WO2014061266A1 - 放熱部材及び放熱部材の製造方法 - Google Patents

放熱部材及び放熱部材の製造方法 Download PDF

Info

Publication number
WO2014061266A1
WO2014061266A1 PCT/JP2013/006131 JP2013006131W WO2014061266A1 WO 2014061266 A1 WO2014061266 A1 WO 2014061266A1 JP 2013006131 W JP2013006131 W JP 2013006131W WO 2014061266 A1 WO2014061266 A1 WO 2014061266A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
heat
base sheet
main surface
fluororesin
Prior art date
Application number
PCT/JP2013/006131
Other languages
English (en)
French (fr)
Inventor
憲一 田河
内藤 友也
嘉也 高山
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2014061266A1 publication Critical patent/WO2014061266A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • C09J7/24Plastics; Metallised plastics based on macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/20Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive itself
    • C09J2301/204Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive itself the adhesive coating being discontinuous
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/41Additional features of adhesives in the form of films or foils characterized by the presence of essential components additives as essential feature of the carrier layer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2425/00Presence of styrenic polymer
    • C09J2425/006Presence of styrenic polymer in the substrate

Definitions

  • the present invention relates to a heat radiating member, and more particularly to a heat radiating member suitable for bonding to a heating element in an environment in which a fluid such as oil exists.
  • a motor is used for such a vehicle drive system, and a high output of the motor is required.
  • it is necessary to improve the cooling performance to cope with the increase in the heat generation amount accompanying the improvement in output.
  • a heat radiating member is considered as a method for improving the cooling performance of the vehicle motor.
  • a heat radiating member a member in which a heat conductive filler is dispersed in a resin matrix is known.
  • automatic transmission fluid (ATF) is sealed as lubricating oil in the lower part of the motor. Therefore, in the heat dissipating member used for the motor, the resin matrix is required to have oil resistance. .
  • a fluororesin As a resin having oil resistance, a fluororesin is known, and a heat radiating member in which a heat conductive filler is dispersed in a fluororesin matrix is also conventionally known (for example, see Patent Document 1).
  • Conventional heat radiating members in which a heat conductive filler is dispersed in a fluororesin matrix are mainly used for electronic devices.
  • a method for attaching the heat radiating member to the heating element there is proposed a method of bonding an electronic device such as a power transistor and a heat sink by providing an adhesive layer on a base sheet, although it is used for electronic components (Patent Document). 2).
  • a thermally conductive adhesive sheet having an adhesive layer formed in a dot shape or a mesh shape and configured such that the base sheet is in direct contact with the heating element and the heat sink has been proposed. Further, it has been proposed to increase the area where the base sheet is in direct contact with the heating element and the heat sink by using silicone rubber that exhibits fluidity at room temperature as the base sheet.
  • an object of the present invention is to provide a heat radiating member which is used for cooling a motor for a vehicle and has a good heat radiating characteristic.
  • the present invention A base material sheet based on a porous base material containing a fluororesin and a heat conductive filler; A plurality of adhesive portions disposed away from each other on one main surface of the base sheet,
  • the fluororesin comprises polytetrafluoroethylene,
  • the area where the plurality of adhesive portions cover one main surface of the base sheet is 10% to 85% of the area of one main surface of the base sheet,
  • a heat dissipating member in which the plurality of adhesive portions are arranged so that a continuous path from one end to the other end of the base sheet is formed on one main surface of the base sheet.
  • the present invention also provides a step (1) of obtaining a rolled laminated sheet by laminating and rolling a plurality of sheet-like molded bodies containing a polytetrafluoroethylene-containing fluororesin, a heat conductive filler, and a molding aid.
  • the base material is a fluororesin having a relatively high rigidity (Young's modulus)
  • the base material sheet is difficult to directly contact the heating element.
  • the some adhesion part is arrange
  • FIG. 1A Top view of one embodiment of heat dissipation member Sectional view along line VV in FIG. 1A
  • Side view of the thermal property evaluation apparatus used in the examples A graph showing the relationship between the thermal resistance of the heat dissipation member and the coverage of the adhesive part
  • the heat dissipation member 1 includes a base sheet 2 and a plurality of adhesive portions 3 arranged on one main surface of the base sheet 2 so as to be separated from each other.
  • the base material sheet 2 uses a porous base material containing a fluororesin and a heat conductive filler as a base material.
  • a passage 5 is formed between the adjacent adhesive portions 3 in the heat radiating member 1.
  • the passage 5 is a passage that is continuous from one end 2A to the other end 2B of the base sheet 2 on one main surface of the base sheet 2.
  • the adhesive portions 3 are arranged in a dispersed manner so that such a passage 5 is formed on one main surface of the base sheet 2.
  • the heat radiating member 1 is imparted with high oil resistance by using a porous base material containing a fluororesin as the base material sheet 2. Moreover, since the base material sheet 2 uses the porous preform
  • the fluororesin of the porous base material that is the base sheet 2 contains polytetrafluoroethylene (PTFE). When the fluororesin contains PTFE, it becomes easy to produce a porous base material containing a heat conductive filler at a high content.
  • the fluororesin of the base sheet 2 may contain a fluororesin other than PTFE. Examples of fluororesins other than PFTE include meltable fluororesins. When the fluororesin contains a meltable fluororesin, it becomes easier to produce a porous base material containing a heat conductive filler at a high content. For example, a material containing a fluororesin and a heat conductive filler is made into a sheet. It becomes easy.
  • meltable fluororesin it is preferable to use at least one selected from the group consisting of perfluoroalkoxy fluororesin (PFA) and tetrafluoroethylene-hexafluoropropylene copolymer (FEP).
  • PFA and FEP include various products having different melting points, and may be appropriately selected depending on the processing method and processing conditions for the porous base material.
  • the lower limit is preferably 5% by mass or more, more preferably 10% by mass or more, and the upper limit is preferably 70% by mass or less, more preferably 50% by mass. Hereinafter, it is more preferably 30% by mass or less.
  • the heat radiating member 1 is given high thermal conductivity by the heat conductive filler.
  • the heat conductive filler means a filler having a thermal conductivity of 1 W / mK or more, preferably 100 W / mK or more.
  • the type of the heat conductive filler may be appropriately selected according to the use of the heat radiating member 1.
  • an insulating filler having a volume resistivity of 10 14 ⁇ ⁇ cm or more may be used, and preferably boron nitride, aluminum nitride, alumina, silicon nitride, And at least one insulating filler selected from the group consisting of magnesium oxide is used.
  • a conductive filler having a volume resistivity of 10 6 ⁇ ⁇ cm or less may be used, and preferably graphite, carbon black, carbon fiber, metal fiber (example) , Aluminum fiber, copper fiber, etc.) and at least one conductive filler selected from the group consisting of metal particles (eg, particles of gold, silver, copper, palladium, platinum, etc.) is used.
  • the shape of the heat conductive filler is not particularly limited, and spherical and non-spherical fillers can be used, and heat conduction anisotropy can be imparted by aligning in the in-plane direction by rolling. Scale-like is preferable. Further, for the same reason, it is preferable that the heat conductive filler itself has a heat conduction anisotropy. Moreover, when improving the heat conductivity of the thickness direction, you may use the heat conductive filler of the aggregation shape currently sold from each company.
  • the heat conductive filler is not particularly limited as long as the heat conductive filler is supported on the fluororesin matrix without falling off, and sufficient heat conductivity can be imparted to the obtained heat radiating member. 0.2 to 500 ⁇ m is preferable, and 0.2 to 50 ⁇ m is more preferable. However, the heat conductive filler preferably has a larger particle size in order to achieve high heat conductivity. This is because even if the content of the heat conductive filler is the same, the larger the particle size, the smaller the number of interfaces, and the lower the thermal resistance.
  • the particle size is a value measured by a laser diffraction / scattering particle size / particle size distribution measuring device (for example, “Microtrack” manufactured by Nikkiso Co., Ltd.).
  • the content of the heat conductive filler is preferably in the range of 50 to 95% by mass, more preferably in the range of 70 to 90% by mass, with respect to the total mass of the base sheet 2, and 80 to 90% by mass. More preferably, it is in the range.
  • the content of the fluororesin is preferably in the range of 5 to 50% by mass, more preferably in the range of 10 to 30% by mass, and more preferably in the range of 10 to 20% by mass with respect to the total mass of the base sheet 2. More preferably, it is in the range.
  • the base sheet 2 may contain components other than the fluororesin and the heat conductive filler.
  • components include resins other than fluororesins, and as the resin, for example, commonly used thermoplastic resins and thermosetting resins can be used.
  • the content of the component is preferably 10% by mass or less with respect to the total mass of the porous base material.
  • the Young's modulus of the base sheet 2 is, for example, 1 MPa or more, preferably 5 MPa or more, and more preferably 10 MPa or more.
  • “Young's modulus” refers to a value at 25 ° C.
  • the thickness of the base sheet 2 is, for example, 0.05 mm or more, and more preferably 0.1 mm or more.
  • the thickness of the base material sheet 2 is 3 mm or less, for example, and 1 mm or less is preferable.
  • the plurality of adhesive portions 3 are formed on one main surface of the base sheet 2 so as to partially cover one main surface of the base sheet 2.
  • the ratio (coverage) of the area where the plurality of adhesive portions 3 cover the main surface with respect to the area of one main surface of the base sheet 2 affects the heat dissipation characteristics of the heat radiating member 1.
  • a certain load is applied to the base material sheet 2. Therefore, when the coverage of the plurality of adhesive portions 3 decreases, the stress received by the plurality of adhesive portions 3 increases. Thereby, the adhesion part 3 is compressed more largely and the thickness of the adhesion part 3 becomes small. As a result, the thermal resistance of the adhesion part 3 falls and the thermal resistance of the heat radiating member 1 also falls.
  • the area where the plurality of adhesive portions 3 cover one main surface of the base sheet 2 is preferably 85% or less of the area of one main surface of the base sheet 2, and more preferably 70% or less. Preferably, 45% or less is more preferable.
  • the heat dissipation characteristics of the heat dissipation member 1 are improved as the coverage of the plurality of adhesive portions 3 is smaller.
  • the area where the plurality of adhesive portions 3 cover one main surface of the substrate sheet 2 is preferably 10% or more, more preferably 13% or more, and more preferably 15% or more of the area of one main surface of the substrate sheet 2. Is more preferable.
  • the thermal radiation member 1 shows a favorable thermal radiation characteristic.
  • the heat resistance of the heat radiating member 1 is the smallest.
  • the area where the plurality of adhesive portions 3 cover one main surface of the substrate sheet 2 is The area of one main surface of the sheet 2 is preferably less than 30%, particularly preferably 28% or less. From this viewpoint, the area where the plurality of adhesive portions 3 cover one main surface of the base sheet 2 is preferably 10% or more, more preferably 13% or more, and further preferably 15% or more.
  • the distance between the adjacent adhesive portions is small, the width of the passage 5 becomes too small, and the fluid hardly flows between the base sheet 2 and the heating element. Moreover, when the distance between the adjacent adhesion parts is large, it will become easy to bend the base material sheet 2, and it will become easy for the base material sheet 2 to contact a heat generating body directly. This makes it difficult for fluid to flow between the base sheet 2 and the heating element. From these viewpoints, the distance between adjacent adhesive portions is preferably 3 to 9 mm.
  • the plurality of adhesive portions 3 may be arranged in a dot shape.
  • “arranged in a dot shape” means that the adhesive portions 3 having a predetermined shape are arranged so as to be dispersed on one main surface of the base sheet 2.
  • the shape of the adhesive portion 3 may be circular, elliptical, triangular, polygonal, or the like in plan view.
  • the shape of the adhesive portion 3 is preferably circular in plan view as shown in FIG. 1A.
  • the some adhesion part 3 may be arrange
  • path 5 is formed toward the other end 2B from the one end 2A of the base material sheet 2, and the flow resistance of the fluid which flows between the base material sheet 2 and a heat generating body is small. Further, the anisotropy of the peeling force of the heat radiating member 1 is unlikely to occur.
  • the heat dissipating member 1 is formed in a linear shape in which a plurality of adhesive portions 3 extend in the same direction.
  • a straight passage 5 is formed from one end 2A of the base sheet 2 to the other end 2B, and the fluid flows between the base sheet 2 and the heating element. The flow resistance is small.
  • the thickness of the adhesive portion 3 is, for example, 0.005 ⁇ m to 50 ⁇ m, preferably 0.01 ⁇ m to 20 ⁇ m, and more preferably 1 ⁇ m to 10 ⁇ m.
  • Examples of the material used for the pressure-sensitive adhesive portion 3 include pressure-sensitive adhesives such as acrylic pressure-sensitive adhesives and silicone pressure-sensitive adhesives, and adhesives such as thermosetting adhesives (eg, epoxy resins) and hot melt adhesives.
  • the heat radiating member 1 of the present invention is a step (1) in which a rolled laminated sheet is obtained by laminating and rolling a plurality of sheet-like molded bodies containing PTFE-containing fluororesin, a heat-conducting filler, and a molding aid.
  • a plurality of sheet-like molded bodies containing PTFE-containing fluororesin, heat conductive filler, and molding aid used in step (1) are mixed with PTFE-containing fluororesin, heat conductive filler, and molding aid.
  • a paste-like mixture can be prepared first and then formed into a sheet.
  • saturated hydrocarbons such as dodecane and decane can be used as the molding aid.
  • the molding aid may be added so as to be 20 to 55% by mass with respect to the total mass of the mixture.
  • a sheet-like molded body can be obtained by molding these mixtures by extrusion molding, roll molding or the like.
  • the thickness of the sheet-like molded body is, for example, 0.5 to 5 mm.
  • a plurality of such sheet-like molded bodies are prepared.
  • the plurality of sheet-like molded bodies are overlapped (laminated) and rolled to obtain the base sheet 2.
  • the number of the sheet-like molded bodies to be used is not particularly limited as long as it is 2 or more, and is appropriately determined in consideration of the number of layers of the sheet-like molded bodies constituting the final rolled laminated sheet to be the base sheet 2. For example, it is about 2 to 10 sheets.
  • the manufacturing method includes rolling of the laminated body. By the lamination and rolling, the sheet strength can be improved and the heat conductive filler can be firmly fixed to the fluororesin matrix. A sheet having a high rate and flexibility can be manufactured.
  • a plurality of rolled laminated sheets of a sheet-like formed body are rolled and rolled, or at least one rolled laminated sheet of a sheet-like formed body, a fluororesin, and heat conduction
  • the sheet strength is low and it is difficult to withstand the high-magnification rolling.
  • the heat conduction filler is more firmly fixed to the fluororesin matrix. In order to achieve high strength, it is desirable to roll the sheet-like formed body and the rolled laminated sheet of the sheet-like formed body two by two.
  • step (1) and step (1 ') Examples of embodiments of step (1) and step (1 ') will be described below.
  • a plurality of (for example, 2 to 10) sheet-like molded bodies are prepared.
  • the plurality of sheet-like formed bodies are laminated, and the laminated body is rolled to obtain a rolled laminated sheet (first rolled laminated sheet) (step (1)).
  • a plurality of (for example, 2 to 10) first rolled laminated sheets thus obtained are prepared and laminated, and the laminated body is rolled to obtain a rolled laminated sheet (second rolled laminated sheet) ( Step (1 ′)).
  • a plurality of (for example, 2 to 10) second rolled laminated sheets obtained as described above are prepared and laminated, and the laminated body is rolled to obtain a rolled laminated sheet (third rolled laminated sheet) ( Repeat step (1 ′)). Further, a plurality of third rolled laminated sheets are prepared, laminated and rolled in the same manner, and the step (1 ′) is repeated until the number of constituent layers of the sheet-like formed body included in the target base sheet 2 is reached. .
  • the rolled laminated sheets (the first rolled laminated sheets, the second rolled laminated sheets, etc.) having the same number of laminated sheet-like formed bodies are rolled and rolled.
  • step (1 ') rolled laminated sheets having different numbers of laminated sheet-like formed bodies are overlapped and rolled.
  • step (1 ') the sheet-like formed body is overlaid and rolled on the rolled laminated sheet.
  • the rolling direction of a process (1) and the rolling direction of a process (1 ') are orthogonal. Further, when the step (1 ') is repeated, it is preferable to change the rolling direction (particularly 90 °).
  • the PTFE network extends vertically and horizontally, and the sheet strength can be further improved and the heat conductive filler can be more firmly fixed to the fluororesin matrix.
  • the number of constituent layers of the final rolled laminated sheet to be the base sheet 2 is expressed by the number of layers of the sheet-like molded body included in the rolled laminated sheet, the number of constituent layers may be, for example, 2 to 5000 layers. it can. In order to improve the sheet strength, the number of constituent layers is preferably 200 or more. On the other hand, the number of constituent layers is preferably 1500 or less for thinning (for example, a sheet having a thickness of 1 mm or less).
  • a base sheet 2 having a thickness of preferably about 0.05 mm to 3 mm is finally obtained.
  • Step (2) can be performed according to a known method according to the molding aid used.
  • a sheet obtained by rolling may be heated to remove the molding aid by drying. Thereby, a porous base material is obtained.
  • step (3) a known coating method can be used, and for example, pattern coating or printing technology can be used.
  • the pressure-sensitive adhesive material is a solid material such as a hot-melt adhesive
  • the pressure-sensitive adhesive material is liquefied by heating to a temperature equal to or higher than its melting temperature, and then the step (3) is performed.
  • the viscosity of the pressure-sensitive adhesive material to be applied is preferably 1 to 100,000 mPa ⁇ s.
  • the "viscosity of the applied adhesive material” refers to the viscosity when the adhesive material is a non-crosslinked adhesive, and when the adhesive material is a crosslinked adhesive, This refers to the viscosity before cross-linking.
  • the adhesive material When the adhesive material is a thermosetting adhesive, it indicates the viscosity before curing. When the adhesive material is a hot-melt adhesive, the viscosity under heat-melting is used. Point to. In addition, these viscosities are viscosities at a temperature at which the application operation to the base sheet 2 is performed. It is preferable to dry the adhesive material applied to the base material sheet 2.
  • a step (4) of pressure-forming the base sheet 2 that is a porous base material may be further performed.
  • the porosity of the base sheet 2 after performing the step (2) is usually about 50 to 80%, but by performing the step (4), the porosity of the base sheet 2 is 40% or less.
  • the heat conductive fillers are more densely present, and the thermal resistance of the heat radiating member 1 can be further reduced.
  • Press molding can be performed, for example, by pressing at a temperature of 320 to 400 ° C. and a pressure of 0.05 to 50 MPa for 1 to 15 minutes.
  • the heat radiating member of the present invention can be obtained, but the manufacturing method of the heat radiating member of the present invention is not limited to the above.
  • the heat dissipating member of the present invention can be adhered to a heating element by appropriately selecting an attachment method according to the type of adhesive material.
  • the adhesive material is an adhesive
  • the heat dissipating member of the present invention may be placed on the surface of the adherend and pressed.
  • the adhesive material is a thermosetting adhesive
  • the heat dissipating member of the present invention may be disposed on the surface of the adherend and heated and pressed at a temperature equal to or higher than the thermosetting temperature of the adhesive.
  • the adhesive material is a hot-melt adhesive
  • the heat dissipating member of the present invention may be disposed on the surface of the adherend, heated and pressed at a temperature equal to or higher than the melting temperature of the adhesive, and cooled.
  • the heat dissipating member 1 can be easily adhered to the adherend with a good adhesive force.
  • the heat radiating member of this invention has favorable thermal conductivity.
  • the heat radiating member of this invention uses the fluororesin with high oil resistance, it is suitable for the use in an oil environment.
  • a fluororesin shows comparatively high rigidity (Young's modulus)
  • a gap is easily formed between the base sheet 2 and the heating element. When a fluid such as oil flows through the gap, the heat dissipation characteristics of the heat dissipation member 1 can be improved.
  • the vehicle motor can be cooled with high efficiency over a long period of time.
  • the air layer in the vehicle motor may be replaced with the heat dissipation member of the present invention.
  • the heat dissipating member of the present invention may be disposed between them.
  • the usage pattern in the vehicle motor is not limited to this.
  • the heat dissipating member of the present invention can of course be used for other than motors for vehicles (eg, generators, electronic devices, etc.).
  • the measurement of thermal resistance was performed using the thermal characteristic evaluation apparatus 10 shown in FIGS. 3A and 3B.
  • the thermal characteristic evaluation apparatus 10 has a heating element (heater block) 11 in the upper part and a radiator (cooling base plate configured to circulate cooling water) 12 in the lower part.
  • the radiator 12 has a rod 13 made of aluminum (A5052, thermal conductivity: 140 W / m ⁇ K) formed so as to be a cube having one side of 20 mm.
  • a pair of pressure adjusting screws 14 penetrating the heat generating body 11 and the heat radiating body 12 are provided on the side portions of the pair of rods 13.
  • a load cell 15 is provided between the pressure adjusting screw 14 and the heating element 11, whereby the pressure when the pressure adjusting screw 14 is tightened is measured.
  • Three probes 16 (diameter 1 mm) of a contact displacement meter 17 are installed inside the rod 13 on the side of the radiator 12. When the sample (heat radiating member) is not disposed between the rods 13, the upper end of the probe 16 is in contact with the lower surface of the rod 13 on the upper side (heating element 11 side). The interval (sample thickness) can be measured.
  • a temperature sensor 18 of a thermometer 19 is attached to the back side of the heating element 11 and the upper and lower rods 13. Specifically, temperature sensors 18 are attached to one place of the heating element 11 and five places at equal intervals in the vertical direction of each rod 13.
  • the heat radiating member 1 (20 mm ⁇ 20 mm) of each example and comparative example was sandwiched between the pair of rods 13 from above and below.
  • the pressure adjusting screw 14 was tightened to apply pressure to the heat dissipating member 20 to set the temperature of the heating element 11 to 150 ° C. and to circulate 20 ° C. cooling water through the heat dissipating body 12.
  • the temperature of the upper and lower rods 13 is measured by each temperature sensor 18, and the thermal conductivity (W / m ⁇ K) and temperature gradient of the upper and lower rods 13 are measured.
  • the heat radiating member was cut into a size of 10 mm width and 40 mm length.
  • a 180 mm peel test (peeling speed: 300 mm / min) is performed in an atmosphere of 23 ° C. by pressing a 2 kg heavy rubber roller on a 2 mm thick aluminum plate once in a reciprocating manner to determine the peeling force. It was.
  • Example 1 Boron nitride powder (manufactured by Denki Kagaku Kogyo Co., Ltd., product number “SGPS”) and PTFE powder (manufactured by Daikin Kogyo Co., Ltd., product number “F104U”) were mixed at a mass ratio of 80:20. A paste-like mixture was obtained by further adding 60 parts by mass of decane to 100 parts by mass of the mixture and kneading.
  • SGPS Denki Kagaku Kogyo Co., Ltd., product number “SGPS”
  • PTFE powder manufactured by Daikin Kogyo Co., Ltd., product number “F104U”
  • the sheet-like molded body having a thickness of 3 mm was formed by rolling the paste-like mixture thus obtained with a rolling roll.
  • a first laminated sheet having a number of laminations of 2 was formed by rolling the two sheet-like molded bodies on top of each other.
  • the 1st lamination sheet was cut
  • a series of these steps of cutting, overlapping and rolling was repeated 5 times while changing the rolling direction by 90 °.
  • the laminated sheet was rolled a plurality of times to obtain a rolled laminated sheet having a thickness of about 0.6 mm.
  • the obtained rolled laminated sheet was heated at 150 ° C. for 20 minutes to remove the molding aid. Subsequently, it pressed at 380 degreeC and 10 Mpa for 5 minutes, and obtained the base material sheet about 0.2 mm in thickness.
  • the adhesive material solution was applied to one main surface of the base sheet obtained as described above in a dot shape using a dispenser (manufactured by Musashi Engineering Co., Ltd., “SM300DS-S, MPP-1”).
  • a plurality of adhesive portions were formed.
  • the formation pattern of the plurality of adhesive portions was as follows. Shape of each dot: Distance between adjacent dots having a diameter of 2.2 mm: 5 mm Dot placement: Placed on grid points of square grid
  • Example 1 The base material sheet coated with the adhesive material was heated in a drying oven at 130 ° C. for 3 minutes to obtain a heat radiating member according to Example 1.
  • the ratio (coverage) between the area of one main surface of the base sheet and the area where the plurality of adhesive portions cover the main surface was 15.2%.
  • Example 2 and Example 3 Except having made the formation pattern of the some adhesion part into as Table 1, it carried out similarly to Example 1, and obtained the heat radiating member which concerns on Example 2 and Example 3.
  • FIG. 1 Except having made the formation pattern of the some adhesion part into as Table 1, it carried out similarly to Example 1, and obtained the heat radiating member which concerns on Example 2 and Example 3.
  • FIG. 1 Except having made the formation pattern of the some adhesion part into as Table 1, it carried out similarly to Example 1, and obtained the heat radiating member which concerns on Example 2 and Example 3.
  • Example 4 A heat radiating member of Example 3 was obtained in the same manner as in Example 1 except that the formation pattern of the adhesive portion was a line width of 1 mm and a line interval of 4.5 mm and was formed in a straight line extending in the same direction.
  • Example 5 A heat radiating member of Example 5 was obtained in the same manner as in Example 4 except that the formation pattern of the adhesive portion was as shown in Table 2.
  • FIG. 4 is a graph showing the relationship between the coverage and thermal resistance in Examples 1 to 3 and Comparative Examples 1 to 3.
  • the heat resistance of the heat radiating members of Examples 1 to 3 is smaller than the heat resistance of Comparative Examples 1 to 3, suggesting that the heat radiating members of Examples 1 to 3 show good heat radiating characteristics. It was done. Moreover, as shown in FIG. 4, it was shown that the thermal resistance of the heat radiating member is minimized when the coverage is around 30%.
  • the heat dissipating member of the present invention is suitable for use in an oil environment and is useful as a heat dissipating member for a vehicle motor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

 本発明の放熱部材(1)は、フッ素樹脂、及び熱伝導フィラーを含む多孔質母材を基材とする基材シート(2)と、基材シート(2)の一方の主面に互いに離れて配置された複数の粘着部(3)と、を備える。基材シート(2)のフッ素樹脂がポリテトラフルオロエチレンを含む。複数の粘着部(3)が基材シート(2)の一方の主面を覆う面積が基材シート(2)の一方の主面の面積の10%~85%である。基材シート(2)の一方の主面において、基材シートの一端から他端まで連続する通路(5)が形成されるように複数の粘着部(3)が配置されている。これにより、放熱部材(1)は、良好な放熱特性を有する。

Description

放熱部材及び放熱部材の製造方法
 本発明は、放熱部材に関し、特にオイルなどの流体が存在する環境下での発熱体への接着使用に好適な放熱部材に関する。
 近年、環境対応の観点からハイブリッド自動車や電気自動車の開発が進んでいる。このような車両の駆動系には、モータが用いられており、当該モータの高出力化が求められている。モータの高出力化のためには、出力向上に伴う発熱量増加に対応するための冷却性能の向上が課題となる。
 車両用モータの冷却性能の向上方法として、放熱部材の使用が考えられる。放熱部材としては、樹脂マトリクス中に熱伝導フィラーを分散させたものが知られている。ここで、モータの下部には、潤滑オイルとしてオートマチックトランスミッションフルード(ATF)が封入されており、そのため、モータに使用する放熱部材においては、樹脂マトリクスが耐オイル性を有することが必要となってくる。
 耐オイル性を有する樹脂としては、フッ素樹脂が知られており、フッ素樹脂マトリクス中に熱伝導フィラーを分散させた放熱部材も従来知られている(例えば、特許文献1参照)。従来のフッ素樹脂マトリクス中に熱伝導フィラーを分散させた放熱部材は、電子機器用途を主な用途としている。
 放熱部材の発熱体への取り付け方法としては、電子部品の用途ではあるが、基材シートに粘着層を設けてパワートランジスタなどの電子デバイスとヒートシンクとを接合する方法が提案されている(特許文献2参照)。具体的には、ドット状またはメッシュ状に形成された粘着層を有し、基材シートが発熱体及びヒートシンクに直接接するように構成された熱伝導性粘着シートが提案されている。また、基材シートとして常温で流動性を示すシリコーンゴムを用いることにより、基材シートが発熱体やヒートシンクに直接接する領域を多くすることが提案されている。
特開2008-208159号公報 特開2001-110965号公報
 特許文献2に記載のように、シリコーンゴム等の低剛性の基材シートが用いられる場合、基材シートが発熱体と接触するため、基材シートと発熱体との間を流体が流れにくい。車両用モータの冷却のために放熱部材を設ける場合に、放熱部材と発熱体との隙間を例えばオイルなどの流体が流れやすいように構成されていると、放熱部材と発熱体との間の流体の流れによって車両用モータからの放熱が促進されると考えられる。これにより、放熱部材の放熱特性が高まると考えられる。
 そこで本発明は、特に車両用モータの冷却に用いられ、良好な放熱特性を有する放熱部材を提供することを目的とする。
 本発明は、
 フッ素樹脂、及び熱伝導フィラーを含む多孔質母材を基材とする基材シートと、
 前記基材シートの一方の主面に互いに離れて配置された複数の粘着部と、を備え、
 前記フッ素樹脂がポリテトラフルオロエチレンを含み、
 前記複数の粘着部が前記基材シートの一方の主面を覆う面積が前記基材シートの一方の主面の面積の10%~85%であり、
 前記基材シートの一方の主面において、前記基材シートの一端から他端まで連続する通路が形成されるように前記複数の粘着部が配置されている、放熱部材を提供する。
 また、本発明は、ポリテトラフルオロエチレンを含むフッ素樹脂、熱伝導フィラー、および成形助剤を含む複数のシート状成形体を重ね合わせて圧延して圧延積層シートを得る工程(1)、得られる圧延積層シートから前記成形助剤を除去して基材シートを得る工程(2)、および得られる基材シートの一方の主面に粘着材料を塗布して、複数の粘着部を形成する工程(3)を含む、放熱部材の製造方法を提供する。
 本発明によれば、剛性(ヤング率)が比較的高いフッ素樹脂を基材としているので、基材シートが発熱体に直接接触しにくい。また、前記基材シートの一方の主面において、基材シートの一端から他端まで連続する通路が形成されるように複数の粘着部が配置されている。これらにより、基材シートの一方の主面において、基材シートと発熱体との間をオイル等の流体が流れやすい。そのため、放熱部材の放熱特性が向上し得る。
放熱部材の一実施形態の平面図 図1AのV-V線に沿った断面図 放熱部材の他の実施形態の平面図 図2AのX-X線に沿った断面図 実施例で用いた熱特性評価装置の正面図 実施例で用いた熱特性評価装置の側面図 放熱部材の熱抵抗と粘着部の被覆率との関係を示すグラフ
 以下、本発明の実施形態について、図面を参照しながら説明する。なお、以下の実施形態によって本発明が限定されるものではない。
 図1A又は図1Bに示すように、放熱部材1は、基材シート2と、基材シート2の一方の主面に互いに離れて配置された複数の粘着部3を備えている。基材シート2は、フッ素樹脂、および熱伝導フィラーを含む多孔質母材を基材とする。図1Bに示すように放熱部材1には、隣接する粘着部3同士の間に通路5が形成されている。この通路5は、基材シート2の一方の主面において、基材シート2の一端2Aから他端2Bまで連続する通路である。粘着部3は、この様な通路5が基材シート2の一方の主面に形成されるように分散して配置されている。発熱体への取り付けの際には、粘着部3を介して放熱部材1と発熱体とが接合される。
 放熱部材1は、フッ素樹脂を含む多孔質母材を基材シート2として用いることにより、高い耐オイル性が付与されている。また、基材シート2がフッ素樹脂を含む多孔質母材を基材としているので、基材シート2は比較的高い剛性(ヤング率)を示す。そのため、放熱部材1が発熱体に取り付けられ、基材シート2が応力を受けている場合に、基材シート2が発熱体に直接接触しにくい。例えば、発熱体が車両用のモータである場合、モータの潤滑に用いられるオイルが通路5を通って基材シート2と発熱体との間を流れやすくなる。このため、通路5を通過するオイルの流れによってモータから放熱されるので、放熱部材1は高い放熱特性を示すことができる。
 基材シート2である多孔質母材のフッ素樹脂は、ポリテトラフルオロエチレン(PTFE)を含む。フッ素樹脂がPTFEを含むことにより、熱伝導フィラーを高い含有率で含む多孔質母材を作製することが容易となる。基材シート2のフッ素樹脂は、PTFE以外のフッ素樹脂を含んでいてもよい。PFTE以外のフッ素樹脂としては、溶融性フッ素樹脂が挙げられる。フッ素樹脂が溶融性フッ素樹脂を含む場合には、熱伝導フィラーを高い含有率で含む多孔質母材を作製することがより容易となり、例えば、フッ素樹脂および熱伝導フィラーを含む材料をシート化するのが容易となる。当該溶融性フッ素樹脂としては、ペルフルオロアルコキシフッ素樹脂(PFA)、および四フッ化エチレン-六フッ化プロピレン共重合体(FEP)からなる群より選ばれる少なくとも1種を用いることが好ましい。なお、PFAおよびFEPには融点が異なる様々な製品が存在するが、多孔質母材への加工方法およびその加工条件に応じて適宜選択すればよい。
 フッ素樹脂に占める溶融性フッ素樹脂の割合に関し、下限については、好ましくは5質量%以上、より好ましくは10質量%以上であり、上限については、好ましくは70質量%以下、より好ましくは50質量%以下、さらに好ましくは30質量%以下である。
 放熱部材1は、熱伝導フィラーによって高い熱伝導性が付与される。ここで、熱伝導フィラーとは、熱伝導率が1W/mK以上、好ましくは100W/mK以上のフィラーのことをいう。熱伝導フィラーは、放熱部材1の用途に合わせてその種類を適宜選択すればよい。例えば、放熱部材1に高い絶縁性を付与したい場合には、体積抵抗率が1014Ω・cm以上の絶縁性フィラーを用いればよく、好適には、窒化ホウ素、窒化アルミニウム、アルミナ、窒化珪素、および酸化マグネシウムからなる群より選ばれる少なくとも1種の絶縁性フィラーが用いられる。ハイブリッド車用モータ、発電機内などにおいては高電圧であり大きな過渡電流が発生するような部位があり、絶縁性フィラーを用いて高い絶縁性が付与された放熱部材1は、このような部位での使用に有利である。
 一方、放熱部材1に高い導電性を付与したい場合には、体積抵抗率10Ω・cm以下の導電性フィラーを用いればよく、好適には、グラファイト、カーボンブラック、カーボン繊維、金属繊維(例、アルミ繊維、銅繊維等)、および金属粒子(例、金、銀、銅、パラジウム、白金等の粒子)からなる群より選ばれる少なくとも1種の導電性フィラーが用いられる。
 熱伝導フィラーの形状は、特に限定されず、球状および非球状のフィラーを用いることができ、圧延によって面内方向に整列させることによって熱伝導異方性を付与することができることから、平板状および鱗片状が好ましい。また、同様の理由から、熱伝導フィラー自体が熱伝導異方性を有している方が好ましい。また、厚み方向の熱伝導率を向上させる場合には、各社から販売されている凝集形状の熱伝導フィラーを用いてもよい。
 熱伝導フィラーは、脱落することなくフッ素樹脂マトリックスに担持され、かつ、得られる放熱部材に十分な熱伝導性を付与することができればよいため、その粒径は特には限定されないが、例えば粒径0.2~500μmのものが好ましく、0.2~50μmのものがより好ましい。ただし、熱伝導フィラーは、高熱伝導化においては、粒径が大きい方が好ましい。これは、熱伝導フィラーの含有量が同じであっても、粒径が大きい方が界面の数が少なくなり、熱抵抗を低くできるためである。なお、ここでの粒径とは、レーザ回折・散乱式粒子径・粒度分布測定装置(例えば、日機装株式会社製「マイクロトラック」)によって測定される値のことである。
 熱伝導フィラーの含有量は、基材シート2の全質量に対し、50~95質量%の範囲にあることが好ましく、70~90質量%の範囲にあることがより好ましく、80~90質量%の範囲にあることがさらに好ましい。フッ素樹脂の含有率は、基材シート2の全質量に対し、5~50質量%の範囲にあることが好ましく、10~30質量%の範囲にあることがより好ましく、10~20質量%の範囲にあることがさらに好ましい。
 基材シート2は、フッ素樹脂、および熱伝導フィラー以外の成分を含んでいてもよい。このような成分としては、フッ素樹脂以外の樹脂などが挙げられ、当該樹脂としては、例えば、一般的に用いられている、熱可塑性樹脂および熱硬化性樹脂を用いることができる。当該成分の含有量は、多孔質母材の全質量に対し、10質量%以下であることが好ましい。
 基材シート2の剛性(ヤング率)が小さいと、基材シート2が応力を受けてたわみやすく、基材シート2と発熱体が直接接触しやすくなる。この観点から、基材シート2のヤング率は、例えば1MPa以上であり、5MPa以上が好ましく、10MPa以上がさらに好ましい。ここで、「ヤング率」とは25℃のときの値を指す。また、基材シート2の厚みが小さいと、基材シート2が応力を受けてたわみやすい。この観点から、基材シート2の厚みは例えば0.05mm以上であり、0.1mm以上がより好ましい。一方、基材シート2の厚みは例えば3mm以下であり、1mm以下が好ましい。
 複数の粘着部3は、基材シート2の一方の主面を部分的に覆うように、基材シート2の一方の主面上に形成されている。基材シート2の一方の主面の面積に対して、複数の粘着部3がその主面を覆う面積の割合(被覆率)は、放熱部材1の放熱特性に影響を与える。通常、基材シート2には、一定の荷重がかかっている。そのため、複数の粘着部3の被覆率が小さくなると、複数の粘着部3が受ける応力が大きくなる。これにより、粘着部3がより大きく圧縮されて粘着部3の厚みが小さくなる。その結果、粘着部3の熱抵抗が低下し、放熱部材1の熱抵抗も低下する。この観点から、複数の粘着部3が基材シート2の一方の主面を覆う面積は、基材シート2の一方の主面の面積の85%以下であることが好ましく、70%以下がより好ましく、45%以下がさらに好ましい。
 上述の説明によれば、複数の粘着部3の被覆率が小さいほど、放熱部材1の放熱特性が向上するように思われる。しかしながら、実際には、複数の粘着部3の被覆率が小さすぎると、放熱部材1の熱抵抗は大きくなってしまう。そこで、複数の粘着部3が基材シート2の一方の主面を覆う面積は、基材シート2の一方の主面の面積の10%以上が好ましく、13%以上がより好ましく、15%以上がさらに好ましい。このように、複数の粘着部3が基材シート2の一方の主面を覆う面積が定められていると、放熱部材1は良好な放熱特性を示す。
 後述するように、被覆率が30%付近であるとき、放熱部材1の熱抵抗は最も小さくなる。放熱部材の熱抵抗を小さくしつつ、複数の粘着部3を構成する粘着材料の使用量を減らす観点から、複数の粘着部3が基材シート2の一方の主面を覆う面積は、基材シート2の一方の主面の面積の30%未満が好ましく、28%以下が特に好ましい。また、この観点から、複数の粘着部3が基材シート2の一方の主面を覆う面積は、10%以上が好ましく、13%以上がより好ましく、15%以上がさらに好ましい。
 隣接している粘着部同士の距離が小さいと、通路5の幅が小さくなりすぎてしまい、基材シート2と発熱体との間を流体が流れにくくなる。また、隣接している粘着部同士の距離が大きいと、基材シート2のたわみやすくなり、基材シート2が発熱体に直接接触しやすくなる。これにより、基材シート2と発熱体との間を流体が流れにくくなってしまう。これらの観点から、隣接している粘着部同士の距離は、3~9mmが好ましい。
 図1Aに示すように、複数の粘着部3は、ドット状に配置されていてもよい。ここで、「ドット状に配置」とは、所定の形状の粘着部3が、基材シート2の一方の主面に分散するように配置されていることを意味する。ここで、粘着部3の形状は平面視において円状、楕円状、三角形状及び多角形状等であってもよい。基材シート2と発熱体との間の流体の流れの抵抗を小さくするために、図1Aに示すように粘着部3の形状は平面視において円状とすることが好ましい。また、図1Aに示すように、複数の粘着部3は、正方格子の格子点に対応する位置に配置されていてもよい。これにより、基材シート2の一端2Aから他端2Bに向かってストレートな通路5が形成され、基材シート2と発熱体との間を流れる流体の流動抵抗が小さい。また、放熱部材1の剥離力の異方性が生じにくい。
 図2A及び図2Bに示すように、放熱部材1は、複数の粘着部3が同一方向に延びる直線状に形成されている。複数の粘着部3がこのように形成されていると、基材シート2の一端2Aから他端2Bに向かってストレートな通路5が形成され、基材シート2と発熱体との間を流れる流体の流動抵抗が小さい。
 粘着部3の厚みが大きいと、粘着部3の熱抵抗が大きくなり放熱部材1の熱抵抗も大きくなってしまう。一方、粘着部3の厚みが小さいと、基材シート2が発熱体に接触しやすい。これらの観点から、粘着部3の厚みは、例えば0.005μm~50μmであり、0.01μm~20μmが好ましく、1μm~10μmがより好ましい。
 粘着部3に用いる材料としては、アクリル系粘着剤、シリコーン系粘着剤等の粘着剤、および熱硬化系接着剤(例、エポキシ樹脂等)、ホットメルト接着剤等の接着剤が挙げられる。
 次に、放熱部材1の製造方法について説明する。本発明の放熱部材1は、PTFEを含むフッ素樹脂、熱伝導フィラー、および成形助剤を含む複数のシート状成形体を重ね合わせて圧延して圧延積層シートを得る工程(1)、得られる圧延積層シートから前記成形助剤を除去して多孔質母材である基材シートを得る工程(2)、および得られる基材シートの一方の主面に粘着材料を塗布して、複数の粘着部を形成する工程(3)を含む、方法よって好適に製造される。
 工程(1)で用いられるPTFEを含むフッ素樹脂、熱伝導フィラー、および成形助剤を含む複数のシート状成形体は、PTFEを含むフッ素樹脂、熱伝導フィラー、および成形助剤を混合して、ペースト状の混合物をまず作製し、これをシート状に成形することによって得ることができる。
 PTFEを含むフッ素樹脂、熱伝導フィラー、および成形助剤の混合は、PTFEの繊維化を極力抑制する条件で行うことが望ましい。具体的には、PTFEにせん断を加えないように混合装置の回転数を小さくし、混合時間を短くして、混錬せずに混合することが望ましい。材料を混合する段階でPTFEに繊維化がおこると、圧延する際に、既に形成したPTFEの繊維が切断されてPTFEの網目構造が破壊されてしまう可能性があり、シート形状を保つことが困難になる場合がある。
 成形助剤には、例えばドデカンやデカンなどの飽和炭化水素を使用できる。成形助剤は、混合物の全質量に対して20~55質量%となるように添加すればよい。
 これらの混合物を、押出成形、ロール成形等により成形することにより、シート状成形体を得ることができる。シート状成形体の厚みは、例えば0.5~5mmである。このようなシート状成形体を複数枚準備する。
 続いて、これら複数のシート状成形体を重ね合わせ(積層し)、圧延して基材シート2を得る。用いるシート状成形体の枚数は、2枚以上であれば特に限定はなく、基材シート2となる最終的な圧延積層シートを構成するシート状成形体の層の数を考慮して適宜決定すればよく、例えば、2~10枚程度とする。このように当該製造方法は、積層体の圧延を含むが、この積層および圧延によって、シート強度を向上させるとともに、熱伝導フィラーをフッ素樹脂マトリックスへ強固に固定することができ、熱伝導フィラーの配合率が高く、かつ可撓性のあるシートを作製することができる。
 当該製造方法においては、当該工程(1)の後に、シート状成形体の圧延積層シートを複数重ね合わせて圧延する、または、シート状成形体の少なくとも1枚の圧延積層シートとフッ素樹脂、熱伝導フィラーおよび成形助剤を含む少なくとも1枚のシート状成形体を重ね合わせて圧延する工程(1’)をさらに行うことが好ましい。この工程は、繰り返し行うことが好ましい。圧延初期(含まれるシート状成形体の層数が少ない段階)は、シートの強度が低く高倍率の圧延に耐えることが困難であるが、積層および圧延を繰り返すにしたがって圧延倍率は上がり、シート強度がより高くなり、また、熱伝導フィラーがフッ素樹脂マトリックスへより強固に固定される。高い強度を実現するために、シート状成形体およびシート状成形体の圧延積層シートは、2枚ずつ圧延することが望ましい。
 工程(1)および工程(1’)の実施形態の例を以下に説明する。まず、複数(例えば2~10枚)のシート状成形体を準備する。次に、この複数のシート状成形体を積層し、この積層体を圧延して圧延積層シート(第1の圧延積層シート)を得る(工程(1))。このようにして得られる第1の圧延積層シートをさらに複数(例えば2~10枚)準備して積層し、この積層体を圧延して、圧延積層シート(第2の圧延積層シート)を得る(工程(1’))。このようにして得られる第2の圧延積層シートをさらに複数(例えば2~10枚)準備して積層し、この積層体を圧延して、圧延積層シート(第3の圧延積層シート)を得る(工程(1’)の繰り返し)。さらに、複数の第3の圧延積層シートを準備し、同様に積層および圧延を行い、目的とする基材シート2が含むシート状成形体の構成層数になるまで、工程(1’)を繰り返す。この実施態様では、シート状成形体の積層数が同じである圧延積層シート同士(第1の圧延積層シート同士、第2の圧延積層シート同士など)を重ね合わせて圧延している。別の実施態様では、工程(1’)で、シート状成形体の積層数が互いに異なる圧延積層シート同士を重ね合わせて圧延する。さらに別の実施態様では、工程(1’)で、圧延積層シートにシート状成形体を重ね合わせて圧延する。
 工程(1’)を行う際には、圧延方向を変更することが好ましい。このとき、工程(1)の圧延方向と、工程(1’)の圧延方向が直交していることが好ましい。さらに、工程(1’)を繰り返す際にも、圧延方向を変更(特に90°変更)することが好ましい。このように方向を変えながら圧延することによって、PTFEのネットワークが縦横に伸び、シート強度のさらなる向上および熱伝導フィラーのフッ素樹脂マトリックスへのより強固な固定が可能となる。
 基材シート2となる最終的な圧延積層シートの構成層数を、当該圧延積層シートに含まれるシート状成形体の層数で表すとき、構成層数は、例えば2~5000層とすることができる。シート強度を向上させるためには、構成層数は200層以上が好ましい。一方、薄膜化(例えば1mm以下のシートとする)のためには、構成層数は1500層以下が好ましい。
 以上のようにして、最終的に厚みが好ましくは0.05mm~3mm程度の基材シート2を得る。
 工程(2)は、使用する成形助剤に応じ、公知方法に従って実施することができる。例えば、圧延して得られるシートを加熱して、成形助剤を乾燥除去すればよい。これによって、多孔質母材が得られる。
 工程(3)は、公知の塗布方法を利用することができ、例えばパターン塗布や印刷技術を用いることができる。粘着材料がホットメルト系接着剤等の固形の材料であった場合には、粘着材料は、その溶融温度以上に加熱することにより液化してから工程(3)が行われる。塗布される粘着材料の粘度は、1~100000mPa・sであることが好ましい。なお、「塗布される粘着材料の粘度」とは、粘着材料が非架橋型の粘着剤であった場合には、その粘度を指し、粘着材料が架橋型の粘着剤であった場合には、架橋前の粘度を指し、粘着材料が熱硬化系接着剤であった場合には、硬化前の粘度を指し、粘着材料がホットメルト系接着剤であった場合には、加熱溶融下での粘度を指す。なお、これらの粘度は基材シート2への塗布操作を行う温度での粘度である。基材シート2に塗布された粘着材料を乾燥させることが好ましい。
 工程(2)と工程(3)の間に、多孔質母材である基材シート2を加圧成形する工程(4)をさらに実施してもよい。工程(2)を実施した後の基材シート2の気孔率は、通常、50~80%程度であるが、工程(4)を実施することにより、基材シート2の気孔率が40%以下にまで下がり、また、熱伝導フィラー同士がより密に存在するようになり、放熱部材1の熱抵抗をさらに小さくすることができる。
 加圧成形は、例えば、温度320~400℃、圧力0.05~50MPaで1~15分間、プレスすることにより行うことができる。
 以上のようにして、本発明の放熱部材を得ることができるが、本発明の放熱部材の製造方法は上記に限られるものではない。
 本発明の放熱部材は、粘着材料の種類に応じて取り付け方法を適宜選択して、発熱体に接着することができる。例えば、粘着材料が粘着剤であった場合には、被着体の表面上に本発明の放熱部材を配置して加圧すればよい。粘着材料が熱硬化系接着剤であった場合には、被着体の表面上に本発明の放熱部材を配置して、接着剤の熱硬化温度以上の温度で加熱プレスすればよい。粘着材料がホットメルト系接着剤であった場合には、被着体の表面上に本発明の放熱部材を配置して、接着剤の溶融温度以上の温度で加熱プレスし、冷却すればよい。
 以上にようにして、放熱部材1を良好な接着力で容易に被着体に接着させることができる。また、本発明の放熱部材は、良好な熱伝導性を有している。そして本発明の放熱部材は、耐オイル性が高いフッ素樹脂を使用しているため、オイル環境下での使用に好適である。また、フッ素樹脂は比較的高い剛性(ヤング率)を示すので、基材シート2と発熱体との間に隙間が形成されやすい。この隙間をオイル等の流体が流れることにより、放熱部材1の放熱特性が向上し得る。従って、車両(例、ハイブリッド自動車、電気自動車等)用モータ用の放熱部材に最適であり、当該放熱部材を用いることによって、車両用モータを長期にわたって高効率で冷却することができる。車両用モータ用の放熱部材として使用する場合には、車両用モータ内の空気層を本発明の放熱部材で置き換えればよい。例えば、ステータとケースの間、ステータとコイルの間、ケースとコイルの間、ステータとステータの間等に空気層があった場合には、これらの間に本発明の放熱部材を配置すればよく、車両用モータ内での使用形態はこれに限られない。また、本発明の放熱部材は、車両用モータ以外(例、発電機、電子機器等)にももちろん使用可能である。
 以下、実施例および比較例を挙げて本発明を詳細に説明するが、本発明は、これら実施例に限定されるものではない。最初に本実施例で行った評価方法について説明する。
 <熱抵抗>
 熱抵抗の測定は、図3A及び図3Bに示す熱特性評価装置10を用いて行った。熱特性評価装置10は、上部に、発熱体(ヒーターブロック)11と下部に放熱体(冷却水が内部を循環するように構成された冷却ベース板)12を有しており、発熱体11および放熱体12は、それぞれ1辺が20mmの立方体となるように形成されたアルミニウム製(A5052、熱伝導率:140W/m・K)のロッド13を有している。一対のロッド13の側部には、発熱体11および放熱体12を貫通する一対の圧力調整用ネジ14が備えられている。圧力調整用ネジ14と発熱体11との間には、ロードセル15が備えられており、これにより、圧力調整用ネジ14を締めこんだ際の圧力が測定される。放熱体12側のロッド13の内部には、接触式変位計17の3本のプローブ16(直径1mm)が設置されている。プローブ16の上端部は、試料(放熱部材)がロッド13間に配置されていないときには、上側(発熱体11側)のロッド13の下面に接触した状態になっており、上下のロッド13間の間隔(試料の厚み)を測定可能に構成されている。発熱体11および上下のロッド13の背面側には、温度計19の温度センサー18が取り付けられている。具体的には、発熱体11の1箇所と、各ロッド13の上下方向に等間隔で5箇所に、温度センサー18が取り付けられている。
 測定はまず、一対のロッド13で上下から、各実施例及び比較例の放熱部材1(20mm×20mm)を挟み込んだ。圧力調整用ネジ14を締めこんで、放熱部材20に圧力を加え、発熱体11の温度を150℃に設定するともに、放熱体12に20℃の冷却水を循環させた。そして、発熱体11および上下のロッド13の温度が安定した後、上下のロッド13の温度を各温度センサー18で測定し、上下のロッド13の熱伝導率(W/m・K)と温度勾配から放熱部材1を通過する熱流束を算出するとともに、上下のロッド13と放熱部材20との界面の温度を算出した。そして、これらを用いて当該圧力における熱抵抗(cm・K/W)を熱伝導率方程式(フーリエの法則)を用いて算出した。なお、放熱部材20に200Nの圧力を加えた場合について熱抵抗を求めた。
   Q=-λgradT
   R=L/λ
Q:単位面積あたりの熱流速
gradT:温度勾配
L:試料(放熱部材)の厚み
λ:熱伝導率
R:熱抵抗
 <剥離力>
 放熱部材を幅10mm、長さ40mmの大きさに切断した。これを厚み2mmのアルミニウム板に2kg重のゴムローラを1往復させる方法で圧着させたものを、23℃の雰囲気下で180度ピール試験(剥離速度:300mm/分)を実施し、剥離力を求めた。
 <実施例1>
 窒化ホウ素粉末(電気化学工業株式会社製、品番「SGPS」)と、PTFE粉末(ダイキン工業株式会社製、品番「F104U」)とを、質量比80:20の割合で混合した。この混合物100質量部に対してデカン60質量部をさらに加えて混練することによって、ペースト状の混合物を得た。
 このようにして得られたペースト状の混合物を圧延ロールで圧延することによって、厚みが3mmのシート状成形体を2枚形成した。次に、2枚の当該シート状成形体を重ねて圧延することによって、積層数が2である第1の積層シートを形成した。次に、第1の積層シートを切断して2つに分け、それらを重ね合わせて圧延することによって、積層数が4である第2の積層シートを形成した。これらの切断、重ね合わせ、および圧延という一連の工程を、圧延方向を90°ずつ変更しながら5回繰り返した。その積層シートを複数回圧延することによって、厚みが約0.6mmの圧延積層シートとした。
 次に、得られた圧延積層シートを150℃で20分間加熱して、成形助剤を除去した。次いで380℃、10MPaで5分間プレスして、厚みが約0.2mmの基材シートを得た。
 次に、冷却管、窒素導入管、温度計及び攪拌機を備えた反応容器に、アクリル酸ブチル95重量部、アクリル酸5質量部、酢酸エチル150質量部及び2、2´-アゾビスイソブチロニトリル(AIBN)0.1質量部を入れ、60℃において8時間重合反応(溶液重合)させて、アクリル系ポリマー溶液を得た。
 得られたアクリル系ポリマー溶液の固形分100質量部に対し、ロジンフェノール系粘着付与樹脂(住友ベークライト社製、「スミライトレジンPR12603」)20質量部、外部架橋剤として油溶性イソシアネート系架橋剤溶液(日本ポリウレタン工業社製、「コロネートL」、固形分濃度75質量%)1.33重量部(固形分に換算して1重量部)を加え、酢酸エチル2280質量部で希釈することにより、固形分が5質量%の粘着材料の溶液を得た。
 この粘着材料の溶液を、上記のようにして得た基材シートの一方の主面に、ディスペンサー(武蔵エンジニアリング社製、「SM300DS-S、MPP-1」)を用いてドット状に塗布し、複数の粘着部を形成した。複数の粘着部の形成パターンは、以下の通りとした。
各ドットの形状:直径2.2mmの円状
隣接するドット間の距離:5mm
ドットの配置:正方格子の格子点上に配置
 粘着材料を塗布した基材シートを、乾燥オーブンにおいて130℃で3分間加熱して、実施例1に係る放熱部材を得た。実施例1において、基材シートの一方の主面の面積と複数の粘着部がその主面を覆う面積との比率(被覆率)は、15.2%であった。
 <実施例2及び実施例3>
 複数の粘着部の形成パターンを表1の通りとした以外は、実施例1と同様にして、実施例2及び実施例3に係る放熱部材を得た。
 <実施例4>
 粘着部の形成パターンを、ライン幅1mm、ライン間隔4.5mmであり、同一方向に延びる直線状に形成した以外は、実施例1と同様にして実施例3の放熱部材を得た。
 <実施例5>
 粘着部の形成パターンを表2の通りとした以外は、実施例4と同様にして実施例5の放熱部材を得た。
 <比較例1及び比較例2>
 複数の粘着部の形成パターンを表1の通りとした以外は、実施例1と同様にして、比較例1及び比較例2に係る放熱部材を得た。
 <比較例3>
 基材シートの一方の主面の全面に粘着部を塗布した以外は、実施例1と同様にして比較例3に係る放熱部材を得た。
 <比較例4>
 粘着部の形成パターンを表2の通りとした以外は、実施例4と同様にして比較例4の放熱部材を得た。
 各実施例及び各比較例について、上記の方法で熱抵抗及び剥離力を測定した。結果を表1及び表2にそれぞれ示す。また、実施例1~3及び比較例1~3において、被覆率と熱抵抗の関係を示したグラフを図4に示す。
 表1に示すように、実施例1~3の放熱部材の熱抵抗は、比較例1~3の熱抵抗よりも小さく、実施例1~3の放熱部材は良好な放熱特性を示すことが示唆された。また、図4に示すように、被覆率が30%付近であるときに、放熱部材の熱抵抗が最小化することが示された。
 また、表1及び表2に示すように、隣接する接着部同士の距離が3~9mmの範囲にあると、放熱部材は小さい熱抵抗を示すことが示唆された。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 本発明の放熱部材は、オイル環境下での使用に好適であり、車両用モータ用の放熱部材等として有用である。

Claims (11)

  1.  フッ素樹脂及び熱伝導フィラーを含む多孔質母材を基材とする基材シートと、
     前記基材シートの一方の主面に互いに離れて配置された複数の粘着部と、を備え、
     前記フッ素樹脂がポリテトラフルオロエチレンを含み、
     前記複数の粘着部が前記基材シートの一方の主面を覆う面積が前記基材シートの一方の主面の面積の10%~85%であり、
     前記基材シートの一方の主面において、前記基材シートの一端から他端まで連続する通路が形成されるように前記複数の粘着部が配置されている、放熱部材。
  2.  前記基材シートのヤング率が1MPa以上である、請求項1に記載の放熱部材。
  3.  隣接している前記粘着部同士の距離が3~9mmである、請求項1又は2に記載の放熱部材。
  4.  前記複数の粘着部がドット状に配置されている、請求項1に記載の放熱部材。
  5.  前記複数の粘着部が正方格子の格子点に対応する位置に配置されている、請求項1に記載の放熱部材。
  6.  前記複数の粘着部が円状である、請求項4又は5に記載の放熱部材。
  7.  前記複数の粘着部が同一方向に延びる直線状に配置されている、請求項1に記載の放熱部材。
  8.  前記フッ素樹脂が、ペルフルオロアルコキシフッ素樹脂、および四フッ化エチレン-六フッ化プロピレン共重合体からなる群より選ばれる少なくとも1種をさらに含む請求項1に記載の放熱部材。
  9.  前記熱伝導フィラーが、窒化ホウ素、窒化アルミニウム、アルミナ、窒化珪素、および酸化マグネシウムからなる群より選ばれる少なくとも1種の絶縁性フィラーである請求項1に記載の放熱部材。
  10.  前記熱伝導フィラーが、グラファイト、カーボンブラック、カーボン繊維、金属繊維、および金属粒子からなる群より選ばれる少なくとも1種の導電性フィラーである請求項1に記載の放熱部材。
  11.  ポリテトラフルオロエチレンを含むフッ素樹脂、熱伝導フィラー、および成形助剤を含む複数のシート状成形体を重ね合わせて圧延して圧延積層シートを得る工程(1)、
     得られる圧延積層シートから前記成形助剤を除去して基材シートを得る工程(2)、および
     得られる基材シートの一方の主面に粘着材料を塗布して、複数の粘着部を形成する工程(3)を含む、放熱部材の製造方法。
PCT/JP2013/006131 2012-10-15 2013-10-15 放熱部材及び放熱部材の製造方法 WO2014061266A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012228320A JP2014079927A (ja) 2012-10-15 2012-10-15 放熱部材及び放熱部材の製造方法
JP2012-228320 2012-10-15

Publications (1)

Publication Number Publication Date
WO2014061266A1 true WO2014061266A1 (ja) 2014-04-24

Family

ID=50487845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/006131 WO2014061266A1 (ja) 2012-10-15 2013-10-15 放熱部材及び放熱部材の製造方法

Country Status (2)

Country Link
JP (1) JP2014079927A (ja)
WO (1) WO2014061266A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6852266B2 (ja) * 2016-02-29 2021-03-31 昭和電工マテリアルズ株式会社 熱伝導シート及び熱伝導シートの製造方法
JP6919377B2 (ja) * 2017-07-12 2021-08-18 日本ゼオン株式会社 熱伝導シート

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002319653A (ja) * 2001-04-20 2002-10-31 Matsushita Electric Ind Co Ltd グラファイトシートおよびそれを用いた放熱部品
JP2008208159A (ja) * 2007-02-23 2008-09-11 Teijin Ltd 耐熱性熱伝導複合材料、耐熱性熱伝導シート
JP2008303279A (ja) * 2007-06-06 2008-12-18 Nissin Kogyo Co Ltd 高熱伝導性シート及びレーザ光学装置
WO2010055878A1 (ja) * 2008-11-12 2010-05-20 日東電工株式会社 絶縁性熱伝導シートの製造方法、絶縁性熱伝導シート及び放熱部材

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002319653A (ja) * 2001-04-20 2002-10-31 Matsushita Electric Ind Co Ltd グラファイトシートおよびそれを用いた放熱部品
JP2008208159A (ja) * 2007-02-23 2008-09-11 Teijin Ltd 耐熱性熱伝導複合材料、耐熱性熱伝導シート
JP2008303279A (ja) * 2007-06-06 2008-12-18 Nissin Kogyo Co Ltd 高熱伝導性シート及びレーザ光学装置
WO2010055878A1 (ja) * 2008-11-12 2010-05-20 日東電工株式会社 絶縁性熱伝導シートの製造方法、絶縁性熱伝導シート及び放熱部材

Also Published As

Publication number Publication date
JP2014079927A (ja) 2014-05-08

Similar Documents

Publication Publication Date Title
JP5322894B2 (ja) 絶縁性熱伝導シートの製造方法、絶縁性熱伝導シート及び放熱部材
WO2013051246A1 (ja) 放熱部材およびその製造方法
JP6302034B2 (ja) 熱伝導シート、熱伝導シートの製造方法、放熱部材及び半導体装置
JP5271879B2 (ja) 熱拡散シート及びその実装方法
JP5407120B2 (ja) 熱伝導シート、その製造方法およびこれを用いた放熱装置
WO2015072428A1 (ja) ヒートシンク
JP5185582B2 (ja) 熱伝導性シート
TW201535807A (zh) 熱傳導性接著片、其製造方法及使用此的電子裝置
TWI454377B (zh) 具有優良成形性的環氧樹脂層壓板及其製備方法
WO2012127546A1 (ja) 放熱部材およびその製造方法
JP7271176B2 (ja) 樹脂材料、樹脂材料の製造方法及び積層体
WO2015118858A1 (ja) 熱伝導性シートの製造方法及び熱伝導性シート
JP5421451B2 (ja) 熱拡散シート
KR102454630B1 (ko) 접착 조성물 시트 및 그의 제조 방법, 및 반도체 장치
JP5516034B2 (ja) 絶縁性の高い熱伝導シート及びこれを用いた放熱装置
JP7233564B2 (ja) 放熱シート及びその製造方法
JP2017092345A (ja) 熱伝導シート、及びその製造方法、並びに半導体装置
WO2014061266A1 (ja) 放熱部材及び放熱部材の製造方法
JP2015048414A (ja) 絶縁性熱伝導シート
WO2017006460A1 (ja) 熱伝導部材及び電子部品
TW201901885A (zh) 絕緣性片材及積層體
JP2005203735A (ja) 熱伝導性複合シート
JP7077526B2 (ja) 複合部材
WO2021060319A1 (ja) 放熱シート、放熱シート積層体、構造体及び発熱素子の放熱処理方法
JP2019089957A (ja) 樹脂組成物及び積層体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13846739

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13846739

Country of ref document: EP

Kind code of ref document: A1