WO2014061695A1 - 造水方法 - Google Patents

造水方法 Download PDF

Info

Publication number
WO2014061695A1
WO2014061695A1 PCT/JP2013/078063 JP2013078063W WO2014061695A1 WO 2014061695 A1 WO2014061695 A1 WO 2014061695A1 JP 2013078063 W JP2013078063 W JP 2013078063W WO 2014061695 A1 WO2014061695 A1 WO 2014061695A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
semipermeable membrane
separation unit
treated
generation method
Prior art date
Application number
PCT/JP2013/078063
Other languages
English (en)
French (fr)
Inventor
谷口 雅英
智宏 前田
大嗣 楯岡
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2014502684A priority Critical patent/JP6233297B2/ja
Publication of WO2014061695A1 publication Critical patent/WO2014061695A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/25Recirculation, recycling or bypass, e.g. recirculation of concentrate into the feed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/25Recirculation, recycling or bypass, e.g. recirculation of concentrate into the feed
    • B01D2311/251Recirculation of permeate
    • B01D2311/2512Recirculation of permeate to feed side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2317/00Membrane module arrangements within a plant or an apparatus
    • B01D2317/02Elements in series
    • B01D2317/025Permeate series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/02Forward flushing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/12Use of permeate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/001Build in apparatus for autonomous on board water supply and wastewater treatment (e.g. for aircrafts, cruiseships, oil drilling platforms, railway trains, space stations)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Definitions

  • the present invention relates to a method for operating a water treatment apparatus for removing impurities from water to be treated in small-scale fresh water production.
  • a fresh water production apparatus using a reverse osmosis membrane has a simple apparatus configuration as compared with the evaporation method. That is, since it can be operated with a power supply, a booster pump, and a reverse osmosis membrane unit, it is suitable as a small portable freshwater production apparatus or an emergency freshwater production apparatus. As shown, various small-sized reverse osmosis membrane fresh water production apparatuses have been invented and marketed.
  • the raw water 1 is supplied to the raw water tank 2, then taken by the raw water supply pump 3, and sent to the pretreatment unit 4.
  • Pretreated water obtained by the pretreatment unit 4 is stored in the pretreated water tank 16.
  • the concentrated water of the crossflow type pretreatment unit is discharged from the drainage line 5.
  • the pretreated water stored in the pretreated water tank 16 is supplied to the first semipermeable membrane separation unit 9a by the booster pump 7a, subjected to the semipermeable membrane treatment, and separated into the first concentrated water and the first permeated water.
  • the first permeated water is stored in the first treated water tank 10.
  • the first concentrated water is discharged through the valve 8 c and the concentrated water discharge line 13.
  • the first permeated water stored in the first treated water tank 10 is supplied to the second semipermeable membrane separation unit 9b by the booster pump 7b, subjected to the semipermeable membrane treatment, and the second concentrated water and the second permeated water. Separated into water.
  • the second permeated water is stored in the second treated water tank 12.
  • the second concentrated water is circulated to the pretreatment water tank 16 through the valve 8 d and the concentrated water circulation line 11.
  • Non-Patent Document 4 a system for obtaining electric power from natural energy such as sunlight has been studied (for example, see Non-Patent Document 4).
  • a stable power supply cannot be obtained. That is, almost no solar energy can be obtained at night, and no wind power can be obtained for the kite. Therefore, as described in Non-Patent Document 4, it is necessary to have a large storage battery and absorb fluctuations in the amount of power generation.
  • a high-cost storage battery has a significant impact on desalination costs and is a major obstacle to commercialization and dissemination. It has become.
  • a system capable of optimal operation of the reverse osmosis membrane device according to the amount of power supply and its optimal operation technology are required.
  • Japanese Unexamined Patent Publication No. 2006-263542 Japanese Patent No. 3957080 Japanese Unexamined Patent Publication No. 64-90087
  • An object of the present invention is to provide a reverse osmosis membrane fresh water production method suitable for small-scale fresh water production such as emergency use, particularly a high-quality fresh water production method that hardly damages a reverse osmosis membrane.
  • the present invention relates to the following embodiments (1) to (11).
  • (2) The semipermeable membrane separation unit is cleaned by supplying the treated water or the first permeated water to the treated water side of the semipermeable membrane separation unit without performing the semipermeable membrane treatment.
  • TDS rejection is 90% or more and 99.5% or less when seawater having a TDS (total evaporation residue) concentration of 35 g / L is operated under conditions of a temperature of 25 ° C., a pH of 8, and an operating pressure of 5.5 MPa.
  • the fresh water generation method according to any one of (1) to (5), wherein a semipermeable membrane is used in the semipermeable membrane separation unit.
  • a semi-permeable material having a boron removal rate of 70% to 95% when seawater having a TDS concentration of 35 g / L and a boron concentration of 5 mg / L is measured under the conditions of a temperature of 25 ° C., a pH of 8, and an operating pressure of 5.5 PMa.
  • the fresh water generation method according to any one of (1) to (6), wherein a membrane is used in the semipermeable membrane separation unit.
  • the fresh water production method of the present invention makes it possible to produce high-quality fresh water using a reverse osmosis membrane with a simple structure.
  • FIG. 1 is a flowchart showing an example of a fresh water producing apparatus used in the fresh water generation method according to the present invention.
  • FIG. 2 is a flowchart showing another example of the fresh water producing apparatus used in the fresh water generation method according to the present invention.
  • FIG. 3 is a partially broken perspective view showing an example of an embodiment of a spiral separation membrane element preferably used in the fresh water generation method of the present invention.
  • FIG. 4 is a cross-sectional view showing an example of a separation membrane module in which a plurality of spiral separation membrane elements preferably used in the fresh water generation method of the present invention are loaded in a cylindrical pressure vessel.
  • FIG. 5 is a flowchart showing an example of a fresh water production apparatus to which a conventional permeate two-stage method is applied.
  • FIG. 1 is a flow diagram showing an example (first embodiment) of a fresh water production apparatus to which the water production method of the present invention can be applied.
  • the pretreatment unit 4 is mainly for solid-liquid separation according to the quality of raw water, a screen of several centimeters to several millimeters, a filter cloth or a spool filter for separating and removing solids below millimeters, sand filtration, micron to submicron order.
  • a microfiltration membrane capable of removing water or an ultrafiltration membrane capable of separation of nanometers or more can be used alone or in combination.
  • a total filtration method for supplying all the raw water as pretreatment water to the reverse osmosis membrane unit or a cross flow method for draining a part as concentrated water can be used as appropriate.
  • Such cross-flow concentrated water and waste water of a cleaning process (not shown in the figure) that is intermittently performed are discharged from the drain line 5.
  • the pretreated water obtained by the pretreatment unit is stored in the first treated water tank 6.
  • the pretreated water stored in the first treated water tank 6 is supplied to the semipermeable membrane separation unit 9 by the booster pump 7, subjected to the semipermeable membrane treatment, and separated into the first concentrated water and the first permeated water.
  • the first permeated water is stored in the first treated water tank 10.
  • the first concentrated water is discharged through the valve 8 c and the concentrated water discharge line 13.
  • the valves 8a and 8e are opened, the valves 8b, 8d, 8f, 8g and 8h are closed, and the opening of the valve 8c is controlled to control the flow rate of the permeated water of the semipermeable membrane separation unit.
  • the process proceeds to the cleaning process of the semipermeable membrane separation unit.
  • various cleaning methods can be employed in view of the properties of the water to be treated and the characteristics of the semipermeable membrane.
  • the first treated water pretreated water
  • the first treated water permeated water
  • the second treated water permeated water
  • a flushing method without performing a semipermeable membrane treatment, that is, without obtaining permeated water.
  • the valve 8a is opened and at least one of the valves 8c, 8d is opened with the valves 8b, 8e, 8f, 8g, 8h closed.
  • the permeable membrane separation unit 9 can be flushed.
  • the semipermeable membrane separation unit 9 can be flushed by opening at least one of the valves 8c and 8d with the valve 8f open and the valves 8a, 8b, 8e and 8h closed.
  • the washing waste water used for flushing is discharged out of the system from the valve 8c and / or returned to the first treated water tank 6 from the valve 8d.
  • the second treated water is clearer, but from the viewpoint of washing water, the first treated water is sufficiently clear, and the second treated water is subjected to two semipermeable membrane treatments. Therefore, it is not preferable because the recovery rate is low and the cost is high. However, it can be applied when the semipermeable membrane is very dirty. Depending on the degree of contamination of the semipermeable membrane, it is also preferable to add chemicals, but attention must be paid to the components when refluxing or draining.
  • valves 8d and 8g are opened, so that at least a part of the washing waste water can be mixed with new treated water (treated water to be treated in the next batch).
  • new treated water treated water to be treated in the next batch.
  • the valve 8 d flushing water, that is, a part of the washing waste water can be returned to the first treated water tank 6.
  • the valve 8g should be opened.
  • pretreatment unit 4 that is, to the raw water tank 2.
  • the washing wastewater returned to the raw water tank 2 and the first treated water tank 6 is mixed with fresh raw water and pretreated water, respectively, and pretreatment and semipermeable membrane treatment are performed in the next batch operation. Is called.
  • the second semipermeable membrane treatment in the semipermeable membrane separation unit is performed.
  • the supply water to the semipermeable membrane separation unit 9 is switched from the pretreatment water to the first treatment water by closing the valves 8a and 8h and opening the valve 8f.
  • the first treated water is supplied again to the semipermeable membrane separation unit 9 by the booster pump 7, and the semipermeable membrane treatment is performed.
  • the valve 8b is opened and the valve 8e is closed, whereby the permeated water is second treated.
  • the permeated water of the semipermeable membrane separation unit 9 can be immediately stored in the second treated water tank 12, but the first treated water or washing water having a high concentration is stored in the semipermeable membrane separating unit.
  • valve 8b is closed and the valve 8c is opened and discharged outside the system, the valve 8g is opened and returned to the raw water tank 2, or the valve 8e is opened as necessary. It is also preferable to reflux the first treated water tank 10.
  • the valve 8c can be controlled to adjust the permeate flow rate as in the first semipermeable membrane treatment. However, if the concentrated water quality is better than the pretreated water, the concentrated water is used. It is preferable to return to the first treated water tank 6 through the reflux line 11. In this case, the valve 8g can be closed, and the valve 8d can be used for control together with the valve 8c or in place of the valve 8c.
  • the pretreatment can be operated or stopped, but the pretreatment is simultaneously operated to store the pretreated water in the first treated water tank 6. It is preferable. That is, the step of first producing pretreated water (step 0), the step of performing the first semipermeable membrane treatment using the stored pretreated water (first step), and the second using the first treated water A step of obtaining a second treated water at the same time as obtaining a second treated water (second step), and producing fresh water continuously by repeating the first step and the second step. I can do it.
  • FIG. 2 shows another embodiment (second embodiment) of a fresh water producing apparatus to which the water production method of the present invention can be applied.
  • the first semipermeable membrane treatment and the second semipermeable membrane treatment are semi-solid.
  • the case where the supply direction to the permeable membrane separation unit 9 is changed is illustrated. That is, by supplying the water to be treated in the second semipermeable membrane treatment from the concentrated water side of the first semipermeable membrane treatment, the slight dirt components accumulated in the first semipermeable membrane treatment are removed by backflow. This is a very preferred embodiment.
  • the raw water 1 is supplied to the raw water tank 2, then taken by the raw water supply pump 3 and sent to the pretreatment unit 4.
  • the obtained pretreated water is stored in the first treated water tank 6.
  • the concentrated water of the crossflow type pretreatment unit is discharged from the drainage line 5.
  • the pretreated water stored in the first treated water tank 6 is supplied to the semipermeable membrane separation unit 9 by the booster pump 7a, subjected to the semipermeable membrane treatment, and separated into the first concentrated water and the first permeated water.
  • the first permeated water is stored in the first treated water tank 10.
  • the first concentrated water is discharged through the valve 8 c and the concentrated water discharge line 13.
  • the valves 8b, 8d, 8f, 8g, 8h are closed, the valves 8a, 8e are opened, and the valve 8c is opened to control the flow rate of the permeated water of the semipermeable membrane separation unit 9. Control.
  • various cleaning methods can be adopted as in the first embodiment.
  • one of the first treated water (pretreated water), the first treated water (permeated water), and the second treated water (permeated water) is supplied to the treated water side of the semipermeable membrane separation unit 9.
  • flushing can be performed without performing a semipermeable membrane treatment, that is, without obtaining permeated water.
  • the semipermeable membrane separation unit 9 is opened by opening the valves 8a and 8c and closing the valves 8b, 8d, 8e, 8f, 8g and 8h. Can be flushed.
  • the washing waste water used for flushing is discharged out of the system from the valve 8c.
  • the semipermeable membrane separation unit 9 can be flushed by closing the valves 8a, 8b, 8c, 8e, and 8h, opening the valve 8f, and opening at least one of the valves 8d and 8g.
  • the valve 8d is opened, the flushing water, that is, the washing waste water is returned to the first treated water tank 6 and can be mixed with new pretreated water.
  • the valve 8g is opened, the flushing water can be returned to the raw water tank 2 and mixed with fresh raw water.
  • the second treated water can be used as washing water.
  • the semipermeable membrane separation unit 9 can be flushed by closing the valves 8a, 8b, 8d, 8e, 8f, 8g and opening the valves 8c, 8h.
  • the washing waste water used for flushing is discharged out of the system from the valve 8c.
  • the washing water used in the washing step can be appropriately selected in the same manner as in the embodiment of FIG.
  • the first permeated water stored in the first treated water tank 10 is boosted by the booster pump 7b and the valve 8f is set. It is supplied to the first concentrated water discharge side of the semipermeable membrane separation unit 9 through the semipermeable membrane treatment, and is separated into the second concentrated water and the second permeated water.
  • the second permeated water is stored in the second treated water tank 12 through the valve 8b.
  • the second concentrated water is circulated to the first treated water tank 6 through the valve 8d or to the raw water tank 2 through the valve 8g.
  • the semipermeable membrane separation unit to which the present invention can be applied is not particularly limited, the semipermeable membrane separation unit is composed of a spiral membrane element having a telescope prevention plate at the end.
  • the raw water sealing member is preferably provided so that the element can move substantially in both directions within the cylindrical pressure vessel.
  • a suitable semipermeable membrane separation unit is composed of a separation membrane module in which a plurality of separation membrane elements are loaded in a cylindrical pressure vessel, and at least a part of the plurality of separation membrane elements includes a telescope prevention plate and a protective seal.
  • a spiral separation membrane element provided with a member is preferable. Further, as shown in FIG. 4, a plurality of spiral separation membrane elements 20 illustrated in FIG. 3 can be loaded into a cylindrical pressure vessel 46 to constitute a separation membrane module 47.
  • the separation membrane element 20 includes a separation membrane 21, a supply-side flow path member 23, and a permeation-side flow path member 22 having a structure in which ends are sealed so that mixing of water to be treated and permeate does not occur.
  • One or a plurality of membrane units are spirally wound around the perforated central tube 24 to form a membrane unit wound body.
  • the outer periphery of the membrane unit winding body is covered with an exterior body, and a telescope prevention plate 25 is installed at least one end of the membrane unit winding body and the exterior body.
  • At least one circumferential groove 251 is provided on the outer periphery of the telescope prevention plate 25, and a raw water seal member (not shown) is disposed.
  • the water to be treated 26 is supplied from one end surface, and a part of the components (for example, water in the case of seawater desalination) passes through the separation membrane 21 while flowing along the supply-side flow path material 23. By permeating, it is separated into permeated water and concentrated water. Thereafter, the permeated water that has permeated the separation membrane flows along the permeate-side flow path member 22, flows into the central tube 24 from the hole on the side surface thereof, flows in the central tube 24, and becomes permeated water 27. It is taken out.
  • treated water containing a high concentration of a non-permeating component in the case of seawater desalination, salinity
  • concentrated water 28 from the other end surface of the separation membrane element 20.
  • the separation membrane module 47 loads a plurality of separation membrane elements 39 (39a, 39b, 39c, 39d, 39e, 39f) into the cylindrical pressure vessel 46.
  • Reference numerals 39a to 39f indicate the separation membrane element 20 of FIG.
  • a raw water seal member 45 (45a1, 45a2, 45b1 to 45e2, 45f1, 45f2) is provided between at least one outer periphery of the telescope prevention plate provided at at least one end of the separation membrane element 39 and the inner wall of the cylindrical pressure vessel 46. Be placed.
  • the raw water seal member 45 is provided so that the separation membrane element 39 can move substantially in both directions within the cylindrical pressure vessel 46. Further, by providing the raw water seal member 45, in the spiral separation membrane element 20 as illustrated in FIG. 3, if the water to be treated can flow in the direction of the water to be treated 26 shown in FIG.
  • the structure is such that the water to be treated can be supplied from the direction indicated as water 28.
  • the treated water is supplied from the treated water supply port 38 and supplied to the end of the first separation membrane element 39a.
  • the concentrated water that has been subjected to the semipermeable membrane treatment by the first separation membrane element is supplied to the second separation membrane element 39b, and then sequentially supplied to the separation membrane elements 39c, 39d, 39e, and 39f and after the semipermeable membrane treatment. Finally, it is discharged from the concentrated water discharge port 40 (the treated water supply port 38 when the flow direction of the treated water is reversed).
  • the central tubes 24 of the respective separation membrane elements 39a to 39f are connected to each other by connectors 41 and connected to permeate outlets 43a and 43b provided on the end plates 42a and 42b. The permeated water obtained in (1) is collected and taken out of the system.
  • the water to be treated is supplied from the concentrated water discharge port 40 and supplied to the end of the separation membrane element 39f.
  • the concentrated water subjected to the semipermeable membrane treatment by the separation membrane element 39f is supplied to the separation membrane element 39e, and then sequentially supplied to the separation membrane elements 39d, 39c, 39b, 39a, and finally subjected to the semipermeable membrane treatment. It is discharged from the treated water supply port 38.
  • the permeated water subjected to the semipermeable membrane treatment in each separation membrane element 39 flows through the central tube 24 and the connector 41 and is taken out of the system from the permeated water outlet 43a.
  • seal members are provided on both sides of each separation membrane element 39a to 39f, but it is also possible to use one side (that is, 45a1, 45b1 to 45f1 or 45a2, 45b2 to 45f2). Although both are improved in sealing performance, the degree of difficulty increases during loading and unloading, and a dead space is likely to occur between adjacent sealing members (for example, between 45a1 and 45a2), which is not preferable.
  • the supply port of the water to be treated to the separation membrane module 47 is switched between the reference numeral 38 and the reference numeral 40 as shown in FIG.
  • it is required to have a structure that does not interfere.
  • a U-coupling seal or a V-coupling seal has been devised and widely used as a seal member.
  • This U-coupling seal is made of elastic resin and is set on the telescope prevention plate of the separation membrane element so that the U-shaped open part faces the side to be treated water (raw water side).
  • the U-cup seal has a structure in which, when water is supplied from the raw water side, the U-shape is opened by the water pressure to fill the gap between the U-cup seal and the pressure vessel.
  • An O-ring seal may be used as the raw water seal member, and the O-ring seal fitted in the circumferential groove on the outer peripheral side of the telescope prevention plate comes into contact with the inner wall of the pressure vessel, and the O-ring seal By crushing and deforming, the gap between the separation membrane element and the inside of the pressure vessel is filled, so that a good sealing property can be exerted against the supply of water to be treated from both sides.
  • the performance of the semipermeable membrane used for the semipermeable membrane separation unit is as follows: TDS concentration 35 g / L and boron concentration 5 mg / L
  • TDS concentration 35 g / L When seawater of L is operated under conditions of a temperature of 25 ° C., a pH of 8, and an operating pressure of 5.5 PMa, the boron removal rate is preferably 70% or more and 95% or less.
  • the fresh water production apparatus to which the present invention is applied is not particularly limited, but moreover, unlike a conventional reverse osmosis membrane fresh water production apparatus, it can be operated appropriately for each unit, so that it operates flexibly. I can do it.
  • the concentration of water to be treated is high and the osmotic pressure is high, so the pressure required for operation, that is, the required power is large. Therefore, it is preferable to perform the first semipermeable membrane treatment with a large required power by using nighttime power with low power cost. Furthermore, it is preferable to perform pretreatment with a relatively low power requirement and second semipermeable membrane treatment in the daytime.
  • the water treatment apparatus used in the present invention can be made compact, and is therefore suitable for portable and other small apparatuses.
  • a natural energy power generation unit such as sunlight, wave power or wind power.
  • the generated power periodically fluctuates with time, that is, when the solar altitude is high, that is, when the time is centered around noon, the amount of power generation is large.
  • This is a preferable mode because the membrane treatment can be performed, and the pre-treatment and the second semipermeable membrane treatment can be performed in other time periods, that is, morning and evening.
  • the following treatments (a), (b) and (c) are appropriately selected according to the obtained power, that is, the generated power and the amount of stored electricity. Can be implemented.
  • A When there is electric power necessary to perform the semipermeable membrane treatment of the water to be treated in the semipermeable membrane separation unit, the semitreated membrane is subjected to the semipermeable membrane treatment on the semipermeable membrane separation unit.
  • B When there is electric power necessary to perform the semipermeable membrane treatment of the first permeated water in the semipermeable membrane separation unit, the semipermeable membrane separation unit performs the semipermeable membrane treatment of the first permeated water.
  • C The semipermeable membrane separation unit is cleaned when there is no electric power necessary to perform the semipermeable membrane treatment of the first permeated water in the semipermeable membrane separation unit.
  • the processes (a), (b) and (c) can be performed in any order according to the amount of power obtained by solar power generation.
  • the combination of (a) and (b), the combination of (b), (a) and (b), and the combination of (a), (b) and (c) are appropriately implemented together with other necessary processes. be able to. That is, as described above, the first semipermeable membrane treatment is performed on the water to be treated during the daytime when the solar altitude is high and the amount of power generation is large ((a) above), and the electric power necessary for the first semipermeable membrane treatment is obtained. In the morning and evening, a second semipermeable membrane treatment can be performed on the first permeated water ((b) above).
  • the implementation of the semipermeable membrane treatment of the first permeated water and the cleaning of the semipermeable membrane separation unit is not limited to the power generation conditions of (b) and (c) above. That is, the semipermeable membrane treatment of (b) and (c) is selectively performed in order to increase the water production efficiency in accordance with a predetermined procedure of the water production method or the situation of the apparatus and the yield in each water production process. Can be implemented. For example, even if there is electric power necessary to perform the semipermeable membrane treatment of the first permeated water, the semipermeable membrane separation unit can be washed when the semipermeable membrane separation unit needs to be washed. . In particular, it is suitable when the power supply source of the semipermeable membrane separation unit is mainly solar power generation.
  • a small-sized power storage means when natural energy is used as the main power supply source, it is preferable to use a small-sized power storage means together to absorb a short-time fluctuation in power generation.
  • storage batteries such as nickel-cadmium batteries, nickel-metal hydride batteries, and lithium batteries, capacitors, pumped water that stores water in high places, and electrolysis that produces hydrogen can be applied. It is.
  • the fresh water obtained in the present invention is the first semipermeable membrane treated water and the second semipermeable membrane treated water, but if the quality of the first semipermeable membrane treated water is sufficient, it is used as it is as production water. It can also be used by mixing with the second semipermeable membrane treated water, and any of them can be post-treated. Typical post-treatments include adsorption treatment, UV sterilization, pH adjustment, Langeria saturation index (LSI) adjustment, mineral addition, and the like.
  • LSI Langeria saturation index
  • the treated water (raw water) to which the present invention is applicable is not particularly limited, and various treated waters such as river water, seawater, sewage treated water, rain water, industrial water, and industrial wastewater can be exemplified. However, application to seawater or brine having osmotic pressure is particularly suitable.
  • the present invention can be used to produce high-quality fresh water with a simple configuration by operating one reverse osmosis membrane unit efficiently.
  • natural energy when used as power, it is possible to provide a method for efficiently producing high-quality fresh water by performing a water treatment process according to the amount of electric power supplied.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

 本発明の課題は、非常用など小規模の淡水製造に適した、逆浸透膜淡水製造方法、とくに、高品質で逆浸透膜を傷めにくい造水方法を提供することにある。本発明は、半透膜分離ユニット(9)で被処理水の半透膜処理を行って第1の濃縮水と第1の透過水に分離し、得られた第1の透過水を処理水タンク(10)に貯留し、その後、半透膜分離ユニット(9)の洗浄を行った後に、第1の透過水を半透膜分離ユニット(9)で半透膜処理を行って第2の濃縮水と第2の透過水に分離する造水方法である。

Description

造水方法
 本発明は、小規模の淡水製造における被処理水中から不純物を除去する水処理装置の運転方法に関するものである。
 近年深刻化してきている水環境の悪化に伴い、これまで以上に水処理技術が重要になってきており、とくに分離膜利用技術が非常に幅広く適用されてきている。飲料水、工業用水、農業用水などを得るために、主に分離膜利用技術による河川水、湖沼水などの浄化が行われてきた。一方、水資源が極端に少なく、かつ、石油による熱資源が非常に豊富である中東地域で蒸発法を中心に海水淡水化が進められてきた。しかし、中東以外の熱源が豊富でない地域でも、海水淡水化のニーズが高まり、とくに1990年以降、所要動力が小さい半透膜(とくに逆浸透膜)を用いた淡水化プロセスが採用され、カリブ諸島や地中海エリアなどで多数のプラントが建設され実用運転されている。逆浸透膜設備では、圧力エネルギーを有する濃縮海水が排出されるため、エネルギー回収ユニットによって圧力回収を行うのが一般的であり、これによってさらに、所要動力が低減できる仕組みになっている。最近では、逆浸透膜法の技術進歩による信頼性の向上やコストダウンに加え、エネルギー回収技術の著しい向上によって中東においても多くの逆浸透膜法海水淡水化プラントが建設されるに至っている。
 また、逆浸透膜を用いた淡水製造装置は蒸発法に比べて、簡便な装置構成である。すなわち、電源、昇圧ポンプ、逆浸透膜ユニットがあれば、運転可能であるため、小型の可搬式淡水製造装置または非常用の淡水製造装置としても適しており、特許文献1、非特許文献1に示すように様々な小型の逆浸透膜淡水製造装置が発明、上市されている。ただし、逆浸透膜の除去性能は、万能というわけではなく、中東のような高濃度海水、さらに温度が高い場合は、脱塩能力が低下し、処理水(淡水)の塩濃度が大きくなる傾向にある(例えば、非特許文献2参照)ため、高品質の処理水を得るために、脱塩水を再度低圧逆浸透膜で半透膜処理する、透過水二段法という方法が主流になっている。
 透過水二段法では、図5に示すように、原水1は、原水タンク2に供給された後、原水供給ポンプ3で取水され、前処理ユニット4に送られる。前処理ユニット4で得られた前処理水は、前処理水タンク16に貯留される。またクロスフロー方式の前処理ユニットの濃縮水は排水ライン5から排出される。前処理水タンク16に貯留された前処理水は、昇圧ポンプ7aで第1の半透膜分離ユニット9aに供給、半透膜処理され、第1の濃縮水と第1の透過水に分離される。第1の透過水は、第1の処理水タンク10に貯留される。第1の濃縮水は、バルブ8c、濃縮水排出ライン13を通って排出される。第1の処理水タンク10に貯留された第1の透過水は、昇圧ポンプ7bで第2の半透膜分離ユニット9bに供給、半透膜処理され、第2の濃縮水と第2の透過水に分離される。第2の透過水は、第2の処理水タンク12に貯留される。第2の濃縮水は、バルブ8d、濃縮水環流ライン11を通って前処理水タンク16へ環流される。
 小型の淡水製造装置の場合、このような透過水二段法を装備すると、一段目処理用と二段目処理用の2種類の逆浸透膜ユニットが必要となる。そのため、原水の種類によって、一段目で十分な生産水質が得られ、二段目が不要なときは、二段目処理用の逆浸透膜ユニットを一段目処理用の逆浸透膜ユニットと並列にして、一段目として用いたり(例えば、特許文献2参照)、二段目を透過水の再処理ではなく、一段目の濃縮水処理に適用して処理量を増やす方法(例えば、非特許文献3参照)が提案されている。しかし、いずれにしても、二段分の逆浸透膜ユニットを有しなければならないことに代わりはなく、システムが複雑化し、とくに、非常用、災害対策用の造水システムとしては、維持管理や運転のフレキシブルさに難しさがあった。ところで、コンセプトは異なるが、工業用の超純水製造を目的とし、工場が稼働していない夜間に一度目の逆浸透膜処理をし、工場が稼働している昼間に一度目の逆浸透膜処理で得られた処理水を供給水として、同じ逆浸透膜ユニットで二度目の逆浸透膜処理を行う方法が提案されている(例えば、特許文献3参照)。
 さらに、緊急時などに従来のエネルギーが得られない場合を想定し、太陽光などの自然エネルギーから電力を得るシステムも検討されている(例えば、非特許文献4参照)が、自然エネルギーの大きな課題の一つとして、電力の安定供給が得られないことが挙げられる。すなわち、太陽エネルギーは、夜間にはほとんど得られず、風力は凪には得られない。そのため、非特許文献4にもあるように大きな蓄電池を備え、発電量の変動を吸収する必要があるが、高コストな蓄電池が淡水化コストに大きな影響を与え、実用化、普及にとって大きな障害となっている。自然エネルギー主体の電力を逆浸透膜による海水淡水化に適用する場合、電力供給量に応じた逆浸透膜装置の最適運転が可能なシステム、またその最適運転技術が求められている。
日本国特開2006-263542号公報 日本国特許第3957080号公報 日本国特開昭64-90087号公報
イスラエル エコ・ビジネス・フォーラム予稿32頁(2011) 谷口雅英ら、"Behavior of a reverse osmosis plant adopting a brine conversion two-stage process and its computer simulation," J. Membrane Sci., 183, p249 (2001). J.S.S. Chin et al., "Increasing water resources through desalination in Singapore: Planning for sustainable future," Proc. of IDA World Congress DB09-033 (2009). A. Kunczynski, "Develeopment and optimization of 1000-5000 GPD solar power SWRO," Proc. IDA World Congress on D&WR, BAH03-040 (2003)
 本発明の課題は、非常用など小規模の淡水製造に適した、逆浸透膜淡水製造方法、とくに、高品質で逆浸透膜を傷めにくい造水方法を提供することにある。
 前記課題を解決するために、本発明は次の(1)~(11)の実施態様に関する。
(1)半透膜分離ユニットで被処理水の半透膜処理を行って第1の濃縮水と第1の透過水に分離し、得られた前記第1の透過水を処理水タンクに貯留し、その後、前記半透膜分離ユニットの洗浄を行った後に、前記第1の透過水を前記半透膜分離ユニットで半透膜処理を行って第2の濃縮水と第2の透過水に分離する造水方法。
(2)前記半透膜分離ユニットの洗浄を、半透膜処理を行わずに、前記処理水もしくは前記第1の透過水を前記半透膜分離ユニットの被処理水側に供給することによって行う、前記(1)に記載の造水方法。
(3)前記半透膜分離ユニットの洗浄を行った後に排出される洗浄排水の少なくとも一部を被処理水に混合する、前記(1)または(2)に記載の造水方法。
(4)前記半透膜分離ユニットにおける前記第1の濃縮水の排出側から、前記第1の透過水を供給する、前記(1)~(3)のいずれか一つに記載の造水方法。
(5)前記半透膜分離ユニットが、複数の分離膜エレメントを筒状圧力容器内に装填した分離膜モジュールから構成され、前記複数の分離膜エレメントの中の少なくとも一部がスパイラル型分離膜エレメントであると共に、該スパイラル型分離膜エレメントが、分離膜を含む膜ユニットが巻回されてなる膜ユニット巻体の外周が外装体で覆われ、膜ユニット巻体及び外装体の少なくとも片端にテレスコープ防止板が設けられ、少なくとも1つのテレスコープ防止板の外周と前記筒状圧力容器の内壁との間に分離膜エレメントを筒状圧力容器内で両方向に移動可能とする原水シール部材が設けられてなる、前記(1)~(4)のいずれか一つに記載の造水方法。
(6)TDS(全蒸発残留物)濃度35g/Lの海水を、温度25℃、pH8、操作圧力5.5MPaの条件で運転した場合のTDS阻止率が90%以上99.5%以下である半透膜を前記半透膜分離ユニットに用いる、前記(1)~(5)のいずれか一つに記載の造水方法。
(7)TDS濃度35g/Lかつホウ素濃度5mg/Lの海水を、温度25℃、pH8、操作圧力5.5PMaの条件で測定した場合のホウ素除去率が70%以上95%以下である半透膜を前記半透膜分離ユニットに用いる、前記(1)~(6)のいずれか一つに記載の造水方法。
(8)夜間に前記半透膜分離ユニットで前記被処理水の半透膜処理を行う、前記(1)~(7)のいずれか一つに記載の造水方法。
(9)前記半透膜分離ユニットの電力供給源が太陽光発電を主体とすると共に、前記半透膜分離ユニットで前記被処理水の半透膜処理を行うために必要な電力があるときは前記半透膜分離ユニットで前記被処理水の半透膜処理を行う、前記(1)~(7)のいずれか一つに記載の造水方法。
(10)前記半透膜分離ユニットで前記第1の透過水の半透膜処理を行うために必要な電力があるときは前記半透膜分離ユニットで前記第1の透過水の半透膜処理を行う、前記(9)に記載の造水方法。
(11)前記半透膜分離ユニットで前記第1の透過水の半透膜処理を行うために必要な電力がないときは前記半透膜分離ユニットの洗浄を実施する、前記(9)または(10)に記載の造水方法。
 本発明の造水方法によって、シンプルな構成で逆浸透膜による高品質の淡水製造を行うことが出来る。とくに、上記(9)~(11)のように自然エネルギーを動力とした場合に、効率的に高品質の淡水を製造する方法を提供することが可能となる。
図1は、本発明に係る造水方法で使用する淡水製造装置の一例を示すフロー図である。 図2は、本発明に係る造水方法で使用する淡水製造装置の他の一例を示すフロー図である。 図3は、本発明の造水方法で好適に使用するスパイラル型分離膜エレメントの実施形態の一例を示す部分破断斜視図である。 図4は、本発明の造水方法で好適に使用する複数のスパイラル型分離膜エレメントを筒状圧力容器に装填した分離膜モジュールの一例を示す断面図である。 図5は、従来の透過水二段法を適用した淡水製造装置の一例を示すフロー図である。
 以下、本発明の実施の形態について、図面を参照しながら説明するが、本発明はこれら図面に示す実施態様に限定されるものではない。
 図1は、本発明の造水方法を適用可能な淡水製造装置の一例(第1の実施形態)を示すフロー図である。
 まず、半透膜分離ユニットにおける一度目の半透膜処理について述べる。原水1は、原水タンク2に供給された後、原水供給ポンプ3で取水され、前処理ユニット4に送られる。前処理ユニット4は、原水の水質に応じて、固液分離を主体とし、数cm~数mmのスクリーン、ミリメートル以下の固体を分離除去するろ布や糸巻きフィルター、砂ろ過、ミクロン~サブミクロンオーダーの除去が出来る精密ろ過膜、ナノメートル以上の分離が可能な限外ろ過膜などを単独または組み合わせたものを適用することが出来る。また、基本的に原水全てを前処理水として逆浸透膜ユニットに供給する全ろ過法式や一部を濃縮水として排水するクロスフロー方式など適宜用いることが出来る。このようなクロスフローの濃縮水や、間欠的に実施される洗浄工程(図には非記載)の排水は、排水ライン5から排出される。
 前処理ユニットで得られた前処理水は、第1の被処理水タンク6に貯留される。第1の被処理水タンク6に貯留された前処理水は、昇圧ポンプ7で半透膜分離ユニット9に供給、半透膜処理され、第1の濃縮水と第1の透過水に分離される。第1の透過水は、第1の処理水タンク10に貯留される。第1の濃縮水は、バルブ8c、濃縮水排出ライン13を通って排出される。このとき、バルブ8a,8eは開、バルブ8b,8d,8f,8g,8hは閉、バルブ8cは、半透膜分離ユニットの透過水流量制御のために開度をコントロールされる。
 つづいて、半透膜分離ユニットの洗浄工程に移行する。洗浄工程では、被処理水の性状や半透膜の特性を鑑みて、様々な洗浄方法を採ることが出来る。例えば、一度目の被処理水(前処理水)、一度目の処理水(透過水)、二度目の処理水(透過水)のいずれかを半透膜分離ユニット9の被処理水側(上流側)に供給し、半透膜処理を行わずに、すなわち透過水を得ずに、フラッシングする方法が挙げられる。例えば一度目の被処理水(前処理水)を用いる場合は、バルブ8aを開、バルブ8b,8e,8f,8g,8hを閉じた状態でバルブ8c,8dの少なくとも片方を開くことによって、半透膜分離ユニット9をフラッシングすることができる。この場合、一度目の被処理水より清澄な一度目の処理水を用いると洗浄効果が優れるため好ましい。具体的には、バルブ8fを開、バルブ8a,8b,8e,8hを閉じた状態でバルブ8c,8dの少なくとも片方を開いて、半透膜分離ユニット9をフラッシングできる。フラッシングに使用した洗浄排水は、バルブ8cから系外に排出されるか、および/またはバルブ8dから第1の被処理水タンク6に還流される。ここで二度目の処理水の方が清澄であるが、洗浄水という観点では一度目の処理水でも十分に清澄であり、また、二度目の処理水は二度の半透膜処理を施されているため、回収率の低下やコスト高となるためあまり好ましくはない。ただし、半透膜の汚れがひどいときには適用することも可能である。半透膜の汚れの程度によっては、薬品を添加することも好ましいが、還流させる場合や排水する場合にはその成分に注意が必要である。
 洗浄工程において、バルブ8d,8gの少なくとも一つを開くことにより、洗浄排水の少なくとも一部を新たな被処理水(次回のバッチで処理される被処理水)と混合することができる。例えばバルブ8dを開くと、フラッシング水、すなわち洗浄排水の一部を第1の被処理水タンク6に還流することができる。半透膜があまり汚染されていない場合には、一度目の被処理水(前処理水)に還流混合させると水量の無駄を減らせるため好ましい。また、一度目の処理水や二度目の処理水を洗浄水に用いる場合は、既に塩分が除去されている水であるが、もし半透膜の汚れが激しい場合には、バルブ8gを開くことにより、前処理ユニット4の前、すなわち、原水タンク2に還流することも好ましい。このように原水タンク2および第1の被処理水タンク6に還流された洗浄排水は、それぞれ新たな原水および前処理水と混合され、次回のバッチ操作において、前処理および半透膜処理が行われる。
 その後、半透膜分離ユニットにおける二度目の半透膜処理を実施する。まず、バルブ8a,8hを閉じ、バルブ8fを開けることによって、半透膜分離ユニット9への供給水を前処理水から第1の処理水に切り替える。同様に、昇圧ポンプ7によって、第1の処理水を再度半透膜分離ユニット9に供給、半透膜処理し、バルブ8bを開、バルブ8eを閉止することによって、透過水を第2の処理水タンク12に貯留する。切り替えた直後は、半透膜分離ユニット9の透過水を直ちに第2の処理水タンク12に貯留することも出来るが、高濃度である第1の被処理水や洗浄水が半透膜分離ユニット9に残留しているため、必要に応じて、バルブ8bを閉じた状態でバルブ8cを開いて系外に排出するか、バルブ8gを開いて原水タンク2に還流させるか、バルブ8eを開いて第1の処理水タンク10に還流させることも好ましい。二度目の半透膜処理においては、バルブ8cは一度目の半透膜処理と同様透過流量調節のためにコントロールする事が出来るが、濃縮水質が前処理水よりも良好な場合は、濃縮水環流ライン11を通して、第1の被処理水タンク6に還流させることが好ましい。この場合、バルブ8gを閉じ、バルブ8dをバルブ8cと併せて、もしくは、バルブ8cの代わりにコントロールに供することが出来る。このとき、濃縮水の一部を濃縮水排出ライン13から排出することも可能である。この二度目の半透膜処理の間、前処理を稼働させることもできれば、停機させることも出来るが、前処理を同時に稼働させて、第1の被処理水タンク6に前処理水を貯留することが好ましい。すなわち、はじめに前処理水を製造する段階(第0段階)、貯留した前処理水を用いて一度目の半透膜処理を行う段階(第1段階)、第1の処理水を用いて第二の半透膜処理を行い、第二の処理水を得ると同時に前処理水を得る段階(第2段階)、そして、第1段階と第2段階の繰り返しによって連続的に淡水を製造することが出来る。
 図2には、本発明の造水方法が適用可能な淡水製造装置の他の実施形態(第2の実施形態)として、一度目の半透膜処理と二度目の半透膜処理とで半透膜分離ユニット9への供給方向を変えた場合を例示する。すなわち、二度目の半透膜処理の被処理水供給を、一度目の半透膜処理の濃縮水側から行うことによって、一度目の半透膜処理で蓄積したわずかな汚れ成分を逆流除去することが可能となり、非常に好ましい実施態様である。
 図2において、半透膜分離ユニットにおける一度目の半透膜処理では、原水1が、原水タンク2に供給された後、原水供給ポンプ3で取水され、前処理ユニット4に送られる。得られた前処理水は、第1の被処理水タンク6に貯留される。またクロスフロー方式の前処理ユニットの濃縮水は排水ライン5から排出される。第1の被処理水タンク6に貯留された前処理水は、昇圧ポンプ7aで半透膜分離ユニット9に供給、半透膜処理され、第1の濃縮水と第1の透過水に分離される。第1の透過水は、第1の処理水タンク10に貯留される。第1の濃縮水は、バルブ8c、濃縮水排出ライン13を通って排出される。このとき図2に示すように、バルブ8b,8d,8f,8g,8hを閉、バルブ8a,8eを開とし、バルブ8cを、半透膜分離ユニット9の透過水流量制御のためその開度をコントロールする。
 第2の実施形態の洗浄工程では、第1の実施形態と同様に、様々な洗浄方法を採ることが出来る。例えば、一度目の被処理水(前処理水)、一度目の処理水(透過水)、二度目の処理水(透過水)のいずれかを半透膜分離ユニット9の被処理水側に供給し、半透膜処理を行わずに、すなわち透過水を得ずに、フラッシングすることができる。例えば一度目の被処理水(前処理水)を用いる場合は、バルブ8a,8cを開、バルブ8b,8d,8e,8f,8g,8hを閉にすることによって、半透膜分離ユニット9をフラッシングすることができる。フラッシングに使用した洗浄排水は、バルブ8cから系外に排出される。
 また、一度目の被処理水より清澄な一度目の処理水を用いると洗浄効果が優れるため好ましい。具体的には、バルブ8a,8b,8c,8e,8hを閉、バルブ8fを開、バルブ8d,8gの少なくとも片方を開くことによって、半透膜分離ユニット9をフラッシングすることができる。バルブ8dを開くと、フラッシング水、すなわち洗浄排水を第1の被処理水タンク6に還流し、新たな前処理水と混合することができる。またバルブ8gを開くと、フラッシング水を原水タンク2に還流し、新たな原水と混合することができる。
 さらに二度目の処理水を洗浄水に用いることができる。具体的には、バルブ8a,8b,8d,8e,8f,8gを閉、バルブ8c,8hを開にすることによって、半透膜分離ユニット9をフラッシングすることができる。フラッシングに使用した洗浄排水は、バルブ8cから系外に排出される。以上の通り、洗浄工程で使用する洗浄水は、上述した図1の実施形態と同様にして適宜選択することができる。
 第2の実施形態において、半透膜分離ユニットでの二度目の半透膜処理では、第1の処理水タンク10に貯留された第1の透過水は、昇圧ポンプ7bで昇圧されバルブ8fを通って半透膜分離ユニット9の第1の濃縮水排出側に供給、半透膜処理され、第2の濃縮水と第2の透過水に分離される。第2の透過水は、バルブ8bを通って第2の処理水タンク12に貯留される。第2の濃縮水は、バルブ8dを通って第1の被処理水タンク6へ、またはバルブ8gを通って原水タンク2へ環流される。
 本発明の適用可能な半透膜分離ユニットは、特に制約されるものではないが、半透膜分離ユニットが、端部にテレスコープ防止板が備えられたスパイラル式の膜エレメントで構成されると共に、エレメントが筒状圧力容器内で実質的に両方向に移動可能となるように原水シール部材が備えられていることが好ましい。
 好適な半透膜分離ユニットとしては、複数の分離膜エレメントを筒状圧力容器内に装填した分離膜モジュールから構成し、複数の分離膜エレメントの中の少なくとも一部がテレスコープ防止板および保護シール部材を備えたスパイラル型分離膜エレメントであることが好ましい。また図3に例示したスパイラル型分離膜エレメント20を、図4に示すように、筒状圧力容器46に複数装填して、分離膜モジュール47を構成することができる。
 図3において、分離膜エレメント20は、被処理水と透過水の混合が生じないように端部が封止された構造の分離膜21、供給側流路材23及び透過側流路材22からなる膜ユニットの単数または複数が、有孔の中心管24の周囲にスパイラル状に巻回され、膜ユニット巻体を形成する。この膜ユニット巻体の外周が外装体で覆われ、膜ユニット巻体及び外装体の少なくとも片端にテレスコープ防止板25が設置される。テレスコープ防止板25の外周には、少なくとも1つの周回溝251が設けられ、図示しない原水シール部材が配置される。
 この分離膜エレメント20は、被処理水26が一端面より供給され、供給側流路材23に沿って流動しながら成分の一部(例えば、海水淡水化の場合は水)が分離膜21を透過することにより、透過水と濃縮水とに分離される。その後、分離膜を透過した透過水は、透過側流路材22に沿って流動して、中心管24内へとその側面の孔から流入し、中心管24内を流動し、透過水27として取り出される。一方、非透過成分(海水淡水化の場合は塩分)を高濃度に含有する処理水は、分離膜エレメント20の他端面より濃縮水28として排出される。
 図4において、分離膜モジュール47は、複数の分離膜エレメント39(39a,39b,39c,39d,39e,39f)を筒状圧力容器46内に装填する。なお符号39a~39fがそれぞれ図3の分離膜エレメント20を示している。分離膜エレメント39の少なくとも片端に設けられたテレスコープ防止板の少なくとも1つの外周と筒状圧力容器46の内壁の間に、原水シール部材45(45a1,45a2,45b1~45e2,45f1,45f2)が配置される。原水シール部材45は、分離膜エレメント39が筒状圧力容器46内で実質的に両方向に移動可能であるように設けられている。またこの原水シール部材45を設けることにより、図3に例示するようなスパイラル型分離膜エレメント20において、被処理水を図3に示す被処理水26の方向に流すこともできれば、図3で濃縮水28と示されている方向から被処理水を供給することも可能な構造になっている。
 図4では、被処理水は、被処理水供給口38から供給され、第1の分離膜エレメント39aの端部に供給される。第1の分離膜エレメントで半透膜処理された濃縮水は、第2の分離膜エレメント39bに供給されその後、順次分離膜エレメント39c,39d,39e,39fに供給、半透膜処理された後、最終的に濃縮水排出口40(被処理水の流れ方向を逆向きにするときは被処理水供給口38)から排出される。それぞれの分離膜エレメント39a~39fの中心管24は、それぞれコネクター41で連接されるとともに、端板42a,42bに設けられた透過水取出口43a,43bに接続されており、それぞれの分離膜エレメントで得られた透過水が集められ、系外に取り出される。
 また被処理水の流れ方向を逆向きにするとき、被処理水は濃縮水排出口40から供給され、分離膜エレメント39fの端部に供給される。分離膜エレメント39fで半透膜処理された濃縮水は、分離膜エレメント39eに供給され、その後、順次分離膜エレメント39d,39c,39b,39aに供給、半透膜処理された後、最終的に被処理水供給口38から排出される。各分離膜エレメント39で半透膜処理された透過水は、中心管24およびコネクター41を流れ、透過水取出口43aから系外に取り出される。
 なお、図4では、それぞれの分離膜エレメント39a~39fの両側にシール部材が備えられているが、片側(すなわち、45a1,45b1~45f1もしくは45a2,45b2~45f2)とすることも可能である。両方備えた方がシール性は向上するが、装填、取り出し時に困難度が増すこと、また、隣接するシール部材間(例えば、45a1と45a2の間)にデッドスペースを生じやすくなるため好ましくない。
 本発明において、原水シール部材としては、分離膜モジュール47への被処理水の供給口が、図4に示すように符号38と符号40で入れ替わるため、被処理水の流れ方向を逆向きにさせるのに差し支えない構造になっていることが求められる。一般には、被処理水の供給が一方向であるため、シール部材としてU-カップリングシールもしくはV-カップリングシールが考案され広く使用されている。このU-カップリングシールは、弾性樹脂を用い、U字状の開いた部分が被処理水を供給する側(原水側)に向くように分離膜エレメントのテレスコープ防止板にセットされている。このU-カップシールは、原水側から水が供給された時に、その水圧でU字が開き、U-カップシールと圧力容器との隙間を埋める構造になっている。V-カップリングシールも同様である。また原水シール部材として、O-リングシールを使用する場合もあり、テレスコープ防止板の外周側の周回溝に嵌着されたO-リングシールが、圧力容器の内壁と接触し、O-リングシールがつぶれて変形することで、分離膜エレメントと圧力容器内との隙間を埋めているため、両側からの被処理水の供給に対して、良好なシール性を発揮することが出来る。
 また、半透膜分離ユニットに用いる半透膜の性能としては、M Taniguchiらによる「Journal of Membrane Science」(2000、183、p259-267)に示される平膜セルを用いて、TDS(全蒸発残留物)濃度35g/Lの海水を、操作圧力5.5MPa、温度25℃、pH8.0、流量3.5L/分で評価したときのTDS阻止率が、90%以上99.5%以下であることが好ましい。また、海水中に含有する成分で植物の生育に障害を与えるリスクがあるホウ素に着目した場合、半透膜分離ユニットに用いる半透膜の性能としては、TDS濃度35g/Lかつホウ素濃度5mg/Lの海水を、温度25℃、pH8、操作圧力5.5PMaの条件で運転したとき、ホウ素除去率は70%以上95%以下であることが好ましい。なお、ここでいうTDS(全蒸発残留物)濃度35g/Lの海水とは、特に記載がない限り、NaCl=23.926g/L,NaSO=4.006g/L,KCl=0.738g/L,NaHCO=0.196g/L,MgCl=5.072g/L,CaCl=1.147g/L,HBO=0.0318g/Lの組成で調合し、NaOHもしくはHClを微量添加し、pHを8.0に調整したものを示す。
 ところで、本発明を適用する淡水製造装置は、特に制約されるものはないが、さらに、従来の逆浸透膜淡水製造装置と異なり、ユニット毎に適宜稼働させることが出来るため、フレキシブルに運転することが出来る。例えば、本発明の造水方法における一度目の半透膜処理は、被処理水の濃度が高く、浸透圧が高いため、運転に必要な圧力、すなわち、所要電力が大きい。そのため、電力コストが安い夜間電力を用いて所要電力が大きな一度目の半透膜処理を行うことが好ましい。さらに所要電力が比較的小さい前処理や二回目の半透膜処理を昼間に行うことが好ましい。
 また、本発明で使用する水処理装置は、装置をコンパクトに出来るため、可搬式などの小型装置に好適である。とくに、太陽光、波力、風力などの自然エネルギー発電ユニットを併用することも好適である。とくに、太陽光発電の場合、時間によって発電力が周期的に変動する、すなわち、太陽高度の高い時間帯、すなわち、正午を中心とした時間帯は、発電量が多いため、一度目の半透膜処理を行うことが出来、それ以外の時間帯、すなわち、朝夕には、前処理や二度目の半透膜処理を行うことが出来るため、好ましい態様である。さらに、いずれの半透膜処理も出来ないほどの電力が残っている場合には、膜の洗浄を実施することも好ましい。このときの洗浄においては、ユニットの汚れ程度に応じて、殺菌剤、酸、アルカリを添加適用すると、より効果的である。
 本発明の造水方法において、自然エネルギー発電ユニットを適用する場合、得られる電力、すなわち、発電力や蓄電量に応じて以下の(a)、(b)および(c)の処理を適宜選択して実施することができる。
(a)半透膜分離ユニットで被処理水の半透膜処理を行うために必要な電力があるときに、半透膜分離ユニットで被処理水を半透膜処理する。
(b)半透膜分離ユニットで第1の透過水の半透膜処理を行うために必要な電力があるときに、半透膜分離ユニットで第1の透過水を半透膜処理する。
(c)半透膜分離ユニットで第1の透過水の半透膜処理を行うために必要な電力がないときに、半透膜分離ユニットの洗浄を実施する。
 上記(a)、(b)および(c)の処理は、太陽光発電により得られる電力量に応じて、任意の順番に組み合わせて行うことができる。例えば(a)および(b)の組み合わせ、(b)、(a)および(b)の組み合わせ、(a)、(b)および(c)の組み合わせを、他の必要な処理と共に、適宜実施することができる。すなわち上述した通り、太陽高度が高く発電量が多い昼間は被処理水に対し一度目の半透膜処理を行い(上記(a))、一度目の半透膜処理に必要な電力が得られない朝夕は第1の透過水に対し二度目の半透膜処理を行うことができる(上記(b))。
 なお、第1の透過水の半透膜処理および半透膜分離ユニットの洗浄の実施は、上記(b)および(c)の発電量の条件に限定されるものではない。すなわち、造水方法の所定の手順、または各造水工程における装置の状況および歩留まりの状況に応じて、造水効率を高くするため、(b)および(c)の半透膜処理を選択的に実施することができる。例えば第1の透過水の半透膜処理を行うために必要な電力があっても、半透膜分離ユニットの状況からその洗浄が必要なときには、半透膜分離ユニットの洗浄を行うことができる。
 とくに、半透膜分離ユニットの電力供給源が太陽光発電を主体とする場合に好適である。
 なお、自然エネルギーを主な電力供給源にする場合は、小型の電力貯蔵手段を併用し、短時間の発電力変動を吸収することが好ましい。このときの電力貯蔵手段に特に制約はなく、ニカド電池、ニッケル水素電池、リチウム電池などの蓄電池、キャパシタ、水を高いところに送水貯留する揚水、水素を製造する電気分解などを適用することが可能である。
 本発明で得られる淡水は、一度目の半透膜処理水と二度目の半透膜処理水であるが、一度目の半透膜処理水の水質で十分であれば、そのまま生産水として供することも出来るし、二度目の半透膜処理水と混合して使用することも出来るし、いずれも、後処理を施すことも可能である。後処理としては、吸着処理、UV殺菌、pH調整、ランゲリア飽和指数(LSI)調整、ミネラル添加などが代表的である。
 本発明を適用可能な被処理水(原水)は特に、制限されるものではなく、河川水、海水、下水処理水、雨水、工業用水、工業廃水など、いろいろな被処理水を挙げることができるが、特に、浸透圧を有する海水やかん水に対しての適用が好適である。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は、2012年10月18日出願の日本特許出願(特願2012-230884)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明は、一つの逆浸透膜ユニットを効率的に運転することによって、シンプルな構成で高品質の淡水を製造することに活用可能である。とくに、自然エネルギーを動力とした場合に、供給される電力量に応じて水処理の工程を行うことにより効率的に高品質の淡水を製造する方法を提供することが可能となる。
1:原水
2:原水タンク
3:原水供給ポンプ
4:前処理ユニット
5:排水ライン
6:第1の被処理水タンク
7,7a,7b:昇圧ポンプ
8a,8b,8c,8d,8e,8f,8g,8h:バルブ
9:半透膜分離ユニット
9a:第1の半透膜分離ユニット
9b:第2の半透膜分離ユニット
10:第1の処理水タンク
11:濃縮水還流ライン
12:第2の処理水タンク
13:濃縮水排出ライン
16:前処理水タンク
20:分離膜エレメント
21:分離膜
22:透過側流路材
23:供給側流路材
24:中心管
25:テレスコープ防止板
251:周回溝
26,26a:被処理水
27,27a:透過水
28:濃縮水
38:被処理水の供給口
39a,39b,39c,39d,39e,39f:分離膜エレメント
40:濃縮水の取出口
41:コネクター
42a,42b:端板
43a,43b:透過水の取出口
45:シール部材
45a1,45b1,45c1,45d1,45e1,45f1:シール部材
45a2,45b2,45c2,45d2,45e2,45f2:シール部材
46:筒状圧力容器
47:分離膜モジュール

Claims (11)

  1.  半透膜分離ユニットで被処理水の半透膜処理を行って第1の濃縮水と第1の透過水に分離し、得られた前記第1の透過水を処理水タンクに貯留し、その後、前記半透膜分離ユニットの洗浄を行った後に、前記第1の透過水を前記半透膜分離ユニットで半透膜処理を行って第2の濃縮水と第2の透過水に分離する造水方法。
  2.  前記半透膜分離ユニットの洗浄を、半透膜処理を行わずに、前記被処理水もしくは前記第1の透過水を前記半透膜分離ユニットの被処理水側に供給することによって行う、請求項1に記載の造水方法。
  3.  前記半透膜分離ユニットの洗浄を行った後に排出される洗浄排水の少なくとも一部を被処理水に混合する、請求項1または請求項2に記載の造水方法。
  4.  前記半透膜分離ユニットにおける前記第1の濃縮水の排出側から、前記第1の透過水を供給する、請求項1~請求項3のいずれか一項に記載の造水方法。
  5.  前記半透膜分離ユニットが、複数の分離膜エレメントを筒状圧力容器内に装填した分離膜モジュールから構成され、前記複数の分離膜エレメントの中の少なくとも一部がスパイラル型分離膜エレメントであると共に、該スパイラル型分離膜エレメントが、分離膜を含む膜ユニットが巻回されてなる膜ユニット巻体の外周が外装体で覆われ、膜ユニット巻体及び外装体の少なくとも片端にテレスコープ防止板が設けられ、少なくとも1つのテレスコープ防止板の外周と前記筒状圧力容器の内壁との間に分離膜エレメントを筒状圧力容器内で両方向に移動可能とする原水シール部材が設けられてなる、請求項1~請求項4のいずれか一項に記載の造水方法。
  6.  TDS(全蒸発残留物)濃度35g/Lの海水を、温度25℃、pH8、操作圧力5.5MPaの条件で運転した場合のTDS阻止率が90%以上99.5%以下である半透膜を前記半透膜分離ユニットに用いる、請求項1~請求項5のいずれか一項に記載の造水方法。
  7.  TDS濃度35g/Lかつホウ素濃度5mg/Lの海水を、温度25℃、pH8、操作圧力5.5PMaの条件で運転した場合のホウ素除去率が70%以上95%以下である半透膜を前記半透膜分離ユニットに用いる、請求項1~請求項6のいずれか一項に記載の造水方法。
  8.  夜間に前記半透膜分離ユニットで前記被処理水の半透膜処理を行う、請求項1~請求項7のいずれか一項に記載の造水方法。
  9.  前記半透膜分離ユニットの電力供給源が太陽光発電を主体とすると共に、前記半透膜分離ユニットで前記被処理水の半透膜処理を行うために必要な電力があるときは前記半透膜分離ユニットで前記被処理水の半透膜処理を行う、請求項1~請求項7のいずれか一項に記載の造水方法。
  10.  前記半透膜分離ユニットで前記第1の透過水の半透膜処理を行うために必要な電力があるときは前記半透膜分離ユニットで前記第1の透過水の半透膜処理を行う、請求項9に記載の造水方法。
  11.  前記半透膜分離ユニットで前記第1の透過水の半透膜処理を行うために必要な電力がないときは前記半透膜分離ユニットの洗浄を実施する、請求項9または請求項10に記載の造水方法。
     
PCT/JP2013/078063 2012-10-18 2013-10-16 造水方法 WO2014061695A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014502684A JP6233297B2 (ja) 2012-10-18 2013-10-16 造水方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012230884 2012-10-18
JP2012-230884 2012-10-18

Publications (1)

Publication Number Publication Date
WO2014061695A1 true WO2014061695A1 (ja) 2014-04-24

Family

ID=50488256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/078063 WO2014061695A1 (ja) 2012-10-18 2013-10-16 造水方法

Country Status (2)

Country Link
JP (1) JP6233297B2 (ja)
WO (1) WO2014061695A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015047667A1 (en) * 2013-09-26 2015-04-02 Dow Global Technologies Llc Hyperfiltration system suitable for household use
JP2017064570A (ja) * 2015-09-28 2017-04-06 オルガノ株式会社 膜処理装置、飲料用水製造装置、膜処理方法、及び飲料用水製造方法
WO2019106814A1 (ja) * 2017-11-30 2019-06-06 アクアデザインシステム株式会社 浄水装置
CN110520209A (zh) * 2017-03-14 2019-11-29 海水淡化科技有限公司 用于预防污垢的集成反渗透和膜清洁系统
CN110947303A (zh) * 2018-09-27 2020-04-03 东丽先端材料研究开发(中国)有限公司 一种净水装置及其运行方法
JP2021003677A (ja) * 2019-06-26 2021-01-14 日本ウォーターシステム株式会社 水処理装置
JP2021517065A (ja) * 2018-03-13 2021-07-15 リニュー ヘルス リミテッド 水処理システム
EP4335537A1 (fr) * 2022-09-08 2024-03-13 Bucher Vaslin Installation de filtration d'un liquide, en particulier de vin, et un procede de filtration d'un liquide, en particulier de vin, avec une telle installation

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6490087A (en) * 1987-09-30 1989-04-05 Organo Kk Treatment of water with reverse osmotic membrane device
JPH10230260A (ja) * 1997-02-20 1998-09-02 Nitto Denko Corp 浄水器
JP2002028456A (ja) * 2000-07-18 2002-01-29 Nitto Denko Corp スパイラル型膜モジュールを用いた処理システムおよびその運転方法
JP2004261724A (ja) * 2003-03-03 2004-09-24 Japan Organo Co Ltd 多段式分離膜モジュールの運転方法及び多段式分離膜装置
JP2008137008A (ja) * 2008-01-09 2008-06-19 Japan Organo Co Ltd インク廃液の処理方法および装置
WO2011046944A1 (en) * 2009-10-12 2011-04-21 Toray Membrane USA, Inc. Radial split ring seal for filtration systems
WO2011099578A1 (ja) * 2010-02-13 2011-08-18 Yamanaka Kunihiko 浄水装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6805796B2 (en) * 2001-02-13 2004-10-19 Nitto Denko Corporation Water treatment apparatus
JP2003137008A (ja) * 2001-11-01 2003-05-14 Toyota Auto Body Co Ltd スライド装置および車両用シート
AU2003203265B2 (en) * 2002-01-22 2007-10-18 Toray Industries, Inc. Method of generating fresh water and fresh-water generator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6490087A (en) * 1987-09-30 1989-04-05 Organo Kk Treatment of water with reverse osmotic membrane device
JPH10230260A (ja) * 1997-02-20 1998-09-02 Nitto Denko Corp 浄水器
JP2002028456A (ja) * 2000-07-18 2002-01-29 Nitto Denko Corp スパイラル型膜モジュールを用いた処理システムおよびその運転方法
JP2004261724A (ja) * 2003-03-03 2004-09-24 Japan Organo Co Ltd 多段式分離膜モジュールの運転方法及び多段式分離膜装置
JP2008137008A (ja) * 2008-01-09 2008-06-19 Japan Organo Co Ltd インク廃液の処理方法および装置
WO2011046944A1 (en) * 2009-10-12 2011-04-21 Toray Membrane USA, Inc. Radial split ring seal for filtration systems
WO2011099578A1 (ja) * 2010-02-13 2011-08-18 Yamanaka Kunihiko 浄水装置

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9795922B2 (en) 2013-09-26 2017-10-24 Dow Global Technologies Llc Hyperfiltration system suitable for household use
WO2015047667A1 (en) * 2013-09-26 2015-04-02 Dow Global Technologies Llc Hyperfiltration system suitable for household use
JP2017064570A (ja) * 2015-09-28 2017-04-06 オルガノ株式会社 膜処理装置、飲料用水製造装置、膜処理方法、及び飲料用水製造方法
EP3595799A4 (en) * 2017-03-14 2021-01-27 Desalitech Ltd INTEGRATED REVERSE OSMOSIS AND MEMBRANE CLEANING SYSTEMS FOR POLLUTION PREVENTION
CN110520209A (zh) * 2017-03-14 2019-11-29 海水淡化科技有限公司 用于预防污垢的集成反渗透和膜清洁系统
WO2019106814A1 (ja) * 2017-11-30 2019-06-06 アクアデザインシステム株式会社 浄水装置
JP7349442B2 (ja) 2018-03-13 2023-09-22 リニュー ヘルス リミテッド 水処理システム
JP2021517065A (ja) * 2018-03-13 2021-07-15 リニュー ヘルス リミテッド 水処理システム
US11802061B2 (en) * 2018-03-13 2023-10-31 Renew Health Ltd. Water treatment system
CN110947303A (zh) * 2018-09-27 2020-04-03 东丽先端材料研究开发(中国)有限公司 一种净水装置及其运行方法
JP2021003677A (ja) * 2019-06-26 2021-01-14 日本ウォーターシステム株式会社 水処理装置
EP4335537A1 (fr) * 2022-09-08 2024-03-13 Bucher Vaslin Installation de filtration d'un liquide, en particulier de vin, et un procede de filtration d'un liquide, en particulier de vin, avec une telle installation
FR3139480A1 (fr) * 2022-09-08 2024-03-15 Bucher Vaslin Installation de filtration d’un liquide, en particulier de vin, et un procédé de filtration d’un liquide, en particulier de vin, avec une telle installation

Also Published As

Publication number Publication date
JPWO2014061695A1 (ja) 2016-09-05
JP6233297B2 (ja) 2017-11-22

Similar Documents

Publication Publication Date Title
JP6233297B2 (ja) 造水方法
JP6882541B2 (ja) 減圧塩水処理システム
US20180280888A1 (en) Reverse osmosis treatment apparatus and reverse osmosis treatment method
KR101822567B1 (ko) 농도차 발전 장치 및 그 운전 방법
US9259686B2 (en) Water producing system and operation method therefor
JP4903113B2 (ja) 水処理システム及びその運転方法
WO2013003607A2 (en) Apparatus, system, and method for forward osmosis in water reuse
US8828233B2 (en) Vessel desalination system and method
CN107381923B (zh) 基于膜电容去离子和膜蒸馏的海水淡化处理装置及其方法
JP2007000788A (ja) 逆浸透膜を使用した水処理装置
WO2014115769A1 (ja) 淡水製造装置の運転方法
US20170144892A1 (en) Processing Scheme and System for Gray Water Purification
KR101769609B1 (ko) 양방향 멤브레인 세척장치 및 이를 이용한 역삼투압 정수 시스템
Poovanaesvaran et al. Design aspects of small-scale photovoltaic brackish water reverse osmosis (PV-BWRO) system
US10144657B2 (en) System and method for filtration
Voutchkov Desalination–water for the next generation
WO2014057892A1 (ja) 造水方法
JP2011056340A (ja) 膜ろ過システム
Nave et al. Introductory chapter: Osmotically driven membrane processes
JP2005046762A (ja) 水処理方法および装置
CN211733926U (zh) 一种卷式反渗透系统
KR102475044B1 (ko) 고염 대응 담수화 장치
Tan et al. Membrane processes for desalination: overview
WO2015129132A1 (ja) 造水システム
KR20060009127A (ko) 역세형 한외여과 및 나노여과를 이용한 냉각수 처리 공정

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014502684

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13847300

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13847300

Country of ref document: EP

Kind code of ref document: A1