WO2014061348A1 - 熱硬化性組成物 - Google Patents
熱硬化性組成物 Download PDFInfo
- Publication number
- WO2014061348A1 WO2014061348A1 PCT/JP2013/072422 JP2013072422W WO2014061348A1 WO 2014061348 A1 WO2014061348 A1 WO 2014061348A1 JP 2013072422 W JP2013072422 W JP 2013072422W WO 2014061348 A1 WO2014061348 A1 WO 2014061348A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- siloxane polymer
- general formula
- thermosetting composition
- halogen
- carbon atoms
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D183/00—Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
- C09D183/04—Polysiloxanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L83/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
- C08L83/04—Polysiloxanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/80—Siloxanes having aromatic substituents, e.g. phenyl side groups
Definitions
- the present invention relates to a thermosetting composition that can be used for a cured film such as a protective film.
- a surface protective film may be provided for the purpose of preventing the deterioration, damage, and alteration of the surface of various elements.
- the protective film is required to have various characteristics that can withstand various processes in the manufacturing process as described above.
- Siloxane materials are known as materials for forming a cured film having such characteristics (see, for example, Patent Documents 1 to 4).
- composition of a siloxane polymer obtained by hydrolyzing and condensing a silane mixture containing a monofunctional silane and a trifunctional silane is known (Patent Document 6).
- Patent Document 6 The composition of the siloxane polymer itself is known, the heat resistance, transparency, and sputtering resistance when the composition is made into a cured film are not described and are unknown.
- JP-A-6-346025 JP 2000-303023 A Japanese Patent Laid-Open No. 2001-115026 JP 2003-031569 A JP 2011-084039 A Japanese Patent Publication No.49-45320
- thermosetting composition disclosed in Patent Document 5 has room for improvement in sputtering resistance.
- a step of forming a wiring electrode by sputtering may be included, so that it can be said that sputtering resistance is an important characteristic.
- the present invention is excellent in sputtering resistance, does not cause cracks, and can provide a cured film having a thickness of 10 to 200 ⁇ m by coating, and curing using the same A film and a display element are provided.
- the present inventors have found that a composition containing a specific amount of a polymer composed of a specific siloxane monomer can solve the above-mentioned problems. It came to complete. That is, as a result of earnest research and development, the present inventor succeeded in developing a material having sputtering resistance in addition to the characteristics described in Patent Document 5.
- the present invention has the following configuration.
- the siloxane polymer (A) obtained by reacting a silane mixture containing silane is 90% by weight or more based on the total amount of the siloxane polymer.
- each R is independently hydrogen, alkyl having 1 to 10 carbon atoms in which arbitrary hydrogen may be replaced by halogen, and arbitrary hydrogen may be replaced by halogen.
- An aryl having 6 to 10 carbon atoms, or an alkenyl having 2 to 10 carbon atoms in which any hydrogen may be replaced by a halogen, and R ′ each independently represents a hydrolyzable group.
- each R is independently hydrogen, arbitrary hydrogen may be replaced by halogen, alkyl having 1 to 5 carbon atoms, and arbitrary hydrogen is replaced by halogen.
- thermosetting composition according to [1] or [2], wherein the monofunctional silane represented by the general formula (1) is one or more selected from the group consisting of trimethylmethoxysilane and trimethylethoxysilane.
- the trifunctional silane represented by the general formula (2) is one or more selected from trimethoxyphenylsilane and triethoxyphenylsilane, and one or more selected from trimethoxymethylsilane and triethoxymethylsilane.
- the thermosetting composition according to any one of [1] to [3], which is a mixture.
- the monofunctional silane represented by the general formula (1) is trimethylmethoxysilane
- the trifunctional silane represented by the general formula (2) is a mixture of trimethoxymethylsilane and trimethoxyphenylsilane.
- the thermosetting composition according to any one of [4].
- thermosetting the thermosetting composition according to any one of [1] to [6] at 200 ° C. or higher thermosetting the thermosetting composition according to any one of [1] to [6] at 200 ° C. or higher.
- thermosetting composition of the present invention can provide a cured film that is not only excellent in high transparency and heat resistance but also excellent in sputtering resistance.
- the cured film obtained from the thermosetting composition of the present invention does not cause cracks even when it is a thick film (film thickness is 10 to 200 ⁇ m).
- film thickness is 10 to 200 ⁇ m.
- such a cured film and a display element having the same can be provided.
- thermosetting composition of the present invention is a thermosetting composition containing a siloxane polymer and a solvent, and the siloxane polymer is represented by the following general formula (1).
- the siloxane polymer (A) obtained by reacting the monofunctional silane with the silane mixture containing the trifunctional silane represented by the general formula (2) is contained in an amount of 90% by weight or more based on the total amount of the siloxane polymer.
- the thermosetting composition of this invention may further contain other components other than a siloxane polymer (A) and a solvent in the range in which the effect of this invention is acquired.
- the content of the siloxane polymer (A) in the thermosetting composition of the present invention is such that the total amount of the siloxane polymer (A) is based on the total amount of the thermosetting composition from the viewpoint of setting the film thickness of the cured film to 10 ⁇ m or more. It is preferably 20 to 80% by weight, more preferably 30 to 80% by weight, and further preferably 40 to 80% by weight.
- Siloxane polymer (A) The siloxane polymer (A) is obtained by reacting a monofunctional silane represented by the general formula (1) with a silane mixture containing a trifunctional silane represented by the general formula (2).
- the preferable mixing ratio (molar ratio) of the monofunctional silane represented by the general formula (1) and the trifunctional silane represented by the general formula (2) is 1 mol of the monofunctional silane represented by the general formula (1).
- the trifunctional silane represented by the general formula (2) is 1 to 20 mol, more preferably 1 to 15 mol, and further preferably 1 from the viewpoint of sputtering resistance and crack resistance. ⁇ 10 moles.
- each R is independently hydrogen, and arbitrary hydrogen may be replaced by halogen.
- Each ' is independently a hydrolyzable group.
- each R independently represents hydrogen, an alkyl having 1 to 5 carbon atoms in which arbitrary hydrogen may be replaced with halogen, or 6 to 6 carbon atoms in which arbitrary hydrogen may be replaced with halogen. More preferably, the aryl is 10 or alkenyl having 2 to 10 carbon atoms in which arbitrary hydrogen may be replaced by halogen, and R ′ is independently alkoxy, halogen, or acetoxyl.
- the halogen is preferably chlorine or fluorine. Of these, it is more preferred that each R is independently methyl, ethyl or phenyl, and each R ′ is independently methoxy or ethoxy.
- Examples of the monofunctional silane represented by the general formula (1) include trimethylmethoxysilane and trimethylethoxysilane. These monofunctional silanes are preferable from the viewpoint of functioning to control the molecular weight of the resulting thermosetting composition.
- each R is independently hydrogen, and arbitrary hydrogen may be replaced by halogen.
- Each ' is independently a hydrolyzable group.
- the ratio of the trifunctional silane in which R is aryl having 6 to 10 carbon atoms in which arbitrary hydrogen may be replaced by halogen is trifunctional. It is 30 mol% or more based on the total amount of silane.
- the ratio of the trifunctional silane in which R is the specific aryl is more preferably 40 mol% or more, and more preferably 45 mol% or more with respect to the total amount of the trifunctional silane.
- the ratio of the trifunctional silane in which R is the specific aryl is preferably 70 mol% or less, more preferably 60 mol% or less, and more preferably 55 mol% or less with respect to the total amount of the trifunctional silane. It is particularly preferred that
- each R independently represents hydrogen, an alkyl having 1 to 5 carbon atoms in which arbitrary hydrogen may be replaced by halogen, or 6 to 6 carbon atoms in which arbitrary hydrogen may be replaced with halogen. More preferably, the aryl is 10 or alkenyl having 2 to 10 carbon atoms in which arbitrary hydrogen may be replaced by halogen, and R ′ is independently alkoxy, halogen, or acetoxyl.
- the halogen is preferably chlorine or fluorine. Of these, it is more preferred that each R is independently methyl, ethyl or phenyl, and each R ′ is independently methoxy or ethoxy.
- the trifunctional silane represented by the general formula (2) includes compounds in which R is unsubstituted alkyl having 1 to 5 carbon atoms and compounds in which R is unsubstituted aryl having 6 to 10 carbon atoms.
- R is unsubstituted alkyl having 1 to 5 carbon atoms
- R is unsubstituted aryl having 6 to 10 carbon atoms.
- the mixing ratio (molar ratio) of the compound in which R is an unsubstituted alkyl having 1 to 5 carbon atoms and the compound in which R is an unsubstituted aryl having 6 to 10 carbon atoms is the same as that in which R is an unsubstituted alkyl having 1 to 5 carbon atoms.
- 1 mol of the compound that is alkyl is 0.1 to 10 mol, more preferably 0.2 to 5 mol, and still more preferably R is an unsubstituted aryl having 6 to 10 carbon atoms. Is 0.3-3 mol.
- the alkyl is preferably methyl or ethyl
- the aryl is more preferably phenyl.
- the trifunctional silane represented by the general formula (2) include trimethoxymethylsilane, trimethoxyphenylsilane, triethoxymethylsilane, and triethoxyphenylsilane. These trifunctional silanes are preferable from the viewpoint of improving the denseness of the film in a cured film formed from the resulting thermosetting composition.
- the ratio of the trifunctional silane having the above specific aryl as R satisfies the above specific ratio with respect to the total amount of the trifunctional silane.
- silanes it is preferable to include one or more selected from trimethoxyphenylsilane and triethoxyphenylsilane.
- the content of one or more selected from these trimethoxyphenylsilane and triethoxyphenylsilane is preferably 30 mol% or more, more preferably 40 mol% or more, based on the total amount of trifunctional silane, 45 More preferably, it is at least mol%.
- the content of at least one of these trimethoxyphenylsilane and triethoxyphenylsilane is preferably 70 mol% or less, more preferably 60 mol% or less, based on the total amount of trifunctional silane. , 55 mol% or less is particularly preferable.
- the trifunctional silane represented by the general formula (2) is preferably one or more selected from trimethoxymethylsilane and triethoxymethylsilane as having no specific aryl as R.
- the siloxane polymer (A) is obtained by reacting a monofunctional silane represented by the general formula (1) with a silane mixture containing the trifunctional silane represented by the general formula (2).
- a silane mixture containing the trifunctional silane represented by the general formula (2) due to R of the monofunctional silane represented by the general formula (1) and R of the trifunctional silane represented by the general formula (2), both methyl and phenyl are polymers (
- the ratio of the number of methyl to phenyl in the prepared siloxane polymer (A) is preferably 1.0 to 3.0, more preferably 1.0 to 2.5. .
- the ratio of the number of methyl to phenyl is 1.0 or more, high heat resistance (250 ° C., 30 minutes) of the thermosetting composition can be secured. Moreover, it can prevent that a siloxane polymer gelatinizes because the ratio of the number of methyl with respect to phenyl is 3.0 or less.
- the proportion of methyl and phenyl in the total number of R of the monofunctional silane represented by the general formula (1) and the trifunctional silane represented by the general formula (2) may be 50% or more. Preferably, it is 80% or more, more preferably 100%.
- R other than methyl and phenyl include ethyl, propyl, butyl, cyclopentane, and cyclohexyl.
- the ratio of the number of methyl to phenyl in the siloxane polymer (A) can be measured by a measurement method using, for example, NMR (nuclear magnetic resonance).
- the silane mixture as a raw material for the siloxane polymer (A) may contain other silanes as long as the effects of the present invention are not impaired.
- the content of the conventional silane compound in the silane mixture as a raw material of the siloxane polymer (A) is usually 1 to 10% by weight.
- the siloxane polymer (A) is obtained by reacting the monofunctional silane represented by the general formula (1) with the trifunctional silane represented by the general formula (2). It is done.
- the reaction here specifically includes hydrolysis and condensation as described below.
- the reaction method of the siloxane polymer (A) is not particularly limited, but can be prepared by hydrolysis and condensation of the silanes. Water and an acid or base catalyst can be used for the hydrolysis.
- acid catalysts include formic acid, acetic acid, trifluoroacetic acid, nitric acid, sulfuric acid, hydrochloric acid, hydrofluoric acid, boric acid, phosphoric acid, cation exchange resins, and base catalysts include ammonia, triethylamine, monoethanolamine, diethanolamine, triethanolamine, and the like. Examples include ethanolamine, sodium hydroxide, sodium carbonate, sodium hydrogen carbonate, potassium hydroxide, anion exchange resin and the like.
- the reaction temperature is not particularly limited, but is usually in the range of 50 ° C to 150 ° C.
- the reaction time is not particularly limited, but is usually in the range of 1 to 48 hours.
- the reaction can be performed under any pressure of pressure, reduced pressure, or atmospheric pressure.
- distillation can be performed under reduced pressure or normal pressure. At normal pressure, the distillation temperature is usually about 100 ° C to 200 ° C.
- the solvent used in the above reaction is preferably a solvent that dissolves the silanes and the generated siloxane polymer (A).
- the solvent may be one kind or a mixed solvent of two or more kinds.
- Specific examples of the solvent include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutanol, tert-butanol, acetone, 2-butanone, ethyl acetate, propyl acetate, butyl acetate, tetrahydrofuran , Acetonitrile, dioxane, toluene, xylene, cyclopentanone, cyclohexanone, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, diethylene glycol dimethyl ether, diethylene glycol methyl ethyl ether, methyl 3-methoxypropionate,
- the siloxane polymer (A) has a weight average molecular weight in the range of 1,000 to 100,000 determined by GPC analysis using polystyrene as a standard
- the cured film formed from the resulting thermosetting composition has a high heat resistance. From the viewpoint of improving the property and solvent resistance.
- the weight average molecular weight is in the range of 1,500 to 80,000, compatibility with other components is improved, and whitening of the film is suppressed in a cured film formed from the resulting thermosetting composition. And from the viewpoint of suppressing the roughness of the film surface.
- the weight average molecular weight is more preferably in the range of 2,000 to 50,000.
- the weight average molecular weight is a polystyrene having a weight average molecular weight of 645 to 132,900 (for example, a polystyrene calibration kit PL2010-0102 from VARIAN) for standard polystyrene, and PLgel MIXED-D (for a column). VARIAN), and can be measured by GPC using THF as a mobile phase.
- the solvent used in the present invention may be a mixed solvent containing 20 wt% or more of a solvent having a boiling point of 100 to 300 ° C.
- a solvent having a boiling point of 100 to 300 ° C. in the mixed solvent one or more known solvents can be used.
- the content of the solvent is preferably 20 to 80% by weight, more preferably 20 to 70% by weight, and further preferably 20 to 50% by weight with respect to the total amount of the thermosetting composition. .
- propylene glycol monomethyl ether propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, methyl 3-methoxypropionate, ethyl 3-ethoxypropionate, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate
- thermosetting composition of the present invention may contain other components in addition to the siloxane polymer (A) and the solvent.
- Other components include, for example, siloxane polymers other than the siloxane polymer (A) (other siloxane polymers), surfactants, epoxy resins, epoxy curing agents, thermal crosslinking agents such as melamine compounds or bisazide compounds, antioxidants, Examples include acrylic, styrene, polyethyleneimine or urethane polymer dispersants, adhesion improvers such as silane coupling agents, and ultraviolet absorbers such as alkoxybenzophenones.
- the above-mentioned other components may be added singly or in combination of two or more, and each of them may be one or more of them.
- thermosetting composition of the present invention may further contain other siloxane polymers in order to improve various performances.
- a conventional siloxane polymer can be used in a conventional content range within a range not impairing the effects of the present invention.
- the proportion of the siloxane polymer (A) in the siloxane polymer to be contained in the thermosetting composition of the present invention is 90% by weight or more, more preferably 95% by weight or more, and 99% by weight or more.
- thermosetting composition of the present invention a bifunctional silane represented by the following formula (3) or a tetrafunctional silane represented by the following formula (4) is reacted (hydrolyzed and condensed) as another polymer. It is preferable not to add the siloxane polymer obtained by the above from the viewpoint of improving the crack resistance.
- R is independently hydrogen, alkyl having 1 to 10 carbon atoms in which arbitrary hydrogen may be replaced with halogen, and arbitrary hydrogen may be replaced with halogen.
- R 6 is aryl having 6 to 10 carbon atoms, or alkenyl having 2 to 10 carbon atoms in which arbitrary hydrogen may be replaced by halogen, and each R ′ is independently a hydrolyzable group.
- thermosetting composition of the present invention further contains a surfactant from the viewpoint of further improving coating uniformity and leveling properties after printing when film formation is performed by a printing method. May be.
- a surfactant from the viewpoint of further improving coating uniformity and leveling properties after printing when film formation is performed by a printing method. May be.
- the content thereof is preferably 0.01 to 10% by weight, and 0.05 to 8% by weight with respect to the total amount of the thermosetting composition. More preferred is 0.1 to 5% by weight.
- Polyflow No. 45, Polyflow KL-245, Polyflow No. 75, Polyflow No. 90, polyflow no. 95 all are trade names, Kyoeisha Chemical Industry Co., Ltd.
- thermosetting composition of the present invention further contains an epoxy resin from the viewpoint of further improving heat resistance, chemical resistance, in-film uniformity, flexibility, flexibility, and elasticity. May be.
- the epoxy resin is preferably a polyfunctional epoxy resin from the viewpoint of obtaining a cured film having high chemical resistance.
- polyfunctional epoxy resins include bisphenol A type epoxy resins, glycidyl ester type epoxy resins, and alicyclic epoxy resins.
- epoxy resins include, for example, Epicoat 807, Epicoat 815, Epicoat 825, Epicoat 827, Epicoat 828, Epicoat 190P and Epicoat 191P (trade name; Yuka Shell Epoxy Co., Ltd.), Epicoat 1004, Epicoat 1256, YX8000 (trade name; Mitsubishi Chemical Corporation), Araldite CY177, Araldite CY184 (trade name; Nippon Ciba Geigy Co., Ltd.), Celoxide 2021P, EHPE-3150 (trade name; Daicel Corporation), Techmore VG3101L (trade name; Pudding Corporation Tech).
- an epoxy resin to the said thermosetting composition from a viewpoint of improving flexibility, a softness
- the content of the epoxy resin is preferably 30% by weight or less with respect to the total amount of the thermosetting composition.
- the epoxy resin added for this purpose include Epicoat 871, Epicoat 872, Epicoat 4250, Epicoat 4275 (trade name; Mitsubishi Chemical Corporation), EPICLON TSR-960, EPICLON TSR-601, EPICLON TSR-250.
- thermosetting composition of the present invention contains an epoxy resin as another component, in order to improve the heat resistance, chemical resistance, flexibility and flexibility of the cured film. It is preferable to contain an epoxy curing agent.
- the epoxy curing agent include a carboxylic acid curing agent, an acid anhydride curing agent, an amine curing agent, a phenol curing agent, and a catalyst curing agent.
- the epoxy curing agent is more preferably a carboxylic acid curing agent, an acid anhydride curing agent, or a phenol curing agent from the viewpoint of coloring suppression and heat resistance.
- SMA17352 (trade name; SARTOMER Co., Ltd.) is used for the carboxylic acid curing agent
- SMA1000, SMA2000, SMA3000 (trade name; SARTOMER Corporation) is used as the acid anhydride curing agent
- the phenolic curing agent include hydroquinone, catechol, resorcinol, phloroglucinol, pyrogallol, 1,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, 1,2,4- Trihydroxybenzene, 1,3-dihydroxynaphthalene, 1,4-dihydroxynaphthalene, 1,5-dihydroxynaphthalene, 1,7-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, 1,2-dihydroxynaphthalene, 2-methylreso Lucinol, 5-methylresorcinol, hexahydroxybenzene, 1,8,9-trihydroxyanthracene, 3-methylcatechol, methylhydroquinone, 4-methylcatechol, 4-benzylresorcinol, 1,1'- 2-naphthol, 4,4'-biphenol, bis (4-hydroxyphenyl)
- Preferred examples of the phenolic curing agent include 4,4′-butylidenebis (6-tert-butyl-m-cresol), 4-tert-butylpyrocatechol, 2,2′-biphenol, 4,4 ′. -Dihydroxydiphenylmethane, tert-butylhydroquinone, 1,3-bis (4-hydroxyphenoxy) benzene, 1,4-bis (3-hydroxyphenoxy) benzene, 1,1-bis (4-hydroxyphenyl) cyclohexane, bis ( 4-hydroxy-3,5-dimethylphenyl) sulfone, 9,9-bis (4-hydroxyphenyl) fluorene, 9,9-bis (4-hydroxy-3-methylphenyl) fluorene, 4-tert-butylcalix [ 8] arene, 4-tert-butylcalix [5] arene, 4 tert- butyl sulfonyl Luke helix [4] arene, calix [8
- phenolic curing agent examples include 2,5-bis (1,1,3,3-tetramethylbutyl) hydroquinone and 2,6-bis [(2-hydroxy-5-methylphenyl) methyl. ] -4-methylphenol, 1,1-bis (3-cyclohexyl-4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxy-3-methylphenyl) cyclohexane, hexestrol, 2 ′, 4 ′ -Dihydroxyacetophenone, anthralphine, chrysazine, 2,4-dihydroxybenzaldehyde, 2,5-dihydroxybenzaldehyde, 3,4-dihydroxybenzaldehyde, ethyl 3,4-dihydroxybenzoate, 2,4-dihydroxybenzophenone, 2,2 ' -Dihydroxy-4,4'-dimethoxybenzof Non, 4,4'-dihydroxybenzophenone, 4-ethyl re
- Preferred examples of the phenolic curing agent include 2,2′-dihydroxy-4-methoxybenzophenone, 2,2′-dihydroxybenzophenone, methyl 2,6-dihydroxybenzoate, 2,3-dihydroxybenzaldehyde, octa Fluoro-4,4′-biphenol, 3 ′, 6′-dihydroxybenzonorbornene, 2,4′-dihydroxydiphenylmethane, 2 ′, 5′-dihydroxyacetophenone, 3 ′, 5′-dihydroxyacetophenone, 2,4-dihydroxy Benzoic acid, 2-hydroxyethyl 4,4′-dihydroxydiphenyl ether, 2,2′-dihydroxydiphenyl ether, methyl 3,5-dihydroxybenzoate, phenyl 1,4-dihydroxy-2-naphthoate, 3 ′, 4′- Dihydroxyacetate Enon, 2,4'-dihydroxydiphenyl sulfone, 3,
- Preferred examples of the phenolic curing agent include 2,4′-dihydroxybenzophenone, 2,6-dimethylhydroquinone, daidzein, 2 ′, 4′-dihydroxypropiophenone, 4,4′-dihydroxytetraphenylmethane.
- the phenolic curing agent examples include 4,4 ′-(2-hydroxybenzylidene) bis (2,3,6-trimethylphenol), 4,4′-methylenebis (2,6-di-tert). -Butylphenol), 2,2'-methylenebis (6-tert-butyl-4-ethylphenol), 2,2'-methylenebis (6-tert-butyl-p-cresol), methoxyhydroquinone, 4,4 '-( ⁇ -methylbenzylidene) bisphenol, 4,4′-methylenebis (2,6-dimethyl ⁇ BR> crytenol), 2,2′-methylenebis (4-methylphenol), 5-methoxyresorcinol, 2,2 ′ -Methylenebis [6- (2-hydroxy-5-methylbenzyl) -p-cresol], 4,4'-methylenebis (2-methylpheno) Le), 2,4-dihydroxybenzoic acid methyl, 2,2'-methylenebis (6-cyclohexyl -p
- phenolic curing agent examples include naringenin, leucoquinizarin, 2,2 ′, 4,4′-tetrahydroxybenzophenone, 2,4,4′-trihydroxybenzophenone, 5-methylpyrogallol, 2 ′, 4 ′, 6′-trihydroxypropiophenone, 2,3,4-trihydroxybenzophenone, 2 ′, 3 ′, 4′-trihydroxyacetophenone, 1,1,1-tris (4-hydroxyphenyl) ethane, 2, '3,4,4'-tetrahydroxybenzophenone, 4,4', 4 ''-trihydroxytriphenylmethane, 2,3,4,4'-tetrahydroxybenzophenone, 2,3,4,4 ' -Tetrahydroxydiphenylmethane, 5,5 ', 6,6'-tetrahydroxy-3,3,3', 3'-tetra Til-1,1′-spirobiindane, 2,4,5-trihydroxybenzaldehyde,
- phenolic curing agents include 2,3,4-trihydroxybenzaldehyde, 2,2-bis (4-hydroxyphenyl) propane, and 2,2-bis (4-hydroxyphenyl) hexafluoropropane.
- phenolic curing agent examples include Marca Linker M (trade name; Maruzen Petroleum Corporation), Milex XLC (trade name; Mitsui Chemicals), MEH-7800, MEP-6309, MEH-7500, MEH-8000H, MEH-8005 (trade name; Meiwa Kasei Co., Ltd.), HE-100C (trade name; Air Water Co., Ltd.), YLH-129B65, 170, 171N, YL-6065 (trade name; Mitsubishi Chemical Corporation) Phenolite VH series, Phenolite KH series, BESMOL CZ-256-A (trade name; DIC Corporation), and DPP-6000 series (trade name; Shin Nippon Oil Co., Ltd.).
- the content of the epoxy curing agent is preferably 5% by weight or more based on the total amount of the thermosetting composition from the viewpoint of improving heat resistance and solvent resistance, and 5 to 50 in view of balance with other characteristics. More preferably, it is% by weight.
- thermosetting composition of the present invention may further contain a thermal crosslinker such as a melamine compound or a bisazide compound from the viewpoint of further improving heat resistance and chemical resistance.
- a thermal crosslinker such as a melamine compound or a bisazide compound from the viewpoint of further improving heat resistance and chemical resistance.
- the content of the thermal crosslinking agent is preferably 0.1 to 30% by weight, more preferably 0.05 to 20% by weight, based on the total amount of the thermosetting composition. More preferably, it is 1 to 10% by weight.
- thermal crosslinking agent examples include Nicarak MW-30HM, Nicarak MW-100LM, Nicarak MW-270, Nicarak MW-280, Nicarac MW-290, Nicarac MW-390, Nicarac MW-750LM (trade name; Sanwa Chemical Co., Ltd.).
- Nicalac MW-30HM is preferable from the viewpoints of heat resistance and compatibility.
- thermosetting composition of the present invention may further contain an antioxidant from the viewpoint of weather resistance.
- the content of the antioxidant is preferably 0.01 to 10% by weight, more preferably 0.05 to 8% by weight, based on the total amount of the thermosetting composition. More preferably, the content is 0.1 to 5% by weight.
- the antioxidant include hindered phenol compounds, hindered amine compounds, phosphorus compounds, and sulfur compounds. Among them, the hindered phenol type is more preferable as the antioxidant.
- antioxidant for example, IrganoxFF, Irganox1035, Irganox1035FF, Irganox1076, Irganox1076FD, Irganox1076DWJ, Irganox1098, Irganox1135, Irganox1330, Irganox1726, Irganox1425 WL, Irganox1520L, Irganox245, Irganox245FF, Irganox245DWJ, Irganox259, Irganox3114, Irganox565, Irganox565DD, Irganox 295 (trade name; BASF Japan Ltd.), ADK STAB AO-20, ADK STAB AO-30, ADK STAB AO-50, ADK STAB A -60, STAB AO-70, ADK STAB AO-80 (trade name; Ltd ADEKA), and the like.
- ADK STAB AO-60 ADK STAB AO
- thermosetting composition of the present invention may further contain a polymer dispersant from the viewpoint of further improving the coating uniformity.
- the content of the polymer dispersant is preferably 0.01 to 10% by weight, more preferably 0.05 to 8% by weight, based on the total amount of the thermosetting composition.
- the content is 0.1 to 5% by weight.
- polymer dispersants examples include SOLPERSE 3000, SOLPERSE 5000, SOLPERSE 12000, SOLPERSE 20000, SOLPERSE 32000 (all of which are trade names, Nippon Lubrizol Corporation), Polyflow No. 38, polyflow no. 45, polyflow no. 75, Polyflow No. 85, Polyflow No. 90, polyflow S, polyflow no. 95, Polyflow ATF, Polyflow KL-245 (all are trade names, Kyoeisha Chemical Co., Ltd.).
- thermosetting composition of the present invention may further contain an adhesion improver from the viewpoint of further improving the adhesion between the formed cured film and the substrate.
- the content of the adhesion improver is preferably 10% by weight or less with respect to the total amount of the thermosetting composition.
- the content of the adhesion improver is preferably 0.5% by weight or more based on the total amount of the thermosetting composition.
- a silane-based, aluminum-based or titanate-based coupling agent can be used.
- a titanate coupling agent can be mentioned.
- 3-glycidoxypropyltrimethoxysilane is preferred because of its great effect of improving adhesion.
- thermosetting composition of the present invention may further contain an ultraviolet absorber from the viewpoint of further improving the ability to prevent deterioration of the cured film.
- the content of the ultraviolet absorber is preferably 0.01 to 10% by weight, more preferably 0.05 to 8% by weight, based on the total amount of the thermosetting composition. More preferably, the content is 0.1 to 5% by weight.
- Examples of such an ultraviolet absorber include Tinuvin P, Tinuvin 120, Tinuvin 144, Tinuvin 213, Tinuvin 234, Tinuvin 326, Tinuvin 571, and Tinuvin 765 (all trade names are BASF Japan Ltd.).
- Tinuvin P, Tinuvin 120, and tinuvin 326 are preferable from the viewpoints of transparency and compatibility.
- thermosetting composition of the present invention When the thermosetting composition of the present invention is stored at a temperature in the range of ⁇ 30 ° C. to 25 ° C., the composition is preferably stable over time. If the storage temperature is ⁇ 20 ° C. to 10 ° C., it is more preferable that there is no precipitate.
- the coating solution may be prepared by further diluting the thermosetting composition of the present invention with a solvent depending on the thickness of the cured film to be formed and the coating method selected.
- the cured film of the present invention is a film obtained by curing with heat the coating film formed using the thermosetting composition of the present invention described above.
- a coating film can be formed by apply
- the substrate and the coating method a substrate or a technique usually used in a display element can be used.
- the cured film of the present invention has a thickness of 10 ⁇ m or more, it has not only excellent transparency and heat resistance, but also has excellent effects such as excellent sputtering resistance and no cracks.
- the thickness of the cured film can be measured by a normal apparatus or method, and a value representative of the thickness of the cured film can be adopted.
- the thickness of the cured film can be an average value of measured values obtained at a plurality of locations on the same film.
- the thickness of the cured film is preferably 10 ⁇ m or more, more preferably 15 ⁇ m or more, and further preferably 20 ⁇ m or more. Further, within these ranges, the useful effects described above are remarkably exhibited.
- the thickness of the cured film is preferably 200 ⁇ m or less, more preferably 150 ⁇ m or less, and more preferably 100 ⁇ m or less from the viewpoint of obtaining sufficient transparency and preventing the occurrence of cracks. Further preferred.
- the thickness of the cured film can be adjusted by the thickness of the coating film formed using the thermosetting composition, and the thickness of the film formed using the thermosetting composition is, for example,
- the viscosity of the curable composition and the overcoating of the thermosetting composition can be adjusted.
- the viscosity of a thermosetting composition can be adjusted with the density
- the cured film of the present invention can be formed as follows. First, a thermosetting composition is applied on a substrate such as glass by a known coating method such as spin coating, roll coating, slit coating, or a known printing method such as flexo, offset, gravure, screen, and inkjet. Can print. In the present invention, film formation by screen printing is preferable from the viewpoint of making the film thickness 10 ⁇ m or more.
- substrates include transparent glass substrates such as white plate glass, blue plate glass, and silica coated blue plate glass, synthetic resins such as polycarbonate, polyethersulfone, polyester, acrylic resin, vinyl chloride resin, aromatic polyamide resin, polyamideimide, and polyimide.
- Examples thereof include a metal sheet such as a sheet, a film or a substrate, an aluminum plate, a copper plate, a nickel plate, and a stainless plate, a ceramic plate, and a semiconductor substrate having a photoelectric conversion element. If necessary, these substrates can be subjected to pretreatment such as chemical treatment such as a silane coupling agent, plasma treatment, ion plating, sputtering, gas phase reaction method, and vacuum deposition.
- pretreatment such as chemical treatment such as a silane coupling agent, plasma treatment, ion plating, sputtering, gas phase reaction method, and vacuum deposition.
- the display element of the present invention has the above-described cured film of the present invention.
- the display element of the present invention has the same configuration as that of a normal display element except that it has the cured film of the present invention.
- Examples of such a display element include a liquid crystal display element, a touch panel, a liquid crystal element and touch panel integrated element, and a display element having a light emitting layer made of an organic compound and a touch panel integrated element such as an OLED element. It is done.
- the display element of the present invention includes a liquid crystal display element.
- the liquid crystal display element of the present invention includes, for example, a color filter, a second transparent substrate (for example, a TFT substrate) having a pixel electrode and a common electrode disposed opposite to the color filter, and a liquid crystal sandwiched between both substrates. It has a configuration.
- the cured film can be used as a film that requires transparency and heat resistance.
- the liquid crystal display element includes a step of assembling an alignment-treated color filter substrate and the alignment-treated second transparent substrate through a spacer, a step of encapsulating a liquid crystal material, and a polarizing film attached thereto It is manufactured through a process.
- the cured film is subjected to a coating process of forming a coating film having an appropriate film thickness in any of such manufacturing processes and a baking process of baking the coating film. It can be formed at an appropriate position according to the application.
- the electrode provided on the substrate in the liquid crystal display element is formed by depositing a metal such as chromium on a transparent substrate using a sputtering method or the like and then etching using a resist pattern having a predetermined shape as a mask. .
- thermosetting composition according to a preferred embodiment of the present invention has, for example, high solvent resistance, high water resistance, which are generally required for a cured film formed from a polymer composition, In addition to high acid resistance, high alkali resistance, adhesion to the base, high heat resistance, and high transparency, a cured film excellent in sputtering resistance can be formed.
- thermosetting composition according to a preferred embodiment of the present invention can form a thick film without causing cracks during thermosetting.
- thermosetting composition of the present invention is excellent in transparency, heat resistance and sputtering resistance particularly when it is a cured film having a thickness of several tens of ⁇ m or more. It is suitable for an element and touch panel integrated type, and an OLED element and touch panel integrated type element. Moreover, it is suitable for the coating process which forms the coating film of a suitable film thickness in any of a color filter manufacturing process and a TFT manufacturing process, and the baking process which bakes a coating film.
- the above solution was cooled to room temperature (25 ° C.), a part of the solution was sampled, and the weight average molecular weight of the siloxane polymer (A1) was measured by GPC analysis (polystyrene standard). As a result, the weight average molecular weight (MW) was 4,300. In addition, the ratio of the number of methyl to phenyl in the siloxane polymer (A1) was 2.1.
- Synthesis Example 2 Synthesis of Siloxane Polymer (A2) The same components as those in Synthesis Example 1 were used except that triethoxymethylsilane was used instead of trimethoxymethylsilane as the trifunctional silane represented by the general formula (2). And a reaction was performed under the same conditions as in Synthesis Example 1 to obtain an 80 wt% solution of the siloxane polymer (A2). The siloxane polymer (A2) thus obtained was subjected to GPC analysis and was found to have a weight average molecular weight (Mw) of 4,000. In addition, the ratio of the number of methyl to phenyl in the siloxane polymer (A2) was 2.0. Diethylene glycol methyl ethyl ether 5.32g Trimethylmethoxysilane 1.84g 8.28 g of triethoxymethylsilane Trimethoxyphenylsilane 10.0g
- thermosetting composition 80 wt% solution of siloxane polymer (A1) obtained in Synthesis Example 1 (hereinafter referred to as siloxane polymer (A1)), Byk-342 as a surfactant Then, diethylene glycol methyl ethyl ether as a solvent was mixed and dissolved at the following weight, and filtered through a membrane filter (0.5 ⁇ m) to obtain a thermosetting composition.
- the composition of the obtained thermosetting composition is shown in Table 1.
- Siloxane polymer (A1) 10.00g Diethylene glycol methyl ethyl ether 4.00 g Byk-342 0.01g
- thermosetting compositions In the same manner, the compositions shown in Table 1 were mixed and dissolved to obtain thermosetting compositions of Examples 2 to 5.
- the numbers in parentheses in Table 1 represent parts by weight, and A1 to A5 are 80% by weight solutions of siloxane polymers (A1) to (A5), respectively.
- EDM is an abbreviation for diethylene glycol methyl ethyl ether.
- Ra value The surface roughness (Ra value) of the transparent film formed by spin coating obtained in 1) above was measured. When the Ra value was less than 2 nm, it was judged as good (G: Good), and when it was 2 nm or more, it was judged as bad (NG: No Good).
- G Good
- NG No Good
- a stylus type film thickness meter P-15 manufactured by KLA-Tencor Japan Co., Ltd. was used, and the average value of the measurement at three locations was defined as the surface roughness of the transparent film.
- Table 3 shows the results obtained by the above evaluation methods for the thermosetting compositions of Examples 1 to 5.
- Table 4 shows the results obtained by the above-described evaluation methods for the thermosetting polymer compositions of Comparative Examples 1 to 5.
- Synthesis of Siloxane Polymer (A6) 2.6 g of trimethylmethoxysilane was used as the monofunctional silane represented by the general formula (1), and trimethoxy was used as the trifunctional silane represented by the general formula (2). Except that 20.0 g of phenylsilane was used, the same components as those in Synthesis Example 1 were charged in the following weights and reacted under the same conditions as in Synthesis Example 1 to obtain an 80 wt% solution of the siloxane polymer (A6). In the siloxane polymer (A6), the ratio of the number of methyl groups to phenyl was 0.5.
- Synthesis Example 7 Synthesis of Siloxane Polymer (A7) 2.15 g of trimethylmethoxysilane was used as the monofunctional silane represented by the general formula (1), and trimethoxy was used as the trifunctional silane represented by the general formula (2). Except for using 4.00 g of methylsilane and 17.45 g of trimethoxyphenylsilane, the same components as those in Synthesis Example 1 were charged in the following weights, and the reaction was performed under the same conditions as in Synthesis Example 1 to obtain a siloxane polymer (A7). An 80 wt% solution was obtained. In the siloxane polymer (A7), the ratio of the number of methyl groups to phenyl was 1.0.
- Synthesis Example 8 Synthesis of Siloxane Polymer (A8) 1.84 g of trimethylmethoxysilane was used as the monofunctional silane represented by the general formula (1), and trimethoxy was used as the trifunctional silane represented by the general formula (2). Except for using 6.90 g of methylsilane and 10.0 g of trimethoxyphenylsilane, the same components as in Synthesis Example 1 were charged with the following weights, and the reaction was performed under the same conditions as in Synthesis Example 1 to obtain a siloxane polymer (A8). An 80 wt% solution was obtained. In the siloxane polymer (A8), the ratio of the number of methyl groups to phenyl was 2.1.
- Synthesis of Siloxane Polymer (A9) 2.00 g of trimethylmethoxysilane was used as the monofunctional silane represented by the general formula (1), and trimethoxy was used as the trifunctional silane represented by the general formula (2). Except for using 5.00 g of methylsilane and 7.30 g of trimethoxyphenylsilane, the same components as in Synthesis Example 1 were charged with the following weights, and the reaction was performed under the same conditions as in Synthesis Example 1 to obtain a siloxane polymer (A9). An 80 wt% solution was obtained. In the siloxane polymer (A9), the ratio of the number of methyl groups to phenyl was 2.5.
- thermosetting composition In the same manner as in Examples 2 to 5, the compositions shown in Table 5 were mixed and dissolved to obtain thermosetting compositions of Examples 6 to 9.
- the numbers in parentheses in Table 5 represent parts by weight, and A6 to A9 are 80% by weight solutions of siloxane polymers (A6) to (A9), respectively.
- EDM is an abbreviation for diethylene glycol methyl ethyl ether.
- thermosetting composition was spin-coated on a glass substrate for 10 seconds at an arbitrary rotational speed of 400 to 1,000 rpm, and prebaked on a hot plate at 100 ° C. for 5 minutes. Further, this substrate was post-baked in an oven at 250 ° C. or 300 ° C. for 30 minutes to form a transparent film having a thickness of about 20 ⁇ m. After returning the substrate taken out of the oven to room temperature, the thickness of the obtained transparent film was measured. For measurement of the film thickness, a stylus-type film thickness meter P-15 manufactured by KLA-Tencor Japan Co., Ltd. was used, and the average value of three measurements was taken as the film thickness of the transparent film. When the transparent film was cooled to room temperature, it was visually confirmed whether or not the transparent film cracked. The case where a crack does not occur was designated as “G”, and the case where a crack occurred was designated as “NG”.
- the siloxane polymer (A) when the silane constituting the siloxane polymer (A) is a group containing methyl and phenyl, the ratio of the number of methyl to phenyl in the produced siloxane polymer (A) is 1 It turns out that it is excellent also in heat resistance (300 degreeC, 30 minutes) in high temperature in addition to normal heat resistance (250 degreeC, 30 minutes) as it is above.
- thermosetting composition of the present invention can be used, for example, in the production process of a liquid crystal display element, a touch panel, a liquid crystal display element with a touch panel, and an OLED display element with a touch panel.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Silicon Polymers (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Paints Or Removers (AREA)
Abstract
Description
本発明は以下の構成を有する。
(式(1)~(2)中、Rはそれぞれ独立して、水素、任意の水素がハロゲンで置き換えられてもよい炭素数1~10のアルキル、任意の水素がハロゲンで置き換えられてもよい炭素数6~10のアリール、又は任意の水素がハロゲンで置き換えられてもよい炭素数2~10のアルケニルであり、R’はそれぞれ独立して、加水分解性基である。)
本発明の熱硬化性組成物は、シロキサンポリマーと溶剤を含有する熱硬化性組成物であって、前記シロキサンポリマーが、下記一般式(1)で表される1官能シランと一般式(2)で表される3官能シランを含有するシラン混合物を反応させることによって得られるシロキサンポリマー(A)を、シロキサンポリマーの総量に対して90重量%以上含有する。また本発明の熱硬化性組成物は、本発明の効果が得られる範囲において、シロキサンポリマー(A)及び溶剤以外の他の成分をさらに含有していてもよい。
前記シロキサンポリマー(A)は、一般式(1)で表される1官能シランと、一般式(2)で表される3官能シランを含有するシラン混合物を反応させることによって得られる。一般式(1)で表される1官能シラン及び一般式(2)で表される3官能シランの好ましい混合割合(モル比)は、一般式(1)で表される1官能シランの1モルに対して、一般式(2)で表される3官能シランが、耐スパッタリング性及び耐クラック性の観点から、1~20モルであり、より好ましくは1~15モルであり、さらに好ましくは1~10モルである。
下記一般式(1)で表される1官能シランにおいて、Rはそれぞれ独立して、水素、任意の水素がハロゲンで置き換えられてもよい炭素数1~10のアルキル、任意の水素がハロゲンで置き換えられてもよい炭素数6~10のアリール、又は任意の水素がハロゲンで置き換えられてもよい炭素数2~10のアルケニルであり、R’はそれぞれ独立して、加水分解性基である。
これらのうち、Rはそれぞれ独立して、メチル、エチルまたはフェニルであり、R’はそれぞれ独立して、メトキシ又はエトキシであることがより好ましい。
下記一般式(2)で表される3官能シランにおいて、Rはそれぞれ独立して、水素、任意の水素がハロゲンで置き換えられてもよい炭素数1~10のアルキル、任意の水素がハロゲンで置き換えられてもよい炭素数6~10のアリール、又は任意の水素がハロゲンで置き換えられてもよい炭素数2~10のアルケニルであり、R’はそれぞれ独立して、加水分解性基である。
また、一般式(2)で表される3官能シランのうち、そのRが、任意の水素がハロゲンで置き換えられてもよい炭素数6~10のアリールである3官能シランの割合が、3官能シラン全量に対して30モル%以上である。
Rが上記特定のアリールである3官能シランの割合が、3官能シラン全量に対して40モル%以上であることがより好ましく、45モル%以上であることがより好ましい。
一方、このRが上記特定のアリールである3官能シランの割合が、3官能シラン全量に対して70モル%以下であることが好ましく、60モル%以下であることがより好ましく、55モル%以下であることが特に好ましい。
これらのうち、Rはそれぞれ独立して、メチル、エチルまたはフェニルであり、R’はそれぞれ独立して、メトキシ又はエトキシであることがより好ましい。
このときのアルキルとしては、メチルまたはエチルであることが好ましく、アリールとしてはフェニルであることがより好ましい。
そのような一般式(2)で表される3官能シランとしては、例えば、トリメトキシメチルシラン、トリメトキシフェニルシラン、トリエトキシメチルシラン、及びトリエトキシフェニルシランが挙げられる。
これらの3官能シランは、得られる熱硬化性組成物から形成される硬化膜において、膜の緻密性を向上させる観点から好ましい。
一般式(2)で表される3官能シランについて、上記の特定のアリールをRとして有する3官能シランの割合が、3官能シラン全量に対して上記特定の割合を満たすために、これらの3官能シランのうち、トリメトキシフェニルシラン及びトリエトキシフェニルシランから選ばれる一以上を含むことが好ましい。
これらのトリメトキシフェニルシラン及びトリエトキシフェニルシランから選ばれる一以上の含有量は、3官能シラン全量に対して30モル%以上であることが好ましく、40モル%以上であることがより好ましく、45モル%以上であることがより好ましい。
一方、これらのトリメトキシフェニルシラン及びトリエトキシフェニルシランの少なくともいずれか一方の含有量は、3官能シラン全量に対して70モル%以下であることが好ましく、60モル%以下であることがより好ましく、55モル%以下であることが特に好ましい。
一般式(2)で表される3官能シランについて、上記の特定のアリールをRとして有さないものとして好ましいのは、トリメトキシメチルシランおよびトリエトキシメチルシランから選ばれる1以上である。
シロキサンポリマー(A)において、一般式(1)で表される1官能シランのRと、一般式(2)で表される3官能シランのRに起因して、メチルとフェニルの両方がポリマー(A)に含まれる場合、作製されたシロキサンポリマー(A)におけるフェニルに対するメチルの数の比が1.0~3.0であることが好ましく、1.0~2.5であることがより好ましい。
フェニルに対するメチルの数の比が1.0以上であると、熱硬化性組成物の高い耐熱性(250℃、30分)を確保できる。また、フェニルに対するメチルの数の比が3.0以下であることで、シロキサンポリマーがゲル化することを防ぐことができる。
このとき、一般式(1)で表される1官能シランと、一般式(2)で表される3官能シランのRの総数のうち、メチル及びフェニルの占める割合が50%以上であることが好ましく、80%以上であることがより好ましく、100%であることがより好ましい。
メチル及びフェニル以外のRとしては、例えばエチル、プロピル、ブチル、シクロペンタン、シクロヘキシルが例示できる。
なお、シロキサンポリマー(A)における、フェニルに対するメチルの数の比は、例えばNMR(核磁気共鳴)を用いた測定法により測定することができる。
シロキサンポリマー(A)の原料となるシラン混合物中には、本発明の効果を妨げない範囲で、他のシランが含まれてもよい。
シロキサンポリマー(A)の原料となるシラン混合物中に、一般式(1)で表される1官能シラン及び一般式(2)で表される3官能シラン以外に含まれてもよい成分として、慣用のシラン化合物が挙げられる。そのような慣用のシラン化合物を用いる場合、シロキサンポリマー(A)の原料となるシラン混合物中での慣用のシラン化合物の含有量は、通常1~10重量%である。
シロキサンポリマー(A)は、前記一般式(1)で表される1官能シランと一般式(2)で表される3官能シランを反応させることによって得られる。ここでいう反応とは具体的には下記のように加水分解および縮合させることを含む。シロキサンポリマー(A)の反応方法は特に制限されないが、上記シラン類を加水分解および縮合させて作ることが可能である。加水分解には水と、酸あるいは塩基触媒を用いることができる。酸触媒としては、ギ酸、酢酸、トリフルオロ酢酸、硝酸、硫酸、塩酸、フッ酸、ホウ酸、リン酸、陽イオン交換樹脂等、また塩基触媒としてはアンモニア、トリエチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、水酸化ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム、水酸化カリウム、陰イオン交換樹脂等が挙げられる。反応温度は特に限定されないが、通常50℃~150℃の範囲である。反応時間も特に限定されないが、通常1~48時間の範囲である。また、当該反応は、加圧、減圧又は大気圧のいずれの圧力下でも行うことができる。反応後は、シロキサンポリマー(A)を安定化させるために、留去により低分子量成分を除去するのが好ましい。留去は減圧でも常圧でも可能で、常圧では留去温度は通常100℃~200℃程度である。
本発明で用いられる溶剤は、沸点が100~300℃である溶剤を20重量%以上含有する混合溶剤であってもよい。混合溶剤における、沸点が100~300℃である溶剤以外の溶剤には、公知の溶剤の一又は二以上を用いることができる。溶剤の含有量は、熱硬化性組成物全量に対して、20~80重量%であることが好ましく、20~70重量%であることがより好ましく、20~50重量%であることがさらに好ましい。
本発明の熱硬化性組成物において、シロキサンポリマー(A)、溶剤以外にその他の成分が含まれてもよい。その他の成分としては、例えば、シロキサンポリマー(A)以外のシロキサンポリマー(その他のシロキサンポリマー)、界面活性剤、エポキシ樹脂、エポキシ硬化剤、メラミン化合物もしくはビスアジド化合物等の熱架橋剤、酸化防止剤、アクリル系、スチレン系、ポリエチレンイミン系もしくはウレタン系の高分子分散剤、シランカップリング剤等の密着性向上剤、アルコキシベンゾフェノン類等の紫外線吸収剤が挙げられる。前記他の成分は全体で一種でも二種以上でも添加してもよく、またそれぞれにおいても一種でも二種以上でもよい。
本発明の熱硬化性組成物は、種々の性能を向上させるために、その他のシロキサンポリマーをさらに含有してもよい。このようなその他のシロキサンポリマーとしては、慣用のシロキサンポリマーを、本発明の効果を損なわない範囲の慣用の含有量の範囲で用いることができる。なお、本発明の熱硬化性組成物に含有させるシロキサンポリマーのうち、シロキサンポリマー(A)が占める割合は、90重量%以上であり、95重量%以上であることがより好ましく、99重量%以上であることが特に好ましい。
本発明の熱硬化性組成物には、その他のポリマーとして下記式(3)で表される2官能シランや下記式(4)で表される4官能シランを反応(加水分解及び縮合)させることによって得られるシロキサンポリマーは、耐クラック性を良好にする観点から添加しないことが好ましい。
本発明の熱硬化性組成物は、塗布均一性や、成膜を印刷方法で行う場合の印刷後のレベリング性をさらに向上させる観点から、界面活性剤をさらに含有してもよい。このような観点から、界面活性剤を含有する場合、その含有量は、熱硬化性組成物全量に対して、0.01~10重量%であることが好ましく、0.05~8重量%であることがより好ましく、0.1~5重量%であることがさらに好ましい。
本発明の熱硬化性組成物は、耐熱性、耐薬品性、膜面内均一性、可撓性、柔軟性、弾性をさらに向上させる観点から、エポキシ樹脂をさらに含有してもよい。
このような目的で添加されるエポキシ樹脂としては、例えば、エピコート871、エピコート872、エピコート4250、エピコート4275(商品名;三菱化学株式会社)、EPICLON TSR-960、EPICLON TSR-601、EPICLON TSR-250-80BX、EPICLON 1600-75X(商品名;DIC株式会社)、YD-171、YD-172、YD-175X75、PG-207、ZX-1627、YD-716(商品名;東都化成株式会社)、アデカレジンEP-4000、アデカレジンEP-4000S、アデカレジンEPB1200、アデカレジンEPB1200(商品名;株式会社ADEKA)、EX-832、EX-841、EX-931、デナレックスR-45EPT(商品名;ナガセケムテックス株式会社)、BPO-20E、BPO-60E(商品名;新日本理化株式会社)、エポライト400E、エポライト400P、エポライト3002(商品名;共栄社化学株式会社)、SR-8EG、SR-4PG(商
品名;阪本薬品株式会社)、Heloxy 84、Heloxy 505(商品名;Hexion株式会社)、SB-20G、IPU-22G(商品名;岡村製油株式会社)、エポリードPB3600(商品名;株式会社ダイセル)、EPB-13(商品名;日本曹達株式会社)が挙げられる。
本発明の熱硬化性組成物が、その他の成分としてエポキシ樹脂を含む場合は、硬化膜の耐熱性、耐薬品性、可撓性、柔軟性を向上させるためにエポキシ硬化剤を含有することが好ましい。エポキシ硬化剤としては、例えばカルボン酸系硬化剤、酸無水物系硬化剤、アミン系硬化剤、フェノール系硬化剤、及び触媒型硬化剤が挙げられる。エポキシ硬化剤は、着色の抑制及び耐熱性の点から、カルボン酸系硬化剤、酸無水物硬化剤、又はフェノール系硬化剤であることがより好ましい。
本発明の熱硬化性組成物は、耐熱性、耐薬品性をさらに向上させる観点から、メラミン化合物もしくはビスアジド化合物等の熱架橋剤をさらに含有してもよい。このような観点から、熱架橋剤の含有量は、熱硬化性組成物全量に対して、0.1~30重量%であることが好ましく、0.05~20重量%であることがより好ましく、1~10重量%であることがさらに好ましい。
本発明の熱硬化性組成物は、耐候性の点から酸化防止剤をさらに含有してもよい。このような観点から、酸化防止剤の含有量は、熱硬化性組成物全量に対して、0.01~10重量%であることが好ましく、0.05~8重量%であることがより好ましく、0.1~5重量%であることがさらに好ましい。酸化防止剤としては、例えばヒンダードフェノール系、ヒンダードアミン系、リン系、イオウ系化合物が挙げられる。酸化防止剤は、中でもヒンダードフェノール系がより好ましい。
本発明の熱硬化性組成物は、塗布均一性をさらに向上させる観点から、高分子分散剤をさらに含有してもよい。このような観点から、高分子分散剤の含有量は、熱硬化性組成物全量に対して、0.01~10重量%であることが好ましく、0.05~8重量%であることがより好ましく、0.1~5重量%であることがさらに好ましい。
本発明の熱硬化性組成物は、形成される硬化膜と基板との密着性をさらに向上させる観点から、密着性向上剤をさらに含有してもよい。このような観点から、密着性向上剤の含有量は、熱硬化性組成物全量に対して、10重量%以下であることが好ましい。一方、密着性向上剤の含有量は、熱硬化性組成物のこれを含有させる場合、その全量に対して、0.5重量%以上であることが好ましい。
本発明の熱硬化性組成物は、硬化膜の劣化防止能をさらに向上させる観点から、紫外線吸収剤をさらに含有してもよい。このような観点から、紫外線吸収剤の含有量は、熱硬化性組成物全量に対して、0.01~10重量%であることが好ましく、0.05~8重量%であることがより好ましく、0.1~5重量%であることがさらに好ましい。
本発明の熱硬化性組成物は、温度-30℃~25℃の範囲で保存すると、組成物の経時安定性が良好となり好ましい。保存温度が-20℃~10℃であれば、析出物もなく一層好ましい。
形成する硬化膜の膜厚および選択する塗布方法により、本発明の熱硬化性組成物を溶剤でさらに希釈して、塗布液を調整してもよい。
本発明の硬化膜は、前述した本発明の熱硬化性組成物を用いて形成された塗膜を熱によって硬化させて得られる膜である。塗膜は、基板上に本発明の熱硬化性組成物を塗布することによって形成することができる。基板及び塗布方法には、表示素子において通常使用される基板や技術を用いることができる。
まず、熱硬化性組成物をスピンコート、ロールコート、スリットコート等の公知の塗布方法、または、フレキソ、オフセット、グラビア、スクリーン、インクジェット等の公知の印刷方法によって、ガラス等の基板上に塗布または印刷できる。本発明においては、10μm以上の膜厚にする観点からスクリーン印刷による成膜が好ましい。
基板としては、例えば、白板ガラス、青板ガラス、シリカコート青板ガラス等の透明ガラス基板、ポリカーボネート、ポリエーテルスルホン、ポリエステル、アクリル樹脂、塩化ビニール樹脂、芳香族ポリアミド樹脂、ポリアミドイミド、ポリイミド等の合成樹脂製シート、フィルム又は基板、アルミニウム板、銅板、ニッケル板、ステンレス板等の金属基板、その他セラミック板、光電変換素子を有する半導体基板等を挙げることができる。これらの基板には所望により、シランカップリング剤等の薬品処理、プラズマ処理、イオンプレーティング、スパッタリング、気相反応法、真空蒸着等の前処理を行うことができる。
本発明の表示素子は、前述した本発明の硬化膜を有する。本発明の表示素子は、本発明の硬化膜を有する以外は、通常の表示素子と同様の構成を有する。このような表示素子としては、例えば、液晶表示素子、タッチパネル、液晶素子とタッチパネル一体型の素子、及びOLED素子等の、有機化合物による発光層を有する表示素子とタッチパネルとの一体型の素子が挙げられる。
攪拌器付4つ口フラスコに、反応溶媒としてジエチレングリコールメチルエチルエーテル、一般式(1)で表される1官能シランとしてトリメチルメトキシシラン、一般式(2)で表される3官能シランとしてトリメトキシメチルシラン及びトリメトキシフェニルシランを下記の重量で仕込み、さらにギ酸0.19g、リン酸0.08g、水5.81gの混合溶液を滴下して加えた。その後、80℃で1時間加熱し、さらに低分子成分を2.5時間留去して除去し、さらに130℃で2時間留去してシロキサンポリマー(A1)の80重量%溶液を得た。留去で除去した低沸点成分は、合計21.07gであった。
ジエチレングリコールメチルエチルエーテル 4.91g
トリメチルメトキシシラン 1.84g
トリメトキシメチルシラン 6.90g
トリメトキシフェニルシラン 10.0g
一般式(2)で表される3官能シランとしてトリメトキシメチルシランの代わりにトリエトキシメチルシランを使用した以外は、合成例1と同じ成分を下記の重量で仕込み、合成例1と同じ条件で反応を行い、シロキサンポリマー(A2)の80重量%溶液を得た。このようにして得られたシロキサンポリマー(A2)をGPC分析したところ重量平均分子量(Mw)は、4,000であった。なお、シロキサンポリマー(A2)における、フェニルに対するメチルの数の比は、2.0であった。
ジエチレングリコールメチルエチルエーテル 5.32g
トリメチルメトキシシラン 1.84g
トリエトキシメチルシラン 8.28g
トリメトキシフェニルシラン 10.0g
一般式(2)で表される3官能シランとしてトリメトキシフェニルシランの代わりにトリエトキシフェニルシランを使用した以外は、合成例1と同じ成分を下記の重量で仕込み、合成例1と同じ条件で反応を行い、シロキサンポリマー(A3)の80重量%溶液を得た。このようにして得られたシロキサンポリマー(A3)をGPC分析したところ重量平均分子量(Mw)は、3,700であった。なお、シロキサンポリマー(A3)における、フェニルに対するメチルの数の比は、2.0であった。
ジエチレングリコールメチルエチルエーテル 5.29g
トリメチルメトキシシラン 1.84g
トリメトキシメチルシラン 6.90g
トリエトキシフェニルシラン 12.2g
トリメチルメトキシシラン、トリメトキシメチルシラン及びトリメトキシフェニルシランを下記の重量で仕込み、合成例1と同じ条件で反応を行い、シロキサンポリマー(A4)の80重量%溶液を得た。このようにして得られたシロキサンポリマー(A4)をGPC分析したところ重量平均分子量(Mw)は、4,200であった。なお、シロキサンポリマー(A4)における、フェニルに対するメチルの数の比は、1.7であった。
ジエチレングリコールメチルエチルエーテル 4.81g
トリメチルメトキシシラン 1.72g
トリメトキシメチルシラン 8.20g
トリメトキシフェニルシラン 12.0g
トリメチルメトキシシラン、トリメトキシメチルシラン及びトリメトキシフェニルシランを下記の重量で仕込み、合成例1と同じ条件で反応を行い、シロキサンポリマー(A5)の80重量%溶液を得た。このようにして得られたシロキサンポリマー(A5)をGPC分析したところ重量平均分子量(Mw)は、3,200であった。なお、シロキサンポリマー(A5)における、フェニルに対するメチルの数の比は、2.5であった。
ジエチレングリコールメチルエチルエーテル 5.10g
トリメチルメトキシシラン 2.38g
トリメトキシメチルシラン 7.00g
トリメトキシフェニルシラン 9.48g
合成例1で得られたシロキサンポリマー(A1)の80重量%溶液(以下では、シロキサンポリマー(A1)と呼ぶ)、界面活性剤であるByk-342、溶媒としてジエチレングリコールメチルエチルエーテルを下記の重量で混合溶解し、メンブレンフィルター(0.5μm)で濾過して熱硬化性組成物を得た。得られた熱硬化性組成物の組成を表1に示す。
シロキサンポリマー(A1) 10.00g
ジエチレングリコールメチルエチルエーテル 4.00g
Byk-342 0.01g
以下同様にして、表1に示す組成で混合溶解し、実施例2~5の熱硬化性組成物を得た。なお、表1中の括弧内の数字は重量部を表し、A1~A5はそれぞれシロキサンポリマー(A1)~(A5)の80重量%溶液のことである。EDMはジエチレングリコールメチルエチルエーテルの略号である。
重合溶媒としてジエチレングリコールメチルエチルエーテル、2官能シランとしてメチルフェニルジメトキシシラン、4官能シランとしてテトラエトキシシランを下記の重量で仕込み、合成例1と同じ条件で反応を行い、比較シロキサンポリマー(E1)の80重量%溶液を得た。このようにして得られたシロキサンポリマー(E1)のGPC分析により求めた重量平均分子量(Mw)は、2,900であった。
ジエチレングリコールメチルエチルエーテル 8.53g
メチルフェニルジメトキシシラン 12.3g
テトラエトキシシラン 7.00g
1官能シランとしてトリメチルメトキシシラン、3官能シランとしてトリメトキシメチルシラン及びトリメトキシフェニルシラン、2官能シランとしてメチルフェニルジメトキシシラン、及び4官能シランとしてテトラエトキシシランを下記の重量で仕込み、合成例1と同じ条件で反応を行い、比較シロキサンポリマー(E2)の80重量%溶液を得た。このようにして得られたシロキサンポリマー(E2)のGPC分析により求めた重量平均分子量(Mw)は、9,800であった。
ジエチレングリコールメチルエチルエーテル 6.41g
トリメチルメトキシシラン 0.98g
トリメトキシメチルシラン 1.50g
トリメトキシフェニルシラン 5.30g
メチルフェニルジメトキシシラン 4.08g
テトラエトキシシラン 3.50g
1官能シランとしてトリメチルエトキシシラン、及び3官能シランとしてトリエトキシメチルシランを下記の重量で仕込み、さらに塩酸0.04g、水9.00gの混合溶液を滴下して加えた。その後、80℃で4時間加熱し、さらに低分子成分を2.5時間留去して除去し、さらに130℃で2時間留去してシロキサンポリマー(E3)の80重量%溶液を得た。このようにして得られたシロキサンポリマー(E3)のGPC分析により求めた重量平均分子量(Mw)は、12,500であった。
ジエチレングリコールメチルエチルエーテル 11.0g
トリメチルエトキシシラン 4.0g
トリエトキシメチルシラン 28.5g
1官能シランとしてトリメチルメトキシシラン、及び4官能シランとしてテトラエトキシシランを下記の重量で仕込み、合成例1と同じ条件で反応を行った。
ジエチレングリコールメチルエチルエーテル 4.73g
トリメチルメトキシシラン 1.80g
テトラエトキシシラン 12.8g
反応液は反応中にゲル化し、目的のポリマーは得られなかった。
1官能シランとしてトリメチルメトキシシラン、及び2官能シランとしてメチルフェニルジメトキシシランを使用し、合成例1と同じ条件で反応を行い、比較シロキサンポリマー(E5)の80重量%溶液を得た。
ジエチレングリコールメチルエチルエーテル 5.92g
トリメチルエトキシシラン 1.80g
メチルフェニルジメトキシシラン 11.0g
このようにして得られたシロキサンポリマー(E5)をGPC分析したが、ピークが検出されなかった。
1官能シランとしてトリメチルメトキシシランを使用し、合成例1と同じ条件で反応を行い、比較シロキサンポリマー(E6)の80重量%溶液を得た。
ジエチレングリコールメチルエチルエーテル 5.92g
トリメチルエトキシシラン 12.8g
このようにして得られたシロキサンポリマー(E6)をGPC分析したが、ピークが検出されなかった。
3官能シランとしてトリメトキシメチルシラン及びトリメトキシフェニルシランを使用し、合成例1と同じ条件で反応を行った。
ジエチレングリコールメチルエチルエーテル 12.5g
トリメトキシメチルシラン 9.40g
トリメトキシフェニルシラン 13.7g
反応液は反応中にゲル化し、目的のポリマーは得られなかった。
合成例1、比較合成例1~3で得られたシロキサンポリマー溶液から、実施例1~5と同様にして、比較例1~5の熱硬化性組成物を得た。なお、表2中の括弧内の数字は重量部を表し、A1はシロキサンポリマー(A1)の80重量%溶液のことで、E1~E3はそれぞれシロキサンポリマー(E1)~(E3)の80重量%溶液のことである。EDMはジエチレングリコールメチルエチルエーテルの略号である。なお、比較合成例4~7では、比較シロキサンポリマーの溶液が得られなかったので、熱硬化性組成物は作成しなかった。
1)透明膜の形成
ガラス基板上に熱硬化性組成物を400~1,000rpmの任意の回転数で10秒間スピンコートまたは、スクリーン印刷によりベタ膜を形成し、100℃のホットプレート上で5分間プリベイク乾燥した。さらに、この基板をオーブン中300℃で30分ポストベイクし、膜厚が約20μmの透明膜を形成した。オーブンから取り出した基板を室温まで戻した後、得られた透明膜の膜厚を測定した。膜厚の測定にはKLA-Tencor Japan株式会社製触針式膜厚計P-15を使用し、3箇所の測定の平均値を透明膜の膜厚とした。
上記1)で透明膜をスピンコートまたはスクリーン印刷で作製する際、プリベイク乾燥時の塗布性(基板ハジキ)を目視により観察した。基板ハジキやピンホールが見られなかった場合は良好(G:Good)と、基板ハジキやピンホールが見られた場合は不良(NG:No Good)と判定した。
上記1)でスピンコートまたはスクリーン印刷で得られた透明膜のクラックの有無を目視により観察した。膜面にクラックが生じなかった場合は良好(G:Good)と、膜面にクラックが生じた場合は不良(NG:No Good)と判定した。
上記1)で得られた、スピンコート成膜した透明膜の表面粗度(Ra値)を測定した。Ra値が2nm未満の場合は良好(G:Good)と、2nm以上の場合は不良(NG:No Good)と判定した。測定にはKLA-Tencor Japan株式会社製触針式膜厚計P-15を使用し、3箇所の測定の平均値を透明膜の表面粗度とした。
日本分光(株)製紫外可視近赤外分光光度計V-670を使用し、透明膜を形成していないガラス基板をリファレンスとして、上記1)で得られた、スピンコート成膜した透明膜が形成されている基板の波長400nmでの光透過率を測定した。透過率が95T%以上の場合は良好(G:Good)と、95T%未満の場合は不良(NG:No Good)と判定した。
上記1)で得られた、スピンコート成膜した透明膜が形成されている基板を50℃の塩酸/硝酸/水=4/2/4(重量比)に10分間浸漬し、膜厚の変化を測定した。浸漬の前後で上記1)と同様に膜厚を測定し、次式から計算した。
(浸漬後膜厚/浸漬前膜厚)×100(%)
膜厚の変化率が-5~5%の時が良好(G:Good)、膨潤により5%を超えたり、溶解により-5%より減少した時は不良(NG:No Good)と判定した。
上記1)で得られた、スピンコート成膜した透明膜が形成されている基板を60℃の5%水酸化ナトリウム水溶液に10分間浸漬し、膜厚の変化を測定した。浸漬の前後で上記1)と同様に膜厚を測定し、次式から計算した。
(浸漬後膜厚/浸漬前膜厚)×100(%)
膜厚の変化率が-5~5%の時が良好(G:Good)、膨潤により5%を超えたり、溶解により-5%より減少した時は不良(NG:No Good)と判定した。
上記1)で得られた、スピンコート成膜した透明膜が形成されている基板を300℃のオーブンで1時間加熱し、上記5)と同様に光透過率を測定し、さらに加熱の前後で上記1)と同様に膜厚を測定し、次式から計算した。
(加熱後膜厚/加熱前膜厚)×100(%)
膜厚の変化率が-5%未満の時が良好(G:Good)、加熱後の膜厚の変化率が-5%以上の時は不良(NG:No Good)と判定した。
上記1)で得られた、スピンコート成膜した透明膜上にITOをスパッタリング処理した際の膜面状態を、目視により観察した。膜面にクラックが生じなかった場合は良好(G:Good)と、膜面にクラックが生じた場合は不良(NG:No Good)と判定した。
[合成例6]シロキサンポリマー(A6)の合成
一般式(1)で表される1官能シランとしてトリメチルメトキシシランを2.6g使用し、一般式(2)で表される3官能シランとしてトリメトキシフェニルシランを20.0g使用した以外は、合成例1と同じ成分を下記の重量で仕込み、合成例1と同じ条件で反応を行い、シロキサンポリマー(A6)の80重量%溶液を得た。なお、シロキサンポリマー(A6)における、フェニルに対するメチルの基の数の比は、0.5であった。
一般式(1)で表される1官能シランとしてトリメチルメトキシシランを2.15g使用し、一般式(2)で表される3官能シランとしてトリメトキシメチルシランを4.00g、トリメトキシフェニルシランを17.45g使用した以外は、合成例1と同じ成分を下記の重量で仕込み、合成例1と同じ条件で反応を行い、シロキサンポリマー(A7)の80重量%溶液を得た。なお、シロキサンポリマー(A7)における、フェニルに対するメチルの基の数の比は、1.0であった。
一般式(1)で表される1官能シランとしてトリメチルメトキシシランを1.84g使用し、一般式(2)で表される3官能シランとしてトリメトキシメチルシランを6.90g、トリメトキシフェニルシランを10.0g使用した以外は、合成例1と同じ成分を下記の重量で仕込み、合成例1と同じ条件で反応を行い、シロキサンポリマー(A8)の80重量%溶液を得た。なお、シロキサンポリマー(A8)における、フェニルに対するメチルの基の数の比は、2.1であった。
一般式(1)で表される1官能シランとしてトリメチルメトキシシランを2.00g使用し、一般式(2)で表される3官能シランとしてトリメトキシメチルシランを5.00g、トリメトキシフェニルシランを7.30g使用した以外は、合成例1と同じ成分を下記の重量で仕込み、合成例1と同じ条件で反応を行い、シロキサンポリマー(A9)の80重量%溶液を得た。なお、シロキサンポリマー(A9)における、フェニルに対するメチルの基の数の比は、2.5であった。
実施例2~5と同様にして、表5に示す組成で混合溶解し、実施例6~9の熱硬化性組成物を得た。なお、表5中の括弧内の数字は重量部を表し、A6~A9はそれぞれシロキサンポリマー(A6)~(A9)の80重量%溶液のことである。EDMはジエチレングリコールメチルエチルエーテルの略号である。
ガラス基板上に熱硬化性組成物を400~1,000rpmの任意の回転数で10秒間スピンコートし、100℃のホットプレート上で5分間プリベイク乾燥した。さらに、この基板をオーブン中250℃あるいは300℃で30分ポストベイクし、膜厚が約20μmの透明膜を形成した。オーブンから取り出した基板を室温まで戻した後、得られた透明膜の膜厚を測定した。膜厚の測定にはKLA-Tencor Japan株式会社製触針式膜厚計P-15を使用し、3箇所の測定の平均値を透明膜の膜厚とした。
透明膜を室温まで冷却した際に、透明膜にクラックが入るかどうかを目視で確認した。クラックが入らない場合を「G」、入る場合を「NG」とした。
Claims (8)
- シロキサンポリマーと溶剤を含有する熱硬化性組成物であって、前記シロキサンポリマーが、下記一般式(1)で表される1官能シランと下記一般式(2)で表される3官能シランを含有するシラン混合物を反応させることによって得られるシロキサンポリマー(A)を、シロキサンポリマーの総量に対して90重量%以上含有し、前記一般式(2)で表される3官能シランとして、Rが、任意の水素がハロゲンで置き換えられてもよい炭素数6~10のアリールである3官能シランを含み、その割合が、3官能シラン全量に対して30モル%以上である、熱硬化性組成物。
- 一般式(1)~(2)において、Rがそれぞれ独立して、水素、任意の水素がハロゲンで置き換えられてもよい炭素数1~5のアルキル、任意の水素がハロゲンで置き換えられてもよい炭素数6~10のアリール、又は任意の水素がハロゲンで置き換えられてもよい炭素数2~10のアルケニルであり、R’がそれぞれ独立して、アルコキシ、ハロゲン、又はアセトキシルである、請求項1に記載の熱硬化性組成物。
- 一般式(1)で表される1官能シランがトリメチルメトキシシラン及びトリメチルエトキシシランからなる群から選ばれる一以上である、請求項1または2に記載の熱硬化性組成物。
- 一般式(2)で表される3官能シランがトリエトキシフェニルシラン及びトリメトキシメチルシランから選ばれる一以上と、トリメトキシフェニルシラン及びトリエトキシメチルシランから選ばれる一以上との混合物である、請求項1~3のいずれか一項に記載の熱硬化性組成物。
- 一般式(1)で表される1官能シランがトリメチルメトキシシランであり、一般式(2)で表される3官能シランがトリメトキシメチルシラン及びトリメトキシフェニルシランの混合物である、請求項1~4のいずれか一項に記載の熱硬化性組成物。
- シロキサンポリマー(A)におけるフェニルとメチルの数の比が、1.0~3.0である、請求項5に記載の熱硬化性組成物。
- 請求項1~6のいずれか一項に記載の熱硬化性組成物を200℃以上で熱硬化させて得られた、膜厚10~200μmの硬化膜。
- 請求項7に記載の硬化膜を有する表示素子。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/436,650 US20160168418A1 (en) | 2012-10-19 | 2013-08-22 | Heat-curable composition |
JP2014541986A JP6191613B2 (ja) | 2012-10-19 | 2013-08-22 | 熱硬化性組成物 |
CN201380053822.XA CN104718240B (zh) | 2012-10-19 | 2013-08-22 | 热硬化性组成物、硬化膜及显示元件 |
KR1020157013003A KR20150074092A (ko) | 2012-10-19 | 2013-08-22 | 열경화성 조성물 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012231588 | 2012-10-19 | ||
JP2012-231588 | 2012-10-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014061348A1 true WO2014061348A1 (ja) | 2014-04-24 |
Family
ID=50487925
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/072422 WO2014061348A1 (ja) | 2012-10-19 | 2013-08-22 | 熱硬化性組成物 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20160168418A1 (ja) |
JP (1) | JP6191613B2 (ja) |
KR (1) | KR20150074092A (ja) |
CN (1) | CN104718240B (ja) |
TW (1) | TWI595050B (ja) |
WO (1) | WO2014061348A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018016786A (ja) * | 2016-07-13 | 2018-02-01 | Jnc株式会社 | 熱硬化性組成物 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107053936B (zh) * | 2017-06-16 | 2020-02-21 | 涿州皓原箔业有限公司 | 一种金属箔片装饰品及其制作方法 |
CN110054991A (zh) * | 2019-05-17 | 2019-07-26 | 中山市溱霸化学有限公司 | 一种防玻璃溅镀损伤的热固型透明涂料及其制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4945320B1 (ja) * | 1964-05-27 | 1974-12-03 | ||
JPH07242747A (ja) * | 1994-03-03 | 1995-09-19 | Fujitsu Ltd | 有機珪素重合体及び半導体装置 |
JP2006503142A (ja) * | 2002-10-16 | 2006-01-26 | ダウ・コ−ニング・コ−ポレ−ション | シリコーン樹脂 |
JP2011084639A (ja) * | 2009-10-15 | 2011-04-28 | Chisso Corp | 熱硬化性組成物 |
JP2012149131A (ja) * | 2011-01-17 | 2012-08-09 | Shin-Etsu Chemical Co Ltd | シリコーン樹脂組成物及び当該組成物を使用した光半導体装置 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3502589A (en) * | 1965-06-21 | 1970-03-24 | Owens Illinois Inc | Cathodoluminescent phosphor-organo-polysiloxane resin compositions |
DE10032820A1 (de) * | 2000-07-06 | 2002-01-24 | Wacker Chemie Gmbh | Verfahren zur Isolierung von Polyorganosiloxanen |
EP1391491B1 (en) * | 2001-04-24 | 2008-04-09 | Nissan Chemical Industries, Limited | Method of forming thick silica-based film |
CN100572420C (zh) * | 2003-07-16 | 2009-12-23 | 陶氏康宁公司 | 含有氨基官能的有机硅树脂的涂料组合物 |
JP2007248885A (ja) * | 2006-03-16 | 2007-09-27 | Sekisui Chem Co Ltd | シリコン含有感光性組成物、これを用いた薄膜パターンの製造方法、電子機器用保護膜、トランジスタ、カラーフィルタ、有機el素子、ゲート絶縁膜及び薄膜トランジスタ |
RU2401846C2 (ru) * | 2006-04-25 | 2010-10-20 | Учреждение Российской академии наук Институт синтетических полимерных материалов им. Н.С. Ениколопова РАН (ИСПМ РАН) | Функциональные полиорганосилоксаны и композиция, способная к отверждению на их основе |
KR101077274B1 (ko) * | 2007-05-28 | 2011-10-27 | 코오롱인더스트리 주식회사 | 폴리알킬실세스퀴옥산 미립자 및 그 제조방법 |
JP5338532B2 (ja) * | 2009-07-13 | 2013-11-13 | Jnc株式会社 | ポジ型感光性組成物 |
US20120153342A1 (en) * | 2010-06-08 | 2012-06-21 | Takashi Nishimura | Die-bonding material for optical semiconductor devices and optical semiconductor device using same |
GB201308704D0 (en) * | 2013-05-15 | 2013-06-26 | Rolls Royce Plc | Electrical apparatus encapsulant |
-
2013
- 2013-08-22 CN CN201380053822.XA patent/CN104718240B/zh active Active
- 2013-08-22 KR KR1020157013003A patent/KR20150074092A/ko not_active Application Discontinuation
- 2013-08-22 US US14/436,650 patent/US20160168418A1/en not_active Abandoned
- 2013-08-22 JP JP2014541986A patent/JP6191613B2/ja not_active Expired - Fee Related
- 2013-08-22 WO PCT/JP2013/072422 patent/WO2014061348A1/ja active Application Filing
- 2013-09-04 TW TW102131748A patent/TWI595050B/zh active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4945320B1 (ja) * | 1964-05-27 | 1974-12-03 | ||
JPH07242747A (ja) * | 1994-03-03 | 1995-09-19 | Fujitsu Ltd | 有機珪素重合体及び半導体装置 |
JP2006503142A (ja) * | 2002-10-16 | 2006-01-26 | ダウ・コ−ニング・コ−ポレ−ション | シリコーン樹脂 |
JP2011084639A (ja) * | 2009-10-15 | 2011-04-28 | Chisso Corp | 熱硬化性組成物 |
JP2012149131A (ja) * | 2011-01-17 | 2012-08-09 | Shin-Etsu Chemical Co Ltd | シリコーン樹脂組成物及び当該組成物を使用した光半導体装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018016786A (ja) * | 2016-07-13 | 2018-02-01 | Jnc株式会社 | 熱硬化性組成物 |
Also Published As
Publication number | Publication date |
---|---|
TW201416397A (zh) | 2014-05-01 |
KR20150074092A (ko) | 2015-07-01 |
TWI595050B (zh) | 2017-08-11 |
JPWO2014061348A1 (ja) | 2016-09-05 |
CN104718240A (zh) | 2015-06-17 |
CN104718240B (zh) | 2017-03-08 |
JP6191613B2 (ja) | 2017-09-06 |
US20160168418A1 (en) | 2016-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5440089B2 (ja) | 熱硬化性組成物 | |
JP6585824B2 (ja) | 低温硬化組成物、それから形成された硬化膜、および前記硬化膜を有する電子装置 | |
TW201111915A (en) | Positive photosensitive composition | |
JP2012149196A (ja) | 熱硬化性組成物、硬化膜、及び表示素子 | |
JP5524480B2 (ja) | 熱硬化性樹脂組成物及びその硬化物 | |
JP6191613B2 (ja) | 熱硬化性組成物 | |
JP2011046868A (ja) | 熱硬化性重合体組成物 | |
JP5115099B2 (ja) | アシロキシ基を有するシリコーン共重合体及びその製造方法 | |
JP6269952B2 (ja) | 光配向膜用組成物 | |
JP5246749B2 (ja) | 熱硬化性樹脂組成物及びその硬化物 | |
JP2007291263A (ja) | 熱硬化性樹脂組成物及びその硬化物 | |
TWI797295B (zh) | 熱硬化性組成物、硬化膜及彩色濾光片 | |
TW201912708A (zh) | 熱硬化性組成物、硬化膜及彩色濾光片 | |
JP2011208009A (ja) | 絶縁性樹脂組成物、それから形成された硬化膜、および硬化膜を有するタッチパネル用素子 | |
JP6950573B2 (ja) | 熱硬化性組成物 | |
KR101848346B1 (ko) | 저온 경화 조성물, 그로부터 형성된 경화막, 및 상기 경화막을 갖는 전자 장치 | |
KR20220053978A (ko) | 감광성 수지 조성물, 이를 이용하는 패턴형성 방법 및 기판보호용 피막의 제조방법 | |
JP2020056008A (ja) | 熱硬化性組成物 | |
JP2009203345A (ja) | 熱硬化性樹脂組成物、カラーフィルタの保護膜の製造方法およびカラーフィルタの保護膜 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13846264 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014541986 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14436650 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20157013003 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13846264 Country of ref document: EP Kind code of ref document: A1 |