暗くなり視認性が低下するのを防ぐことができる。
 さらにまた、本発明では、分散媒に分散した状態の重合性液晶化合物を光学的に配向した状態で重合させるため、簡単かつ効率的にこのような粒子群を製造することが可能である。
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明からより明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきでない。この発明の範囲は添付のクレームによって定まる。添付図面において、複数の図面における同一の部品番号は、同一部分を示す。
本発明の複合体の実施態様の一例を例示する模式図である。 本発明の複合体の実施態様の一例を例示する模式図である。 本発明の複合体の実施態様の一例を例示する模式図である。 本発明の複合体の実施態様の一例を例示する模式図である。
(複合体の基本構成)
 図1には、本発明の複合体の一実施態様の模式図が示されている。図1に示される複合体では、本発明に係る光学的に異方性を有する粒子群1が、透光性のマトリックス材2中に分散している。粒子群1は、複数の粒子から構成されており、各粒子は、互いに独立して液晶相を配向させた液晶滴である。粒子群1において、各粒子は、液晶滴の配向状態が互いに独立に固定された状態で、それぞれ存在している。そのため、粒子群中の液晶滴の配向状態は、通常、各粒子間で異なる方向性を有している。
 マトリックス材2中に、光学的に異方性を有する粒子群1が存在しており、粒子群1は、複数の粒子で形成され、これらの複数の粒子が、液晶滴の配向状態を互いに独立に配向させた状態で分散することにより、偏光解消機能を発現することができる。
(透光性のマトリックス材)
 本発明において、光学的に異方性を有する粒子群を分散させるマトリックス材料は、光透過性があり、光学的異方性粒子群を略均一な分散状態で保持しつつ、固定化するものである。マトリックス材料としては、目的に応じて、公知または慣用の熱可塑性樹脂、熱硬化性樹脂、光硬化性樹脂、水分硬化性樹脂を利用することができる。特に、本発明の光学的異方性粒子群は、固体化した状態においてすでに異方性が発現し、染み出しなどの問題を生じることがないため、幅広い種類の樹脂を利用することができる。
 例えば、透光性のマトリックス材としては、図2の模式図に例示するようなフィルム自体を形成する材料(フィルム形成性材料)、図3の模式図に例示するようフィルム表面に形成されるハードコート剤層、図4の模式図に例示するよう粘着剤層が挙げられる。図2、図3、図4中、12はフィルム自体を形成する材料、22はハードコート剤、32は粘着剤である。11、21、31は光学的異方性粒子群、23は基材フィルムを示し、33,34は、それぞれ被着体を示している。
(複合体の形成)
 本発明の光学的異方性粒子群では、透光性マトリックス材中において、粒子の液晶滴の配向状態が互いに独立に固定されている。このような構造を有することにより、複合体は、優れた偏光解消機能を発現することが可能となる。複合体では、好ましくは光学的異方性粒子群が略均一に分散されており、このような略均一な分散は、公知または慣用の方法により、マトリックス材と粒子群とを撹拌、混合することなどにより行うことができる。
 マトリックス材がフィルム自体を形成する材料(フィルム形成性材料)である場合、マトリックス材の溶融物またはマトリックス材溶液に対して、光学的異方性粒子群が加えられ、攪拌されて、光学的異方性粒子群を含有する複合材料が得られる。なお、マトリックス材と光学的異方性粒子群は、一度に混合してもよいし、一旦、マトリックス材の一部と光学的異方性粒子群とを含むマスターバッチを作製し、その後、残りのマトリックス材を加えて複合材料としてもよい。そして、その複合材料は、押し出し成形などの公知または慣用の方法により、フィルムを形成したり、塗布・製膜化によりフィルムを形成することができ、そのフィルム中において、光学的異方性粒子群を分散・固定化した複合体を形成できる。
 なお、図2に示すように、例えば、フィルムを成形する工程において、略回転楕円形状の光学的異方性粒子群が一定方向の向きに配置されていたとしても、粒子群はそれぞれ、その内部において独立した配向性を有しているため、偏光解消機能を発現することが可能である。
 また、マトリックス材がハードコート剤である場合、光学的異方性粒子群を分散させたハードコート溶液を基材に対して塗布することにより、光学的異方性粒子群を含有するハードコート剤層が形成される。ハードコート剤層は、ハードコート剤の種類に応じて、紫外線、電子線などの電磁波を照射するか、加熱、水分付与、またはそれらの組み合わせによって硬化され、流動性を低下あるいは消失することにより、光学的異方性を有する粒子状物を分散・固定化した複合体を形成できる。
 また、マトリックス材が粘着剤である場合、硬化性粘着剤に光学的異方性粒子群が加えられ、攪拌されて、光学的異方性粒子群を含有する複合材料が得られる。なお、複合材料では、上述したフィルム形成性材料の場合と同様、一度に混合してもよいし、一旦マスターバッチを作製して、その後所望の複合材料としてもよい。そして、相対する被粘着面の空隙に、複合材料を注入して粘着剤層を形成してもよいし、一方の被粘着面に複合材料を塗布し、その塗布面に他方の被粘着面を圧着させることにより、粘着剤層を形成してもよい。粘着剤層も、ハードコート剤層と同様に硬化させ、流動性を低下あるいは消失することにより、光学的異方性を有する粒子状物を分散・固定化した複合体を形成できる。
(光学的異方性粒子群)
 本発明の光学的異方性粒子群は、マトリックス材へ分散するために用いられる光学的に異方性を有する粒子群であって、前記粒子群は、液晶滴の配向状態が互いに独立に固定されている複数の粒子で構成されている。光学的異方性粒子群を構成する光学的異方性粒子は、
 重合性液晶化合物を準備する準備工程と、
 前記重合性液晶化合物と重合開始剤とを混合し、その混合物を液晶転移温度以上で撹拌することにより分散媒中に分散させて液晶滴を形成させる分散工程と、
 前記液晶滴を、前記重合開始剤の存在下、等方相転移温度未満で重合させる重合工程とを少なくとも備える方法により、製造することができる。
 光学的異方性粒子の平均粒子径は、表示装置の画素より小さいことが望ましい。画素の大きさにもよるが、光学的異方性粒子の平均粒子径は、例えば50μm以下、好ましくは30μm以下であってもよい。また、通常平均粒子径は0.5μm以上であることが多い。なお、ここで、平均粒子径とは、細孔電気抵抗法(電気的検知帯法)を用いた粒子径分布測定装置(ベックマン・コールター(株)製「マルチサイザー」)にて測定した平均粒子径を意味している。
(重合性液晶化合物準備工程)
 重合性液晶化合物は、メソゲン形成性基で構成されたユニットを有するとともに、液晶滴構造を形成できる限り特に限定されず、各種重合性液晶化合物を利用することができる。重合性液晶化合物としては、例えば、シッフ塩基系、ビフェニル系、ターフェニル系、エステル系、チオエステル系、スチルベン系、トラン系、アゾキシ系、アゾ系、フェニルシクロヘキサン系、ピリミジン系、シクロヘキシルシクロヘキサン系、トリメシン酸系、トリフェニレン系、トルクセン系、フタロシアニン系、ポルフィリン系分子骨格を有する液晶化合物、またはこれら化合物の混合物等が挙げられ、ネマチック性、コレステリック性またはスメクチック性の液晶相を示す化合物であればいずれでもよい。
 前記メソゲン形成性基で構成されたユニットは、液晶ポリマーの主鎖にあってもよく、側鎖にあってもよい。主鎖型液晶ポリマーとしては、ポリエステル系、ポリアミド系、ポリカーボネート系、ポリイミド系、ポリウレタン系、ポリベンズイミダゾール系、ポリベンズオキサゾール系、ポリベンズチアゾール系、ポリアゾメチン系、ポリエステルアミド系、ポリエステルカーボネート系、ポリエステルイミド系の液晶ポリマー、またはこれらの混合物等が挙げられる。また側鎖型液晶性ポリマーとしては、ポリアクリレート系、ポリメタクリレート系、ポリビニル系、ポリシロキサン系、ポリエーテル系、ポリマロネート系等の直鎖状又は環状構造の骨格鎖を有する高分子に側鎖としてメソゲン基が結合した液晶ポリマー、またはこれらの混合物等が挙げられる。
 また、重合性液晶化合物は、必要に応じて導入された架橋性基あるいは適宜な架橋剤のブレンドによって、液晶状態あるいは液晶転移温度以下に冷却した状態で、架橋(熱架橋あるいは光架橋)等の手段により配向固定化できる液晶ポリマーでもよい。このような液晶ポリマーは、ネマチック性、コレステリック性またはスメクチック性の液晶相を示すポリマーであればいずれでもよく、メソゲン形成性基で構成されたユニットを有する限り特に限定されない。
 架橋性基としては、ビニル基、ビニルオキシ基、1-クロロビニル基、イソプロペニル基、4-ビニルフェニル基、アクリロイルオキシ基、メタクリロイルオキシ基、オキシラニル基、オキセタニル基等が挙げられる。中でも、アクリロイルオキシ基、メタクリロイルオキシ基、ビニルオキシ基、オキシラニル基及びオキセタニル基が好ましく、特にアクリロイルオキシ基がより好ましい。
(液晶滴の分散工程)
 液晶滴の分散工程では、前記重合性液晶化合物を液晶転移温度以上で撹拌することにより分散媒中に撹拌して、分散状態の液晶滴を形成させる。分散媒は、重合性液晶化合物を分散状態にすることができる限り、各種溶媒を用いることができ、例えば、水、アルコール類、エーテル類、ケトン類、エステル類などが例示できる。
 また、分散媒は、重合性液晶化合物を分散できる限り特に限定されないが、重合性液晶化合物を良好に分散させるため、溶媒と界面活性剤とを含むのが好ましい。溶媒としては、例えば、水、アルコール類などの重合性液晶化合物と非相溶性の溶媒を挙げることができ、界面活性剤としては、例えば、脂肪酸ナトリウム、モノアルキル硫酸塩、アルキルポリオキシエチレン硫酸塩、アルキルベンゼンスルホン酸塩、モノアルキルリン酸塩などの陰イオン系界面活性剤、アルキルトリメチルアンモニウム塩、ジアルキルジメチルアンモニウム塩などの陽イオン系界面活性剤、アルキルジメチルアミンオキシド、アルキルカルボキシベタインなどの両性界面活性剤、ポリオキシエチレンアルキルエーテル、脂肪酸ソルビタンエステル、アルキルポリグルコシド、ポリエチレングリコール、ポリビニルアルコールなどの非イオン性界面活性剤を利用することができる。
 分散工程では、小さな粒子径の重合性液晶化合物を形成する観点から、重合性液晶化合物が分散媒に乳濁状態で分散されるのが好ましい。
(重合工程)
 重合工程では、液晶滴を、重合開始剤の存在下、重合性液晶化合物の等方相転移温度未満で重合させる。なお、等方相転移温度とは、加熱により液晶が等方相に変化する温度を意味しており、等方相転移温度未満には、この等方相転移温度より低い温度である液晶転移温度未満も含まれている。重合開始剤としては、光重合開始剤であっても、熱重合開始剤であってもよく、重合性液晶化合物の種類に応じて適宜選択することができる。
 光重合開始剤としては、イルガキュア(Irgacure)907、イルガキュア184、イルガキュア651、イルガキュア819、イルガキュア250、イルガキュア369(以上、全てチバ・ジャパン(株)製)、セイクオールBZ、セイクオールZ、セイクオールBEE(以上、全て精工化学(株)製)、カヤキュアー(kayacure)BP100(日本化薬(株)製)、カヤキュアーUVI-6992(ダウ社製)、アデカオプトマーSP-152又はアデカオプトマーSP-170(以上、全て(株)ADEKA製)、TAZ-A、TAZ-PP(以上、日本シイベルヘグナー社製)及びTAZ-104(三和ケミカル社製)など、市販の光重合開始剤を用いることができる。
 熱重合開始剤としては、アゾビスイソブチロニトリル等のアゾ化合物;過酸化水素、過硫酸塩、過酸化ベンゾイル等の過酸化物等が挙げられる。
 重合開始剤の含有量は、重合性液晶化合物100質量部に対して、0.1~30質量部が好ましく、0.5~10質量部がより好ましく、0.5~8質量部がさらに好ましい。上記範囲内であれば、重合性液晶化合物の配向を乱すことなく重合させることができる。
 なお、重合開始剤として光重合開始剤を用いる場合、光増感剤を併用してもよい。光増感剤としては、例えば、キサントン及びチオキサントン等のキサントン化合物(例えば、2,4-ジエチルチオキサントン、2-イソプロピルチオキサントン等);アントラセン及びアルコキシ基含有アントラセン(例えば、ジブトキシアントラセン等)等のアントラセン化合物;フェノチアジン;ルブレン等が挙げられる。
 液晶性の配向状態を有する液晶滴を、等方相転移温度未満で重合させることにより、液晶滴の配向状態を固定して、光学的異方性粒子を得ることができる。
 このような光学的異方性粒子は、一般的に、分散媒中において略球状または略回転楕円形状で存在する液晶滴の形状をそのまま維持することができる。また、既に配向状態が固定化された粒子として存在しているため、通常、マトリックス材に対して、実質的に相溶せずに存在することができる。
 これによって、マトリックス中において配向固定化を必要とする、従来の低分子液晶、液晶ポリマーと異なり、粒子の大きさを制御するためにマトリックス材への相溶性を考慮する必要をなくすことができる。さらに、マトリックス材がハードコート剤や粘着剤である場合でも、ハードコート性、硬化性、基材への密着性、粘着性や、光、熱による硬化性などへの影響を考慮することなく、幅広い材料の組み合わせが可能となる。
 このような光学的異方性粒子は、必要に応じて、重合後、水洗、乾燥してマトリックス材へ分散することができる。
(表示装置)
 上記で得られた複合体は、液晶表示装置、有機EL表示装置等の表示装置において、偏光板を備えるLCDパネルまたはOLEDパネル(以下、表示部と称する)の光出射側に配設された偏光板を介して、偏光板の視認者側に配設される。
 LCDパネルは、例えば、液晶セルと、この液晶セルの光入射側に配設された第1の偏光板と、前記液晶セルの光出射側に配設された第2の偏光板とを少なくとも備えており、複合体は、この光出射側に配設された第2の偏光板の光出射側に配設されてもよい。
 また、OLEDパネルは、例えば、有機EL素子と、前記有機EL素子の光出射側に配設された円偏光板とを少なくとも備えており、複合体は、この光出射側に配設された円偏光板の光出射側に配設されてもよい。
 例えば、複合体は、上述したように、前記偏光フィルムに対して積層される積層フィルム、基材フィルムに塗布されるハードコート層などとして利用することが可能である。また、図3に示すように、光学的異方性粒子が外面に一部突き出ているような場合、フィルム表面に対して凹凸を形成することができるため、外光の映り込みを抑制することが可能である。
 また複合体が粘着剤層である場合、表示部の前面と保護ガラス後面との間、表示部の前面とタッチパネル後面との間、表示部の前面と意匠ガラス後面との間などの間隙に、粘着剤層を充填・硬化させて使用することが可能である。
 このような複合体を備えた表示装置は、視認者の偏光眼鏡の偏光吸収軸と、表示装置からの光の偏光軸が一致した場合であっても、著しく視認性が低下する問題を解消できる。さらに、偏光眼鏡を着用した場合でも、表示が暗くなることを防ぐとともに、首を傾げる左右の方向により、画像の色調が大きくずれてしまうことを低減できる。
 以下に、実施例に基づいて本発明をより詳細に説明する。但し、本発明のその要旨に変更がない限り、以下の実施例に限定されるものではない。
(実施例1)
 重合体1として得られたアクリル系重合性液晶材料(BASF社製、「パリオカラー LC-242」、液晶転移温度65℃、等方相転移温度118℃)100重量部に重合開始剤(チバスペシャリティ製、「イルガキュア907」)5重量部を混合した。この混合物を、10wt%ポリビニルアルコール水溶液に添加後、80℃に加温して十分に攪拌した。攪拌後、混合液は乳濁状態となっているのを確認した。この乳濁液を攪拌しながら、60~70℃において高圧水銀灯からの光(3W/cm)を10分間行い、液晶滴の状態で重合固定した。続いて、重合固定された液晶滴を分散媒から分離し、これらを十分に水洗し、乾燥することにより、光学異方性粒子(平均粒子径4.1μm)を得た。
 このようにして得た光学異方性粒子10wt%を紫外線硬化性ハードコート剤に混合し分散した。このハードコート剤を、TAC(トリアセチルセルロース)フィルムに10g/mの面積当たりの重量で塗布後、高圧水銀灯を光源とする紫外線照射装置の光を100秒間照射した。ハードコート剤は、照射により硬化し流動性が消失した。
 このように作製したTACフィルムを液晶表示装置の前面に貼合して、液晶表示装置の偏光板からの画像を観察したところ、偏光板の透過軸を回転しても表示画面が暗化することがなく、画像を認識できた。また、TACフィルムの表面には凹凸が形成され、外光が映りこむ特性も奏されていた。
(実施例2)
 実施例1と同様にして得た光学異方性粒子2wt%をアクリル系粘着剤(溶媒:酢酸エチル、トルエン、混合溶媒、固形分20wt%)に混合し攪拌して粘着剤溶液を作製した。この粘着剤溶液を、TACフィルムに塗布、乾燥して25μm厚の粘着剤層をTACフィルム上に形成した。
 このように作製したTACフィルムを液晶表示装置の前面に該粘着剤を介して貼合して、液晶表示装置の偏光板からの画像を観察したところ、偏光板の透過軸を回転しても表示画面が暗化することがなく、画像を認識できた。
(実施例3)
 実施例1と同様にして得た光学異方性粒子を紫外線硬化性粘着剤に5wt%を混合し攪拌して光学的異方性粒子群を含有する複合材料(または光透過性充填材料)を作製した。この充填材料を、80μmのスペーサーを用いて、対向させた2枚のガラスの空隙に充填後、高圧水銀灯を光源とする紫外線照射装置の光を100秒間照射した。
 光透過性充填材料は、照射により硬化し、流動性が消失するとともに、対向する2枚のガラスに密着し空気界面は生じていなかった。偏光顕微鏡で観察したところ、クロスニコルの観察において液晶材料の液晶液滴が光透過性充填材料の全域に略均一に分散し、光学的に異方性を有するポリマー粒子群を形成していることが確認された。また、液晶表示装置の前面に試験サンプルを配置して、液晶表示装置の偏光板からの画像を観察したところ、偏光板の透過軸を回転しても表示画面が暗化することがなく、画像を認識できた。
(実施例4)
 実施例1と同様にして得た光学異方性粒子を2液硬化性粘着剤に5wt%を混合し攪拌して光透過性充填材料を作製した。この充填材料を、80μmのスペーサーを用いて、対向させた2枚のガラスの空隙に充填後、80℃の恒温槽中に60min間放置した。
 光透過性充填材料は、加熱により硬化し、流動性が消失するとともに、対向する2枚のガラスに密着し空気界面は生じていなかった。偏光顕微鏡で観察したところ、クロスニコルの観察において液晶材料の液晶液滴が光透過性充填材料の全域に分散し、光学的に異方性を有するポリマー粒子を形成していることが確認された。また、液晶表示装置の前面に試験サンプルを配置して、液晶表示装置の偏光板からの画像を観察したところ、偏光板の透過軸を回転しても表示画面が暗化することがなく、画像を認識できた。
 本発明の光学異方性粒子をハードコート剤、粘着剤、フィルム自体を形成する材料へ分散した複合体は、偏光解消機能を付与することができる。したがって、このような複合体を用いた表示装置は、偏光眼鏡を装着して観察する場合の視認性の低下を防ぐことができるので、産業上の利用可能性を有する。
 以上の通り、図面を参照しながら本発明の好適な実施形態を説明したが、本発明の趣旨を逸脱しない範囲で、種々の追加、変更または削除が可能であり、そのようなものも本発明の範囲に含まれる。
1,11,21,31: 光学的異方性粒子群
12: フィルム自体を形成する材料
2: マトリックス材
22: ハードコート剤
23: 基材フィルム
32: 粘着剤
33,34: 被着体

Claims (9)

  1.  マトリックス材へ分散するために用いられる光学的に異方性を有する粒子群であって、
     前記粒子群は、液晶滴の配向状態が互いに独立に固定されている複数の粒子で構成されている光学的異方性粒子群。
  2.  請求項1において、粒子の形状が、略球状または略回転楕円形状であり、平均粒子径が、50μm以下である光学的異方性粒子群。
  3.  請求項1または2において、粒子群を構成する粒子が、マトリックス材に対して、実質的に相溶しない光学的異方性粒子群。
  4.  透光性のマトリックス材と、請求項1~3のいずれか一項の光学的異方性粒子群とで構成された複合体であって、マトリックス材に対して、前記光学的異方性粒子群の各粒子が、液晶滴の配向状態を互いに独立に配向させた状態で分散している複合体。
  5.  請求項4において、マトリックス材が、フィルム自体を形成する材料、ハードコート剤、または粘着剤である複合体。
  6.  偏光板を光出射側に備える表示装置であって、請求項4または5に記載された複合体が、偏光板の視認者側に配設された表示装置。
  7.  重合性液晶化合物を準備する準備工程と、
     前記重合性液晶化合物を、その液晶転移温度以上で分散媒中に分散させて液晶滴を形成させる分散工程と、
     前記液晶滴を、重合開始剤の存在下、前記重合性液晶化合物の等方相転移温度未満で重合させる重合工程と、
    を備える、光学的異方性粒子を製造する方法。
  8.  請求項7において、分散工程で、分散媒が水および界面活性剤を含む製造方法。
  9.  請求項7または8において、分散工程で、重合性液晶化合物が、乳濁状態で分散される製造方法。
PCT/JP2013/077555 2012-10-26 2013-10-10 光学異方性粒子群およびその製造方法、ならびにそれを用いた複合体および表示装置 WO2014065128A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020157010388A KR102059099B1 (ko) 2012-10-26 2013-10-10 광학 이방성 입자군 및 그 제조 방법, 및 이것을 사용한 복합체 및 표시 장치
CN201380053767.4A CN104718471B (zh) 2012-10-26 2013-10-10 光学各向异性粒子群及其制造方法以及使用该粒子群的复合体及显示装置
JP2014543229A JP6424090B2 (ja) 2012-10-26 2013-10-10 光学的異方性粒子群を含む複合体およびその製造方法、ならびにそれを用いた表示装置
US14/694,078 US20150225496A1 (en) 2012-10-26 2015-04-23 Optically anisotropic particles and method for producing same, and complex and display device using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012236477 2012-10-26
JP2012-236477 2012-10-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/694,078 Continuation US20150225496A1 (en) 2012-10-26 2015-04-23 Optically anisotropic particles and method for producing same, and complex and display device using same

Publications (1)

Publication Number Publication Date
WO2014065128A1 true WO2014065128A1 (ja) 2014-05-01

Family

ID=50544508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077555 WO2014065128A1 (ja) 2012-10-26 2013-10-10 光学異方性粒子群およびその製造方法、ならびにそれを用いた複合体および表示装置

Country Status (6)

Country Link
US (1) US20150225496A1 (ja)
JP (1) JP6424090B2 (ja)
KR (1) KR102059099B1 (ja)
CN (1) CN104718471B (ja)
TW (1) TWI579582B (ja)
WO (1) WO2014065128A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102566331B1 (ko) * 2019-10-10 2023-08-22 주식회사 엘지화학 광변조 디바이스

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52115241A (en) * 1976-03-24 1977-09-27 Nippon Chemical Ind Depolarizer using anisotropic crystal particles
JPH02184804A (ja) * 1989-01-11 1990-07-19 Toyo Commun Equip Co Ltd 偏光解消素子
JP2003026707A (ja) * 2001-07-12 2003-01-29 Dainippon Ink & Chem Inc 光干渉性球形樹脂粒子およびその製造方法
WO2010101140A1 (ja) * 2009-03-04 2010-09-10 林テレンプ株式会社 偏光解消フィルム
JP2011257479A (ja) * 2010-06-07 2011-12-22 Sumitomo Chemical Co Ltd 偏光解消フィルムおよびこれを用いた偏光板

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1010523A (ja) 1996-06-24 1998-01-16 Dainippon Printing Co Ltd 液晶表示装置
JPH1010522A (ja) 1996-06-24 1998-01-16 Dainippon Printing Co Ltd 液晶表示装置
JP3422474B2 (ja) * 1999-05-19 2003-06-30 日東電工株式会社 偏光導光板及び偏光面光源
TW522260B (en) * 2000-04-03 2003-03-01 Konishiroku Photo Ind Optical compensation sheet and liquid crystal display
JP2003014927A (ja) * 2001-06-28 2003-01-15 Hayashi Telempu Co Ltd 光学異方素子の製造方法、光学異方素子およびこの光学異方素子を用いた液晶表示装置
JP3779723B2 (ja) * 2002-10-08 2006-05-31 日東電工株式会社 偏光子、光学フィルムおよび画像表示装置
CN100410775C (zh) * 2003-09-29 2008-08-13 夏普株式会社 液晶显示装置
JP2005283800A (ja) * 2004-03-29 2005-10-13 Nitto Denko Corp 楕円偏光板、光学フィルムおよび画像表示装置
JP2008310310A (ja) * 2007-05-15 2008-12-25 Hitachi Chem Co Ltd 偏光解消材料及びそれを用いた偏光解消素子、並びに、液晶表示装置
JP5184944B2 (ja) * 2008-04-01 2013-04-17 日東電工株式会社 偏光解消フィルム、その製造方法、光学フィルムおよび液晶表示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52115241A (en) * 1976-03-24 1977-09-27 Nippon Chemical Ind Depolarizer using anisotropic crystal particles
JPH02184804A (ja) * 1989-01-11 1990-07-19 Toyo Commun Equip Co Ltd 偏光解消素子
JP2003026707A (ja) * 2001-07-12 2003-01-29 Dainippon Ink & Chem Inc 光干渉性球形樹脂粒子およびその製造方法
WO2010101140A1 (ja) * 2009-03-04 2010-09-10 林テレンプ株式会社 偏光解消フィルム
JP2011257479A (ja) * 2010-06-07 2011-12-22 Sumitomo Chemical Co Ltd 偏光解消フィルムおよびこれを用いた偏光板

Also Published As

Publication number Publication date
TWI579582B (zh) 2017-04-21
KR20150079626A (ko) 2015-07-08
CN104718471A (zh) 2015-06-17
US20150225496A1 (en) 2015-08-13
JPWO2014065128A1 (ja) 2016-09-08
CN104718471B (zh) 2018-02-13
KR102059099B1 (ko) 2019-12-24
JP6424090B2 (ja) 2018-11-14
TW201425983A (zh) 2014-07-01

Similar Documents

Publication Publication Date Title
JP6427340B2 (ja) 光学異方性層とその製造方法、積層体とその製造方法、偏光板、液晶表示装置及び有機el表示装置
KR20150113886A (ko) 광학 필름, 편광판, 및 광학 필름의 제조 방법
JP2016503185A (ja) 複屈折rmレンズ
JP2015161714A (ja) 位相差板、楕円偏光板およびそれを用いた表示装置
EP3680700A1 (en) One-way mirror film for displaying projected images, laminated glass for displaying projected images, and image display system
KR101604661B1 (ko) 편광 해소 필름
JP2009288440A (ja) 位相差フィルム、位相差フィルムの製造方法、偏光板および液晶表示装置
JP2018045210A (ja) 車両用の投映像表示用システム
JP2009294521A (ja) 位相差フィルム、位相差フィルムの製造方法、偏光板および液晶表示装置
JP5274928B2 (ja) 液晶パネル及び液晶表示装置
JP4413117B2 (ja) 位相差フィルム、偏光板、液晶パネル、液晶表示装置及び位相差フィルムの製造方法
JP5274929B2 (ja) 液晶パネル及び液晶表示装置
JP6424090B2 (ja) 光学的異方性粒子群を含む複合体およびその製造方法、ならびにそれを用いた表示装置
CN110678807B (zh) 液晶显示装置及液晶显示装置的制造方法
JP2008122918A (ja) 位相差フィルム
WO2022044925A1 (ja) 配向液晶フィルムおよびその製造方法、ならびに画像表示装置
WO2013179851A1 (ja) 光透過性充填材料、それを用いる表示装置の製造方法および表示装置
WO2021177280A1 (ja) 視角制御システムおよび画像表示装置
WO2020196174A1 (ja) 積層光学フィルムおよびその製造方法、偏光板、ならびに画像表示装置
WO2021060394A1 (ja) 光学素子
KR20230140478A (ko) 광학 적층체 및 원편광판
TW202415987A (zh) 光學積層體及圓偏光板
KR101892568B1 (ko) 고분자 분산 액정 렌즈
JP2022144068A (ja) 配向液晶フィルムの製造方法
KR20160090551A (ko) 액정 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13849762

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014543229

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157010388

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13849762

Country of ref document: EP

Kind code of ref document: A1