WO2014063464A1 - 一种锂离子电池负极添加剂及其制备方法、锂离子电池负极片和锂离子电池 - Google Patents

一种锂离子电池负极添加剂及其制备方法、锂离子电池负极片和锂离子电池 Download PDF

Info

Publication number
WO2014063464A1
WO2014063464A1 PCT/CN2013/073436 CN2013073436W WO2014063464A1 WO 2014063464 A1 WO2014063464 A1 WO 2014063464A1 CN 2013073436 W CN2013073436 W CN 2013073436W WO 2014063464 A1 WO2014063464 A1 WO 2014063464A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion battery
negative electrode
lithium ion
polymer
lithium
Prior art date
Application number
PCT/CN2013/073436
Other languages
English (en)
French (fr)
Inventor
张麒
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2015524606A priority Critical patent/JP5944049B2/ja
Publication of WO2014063464A1 publication Critical patent/WO2014063464A1/zh
Priority to US14/582,792 priority patent/US10084189B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Lithium ion battery anode additive and preparation method thereof, lithium ion battery anode sheet and lithium ion battery The application claims to be submitted to the Chinese Patent Office on October 26, 2012, application number 201210415398.6, the invention name is "a lithium ion battery The priority of the negative electrode additive and its preparation method, the lithium ion battery negative electrode sheet and the lithium ion battery, the entire contents of which are incorporated herein by reference.
  • the present invention relates to the field of lithium ion batteries, and in particular to a lithium ion battery anode additive, a preparation method thereof and a lithium ion battery. Background technique
  • lithium-ion batteries have advantages such as light weight, small size, high operating voltage, high energy density, high output power, high charging efficiency, no memory effect, long cycle life, etc., in mobile phones and notebook computers. And other fields have been widely used. In recent years, with the increasing demand for applications such as small-sized portable devices and high-power electric vehicles, the idea of developing lithium ion batteries with higher energy density and higher power density has become more urgent.
  • the current problem is that during the first cycle of the lithium ion battery system, the electrolyte and the anode material will react on the solid-liquid phase to form a layer of SEI film, which will consume lithium in the active material of the anode material, resulting in The initial capacity of the lithium ion battery is reduced.
  • the anode material will have a loss of 10% capacity during the first charge and discharge. If a higher specific capacity silicon material (4200mAh/g and 9786mAh/cm 3 ) is used, the first coulombic efficiency is less than 85%. Causes a large amount of capacity loss. And, the larger the specific surface area of the negative electrode material, the lower the first efficiency.
  • the current solutions include: (1) preferentially form the SEI film before assembling the lithium ion battery. Therefore, the consumption of the irreversible capacity is reduced.
  • the patent application file disclosed in the Japanese Patent Publication No. CN 102148401A discloses that the negative electrode sheet is immersed in the electrolyte under dry conditions, and the SEI film is formed on the surface by an external circuit.
  • the negative electrode sheet and other components are assembled into a battery, thereby avoiding the generation of SEI during the initial formation and improving the first efficiency; but the solution is not only harsh in process conditions, complicated in process, but also costly waste, and the negative electrode After the film is formed, it needs to be washed and dried many times, which has a great influence on the performance of the pole piece, especially the bonding effect of the pole piece, so that the safety of the lithium ion battery system cannot be guaranteed.
  • SLMP air - stabilized lithium metal Powder
  • the main coating layer outside the lithium metal is lithium carbonate, and a small amount of lithium oxide or lithium hydroxide, hydrocarbon, when the lithium source participates in the reaction Residual lithium carbonate increases the internal resistance of the system, although a small amount of hydrogen fluoride in the electrolyte may dissolve a part, but it may still affect the performance of the lithium ion battery.
  • the first aspect of the present invention provides a negative electrode additive for a lithium ion battery, which can be added as a lithium source to a negative electrode material of a lithium ion battery to compensate for the first charge and discharge of the negative electrode of the lithium ion battery. Lithium consumption that occurs during the process.
  • a second aspect of the embodiments of the present invention provides a method for preparing the lithium ion battery negative electrode additive.
  • the third aspect and the fourth aspect of the embodiments of the present invention respectively provide a lithium ion battery negative electrode sheet and a lithium ion battery including the lithium ion battery negative electrode additive, and the lithium ion battery has high energy density and long cycle life.
  • an embodiment of the present invention provides a lithium ion battery negative electrode additive, wherein the lithium ion battery negative electrode additive is a core-shell coating structure formed of elemental lithium powder and a polymer coated on the surface of the elemental lithium powder. , the polymer is soluble in a carbonate solvent, and the polymer cannot
  • the metal of the elemental lithium powder is highly active and cannot be stably present in the air, and if it is directly added to the anode material of the lithium ion battery, it may bring a safety hazard to the manufacture and use of the lithium ion battery.
  • the lithium ion battery negative electrode additive provided in the first aspect of the present embodiment effectively solves this problem by coating a polymer on the surface of elemental lithium powder.
  • the polymer is a polymer or copolymer soluble in the electrolyte of the lithium ion battery, so that the elemental lithium powder coated therein can be dissolved and participate in the reaction, that is, the lithium ion battery negative electrode can be compensated for the first time after the elemental lithium powder is dissolved. Lithium consumption during charging and discharging.
  • the polymer is soluble in a carbonate solvent selected from the group consisting of didecyl carbonate (DMC), diethyl carbonate (DEC), ethyl lanthanum carbonate (EMC), and propyl propyl carbonate ( One or several of MPC).
  • these organic solvents have a low boiling point and can be dried at a temperature of 50 to 80 ° C, thereby avoiding the problem that the activity of the elemental lithium powder is high and the side reaction is likely to occur at an excessively high drying temperature.
  • the polymer cannot be combined with hydrazine, fluorenyl-dimercaptoamide (DMF), hydrazine, hydrazine-dimercaptoacetamide (DMAc), N-2-mercaptopyrrolidone (NMP), tetrahydrofuran (THF), Acetone or sterol reaction. This is to ensure that the negative electrode additive component is not destroyed by these solvents during the mixing process.
  • the polymer is one or more of a polyalkylene carbonate, a polyalkylene oxide, a polyalkylsiloxane, a polyalkyl acrylate, and an alkyl polyalkyl acrylate.
  • the polymer has a weight average molecular weight of from 500 to 500,000.
  • the polymer can better ensure the degree of polymerization, and thus can withstand the high temperature during coating baking in the preparation of the lithium ion battery, and at the same time, the polymer can be better dissolved in the carbonate solvent.
  • the polymer is stably present at a temperature of from 0 to 150 ° C, so that thermal stability can also be maintained during coating and baking in this temperature range.
  • the polymer is coated on the surface of the elemental lithium powder to isolate the elemental lithium powder from the outside.
  • an embodiment of the present invention provides a method for preparing a negative electrode additive for a lithium ion battery, comprising the steps of: dissolving a polymer in a carbonate solvent to form a polymer solution, and introducing an elemental lithium powder into the polymer solution, After stirring, the mixture is filtered, and the filter residue is taken, and the filter residue is spray-dried at a temperature of 50 to 80 ° C under the protection of an inert gas to obtain a lithium ion battery negative electrode additive, and the lithium ion battery negative electrode additive is composed of elemental lithium powder and a package.
  • a core-shell coating structure formed by a polymer coated on the surface of the elemental lithium powder, the polymer being incapable of reacting with ruthenium, osmium-dimercaptoamide, hydrazine, hydrazine-dimercaptoacetamide, ⁇ -2- ⁇ The reaction of pyrrolidone, tetrahydrofuran, acetone and decyl alcohol.
  • the polymer is soluble in a carbonate solvent selected from one or more of dinonyl carbonate, diethyl carbonate, cesium carbonate and propyl propyl carbonate.
  • a carbonate solvent selected from one or more of dinonyl carbonate, diethyl carbonate, cesium carbonate and propyl propyl carbonate.
  • These organic solvents have a low boiling point and can be dried at a temperature of 50 to 80 ° C, thereby avoiding the problem that the activity of the elemental lithium powder is high and the side reaction is likely to occur at an excessively high drying temperature.
  • the polymer is incapable of reacting with hydrazine, hydrazine-dimercaptoamide, hydrazine, hydrazine-dimercaptoacetamide, hydrazine-2-mercaptopyrrolidone, tetrahydrofuran, acetone or decyl alcohol.
  • the polymer is stably present at a temperature of from 0 to 150 °C.
  • the polymer is one or more of a polyalkylene carbonate, a polyalkylene oxide, a polyalkylsiloxane, a polyalkyl acrylate, and an alkyl polyalkyl acrylate.
  • the carbonate solvent functions to dissolve the polymer, and its ratio to the polymer is not limited.
  • the polymer is coated on the surface of the elemental lithium powder to isolate the elemental lithium powder from the outside.
  • an embodiment of the present invention provides a lithium ion battery negative electrode sheet, the lithium ion battery negative electrode sheet includes a current collector and a negative electrode material coated on the current collector, and the negative electrode material includes a negative electrode active material, a binder, a conductive agent, and a lithium ion battery negative electrode additive, wherein the lithium ion battery negative electrode additive is a core-shell coating structure formed of elemental lithium powder and a polymer coated on a surface of the elemental lithium powder, the polymer Capable of dissolving in a carbonate solvent, and the polymer cannot be combined with hydrazine, hydrazine-dimercapto amide (DMF), hydrazine, hydrazine-dimercaptoacetamide (DMAc), N-2-mercaptopyrrolidone (NMP)
  • the polymer is one or more of a polyalkylene carbonate, a polyalkylene oxide, a polyalkylsiloxane, a polyalkyl acrylate, and an alkyl polyalkyl acrylate.
  • the negative electrode active material is an organic compound or an inorganic material capable of deintercalating lithium ions.
  • the weight ratio of the lithium ion battery negative electrode additive to the negative electrode active material is 1:20 ⁇
  • an embodiment of the present invention provides a lithium ion battery, comprising: a positive electrode of a lithium ion battery, a negative electrode of a lithium ion battery, a separator, a casing, and an electrolyte, wherein the negative electrode of the lithium ion battery includes a current collector and a negative electrode material coated on the current collector, the negative electrode material comprising a negative electrode active material, a binder, a conductive agent, and a lithium ion battery negative electrode additive, wherein the lithium ion battery negative electrode additive is composed of elemental lithium powder and a core-shell coating structure formed by a polymer coated on the surface of the elemental lithium powder, the polymer being soluble in a carbonate solvent, and the polymer being incapable of reacting with ruthenium, fluorenyl-dimercaptoamide (DMF) , hydrazine, hydrazine-dimercaptoacetamide (DMAc), N-2-mercaptopyrroli
  • DMF flu
  • the polymer is one or more of a polyalkylene carbonate, a polyalkylene oxide, a polyalkylsiloxane, a polyalkyl acrylate, and an alkyl polyalkyl acrylate.
  • a lithium ion battery negative electrode sheet and lithium The structure of the ion battery and the preparation method thereof can be referred to the conventional technology, and the difference from the conventional technology is only that the lithium ion battery anode additive as described in the first aspect is added to the anode material of the lithium ion battery.
  • the lithium ion battery provided by the fourth aspect of the embodiments of the present invention has high energy density and long cycle life.
  • the advantages of the embodiments of the present invention will be set forth in part in the description which follows.
  • FIG. 1 is a flow chart of a method for preparing a lithium ion battery according to a specific embodiment of the present invention.
  • the following is a preferred embodiment of the embodiments of the present invention, and it should be noted that those skilled in the art can make some improvements and retouching without departing from the principles of the embodiments of the present invention. These improvements and retouchings are also considered to be the scope of protection of the embodiments of the present invention.
  • the first aspect of the present invention provides a negative electrode additive for a lithium ion battery, which can be added as a lithium source to a negative electrode material of a lithium ion battery to compensate for the occurrence of a negative electrode of the lithium ion battery during the first charge and discharge process. Lithium consumption.
  • a second aspect of the embodiments of the present invention provides a method for preparing the lithium ion battery negative electrode additive.
  • the third and fourth aspects of the embodiments of the present invention respectively provide a lithium ion battery negative electrode sheet and a lithium ion battery comprising the lithium ion battery negative electrode additive, the lithium ion battery having high energy density and long cycle life.
  • an embodiment of the present invention provides a lithium ion battery negative electrode additive, wherein the lithium ion battery negative electrode additive is a core-shell coating structure formed of elemental lithium powder and a polymer coated on the surface of the elemental lithium powder. , the polymer is soluble in a carbonate solvent, and the polymer cannot
  • the metal of the elemental lithium powder is highly active, cannot be stably present in the air, and if it is directly added to the negative electrode material of the lithium ion battery, it may bring a safety hazard to the manufacture and use of the lithium ion battery.
  • the lithium ion battery negative electrode additive provided by the first aspect of the present embodiment effectively solves this problem by coating the surface of the elemental lithium powder with a polymer.
  • the polymer is a polymer or copolymer soluble in the electrolyte of the lithium ion battery, so that the elemental lithium powder coated therein can be dissolved and participate in the reaction, that is, the lithium ion battery negative electrode can be compensated for the first time after the elemental lithium powder is dissolved. Lithium consumption during charging and discharging.
  • the polymer is soluble in a carbonate solvent selected from the group consisting of dinonyl carbonate
  • DMC diethyl carbonate
  • EMC ethyl lanthanum carbonate
  • MPC propyl propyl carbonate
  • these organic solvents have a low boiling point and can be dried at a temperature of 50 to 80 ° C, thereby avoiding the problem that the elemental lithium powder is highly reactive and prone to side reactions at an excessively high drying temperature.
  • the polymer cannot be combined with hydrazine, fluorenyl-dimercaptoamide (DMF), hydrazine, hydrazine-dimercaptoacetamide (DMAc), N-2-mercaptopyrrolidone (NMP), tetrahydrofuran (THF), Acetone or sterol reaction. This is to ensure that the negative electrode additive component is not destroyed by these solvents during the mixing process.
  • the polymer is one or more of a polyalkylene carbonate, a polyalkylene oxide, a polyalkylsiloxane, a polyalkyl acrylate, and an alkyl polyalkyl acrylate.
  • the polymer has a weight average molecular weight of from 500 to 500,000.
  • the polymer can better ensure the degree of polymerization, and thus can withstand the high temperature during coating baking in the preparation of the lithium ion battery, and at the same time, the polymer can be better dissolved in the carbonate solvent. .
  • the polymer is stably present at a temperature of from 0 to 150 ° C, so that thermal stability can be maintained during coating and baking in this temperature range.
  • the polymer is coated on the surface of the elemental lithium powder to isolate the elemental lithium powder from the outside.
  • an embodiment of the present invention provides a method for preparing a negative electrode additive for a lithium ion battery, comprising the steps of: dissolving a polymer in a solvent of a carbonate to form a polymer solution, and inputting the elemental lithium powder; In the polymer solution, the mixture is stirred and filtered, and the filter residue is taken, and the filter residue is spray-dried at a temperature of 50 to 80 ° C under the protection of an inert gas to obtain a lithium ion battery anode additive, and the lithium ion battery anode additive is a core-shell coating structure formed of elemental lithium powder and a polymer coated on the surface of the elemental lithium powder, the polymer being incapable of reacting with ruthenium, osmium-dimercaptoamide, ruthenium, osmium-didecyl acetamide , ⁇ -2-hydrazinopyrrolidone, tetrahydrofuran, acetone and de
  • the polymer can be dissolved in a carbonate solvent selected from one or more of dinonyl carbonate, diethyl carbonate, cesium carbonate and propyl propyl carbonate.
  • a carbonate solvent selected from one or more of dinonyl carbonate, diethyl carbonate, cesium carbonate and propyl propyl carbonate.
  • These organic solvents have a low boiling point and can be dried at a temperature of 50 to 80 ° C, thereby avoiding the problem that the activity of the elemental lithium powder is high and the side reaction is likely to occur at an excessively high drying temperature.
  • the polymer cannot be reacted with hydrazine, hydrazine-dimercaptoamide, hydrazine, hydrazine-dimercaptoacetamide, fluoren-2-indylpyrrolidone, tetrahydrofuran, acetone or decyl alcohol.
  • the polymer is stably present at a temperature of from 0 to 150 °C.
  • the polymer is one or more of a polyalkylene carbonate, a polyalkylene oxide, a polyalkylsiloxane, a polyalkyl acrylate, and an alkyl polyalkyl acrylate.
  • the carbonate solvent functions to dissolve the polymer, and its ratio to the polymer is not limited.
  • the polymer is coated on the surface of the elemental lithium powder to isolate the elemental lithium powder from the outside.
  • the preparation method of the lithium ion battery anode additive provided by the second aspect of the present invention is simple, easy to operate, low in cost, and easy to industrialize.
  • an embodiment of the present invention provides a lithium ion battery negative electrode sheet, the lithium ion battery negative electrode sheet includes a current collector and a negative electrode material coated on the current collector, and the negative electrode material includes a negative electrode active material, a binder, a conductive agent, and a lithium ion battery negative electrode additive, wherein the lithium ion battery negative electrode additive is a core-shell coating structure formed of elemental lithium powder and a polymer coated on a surface of the elemental lithium powder, the polymer Capable of dissolving in a carbonate solvent, and the polymer cannot be combined with ruthenium, osmium-difluorenyl Reaction of phthalamide (DMF), hydrazine, hydrazine-dimercaptoacetamide (DMAc), N-2-mercaptopyrrolidone (NMP), tetrahydrofuran (THF), acetone or decyl alcohol, and the polymer at 0 to 150 Stable at ruthenium,
  • the polymer is one or more of a polyalkylene carbonate, a polyalkylene oxide, a polyalkylsiloxane, a polyalkyl acrylate, and an alkyl polyalkyl acrylate.
  • the negative electrode active material is an organic compound or an inorganic material capable of deintercalating lithium ions.
  • an embodiment of the present invention provides a lithium ion battery, comprising: a positive electrode of a lithium ion battery, a negative electrode of a lithium ion battery, a separator, a casing, and an electrolyte, wherein the negative electrode of the lithium ion battery includes a current collector and a negative electrode material coated on the current collector, the negative electrode material comprising a negative electrode active material, a binder, a conductive agent, and a lithium ion battery negative electrode additive, wherein the lithium ion battery negative electrode additive is composed of elemental lithium powder and a core-shell coating structure formed by a polymer coated on the surface of the elemental lithium powder, the polymer being soluble in a carbonate solvent, and the polymer being incapable of reacting with ruthenium, fluorenyl-dimercaptoamide (DMF) , hydrazine, hydr
  • DMF fluorenyl-dimercaptoamide
  • the polymer is one or more of a polyalkylene carbonate, a polyalkylene oxide, a polyalkylsiloxane, a polyalkyl acrylate, and an alkyl polyalkyl acrylate.
  • the lithium ion battery negative electrode sheet and the lithium ion battery structure and the preparation method thereof can refer to the conventional technology, and the difference from the conventional technology only lies in the lithium ion battery anode material.
  • a lithium ion battery negative electrode additive as described in the first aspect is added.
  • BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a flow chart showing a method of preparing a lithium ion battery in accordance with an embodiment of the present invention.
  • the lithium ion battery provided by the fourth aspect of the embodiments of the present invention has high energy density and long cycle life.
  • the embodiments of the present invention are not limited to the specific embodiments below. Changes can be implemented as appropriate within the scope of the invariable principal rights.
  • Embodiment 1
  • a preparation method of a lithium ion battery anode additive comprises the following steps:
  • the lithium ion battery negative electrode additive is a core-shell coating structure formed of elemental lithium powder and a polymer coated on the surface of the elemental lithium powder.
  • PVDF polyvinylidene fluoride
  • NMP N-2-mercaptopyrrolidone
  • a mixture of 200 g of the positive active material LiCo0 2 , 6 g of the binder polyvinylidene fluoride (PVDF), and 4 g of the conductive agent acetylene black was added to 60 g of N-fluorenyl-2-pyrrolidone (NMP), followed by low-speed stirring. After 4 hours, it was then dispersed at high speed for 1 hour under the protection of 8 ° C cooling water to form a uniform positive electrode slurry.
  • NMP N-fluorenyl-2-pyrrolidone
  • the slurry was uniformly coated on a 16 ⁇ aluminum foil to control the surface density of the coating to 23 g/cm 2 , then dried at 120 ° C, rolled to a desired thickness, and then slit into Positive film with a width of 39mm, and cut A positive electrode sheet which matches the length of the above negative electrode sheet is required.
  • the negative electrode, the positive electrode and the separator obtained above are wound and pre-sealed with an aluminum plastic film, and the solvent (ethylene carbonate: mercaptoethyl carbonate: diethyl carbonate volume ratio is 1:1:1).
  • 10 g of an electrolyte containing 1 mol of lithium hexafluorophosphate was injected into the above battery to obtain a lithium ion battery.
  • the battery thickness is designed to be 5.5mm.
  • a preparation method of a lithium ion battery anode additive comprises the following steps:
  • the lithium ion battery negative electrode additive is a core-shell coating structure formed of elemental lithium powder and a polymer coated on the surface of the elemental lithium powder.
  • PVDF polyvinylidene fluoride
  • NMP N-2-mercaptopyrrolidone
  • Comparative Example 1 All production methods were identical to those of Example 1, except that the lithium ion battery negative electrode additive was not added during the preparation of the silicon negative electrode slurry.
  • the initial thickness of the soft pack battery produced in the comparative example is also designed as • 5mm.
  • the first embodiment, the second embodiment and the comparative example 1 respectively pass the capacity test, and the normal temperature is 50 times.
  • the 1C charge and discharge cycle collects the battery capacity data, and the specific data comparison is shown in Table 1 below.
  • the first cycle of the two examples of adding the lithium ion battery negative electrode additive is significantly improved compared with the first comparative example, the increase range is about 5% to 10%; and, due to the lithium ion battery With the introduction of the negative electrode additive, the cycle performance of the two examples was also superior to that of Comparative Example 1, and the capacity retention rate was increased by about 5% after 50 cycles.
  • a preparation method of a lithium ion battery anode additive comprises the following steps:
  • the lithium ion battery negative electrode additive is a core-shell coating structure formed of elemental lithium powder and a polymer coated on the surface of the elemental lithium powder.
  • PVDF polyvinylidene fluoride
  • NMP N-2-mercaptopyrrolidone
  • 2 g of the lithium ion battery negative electrode additive prepared in the present example was added, and stirred at low speed for 2 hours.
  • Super P stir at low speed for 2 hours, then add 400 g of graphite anode material, low-speed stirring. After 2 hours, it was then dispersed at a high speed for 1 hour under the protection of 8 ° C cooling water to obtain a stable graphite negative electrode slurry.
  • a preparation method of a lithium ion battery anode additive comprises the following steps:
  • the lithium ion battery negative electrode additive is a core-shell coating structure formed of elemental lithium powder and a polymer coated on the surface of the elemental lithium powder.
  • PVDF polyvinylidene fluoride
  • NMP N-2-mercaptopyrrolidone
  • graphite negative electrode material was added, and the mixture was stirred at a low speed for 2 hours, and then dispersed at a high speed for 1 hour under the protection of 8 ° C cooling water to obtain a stable graphite negative electrode slurry.
  • the initial thickness of the soft pack battery produced in the comparative example was also designed to be 5.5 mm.
  • Example 3 Example 4 and Comparative Example 2 respectively, after the capacity test, and 50 times of 1C charge and discharge cycle at normal temperature, the battery capacity data was collected, and the specific data comparison is shown in Table 2 below. Table 2. Comparison of battery capacity between Example 3 and Example 4 and Comparative Example 2
  • the first cycle of the embodiment in which the negative electrode additive of the lithium ion battery is added is significantly improved compared with the comparative example 2, and the increase is about 5 %.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

一种锂离子电池负极添加剂,为由单质锂粉末以及包覆在所述单质锂粉末表面的聚合物形成的核壳包覆结构,该聚合物能够溶解于碳酸酯溶剂中,并且聚合物不能与Ν,Ν-二甲基甲酰胺、Ν,Ν-二甲基乙酰胺、Ν-2-甲基吡咯烷酮、四氢呋喃、丙酮或甲醇反应,以及所述聚合物在0-150℃温度下稳定存在,该锂离子电池负极添加剂可作为锂源加入锂离子电池负极材料中,用以补偿锂离子电池负极在首次充放电过程中出现的锂消耗,还提供了该锂离子电池负极添加剂的制备方法、包含该锂离子电池负极添加剂的锂离子电池负极片和锂离子电池。

Description

一种鋰离子电池负极添加剂及其制备方法、 鋰离子电池负极片和鋰离 子电池 本申请要求了 2012年 10月 26日提交中国专利局的, 申请号 201210415398.6, 发明名称为"一种锂离子电池负极添加剂及其制备方法、 锂离子电池负极片和锂 离子电池"的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及锂离子电池领域, 特别是涉及一种锂离子电池负极添加剂及其 制备方法和锂离子电池。 背景技术
在众多的储能技术中, 锂离子电池由于具有重量轻、 体积小、 工作电压高、 能量密度高、 输出功率大、 充电效率高、 无记忆效应、 循环寿命长等优点, 在 手机、 笔记本电脑等领域得到了广泛的应用。 近年来, 随着小尺寸便携式设备 以及大功率电动汽车等应用需求的增加, 开发具有更高能量密度和更高功率密 度的锂离子电池的想法变得更加迫切。
目前存在的问题有,锂离子电池体系在首次循环过程中电解液和负极材料将 在固液相间层面上发生反应形成一层 SEI膜, 该过程将消耗负极材料活性物质 中的锂, 从而导致锂离子电池初始容量的降低。 通常, 负极材料在首次充放电 过程中将出现 10%容量的损耗, 若使用比容量更高的硅材料(4200mAh/g 和 9786mAh/cm3 ) , 其首次库伦效率更是低于 85%, 直接导致大量的容量损失。 以 及, 负极材料比表面积越大, 首次效率越低。
对此, 目前的解决方案包括: (1 )在组装锂离子电池前优先形成 SEI膜, 从而减小不可逆容量的消耗, 例如深圳比克公司在公开号为 CN 102148401A的 专利申请文件中指出, 在干燥的条件下将负极片浸润在电解液中, 通外电路使 其表面形成 SEI膜, 待清洗干燥后, 将该负极片与其他组件组装成电池, 从而 在初次化成时避免 SEI 的生成, 提升首次效率; 但方案中不仅工艺条件苛刻, 流程繁瑣, 造成成本的较大浪费, 而且负极片成膜后需要多次清洗和干燥, 对 极片的各项性能, 尤其是极片的粘结效果都有较大影响, 从而不能保证锂离子 电池体系的安全性。 (2 )提供 "锂源" 以补偿锂离子电池首次充 /放电过程中损 失掉的锂离子, 从而减少不可逆容量, 例如美国 FMC公司通过提供能在空气中 稳定存在的金属锂粉末 - stabilized lithium Metal Powder(SLMP) , 并将其以混浆 或者辊压的方式引入负极材料中, 即用额外引入的锂源补偿锂离子电池首次充 放电过程中由于形成 SEI膜而损失的锂, 进而实现减小不可逆容量并提升能量 密度的目的; 但该方案中由于 SLMP的形态为: 锂金属外部的主要包覆层为碳 酸锂, 及少量氧化锂或氢氧化锂、 碳氢化合物, 当锂源参与反应后残留的碳酸 锂会增加体系的内阻, 尽管电解液中极少量的氟化氢可能溶解一部分, 但依然 可能影响锂离子电池的性能。 发明内容
有鉴于此,本发明实施例第一方面提供了一种锂离子电池负极添加剂,该锂 离子电池负极添加剂可作为锂源加入锂离子电池负极材料中, 用以补偿锂离子 电池负极在首次充放电过程中出现的锂消耗。 本发明实施例第二方面提供了该 锂离子电池负极添加剂的制备方法。 本发明实施例第三方面和第四方面分别提 供了包含该锂离子电池负极添加剂的锂离子电池负极片和锂离子电池, 该锂离 子电池能量密度高且循环寿命长。 第一方面,本发明实施例提供了一种锂离子电池负极添加剂,所述锂离子电 池负极添加剂为由单质锂粉末以及包覆在所述单质锂粉末表面的聚合物形成的 核壳包覆结构, 所述聚合物能够溶解于碳酸酯溶剂中, 并且所述聚合物不能与
Ν,Ν-二曱基曱酰胺、 Ν,Ν-二曱基乙酰胺、 Ν-2-曱基吡咯烷酮、 四氢呋喃、 丙酮 或曱醇反应, 以及所述聚合物在 0〜150°C温度下稳定存在。
单质锂粉末的金属活泼性强,在空气中不能稳定存在, 以及若直接加入至锂 离子电池负极材料中, 可能将给锂离子电池的制作和使用带来安全隐患。 本实 施例第一方面提供的锂离子电池负极添加剂通过在单质锂粉末表面包覆聚合物 有效解决了这个问题。 同时, 所述聚合物为可溶解于锂离子电池电解液的聚合 物或共聚物, 使得包覆在其中的单质锂粉末能够溶出参与反应, 即单质锂粉末 溶出后能够补偿锂离子电池负极在首次充放电过程中的锂消耗。
优选地, 所述聚合物能够溶解于碳酸酯溶剂, 所述碳酸酯溶剂选自碳酸二曱 酯(DMC )、 碳酸二乙酯 (DEC )、 碳酸曱乙酯(EMC )和碳酸曱丙酯( MPC ) 的一种或几种。 该优选情况下, 这些有机溶剂沸点较低, 可在 50〜80°C的温度下 烘干, 因此可避免过高的干燥温度下单质锂粉末活性较高易发生副反应的问题。
此外, 所述聚合物不能与 Ν,Ν-二曱基曱酰胺 (DMF)、 Ν,Ν-二曱基乙酰胺 (DMAc)、 N-2-曱基吡咯烷酮 (NMP)、 四氢呋喃 (THF) 、 丙酮或曱醇反应。 这是 用以保证在合浆过程中该负极添加剂成分不会被这些溶剂破坏。
优选地, 所述聚合物为聚亚烷基碳酸酯、 聚亚烷基氧化物、 聚烷基硅氧烷、 聚丙烯酸烷基酯和聚曱基丙烯酸烷基酯中的一种或几种。
优选地, 所述聚合物的重均分子量为 500〜500000。 在该优选情况下, 聚合 物能够较好的保证聚合度, 因此能够耐受锂离子电池制备过程中涂布烘烤时的 高温, 同时, 所述聚合物能够较好的溶解于碳酸酯溶剂中。 所述聚合物在 0〜150°C温度下稳定存在, 因此在该温度范围内的涂布和烘烤 等过程中也能保持热稳定性。
聚合物包覆在单质锂粉末表面, 将单质锂粉末与外界隔绝。
第二方面,本发明实施例提供了一种锂离子电池负极添加剂的制备方法, 包 括以下步骤: 将聚合物溶于碳酸酯溶剂中形成聚合物溶液, 将单质锂粉末投入 所聚合物溶液中, 搅拌均勾后进行过滤, 取滤渣, 在惰性气体保护下将滤渣进 行 50〜80°C温度的喷雾干燥, 制得锂离子电池负极添加剂, 所述锂离子电池负极 添加剂为由单质锂粉末以及包覆在所述单质锂粉末表面的聚合物形成的核壳包 覆结构, 所述聚合物不能与 Ν,Ν-二曱基曱酰胺、 Ν,Ν-二曱基乙酰胺、 Ν-2-曱基 吡咯烷酮、 四氢呋喃、 丙酮和曱醇反应。
优选地, 所述聚合物能够溶解于碳酸酯溶剂, 所述碳酸酯溶剂选自碳酸二曱 酯、 碳酸二乙酯、 碳酸曱乙酯和碳酸曱丙酯的一种或几种。 这些有机溶剂沸点 较低, 可在 50〜80°C的温度下烘干, 因此可避免过高的干燥温度下单质锂粉末活 性较高易发生副反应的问题。
优选地, 所述聚合物不能与 Ν,Ν-二曱基曱酰胺、 Ν,Ν-二曱基乙酰胺、 Ν-2- 曱基吡咯烷酮、 四氢呋喃、 丙酮或曱醇反应。
所述聚合物在 0〜150°C温度下稳定存在。
优选地, 所述聚合物为聚亚烷基碳酸酯、 聚亚烷基氧化物、 聚烷基硅氧烷、 聚丙烯酸烷基酯和聚曱基丙烯酸烷基酯中的一种或几种。
碳酸酯溶剂起到溶解所述聚合物的作用 , 其与所述聚合物的比例不限。
聚合物包覆在单质锂粉末表面, 将单质锂粉末与外界隔绝。
本发明实施例第二方面提供的一种锂离子电池负极添加剂的制备方法,简单 易行, 成本低廉, 易于工业化生产。 第三方面,本发明实施例提供了一种锂离子电池负极片,所述锂离子电池负 极片包括集流体和涂覆在所述集流体上的负极材料, 所述负极材料包括负极活 性物质、 粘结剂、 导电剂和锂离子电池负极添加剂, 所述锂离子电池负极添加 剂为由单质锂粉末以及包覆在所述单质锂粉末表面的聚合物形成的核壳包覆结 构, 所述聚合物能够溶解于碳酸酯溶剂中, 并且所述聚合物不能与 Ν,Ν-二曱基 曱酰胺 (DMF)、 Ν,Ν-二曱基乙酰胺 (DMAc)、 N-2-曱基吡咯烷酮 (NMP)、 四氢呋 喃 (THF) 、 丙酮或曱醇反应, 以及所述聚合物在 0〜150 °C温度下稳定存在。
优选地, 所述聚合物为聚亚烷基碳酸酯、 聚亚烷基氧化物、 聚烷基硅氧烷、 聚丙烯酸烷基酯和聚曱基丙烯酸烷基酯中的一种或几种。
优选地, 所述负极活性物质为可脱嵌锂离子的有机化合物或无机材料。 优选地, 所述锂离子电池负极添加剂与所述负极活性物质的重量比为 1:20〜服
第四方面,本发明实施例提供了一种锂离子电池,所述锂离子电池包括锂离 子电池正极片、 锂离子电池负极片、 隔膜、 壳体和电解液, 所述锂离子电池负 极片包括集流体和涂覆在所述集流体上的负极材料, 所述负极材料包括负极活 性物质、 粘结剂、 导电剂和锂离子电池负极添加剂, 所述锂离子电池负极添加 剂为由单质锂粉末以及包覆在所述单质锂粉末表面的聚合物形成的核壳包覆结 构, 所述聚合物能够溶解于碳酸酯溶剂中, 并且所述聚合物不能与 Ν,Ν-二曱基 曱酰胺 (DMF)、 Ν,Ν-二曱基乙酰胺 (DMAc)、 N-2-曱基吡咯烷酮 (NMP)、 四氢呋 喃 (THF) 、 丙酮或曱醇反应, 以及所述聚合物在 0〜150 °C温度下稳定存在。
优选地, 所述聚合物为聚亚烷基碳酸酯、 聚亚烷基氧化物、 聚烷基硅氧烷、 聚丙烯酸烷基酯和聚曱基丙烯酸烷基酯中的一种或几种。
本发明实施例第三方面和本发明实施例第四方面中,锂离子电池负极片和锂 离子电池结构及其制备方法均可参考常规技术, 与常规技术的区别仅在于在锂 离子电池负极材料中添加有如第一方面所述的锂离子电池负极添加剂。
本发明实施例第四方面提供的锂离子电池能量密度高并且循环寿命长。 本发明实施例的优点将会在下面的说明书中部分阐明,一部分根据说明书是 显而易见的, 或者可以通过本发明实施例的实施而获知。 附图说明
图 1为本发明具体实施方式中锂离子电池的制备方法的流程图。 具体实施方式 以下所述是本发明实施例的优选实施方式,应当指出,对于本技术领域的普 通技术人员来说, 在不脱离本发明实施例原理的前提下, 还可以做出若干改进 和润饰, 这些改进和润饰也视为本发明实施例的保护范围。
本发明实施例第一方面提供了一种锂离子电池负极添加剂,该锂离子电池负 极添加剂可作为锂源加入锂离子电池负极材料中, 用以补偿锂离子电池负极在 首次充放电过程中出现的锂消耗。 本发明实施例第二方面提供了该锂离子电池 负极添加剂的制备方法。 本发明实施例第三方面和第四方面分别提供了包含该 锂离子电池负极添加剂的锂离子电池负极片和锂离子电池, 该锂离子电池能量 密度高且循环寿命长。
第一方面,本发明实施例提供了一种锂离子电池负极添加剂,所述锂离子电 池负极添加剂为由单质锂粉末以及包覆在所述单质锂粉末表面的聚合物形成的 核壳包覆结构, 所述聚合物能够溶解于碳酸酯溶剂中, 并且所述聚合物不能与
Ν,Ν-二曱基曱酰胺、 Ν,Ν-二曱基乙酰胺、 Ν-2-曱基吡咯烷酮、 四氢呋喃、 丙酮 或曱醇反应, 以及所述聚合物在 0〜150°C温度下稳定存在。 单质锂粉末的金属活泼性强,在空气中不能稳定存在, 以及若直接加入至锂 离子电池负极材料中, 可能将给锂离子电池的制作和使用带来安全隐患。 本实 施例第一方面提供的锂离子电池负极添加剂通过在单质锂粉末表面包覆聚合物 有效解决了这个问题。 同时, 所述聚合物为可溶解于锂离子电池电解液的聚合 物或共聚物, 使得包覆在其中的单质锂粉末能够溶出参与反应, 即单质锂粉末 溶出后能够补偿锂离子电池负极在首次充放电过程中的锂消耗。
所述聚合物能够溶解于碳酸酯溶剂, 所述碳酸酯溶剂选自碳酸二曱酯
( DMC )、 碳酸二乙酯(DEC )、 碳酸曱乙酯(EMC )和碳酸曱丙酯( MPC ) 的 一种或几种。 该优选情况下, 这些有机溶剂沸点较低, 可在 50〜80°C的温度下烘 干, 因此可避免过高的干燥温度下单质锂粉末活性较高易发生副反应的问题。
此外, 所述聚合物不能与 Ν,Ν-二曱基曱酰胺 (DMF)、 Ν,Ν-二曱基乙酰胺 (DMAc)、 N-2-曱基吡咯烷酮 (NMP)、 四氢呋喃 (THF) 、 丙酮或曱醇反应。 这是 用以保证在合浆过程中该负极添加剂成分不会被这些溶剂破坏。
所述聚合物为聚亚烷基碳酸酯、 聚亚烷基氧化物、 聚烷基硅氧烷、 聚丙烯酸 烷基酯和聚曱基丙烯酸烷基酯中的一种或几种。
所述聚合物的重均分子量为 500〜500000。 在该优选情况下, 聚合物能够较 好的保证聚合度, 因此能够耐受锂离子电池制备过程中涂布烘烤时的高温, 同 时, 所述聚合物能够较好的溶解于碳酸酯溶剂中。
所述聚合物在 0〜150°C温度下稳定存在, 因此在该温度范围内的涂布和烘烤 等过程中也能保持热稳定性。
聚合物包覆在单质锂粉末表面, 将单质锂粉末与外界隔绝。
第二方面,本发明实施例提供了一种锂离子电池负极添加剂的制备方法, 包 括以下步骤: 将聚合物溶于碳酸酯溶剂中形成聚合物溶液, 将单质锂粉末投入 所聚合物溶液中, 搅拌均勾后进行过滤, 取滤渣, 在惰性气体保护下将滤渣进 行 50〜80°C温度的喷雾干燥, 制得锂离子电池负极添加剂, 所述锂离子电池负极 添加剂为由单质锂粉末以及包覆在所述单质锂粉末表面的聚合物形成的核壳包 覆结构, 所述聚合物不能与 Ν,Ν-二曱基曱酰胺、 Ν,Ν-二曱基乙酰胺、 Ν-2-曱基 吡咯烷酮、 四氢呋喃、 丙酮和曱醇反应。
所述聚合物能够溶解于碳酸酯溶剂,所述碳酸酯溶剂选自碳酸二曱酯、碳酸 二乙酯、 碳酸曱乙酯和碳酸曱丙酯的一种或几种。 这些有机溶剂沸点较低, 可 在 50〜80°C的温度下烘干,因此可避免过高的干燥温度下单质锂粉末活性较高易 发生副反应的问题。
所述聚合物不能与 Ν,Ν-二曱基曱酰胺、 Ν,Ν-二曱基乙酰胺、 Ν-2-曱基吡咯 烷酮、 四氢呋喃、 丙酮或曱醇反应。
所述聚合物在 0〜150°C温度下稳定存在。
所述聚合物为聚亚烷基碳酸酯、 聚亚烷基氧化物、 聚烷基硅氧烷、 聚丙烯酸 烷基酯和聚曱基丙烯酸烷基酯中的一种或几种。
碳酸酯溶剂起到溶解所述聚合物的作用 , 其与所述聚合物的比例不限。 聚合物包覆在单质锂粉末表面, 将单质锂粉末与外界隔绝。
本发明实施例第二方面提供的一种锂离子电池负极添加剂的制备方法,简单 易行, 成本低廉, 易于工业化生产。
第三方面,本发明实施例提供了一种锂离子电池负极片,所述锂离子电池负 极片包括集流体和涂覆在所述集流体上的负极材料, 所述负极材料包括负极活 性物质、 粘结剂、 导电剂和锂离子电池负极添加剂, 所述锂离子电池负极添加 剂为由单质锂粉末以及包覆在所述单质锂粉末表面的聚合物形成的核壳包覆结 构, 所述聚合物能够溶解于碳酸酯溶剂中, 并且所述聚合物不能与 Ν,Ν-二曱基 曱酰胺 (DMF)、 Ν,Ν-二曱基乙酰胺 (DMAc)、 N-2-曱基吡咯烷酮 (NMP)、 四氢呋 喃 (THF) 、 丙酮或曱醇反应, 以及所述聚合物在 0〜150 °C温度下稳定存在。
所述聚合物为聚亚烷基碳酸酯、 聚亚烷基氧化物、 聚烷基硅氧烷、 聚丙烯酸 烷基酯和聚曱基丙烯酸烷基酯中的一种或几种。
所述负极活性物质为可脱嵌锂离子的有机化合物或无机材料。
所述锂离子电池负极添加剂与所述负极活性物质的重量比为 1 :20〜200。 第四方面,本发明实施例提供了一种锂离子电池,所述锂离子电池包括锂离 子电池正极片、 锂离子电池负极片、 隔膜、 壳体和电解液, 所述锂离子电池负 极片包括集流体和涂覆在所述集流体上的负极材料, 所述负极材料包括负极活 性物质、 粘结剂、 导电剂和锂离子电池负极添加剂, 所述锂离子电池负极添加 剂为由单质锂粉末以及包覆在所述单质锂粉末表面的聚合物形成的核壳包覆结 构, 所述聚合物能够溶解于碳酸酯溶剂中, 并且所述聚合物不能与 Ν,Ν-二曱基 曱酰胺 (DMF)、 Ν,Ν-二曱基乙酰胺 (DMAc)、 N-2-曱基吡咯烷酮 (NMP)、 四氢呋 喃 (THF) 、 丙酮或曱醇反应, 以及所述聚合物在 0〜150 °C温度下稳定存在。
所述聚合物为聚亚烷基碳酸酯、 聚亚烷基氧化物、 聚烷基硅氧烷、 聚丙烯酸 烷基酯和聚曱基丙烯酸烷基酯中的一种或几种。
本发明实施例第三方面和本发明实施例第四方面中,锂离子电池负极片和锂 离子电池结构及其制备方法均可参考常规技术, 与常规技术的区别仅在于在锂 离子电池负极材料中添加有如第一方面所述的锂离子电池负极添加剂。 图 1 为 本发明具体实施方式中锂离子电池的制备方法的流程图。
本发明实施例第四方面提供的锂离子电池能量密度高并且循环寿命长。 本发明实施例不限定于以下的具体实施例。 在不变主权利的范围内, 可以 适当的进行变更实施。 实施例一
一种锂离子电池负极添加剂的制备方法, 包括以下步骤:
将 25克重均分子量为 50000的聚碳酸亚丙酯溶于 200克碳酸曱乙酯 (EMC) 中形成聚合物溶液,低速搅拌 15分钟,将 10g单质锂粉末投入所聚合物溶液中 , 搅拌 30分钟, 进行过滤, 取滤渣, 用去离子水流动洗涤, 随后在 70°C的氩气保 护下将滤渣进行 80°C温度的喷雾干燥, 制得锂离子电池负极添加剂。
所述锂离子电池负极添加剂为由单质锂粉末以及包覆在所述单质锂粉末表 面的聚合物形成的核壳包覆结构。
锂离子电池负极片的制备
在 500克 N-2-曱基吡咯烷酮 (NMP)中加入 25克聚偏氟乙烯 (PVDF)、搅拌 4 小时,后加入 10g本实施例中制得的锂离子电池负极添加剂,低速搅拌 2小时, 后加入 25克乙炔黑, 低速搅拌 2小时, 后加入硅 /二氧化硅复合材料 400克, 低速搅拌 2小时后, 然后在 8°C冷却水的保护下高速分散 1小时, 得到稳定的 硅负极浆料。
涂覆在光面的铜箔上, 涂覆重量为 5.26g/cm2 (不含铜箔), 经过 90 ~ 120°C 的烘箱烘烤干电极, 烘烤干的极片进行辊压, 辊压后的极片厚度为 0.078mm, 辊压后的极片分切为宽度是 40mm的条型电极。
锂离子电池的制备
将 200克正极活性物质 LiCo02、 6克粘结剂聚偏二氟乙烯 (PVDF)、 4克导 电剂乙炔黑的混合物加入到 60克 N-曱基 - 2吡咯烷酮 (NMP)中, 先低速搅拌 4 小时, 然后在 8°C冷却水的保护下高速分散 1小时形成均匀的正极浆料。 将该浆 料均匀的涂布在 16 μ ηι的铝箔上,控制涂布的面密度为 23 g/cm2, 然后 120°C下 烘干, 经过辊压成所需要的厚度、 然后分切成宽度为 39mm的正极片, 并裁切 成匹配上述负极片长短需求的正极片。
将上述得到的负极电极、 正极电极及隔离膜卷绕好用铝塑膜预封, 将在溶 剂 (碳酸亚乙酯: 曱基乙基碳酸酯: 碳酸二乙酯体积比为 1: 1 : 1)中含有 1摩尔 的六氟磷酸锂的电解液 10克注入上述电池中, 化成分容后即得到锂离子电池。 电池厚度设计为 5.5mm。
实施例二
一种锂离子电池负极添加剂的制备方法, 包括以下步骤:
将 25 克重均分子量为 50000 的聚亚乙基氧化物溶于 200 克碳酸二曱酯 ( DMC )中形成聚合物溶液, 低速搅拌 15分钟, 将 10g单质锂粉末投入所聚合 物溶液中, 搅拌 30分钟, 进行过滤, 取滤渣, 用去离子水流动洗涤, 随后在 60 °C的氩气保护下将滤渣进行 70 °C温度的喷雾干燥,制得锂离子电池负极添加剂。
所述锂离子电池负极添加剂为由单质锂粉末以及包覆在所述单质锂粉末表 面的聚合物形成的核壳包覆结构。
锂离子电池负极片的制备
在 500克 N-2-曱基吡咯烷酮 (NMP)中加入 25克聚偏氟乙烯 (PVDF)、搅拌 4 小时,后加入 20g本实施例中制得的锂离子电池负极添加剂,低速搅拌 2小时, 后加入 25克乙炔黑, 低速搅拌 2小时, 后加入硅 /二氧化硅复合材料 400克, 低速搅拌 2小时后, 然后在 8°C冷却水的保护下高速分散 1小时, 得到稳定的 硅负极浆料。
后续锂离子电池制作装配的过程步骤与实施例一完全一样。
效果实施例
对比例一: 所有制作方式与实施例一完全相同, 仅在硅负极浆料制备过程 中不加入锂离子电池负极添加剂。 对比例制得的软包电池初始厚度也设计为 •5mm。
实施例一、 实施例二和对比例一分别经过容量测试、 及常温 50次 1C充放 循环后釆集电池容量数据, 具体数据对比如下表 1所示。
表 1. 实施例一、 实施例二和对比例一电池容量比较
Figure imgf000013_0001
由上表 1 所示, 对于硅材料而言, 加入锂离子电池负极添加剂的两项实施 例的首次循环较对比例一有明显提升, 提升幅度约 5%〜10%; 以及, 由于锂离 子电池负极添加剂的引入, 两项实施例的循环性能也优于对比例一, 50次循环 后容量保持率提升了约 5%。
实施例三
一种锂离子电池负极添加剂的制备方法, 包括以下步骤:
将 25克重均分子量为 100000的聚乙基硅氧烷溶于 200克碳酸曱乙酯 (EMC) 中形成聚合物溶液,低速搅拌 15分钟,将 10g单质锂粉末投入所聚合物溶液中 , 搅拌 30分钟, 进行过滤, 取滤渣, 用去离子水流动洗涤, 随后在 70°C的氩气保 护下将滤渣进行 80°C温度的喷雾干燥, 制得锂离子电池负极添加剂。
所述锂离子电池负极添加剂为由单质锂粉末以及包覆在所述单质锂粉末表 面的聚合物形成的核壳包覆结构。
锂离子电池负极片的制备
在 500克 N-2-曱基吡咯烷酮 (NMP)中加入 25克聚偏氟乙烯 (PVDF)、 搅拌 4 小时, 后加入 2g本实施例中制得的锂离子电池负极添加剂, 低速搅拌 2小时, 后加入 25克 Super P, 低速搅拌 2小时, 后加入石墨负极材料 400克, 低速搅拌 2小时后, 然后在 8°C冷却水的保护下高速分散 1小时, 得到稳定的石墨负极浆 料。
后续锂离子电池制作装配的过程步骤与实施例一完全一样。
实施例四
一种锂离子电池负极添加剂的制备方法, 包括以下步骤:
将 25克重均分子量为 100000的聚丙烯酸曱酯溶于 200克碳酸二曱酯( DMC ) 中形成聚合物溶液,低速搅拌 15分钟,将 10g单质锂粉末投入所聚合物溶液中 , 搅拌 30分钟, 进行过滤, 取滤渣, 用去离子水流动洗涤, 随后在 60°C的氩气保 护下将滤渣进行 70°C温度的喷雾干燥, 制得锂离子电池负极添加剂。
所述锂离子电池负极添加剂为由单质锂粉末以及包覆在所述单质锂粉末表 面的聚合物形成的核壳包覆结构。
锂离子电池负极片的制备
在 500克 N-2-曱基吡咯烷酮 (NMP)中加入 25克聚偏氟乙烯 (PVDF)、搅拌 4 小时, 后加入 5g本实施例中制得的锂离子电池负极添加剂, 低速搅拌 2小时, 后加入 25克 Super P, 低速搅拌 2小时, 后加入石墨负极材料 400克, 低速搅 拌 2小时后, 然后在 8°C冷却水的保护下高速分散 1小时, 得到稳定的石墨负 极浆料。
后续锂离子电池制作装配的过程步骤与实施例一完全一样。
于比例二
所有制作方式与实施例三完全相同, 仅在石墨负极浆料制备过程中不加入 锂离子电池负极添加剂。 对比例制得的软包电池初始厚度也设计为 5.5mm。
实施例三、 实施例四和对比例二分别经过容量测试、 及常温 50次 1C充放 循环后釆集电池容量数据, 具体数据对比如下表 2所示。 表 2. 实施例三、 实施例四和对比例二电池容量比较
Figure imgf000015_0001
由上表 2所示, 对于石墨碳材料而言, 尽管从循环性能角度负极添加剂作 用不明显, 但加入锂离子电池负极添加剂的实施例的首次循环较对比例二有明 显提升, 提升幅度约 5%。

Claims

权 利 要 求
1、 一种锂离子电池负极添加剂, 其特征在于, 所述锂离子电池负极添加剂 为由单质锂粉末以及包覆在所述单质锂粉末表面的聚合物形成的核壳包覆结 构, 所述聚合物能够溶解于碳酸酯溶剂中, 并且所述聚合物不能与 Ν,Ν-二曱基 曱酰胺、 Ν,Ν-二曱基乙酰胺、 Ν-2-曱基吡咯烷酮、 四氢呋喃、 丙酮或曱醇反应, 以及所述聚合物在 0〜150°C温度下稳定存在。
2、 如权利要求 1所述的锂离子电池负极添加剂, 其特征在于, 所述碳酸酯 溶剂选自碳酸二曱酯、 碳酸二乙酯、 碳酸曱乙酯和碳酸曱丙酯的一种或几种。
3、 如权利要求 1所述的锂离子电池负极添加剂, 其特征在于, 所述聚合物 为聚亚烷基碳酸酯、 聚亚烷基氧化物、 聚烷基硅氧烷、 聚丙烯酸烷基酯和聚曱 基丙烯酸烷基酯中的一种或几种。
4、 一种锂离子电池负极添加剂的制备方法, 其特征在于, 包括以下步骤: 将聚合物溶于碳酸酯溶剂中形成聚合物溶液, 将单质锂粉末投入所聚合物溶液 中, 搅拌均匀后进行过滤, 取滤渣, 在惰性气体保护下将滤渣进行 50〜80°C温度 的喷雾干燥, 制得锂离子电池负极添加剂, 所述锂离子电池负极添加剂为由单 质锂粉末以及包覆在所述单质锂粉末表面的聚合物形成的核壳包覆结构, 所述 聚合物不能与 Ν,Ν-二曱基曱酰胺、 Ν,Ν-二曱基乙酰胺、 Ν-2-曱基吡咯烷酮、 四 氢呋喃、 丙酮和曱醇反应。
5、 如权利要求 4所述的锂离子电池负极添加剂的制备方法, 其特征在于, 所述碳酸酯溶剂选自碳酸二曱酯、 碳酸二乙酯、 碳酸曱乙酯和碳酸曱丙酯的一 种或几种。
6、 如权利要求 4所述的锂离子电池负极添加剂的制备方法, 其特征在于, 所述聚合物为聚亚烷基碳酸酯、 聚亚烷基氧化物、 聚烷基硅氧烷、 聚丙烯酸烷 基酯和聚曱基丙烯酸烷基酯中的一种或几种。
7、 一种锂离子电池负极片, 其特征在于, 所述锂离子电池负极片包括集流 体和涂覆在所述集流体上的负极材料, 所述负极材料包括负极活性物质、 粘结 剂、 导电剂和锂离子电池负极添加剂, 所述锂离子电池负极添加剂为由单质锂 粉末以及包覆在所述单质锂粉末表面的聚合物形成的核壳包覆结构, 所述聚合 物能够溶解于碳酸酯溶剂中, 并且所述聚合物不能与 Ν,Ν-二曱基曱酰胺、 Ν,Ν- 二曱基乙酰胺、 Ν-2-曱基吡咯烷酮、 四氢呋喃、 丙酮或曱醇反应, 以及所述聚合 物在 0〜150°C温度下稳定存在。
8、 如权利要求 7所述的锂离子电池负极片, 其特征在于, 所述碳酸酯溶剂 选自碳酸二曱酯、 碳酸二乙酯、 碳酸曱乙酯和碳酸曱丙酯的一种或几种。
9、 如权利要求 7所述的锂离子电池负极片, 其特征在于, 所述聚合物为聚 亚烷基碳酸酯、 聚亚烷基氧化物、 聚烷基硅氧烷、 聚丙烯酸烷基酯和聚曱基丙 烯酸烷基酯中的一种或几种。
10、 一种锂离子电池, 所述锂离子电池包括锂离子电池正极片、锂离子电池 负极片、 隔膜、 壳体和电解液, 其特征在于, 所述锂离子电池负极片包括集流 体和涂覆在所述集流体上的负极材料, 所述负极材料包括负极活性物质、 粘结 剂、 导电剂和锂离子电池负极添加剂, 所述锂离子电池负极添加剂为由单质锂 粉末以及包覆在所述单质锂粉末表面的聚合物形成的核壳包覆结构, 所述聚合 物能够溶解于碳酸酯溶剂中, 并且所述聚合物不能与 Ν,Ν-二曱基曱酰胺、 Ν,Ν- 二曱基乙酰胺、 Ν-2-曱基吡咯烷酮、 四氢呋喃、 丙酮或曱醇反应, 以及所述聚合 物在 0〜150°C温度下稳定存在。
PCT/CN2013/073436 2012-10-26 2013-03-29 一种锂离子电池负极添加剂及其制备方法、锂离子电池负极片和锂离子电池 WO2014063464A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015524606A JP5944049B2 (ja) 2012-10-26 2013-03-29 リチウムイオン電池負極添加剤及びその作製方法、リチウムイオン電池負極シート並びにリチウムイオン電池
US14/582,792 US10084189B2 (en) 2012-10-26 2014-12-24 Lithium ion battery cathode additive, fabrication method thereof, lithium ion battery cathode sheet and lithium ion battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210415398.6 2012-10-26
CN201210415398.6A CN103779572B (zh) 2012-10-26 2012-10-26 一种锂离子电池负极添加剂及其制备方法、锂离子电池负极片和锂离子电池

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/582,792 Continuation US10084189B2 (en) 2012-10-26 2014-12-24 Lithium ion battery cathode additive, fabrication method thereof, lithium ion battery cathode sheet and lithium ion battery

Publications (1)

Publication Number Publication Date
WO2014063464A1 true WO2014063464A1 (zh) 2014-05-01

Family

ID=50543942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/073436 WO2014063464A1 (zh) 2012-10-26 2013-03-29 一种锂离子电池负极添加剂及其制备方法、锂离子电池负极片和锂离子电池

Country Status (4)

Country Link
US (1) US10084189B2 (zh)
JP (1) JP5944049B2 (zh)
CN (1) CN103779572B (zh)
WO (1) WO2014063464A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105304902A (zh) * 2014-07-31 2016-02-03 宁德时代新能源科技有限公司 锂离子电池及其负极极片及制备方法

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107534136B (zh) * 2015-03-02 2020-09-08 Eo细胞有限公司 具有嵌入于硅:硅锂硅酸盐复合物基体中的纳米硅颗粒的硅-氧化硅-锂复合物材料及其制造方法
EP3353844B1 (en) 2015-03-27 2022-05-11 Mason K. Harrup All-inorganic solvents for electrolytes
US10115998B2 (en) 2015-06-22 2018-10-30 SiNode Systems, Inc. Cathode additives to provide an excess lithium source for lithium ion batteries
CN105355849B (zh) * 2015-11-18 2017-11-03 中航锂电(洛阳)有限公司 锂电池负极添加剂、锂离子电池、制备方法及应用
CN105914343B (zh) * 2016-07-11 2018-11-30 洛阳力容新能源科技有限公司 锂离子电池负极片、制备方法及应用、锂离子电池
CN106129315B (zh) * 2016-08-19 2019-06-25 洛阳力容新能源科技有限公司 一种锂离子电池复合隔膜及其制备方法、锂离子电池
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
CN106410120A (zh) * 2016-10-27 2017-02-15 东莞塔菲尔新能源科技有限公司 一种向锂离子电池极片补锂的方法
CN106711428A (zh) * 2017-03-22 2017-05-24 江苏元景锂粉工业有限公司 一种富锂三元复合材料及其制备方法
KR20210095221A (ko) * 2018-12-21 2021-07-30 에이일이삼 시스템즈, 엘엘씨 사전 리튬화 코팅을 갖는 캐소드 및 조제 및 사용 방법
CN110492072A (zh) * 2019-08-20 2019-11-22 北京卫蓝新能源科技有限公司 一种补金属离子复合合金粉末及其制备方法与应用
CN110767884A (zh) * 2019-09-20 2020-02-07 曲源 一种具有核壳结构的惰性金属锂粉
CN112563463B (zh) * 2019-09-26 2022-06-07 宁德时代新能源科技股份有限公司 一种负极添加剂、二次电池、电池模块、电池包及装置
WO2021128091A1 (zh) * 2019-12-25 2021-07-01 宁德新能源科技有限公司 负极及其制备方法
CN111430674B (zh) * 2020-01-19 2022-07-22 蜂巢能源科技有限公司 电极极片及其制作方法、半固态电池
CN111682181A (zh) * 2020-06-19 2020-09-18 北京物科清能科技有限公司 一种具有核壳结构的正极补锂材料及其制备与应用
CN113972409B (zh) * 2020-07-22 2023-08-04 荣盛盟固利新能源科技有限公司 一种锂离子电池安全添加剂及其制备方法和应用
CN114094111B (zh) * 2020-07-31 2024-01-09 比亚迪股份有限公司 一种补锂集流体、补锂集流体的制备方法、负极及锂离子电池
CN112467123B (zh) * 2020-08-14 2022-06-10 珠海中科兆盈丰新材料科技有限公司 一种高容量锂离子电池负极材料及其制备方法
CN114122368A (zh) * 2020-08-28 2022-03-01 比亚迪股份有限公司 补锂材料及其制作方法、负极极片、电池
CN113054155A (zh) * 2021-04-27 2021-06-29 昆山宝创新能源科技有限公司 一种极片的制备方法和锂离子电池
CN113651763B (zh) * 2021-07-06 2024-07-30 天能新能源(湖州)有限公司 一种负极添加剂及其制备方法、负极极片以及锂离子电池
CN113594439A (zh) * 2021-08-16 2021-11-02 珠海冠宇电池股份有限公司 一种补锂材料、负极片和电池
CN114614013B (zh) * 2022-03-21 2023-12-22 柳州鹏辉能源科技有限公司 锂离子电池复合添加剂、正极浆料及其制备方法、正极极片和用电设备
CN118507653A (zh) * 2023-02-15 2024-08-16 宁德时代新能源科技股份有限公司 负极添加剂、负极极片、二次电池和用电装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005310764A (ja) * 2004-03-23 2005-11-04 Sanyo Electric Co Ltd 非水電解質電池
JP2006202607A (ja) * 2005-01-20 2006-08-03 Furukawa Co Ltd 鉛蓄電池用負極添加剤
CN101098003A (zh) * 2006-06-26 2008-01-02 中银(宁波)电池有限公司 碱性电池负极添加剂
CN101114710A (zh) * 2006-07-28 2008-01-30 中银(宁波)电池有限公司 碱性电池添加剂
CN102074705A (zh) * 2010-12-29 2011-05-25 珠海市赛纬电子材料有限公司 一种负极添加剂、负极和锂离子电池

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5776369A (en) 1993-02-18 1998-07-07 Fmc Corporation Alkali metal dispersions
AU6128994A (en) 1993-02-18 1994-09-14 Fmc Corporation Alkali metal dispersions
JP2002260661A (ja) * 2001-03-06 2002-09-13 Matsushita Electric Ind Co Ltd 非水電解質二次電池用負極
JP3897709B2 (ja) * 2002-02-07 2007-03-28 日立マクセル株式会社 電極材料およびその製造方法、並びに非水二次電池用負極および非水二次電池
KR100590096B1 (ko) * 2004-04-29 2006-06-14 삼성에스디아이 주식회사 리튬 이차 전지
JP4967268B2 (ja) * 2004-07-20 2012-07-04 三菱化学株式会社 リチウム二次電池用負極材料及びその製造方法、並びにそれを用いたリチウム二次電池用負極及びリチウム二次電池
US20090035663A1 (en) * 2006-10-13 2009-02-05 Fmc Corporation, Lithium Division Stabilized lithium metal powder for li-ion application, composition and process
KR100766967B1 (ko) 2006-11-20 2007-10-15 삼성에스디아이 주식회사 리튬 이차 전지용 전극, 및 이로부터 제조된 리튬 이차전지
US20090061321A1 (en) * 2007-08-31 2009-03-05 Fmc Corporation, Lithium Division Stabilized lithium metal powder for li-ion application, composition and process
US20090148377A1 (en) * 2007-12-11 2009-06-11 Moshage Ralph E Process For Producing Electrode Active Material For Lithium Ion Cell
JP2009152037A (ja) * 2007-12-20 2009-07-09 Hitachi Maxell Ltd リチウム二次電池
CN102148401A (zh) 2010-02-04 2011-08-10 深圳市比克电池有限公司 一种锂离子电池制备方法及制备得到的电池
DE102010015728A1 (de) * 2010-04-21 2011-10-27 Leopold Kostal Gmbh & Co. Kg Schaltermodulsystem
WO2011153105A1 (en) 2010-06-02 2011-12-08 The Regents Of The University Of California Si composite electrode with li metal doping for advanced lithium-ion battery
JP5757148B2 (ja) * 2011-01-20 2015-07-29 株式会社豊田自動織機 リチウムイオン二次電池用負極活物質及びその負極活物質を用いたリチウムイオン二次電池
JP5904125B2 (ja) * 2011-01-21 2016-04-13 日本ゼオン株式会社 電気化学素子用電極の製造方法および電気化学素子

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005310764A (ja) * 2004-03-23 2005-11-04 Sanyo Electric Co Ltd 非水電解質電池
JP2006202607A (ja) * 2005-01-20 2006-08-03 Furukawa Co Ltd 鉛蓄電池用負極添加剤
CN101098003A (zh) * 2006-06-26 2008-01-02 中银(宁波)电池有限公司 碱性电池负极添加剂
CN101114710A (zh) * 2006-07-28 2008-01-30 中银(宁波)电池有限公司 碱性电池添加剂
CN102074705A (zh) * 2010-12-29 2011-05-25 珠海市赛纬电子材料有限公司 一种负极添加剂、负极和锂离子电池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105304902A (zh) * 2014-07-31 2016-02-03 宁德时代新能源科技有限公司 锂离子电池及其负极极片及制备方法

Also Published As

Publication number Publication date
CN103779572B (zh) 2016-02-24
US10084189B2 (en) 2018-09-25
US20150111099A1 (en) 2015-04-23
CN103779572A (zh) 2014-05-07
JP5944049B2 (ja) 2016-07-05
JP2015523699A (ja) 2015-08-13

Similar Documents

Publication Publication Date Title
WO2014063464A1 (zh) 一种锂离子电池负极添加剂及其制备方法、锂离子电池负极片和锂离子电池
CN110444750B (zh) 负极材料及包含其的电化学装置和电子装置
WO2021057483A1 (zh) 二次电池及含有该二次电池的电池模组、电池包、装置
CN111422919B (zh) 四元正极材料及其制备方法、正极、电池
WO2014032407A1 (zh) 一种锂离子电池硅负极极片及其制备方法和锂离子电池
EP2660904B1 (en) Method for preparing graphene-like doped positive electrode material of lithium-ion battery
WO2014071717A1 (zh) 一种锂离子电池硅负极极片及其制备方法和锂离子电池
WO2022267535A1 (zh) 锂金属负极极片、电化学装置及电子设备
WO2023044934A1 (zh) 二次电池、电池模块、电池包以及用电装置
JP2024501526A (ja) 負極片、電気化学装置及び電子装置
WO2023082918A1 (zh) 锂离子电池、电池模块、电池包及用电装置
WO2023070268A1 (zh) 一种电化学装置及包含该电化学装置的用电装置
WO2023029002A1 (zh) 负极集流体、含有其的二次电池、电池模块、电池包及用电装置
CN111146433A (zh) 负极及包含其的电化学装置和电子装置
JP2024096790A (ja) 二次電池及び電子装置
WO2023004821A1 (zh) 电解液、二次电池、电池模块、电池包和用电装置
WO2023087209A1 (zh) 电化学装置及电子装置
WO2024016940A1 (zh) 正极片、二次电池、电池模组、电池包和用电装置
WO2023082924A1 (zh) 极片、锂离子电池、电池模块、电池包及用电装置
WO2015027691A1 (zh) 一种锂离子电池负极材料及其制备方法、锂离子电池负极片和锂离子电池
JP7476419B2 (ja) 正極ペースト、正極シート、リチウムイオン電池、電池モジュール、電池パックおよび電力使用装置
WO2023130310A1 (zh) 电解液、二次电池和用电装置
WO2023130887A1 (zh) 二次电池、电池模块、电池包及其用电装置
CN113078303B (zh) 正极材料及包含该正极材料的电化学装置
WO2024174167A1 (zh) 二次电池及包含其的用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13848826

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015524606

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13848826

Country of ref document: EP

Kind code of ref document: A1