WO2014061116A1 - 没水式発電機 - Google Patents
没水式発電機 Download PDFInfo
- Publication number
- WO2014061116A1 WO2014061116A1 PCT/JP2012/076785 JP2012076785W WO2014061116A1 WO 2014061116 A1 WO2014061116 A1 WO 2014061116A1 JP 2012076785 W JP2012076785 W JP 2012076785W WO 2014061116 A1 WO2014061116 A1 WO 2014061116A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- submerged
- generator
- casing
- power generation
- armature
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03B—MACHINES OR ENGINES FOR LIQUIDS
- F03B13/00—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
- F03B13/10—Submerged units incorporating electric generators or motors
- F03B13/105—Bulb groups
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03B—MACHINES OR ENGINES FOR LIQUIDS
- F03B13/00—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
- F03B13/10—Submerged units incorporating electric generators or motors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03B—MACHINES OR ENGINES FOR LIQUIDS
- F03B17/00—Other machines or engines
- F03B17/06—Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head"
- F03B17/061—Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head" with rotation axis substantially in flow direction
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D1/00—Wind motors with rotation axis substantially parallel to the air flow entering the rotor
- F03D1/02—Wind motors with rotation axis substantially parallel to the air flow entering the rotor having a plurality of rotors
- F03D1/025—Wind motors with rotation axis substantially parallel to the air flow entering the rotor having a plurality of rotors coaxially arranged
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2220/00—Application
- F05B2220/70—Application in combination with
- F05B2220/706—Application in combination with an electrical generator
- F05B2220/7062—Application in combination with an electrical generator of the direct current (D.C.) type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/20—Rotors
- F05B2240/24—Rotors for turbines
- F05B2240/242—Rotors for turbines of reaction type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2250/00—Geometry
- F05B2250/30—Arrangement of components
- F05B2250/31—Arrangement of components according to the direction of their main axis or their axis of rotation
- F05B2250/311—Arrangement of components according to the direction of their main axis or their axis of rotation the axes being in line
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K16/00—Machines with more than one rotor or stator
- H02K16/005—Machines with only rotors, e.g. counter-rotating rotors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/20—Hydro energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/30—Energy from the sea, e.g. using wave energy or salinity gradient
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
Definitions
- the present invention relates to a submerged generator.
- a submerged generator comprising a relatively rotating inner and outer armature, a propeller for relatively rotating and driving the inner and outer armatures, and a casing for housing the armature, the outer rotating armature and the inner fixed armature having two stages of front and rear
- the power generation mechanism, the front and rear two-stage propellers that rotate in opposite directions and rotate the front and rear two-stage outer rotating armatures in opposite directions, and the front and rear two-stage inner fixed armatures are sealed against the external environment.
- a submerged casing that is placed in a water stream and operates in a submerged state, and the buoyancy acting on the submersible generator is greater than the gravity acting on the submerged generator.
- a water generator is disclosed in Patent Document 1.
- the front outer rotating armature that is rotationally driven by the front propeller and the rear outer rotating armature that is rotationally driven by the rear propeller are not operatively engaged.
- the rotational torque applied to the front inner fixed armature opposed to the armature and the rotational torque applied to the rear inner fixed armature opposed to the rear outer rotating armature during power generation are mechanically and electromagnetically independent from each other. Therefore, the magnitudes of both rotational torques do not necessarily match. Therefore, the above-mentioned submerged generator cannot be stably moored in water.
- the electromotive force of the power generation mechanism is proportional to the speed at which the rotating armature cuts the magnetic field.
- the present invention has been made in view of the above problems, and an object thereof is to provide a submerged generator that can be stably moored in water and can obtain a high electromotive voltage without causing an increase in size. .
- a submerged generator including an inner and outer armatures that rotate relative to each other, a propeller that drives the inner and outer armatures to rotate relative to each other, and a casing that houses the armatures.
- An inner and outer double-rotating armature-type power generation mechanism having an inner rotating armature that faces the armature and the outer rotating armature and rotates in a direction opposite to the outer rotating armature, and an axial center that is arranged with the axis aligned And a pair of propellers whose directions of twisting of the blades are opposite to each other in the extending direction, wherein one of the pair of propellers is one of the inner and outer rotary armatures and the other of the pair of propellers is the inner and outer Each of which is connected to the other of the rotary armatures, and further includes a casing for accommodating the inner and outer double rotary armature power generation mechanisms in a sealed manner against the external environment, and is placed in a water flow in a submerged state.
- the working buoyancy F is greater than the gravity W working on the submersible generator (F> W + gravity working on the mooring line-buoyancy working on the mooring line when mooring is used)
- the magnitude of the reciprocal rotational torque acting on the inner and outer double-rotating armature during power generation agrees mechanically and electromagnetically from the third law of motion (action and reaction).
- the reciprocal torques acting on the inner rotating system formed by the inner rotating armature and the propeller connected to the armature and the outer rotating system formed by the outer rotating armature and the propeller connected to the armature are the same. Therefore, no rotational torque is generated as a reaction in the casing.
- the submerged generator according to the present invention can be stably moored in the water without causing the rotation of the casing around the propeller shaft regardless of the amount of power generation or the flow velocity.
- a pair of propellers that are arranged with their axes aligned in the opposite directions and the twist directions of the blades with respect to the extending direction of the axes rotate in the opposite directions, Since the inner and outer rotating armatures are driven to rotate in opposite directions, the relative rotating speed of the inner and outer rotating armatures is increased while suppressing the increase in the rotating speed of the propeller, thereby increasing the speed at which the inner and outer rotating armatures cut the magnetic field.
- a high electromotive voltage can be obtained as compared with a conventional submerged generator without causing an increase in size due to the provision of a speed increasing gear or a pulley mechanism.
- the speed at which the inner and outer rotating armatures cut the magnetic field is larger than that of conventional submersible generators.
- the generator can be reduced in size as compared with a conventional submerged generator by reducing the size of the permanent magnet forming the armature of the synchronous generator or by reducing the rotation radius of the armature.
- the buoyancy F acting on the submersible generator during operation is greater than the gravity W acting on the submersible generator (if mooring using a mooring line, F> W + gravity acting on the mooring line-buoyancy acting on the mooring line) Therefore, it can be easily and stably held in water with a mooring line or the like without attaching a floating body separately.
- one polar moment of inertia of a set of propellers is set to a value smaller than the other polar moment of inertia.
- a rotational moment center at which the sum of rotational moments due to D becomes zero exists on the casing. If the rotational moment center exists on the casing when viewed on the meridian plane, the casing is supported by some means on an axis that passes through the rotational moment center and is orthogonal to the meridian plane, so that the submerged generator can be stabilized. Can be kept underwater.
- the rotational moment center is taken on the line of action of the drag D acting on the submerged generator, and the casing is rotatable about the axis on the axis passing through the rotational moment center and orthogonal to the meridian plane.
- the submerged generator can be held in a horizontal state regardless of the flow rate.
- the submerged generator is moored in water via a mooring line attached to the casing so as to be relatively rotatable about an axis passing through the center of the rotational moment and orthogonal to the meridian plane.
- a submerged power generation system is provided.
- the submersible power generator is moored in water through a mooring line attached to the casing so as to be relatively rotatable about an axis passing through the center of the rotational moment and orthogonal to the meridian plane.
- the mooring line is attached to the casing symmetrically with respect to the action line of the drag D as seen in the extending direction of the action line of the drag D.
- the bifurcated arm is attached to the casing so as to be relatively rotatable about an axis passing through the center of rotational moment and perpendicular to the meridian plane, and the mooring line is attached to the arm so as to be relatively rotatable or relatively pivotable. It is done.
- the mooring line is attached to the arm symmetrically with respect to the action line of the drag D as seen in the extending direction of the action line of the drag D.
- a stopper for restricting the swing of the free end of the bifurcated arm in the propeller direction is attached to the casing.
- the line of action of the buoyancy F acting on the submersible generator is located upstream of the line of action of the gravity W.
- the action line of buoyancy F is located upstream from the action line of gravity W, the center of rotational moment is located further upstream than the action line of buoyancy F. Therefore, the mooring line moves away from the propeller, and the mooring line and propeller Is more effectively prevented.
- the submerged generator described above is supported by a support column that is fixed to the bottom of the water and extends upward on an axis that passes through the center of rotational moment and is orthogonal to the meridian plane. Provide power generation system.
- the above-mentioned submerged generator is supported by a column extending downward from a float on the water surface on an axis passing through the center of rotational moment and orthogonal to the meridian surface.
- force is applied to the column from the submersible power generator other than the upward force of the difference between the buoyancy and gravity of the submersible power generator and the drag perpendicular to the force. Since it is not performed, the structure of the connection part of the support
- FIG. 1 is a side view of a submerged power generation system including a submerged power generator according to an embodiment of the present invention. It is a front view of the modification of a submerged power generation system provided with a submerged power generator concerning the example of the present invention. It is a front view of the other modification of a submerged power generation system provided with a submerged power generator concerning the example of the present invention.
- the submerged generator A includes a cylindrical outer shaft 1a, an inner shaft 1b inserted into the outer shaft 1a with the axial center aligned, and an outer side fixed to the outer shaft 1a.
- An inner / outer double-rotating armature power generation mechanism 3 having a rotating armature 2a, an inner rotating armature 2b fixed to the inner shaft 1b and facing the outer rotating armature 2a, and an outer shaft fixed to the outer shaft 1a 1a and thus a front propeller 4a for rotationally driving the outer rotary armature 2a and a rear propeller 4a with respect to the direction of the water flow indicated by the white arrow in FIG.
- the casing 5 is provided.
- the twisting directions of the blades with respect to the extending direction of the shaft center are set to be opposite to each other.
- the polar inertia moment of the rear stage propeller 4b is set to a value smaller than the polar inertia moment of the front stage propeller 4a. As shown in FIG.
- each of the force F, W display the vector through the respective point of action (line of action) D, the distance from the center of the front propeller 4a to vector F, W S F, and S W, taking the rotational moment centered on the action line of the drag D, the distance S from the center of the propeller 4a to the rotational moment center C as measured in the axial direction is given by the following equation.
- the submerged generator A relatively rotates a bifurcated arm 6 symmetric with respect to the propeller axis extending direction about an axis C ′ passing through the center of rotation C and orthogonal to the meridian plane. It can be attached to both sides of the casing 5 so as to be relatively rotatable via the slip ring 7, and as can be seen from FIG. 3 (b), against the action line of the drag D as seen in the extending direction of the action line of the drag D.
- the propeller By attaching one end of the mooring line 8 to the free end of the arm 6 symmetrically and connecting the other end of the mooring line 8 to an anchor 9 such as a tetrapot installed on the seabed or riverbed 100, the propeller is driven by the drag D. 4a and 4b are automatically directed to the downstream side of the water flow indicated by the white arrows in FIG. 3, and accordingly, the end portion of the shell top shape separated from the propellers 4a and 4b of the casing 5 is automatically upstream of the water flow. Underwater horizontally The submerged power generation system B is formed.
- the curve formed by the mooring line 8 of the submerged power generation system B is a suspension curve determined by the flow velocity, the above-described buoyancy F, gravity W, drag D and the gravity and buoyancy applied to the mooring line 8 when viewed on the meridian plane.
- the curvature decreases, and when the flow velocity becomes zero, the mooring line 8 extends vertically upward from the anchor 9. Therefore, the mooring cable 8 does not interfere with the propellers 4a and 4b even if the flow velocity or the flow direction changes.
- the operation of the submerged generator A and the submerged power generation system B will be described.
- the front and rear propellers 4a and 4b in which the twisting directions of the blades with respect to the extending direction of the shaft center are set to be opposite to each other are rotated in the opposite directions by the water flow indicated by the white arrows in FIG.
- the outer and inner rotary armatures 2a and 2b are rotationally driven in opposite directions via 1b to generate electric power.
- the generated electric power is taken out through a cable (not shown) integrated with the arm 6, the slip ring 7, and the mooring line 8, and further supplied to land electrical equipment through a cable placed on the bottom of the water, or on the water. It is supplied to electrical equipment on the water via the cable that has been launched.
- the submerged generator A according to the present invention can be stably moored in water without causing the rotation of the casing 5 around the propeller shaft regardless of the amount of power generation or the flow velocity.
- the power generation mechanism 3 has an outer rotating armature 2a and an inner rotating armature 2b that rotates in the opposite direction to the outer rotating armature, and two stages of front and rear that rotate in opposite directions. Since the outer and inner rotary armatures 2a and 2b opposed to each other by the propellers 4a and 4b are driven to rotate in opposite directions, the relative rotation of the outer and inner rotary armatures 2a and 2b is suppressed while suppressing an increase in the rotational speed of the propellers 4a and 4b.
- the rotational speed can be increased to increase the speed at which the rotating armatures 2a and 2b cut off the magnetic field.
- the conventional submerged type can be achieved without increasing the size due to the provision of a speed increasing gear or a pulley mechanism.
- High electromotive voltage can be obtained compared to the generator.
- the armatures 2a and 2b are used when the electromotive voltage is equal to that of the conventional submerged generator.
- the generator can be downsized compared to a conventional submerged generator by reducing the number of windings, reducing the size of the permanent magnet that forms the armature of the synchronous generator, reducing the rotation radius of the armature, etc. .
- the buoyancy F acting on the submersible generator A during operation is greater than the gravity W acting on the submersible generator A (if mooring using a mooring line, F> W + acting on the mooring line-working on the mooring line Therefore, the submerged generator A can be stably held in the water without separately attaching a floating body.
- the polar moment of inertia of the rear stage propeller 4b is set to a value smaller than the polar moment of inertia of the front stage propeller 4a, the activation of the rear stage propeller 4b in the water flow is promoted, and consequently the activation of the generator A is promoted.
- the submerged generator A when viewed on the meridian plane, the rotational moment center at which the sum of rotational moments caused by the buoyancy F, gravity W, and drag D acting on the submerged generator A in the water current is zero, Since it exists on the casing 5, the submerged generator A is stably held in the water even on the meridian plane by supporting the casing 5 by some means on the axis passing through the center of the rotational moment and orthogonal to the meridian plane. be able to.
- the rotational moment center is taken on the line of reaction of the reaction force D, and both sides of the casing 5 are supported around the axis C ′ passing through the rotational moment center C and orthogonal to the meridian plane.
- the submerged generator A can be held in a horizontal state regardless of the flow rate.
- the submerged power generator A is submerged via a mooring line 8 attached to the casing 5 so as to be relatively rotatable about an axis C ′ that passes through the rotational moment center C and is orthogonal to the meridian plane. So that it is stably held in water regardless of the amount of power generation or flow velocity.
- the mooring line 8 is attached to the casing 5 symmetrically with respect to the action line of the drag D when viewed in the extending direction of the action line of the drag D. It is stably held in water without causing a swinging motion.
- the bifurcated arm 6 is attached to the casing 5 so as to be capable of relative rotation about the axis C ′ passing through the rotational moment center C and orthogonal to the meridian plane, and is capable of relative rotation via the slip ring 7.
- the mooring line 8 By attaching the mooring line 8 to the arm 6 symmetrically with respect to the action line of the drag D when viewed in the extending direction of the action line of the drag D, the single mooring line 8 is stable regardless of the power generation amount and the flow velocity.
- the generator A can be held in water.
- the present invention is not limited to the above embodiments. Symmetrically symmetrical with respect to the action line of the drag D when viewed in the extending direction of the action line of the drag D on both sides of the casing 5 so as to be rotatable around the axis C ′ that passes through the center C of the rotation moment and is orthogonal to the meridian plane.
- a pair of mooring lines 8 may be attached to the positions, and the submerged generator A may be moored underwater via the pair of mooring lines 8.
- a mooring line 8 may be attached to the free end of the arm 6 so as to be capable of relative pivoting via a universal joint.
- a plurality of mooring lines 8 may be attached to the arm 6.
- a stopper 10 that restricts swinging of the free end of the bifurcated arm 6 in the direction of the propellers 4 a and 4 b may be attached to the casing 5.
- a bifurcated arm 6 ′ is attached to the casing 5 so as to be relatively rotatable around an axis C ′ that passes through the rotational moment center C and is orthogonal to the meridian plane, and is fixed to the seabed or riverbed 100 and extends upward.
- the support 11 may support the base of the arm 6 'so as to be rotatable about the vertical axis.
- the bifurcated arm 6' passes through the rotational moment center C and is orthogonal to the meridian plane.
- the base of the arm 6 ′ may be supported so as to be rotatable about the vertical axis by the support column 11 which is attached to the casing 5 so as to be relatively rotatable around the surface and extends downward from the float 200 on the water surface.
- the submersible power generator A to the column 11 except for the upward force of the difference between the buoyancy F and the gravity W of the submersible power generator A and the drag D orthogonal to the force.
- the structure of the connecting portion between the column 11 and the casing 5 of the submerged generator A can be simplified.
- mooring of the float 200 is easy.
- the submerged generator A By supporting the base of the arm 6 'so as to be rotatable around the vertical axis, the submerged generator A can be made to follow the water flow.
- the support column 11 By making the support column 11 extendable and retractable, the submerged generator A can be positioned at the optimum position in the water depth direction.
- the present invention is widely applicable to submerged generators and submerged power generation systems regardless of the ocean or river.
- a Submerged generator B Submerged power generation system 1a Outer shaft 1b Inner shaft 2a Outer rotating armature 2b Inner rotating armature 3 Power generation mechanism 4a Front stage propeller 4b Rear stage propeller 5 Casing 6, 6 'Arm 7 Slip ring 8 Mooring cable 9 Anchor 10 Stopper 11 Prop 100 Seabed or riverbed 200 Float
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
Abstract
Description
発電機構の起電圧は回転電機子が磁界を切る速度に比例する。没水式発電機においてはプロペラキャビテーションの発生を抑制する観点からプロペラ回転速度の上昇を抑制する必要がある。従って、対峙する外側回転電機子と内側固定電機子の組がそれぞれ独立して配設されている上記没水式発電機において高起電圧を得るためには、増速ギアやプーリ機構を取り付けて、プロペラの回転を増速して外側回転電機子に伝達する必要があり、発電機の大型化を招く。
本発明は上記問題に鑑みてなされたものであり、安定して水中に係留することができ、大型化を招くことなく高起電圧が得られる没水式発電機を提供することを目的とする。
本発明に係る没水式発電機においては、発電中、内外二重回転電機子に働く相反回転トルクの大きさは、運動の第3法則(作用反作用)から力学的および電磁気学的に一致し、ひいては、内側回転電機子と当該電機子に連結されたプロペラが形成する内側回転系と、外側回転電機子と当該電機子に連結されたプロペラが形成する外側回転系に働く相反トルクは一致し、相殺するので、ケーシングには反作用としての回転トルクは一切発生しない。従って、本発明に係る没水式発電機は発電量や流速に関わらず、プロペラ軸心回りのケーシングの回転を惹起することなく、安定して水中に係留することができる。
本発明に係る没水式発電機においては、軸心を一致させて配設され軸心の延在方向に対する翼の捩れ方向が互いに逆方向の一組のプロペラが互いに逆方向に回転して、内外回転電機子を互いに逆方向に回転駆動するので、プロペラの回転速度の上昇を抑制しつつ内外回転電機子の相対回転速度を上昇させて、内外回転電機子が磁界を切る速度を増加させることができ、その結果、増速ギヤやプーリ機構の配設等による大型化を招くことなく従来の没水式発電機に比べて高起電圧を得ることができる。他方、内外回転電機子が磁界を切る速度が従来の没水式発電機に比べて大きいので、起電圧を従来の没水式発電機と同等にする場合には、電機子の巻線数の低減や、同期発電機の電機子を形成する永久磁石の小型化や、電機子の回転半径の低減等により、従来の没水式発電機に比べて発電機を小型化できる。
稼働時に没水式発電機に働く浮力Fが没水式発電機に働く重力Wよりも大(係留索を用いて係留する場合にはF>W+係留索に働く重力-係留索に働く浮力)なので、浮体を別個に取り付けることなく、係留索等で簡単に水中に安定して保持することができる。
一組のプロペラの一方の極慣性モーメントを他方の極慣性モーメントよりも小さな値に設定することにより、水流中での前記一方のプロペラの起動を促進し、ひいては発電機の起動を促進することができる。
本発明の好ましい態様においては、子午面(プロペラ回転軸を含む鉛直面)上で見て、没水式発電機に働く前記浮力Fと前記重力Wと水流中で没水式発電機に働く抗力Dとによる回転モーメントの和が零になる回転モーメント中心が、ケーシング上に存在する。
子午面上で見て、回転モーメント中心がケーシング上に存在すれば、回転モーメント中心を通り子午面に直交する軸線上でケーシングを何らかの手段で支持することにより、没水式発電機を安定して水中に保持することができる。
本発明の好ましい態様においては、没水式発電機に働く抗力Dの作用線上に回転モーメント中心をとり、当該回転モーメント中心を通り子午面に直交する軸線上でケーシングを前記軸線回りに回転自在に支持する。
上記構成により、流速によらず没水式発電機を水平状態に保持することができる。
本発明においては、上記の没水式発電機が、回転モーメント中心を通り子午面に直交する軸線回りに相対回転可能にケーシングに取り付けられた係留索を介して水中に係留されていることを特徴とする没水式発電システムを提供する。
本発明に係る没水式発電システムにおいては、没水式発電機は、回転モーメント中心を通り子午面に直交する軸線回りに相対回転可能にケーシングに取り付けられた係留索を介して水中に係留されるので、発電量や流速に関わりなく子午面上で見ても安定して水中に保持される。
本発明の好ましい態様においては、係留索は、抗力Dの作用線の延在方向に見て抗力Dの作用線に対して左右対称に、ケーシングに取り付けられている。
上記構成により、没水式発電機は抗力Dにより左右方向の首振り運動を惹起されることなく安定して水中に保持される。
本発明の好ましい態様においては、二股のアームが回転モーメント中心を通り子午面に直交する軸線回りに相対回転可能にケーシングに取り付けられ、係留索が相対回転可能に又は相対枢動可能にアームに取り付けられる。
二股のアームを回転モーメント中心を通り子午面に直交する軸線回りに相対回転可能にケーシングに取り付け、係留索を相対回転可能に又は相対枢動可能にアームに取り付けることにより、一本の係留索で安定して発電機を水中に保持することができる。
本発明の好ましい態様においては、係留索は、抗力Dの作用線の延在方向に見て抗力Dの作用線に対して左右対称に、アームに取り付けられている。
上記構成により、没水式発電機は抗力Dにより左右方向の首振り運動を惹起されることなく安定して水中に保持される。
本発明の好ましい態様においては、二股のアームの自由端のプロペラ方向への揺動を規制するストッパーがケーシングに取り付けられている。
二股のアームの自由端のプロペラ方向への揺動を規制するストッパーをケーシングに取り付けることにより、当該自由端に取り付けられた係留索がプロペラと干渉するのを防止することができる。
本発明の好ましい態様においては、没水式発電機に働く前記浮力Fの作用線が前記重力Wの作用線より上流側に位置する。
浮力Fの作用線が重力Wの作用線より上流側に位置すると、回転モーメント中心は浮力Fの作用線よりさらに上流側に位置することになるので、係留索がプロペラから遠ざかり、係留索とプロペラとの干渉が更に効果的に防止される。
本発明においては、上記の没水式発電機が、回転モーメント中心を通り子午面に直交する軸線上で、水底に固定されて上方へ延びる支柱によって支持されていることを特徴とする没水式発電システムを提供する。
本発明においては、上記の没水式発電機が、回転モーメント中心を通り子午面に直交する軸線上で、水面上のフロートから下方へ延びる支柱によって支持されていることを特徴とする没水式発電システムを提供する。
上記没水式発電システムにおいては、支柱には、没水式発電機の浮力と重力の差分の上向きの力と、当該力に直交する抗力以外には、没水式発電機からは力が印加されないので、支柱と没水式発電機のケーシングとの連結部の構成を簡素化できる。
図1に示すように、没水式発電機Aは、筒状の外軸1aと、軸心を一致させて外軸1aに内挿された内軸1bと、外軸1aに固定された外側回転電機子2aと、内軸1bに固定されて外側回転電機子2aに対峙する内側回転電機子2bとを有する内外二重回転電機子形発電機構3と、外軸1aに固定されて外軸1aひいては外側回転電機子2aを回転駆動する前段プロペラ4aと、図1に白抜き矢印で示す水流の方向に関して前段プロペラ4aの後方に且つ軸心を一致させて前段プロペラ4aに整列して配設され、内軸1bに固定されて内軸1bひいては内側回転電機子2bを回転駆動する後段プロペラ4bと、内外二重回転電機子形発電機構3を外部環境に対して密閉して収容する砲弾形状のケーシング5とを備えている。前段プロペラ4aと後段プロペラ4bとは、軸心の延在方向に対する翼の捩れ方向が互いに逆方向に設定されている。後段プロペラ4bの極慣性モーメントは前段プロペラ4aの極慣性モーメントよりも小さな値に設定されている。
図2に示すように、没水式発電機Aが没水して図2に白抜矢印で示す水流中に置かれた時に没水式発電機Aに働く浮力をFとし、没水式発電機Aに働く重力をWとし、没水式発電機Aに働く抗力をDとした時に、F>W(係留索を用いて係留する場合にはF>W+係留索に働く重力-係留索に働く浮力)となるように構成機器の寸法形状と重量とが設定されている。また、子午面(プロペラ回転軸を含む鉛直面)上で見て、鉛直上方に向く浮力Fと鉛直下方に向く重力Wと流れに平行な抗力Dとによる回転モーメントの和を零にする点である回転モーメント中心が、ケーシング5上に存在するように、構成機器の寸法形状と重量とが設定されている。尚、図2に示すように、前記各力F、W、Dをそれぞれの作用点を通るベクトル(作用線)で表示し、前段プロペラ4aの中心からベクトルF、Wまでの距離をSF、SWとし、抗力Dの作用線上に回転モーメント中心をとると、プロペラ4aの中心から軸方向に測った回転モーメント中心Cまでの距離Sは次式で与えられる。
S=(F・SF-W・SW)/(F-W)
なお、回転モーメント中心Cの位置は前記子午面に平行な面上で見ても前記子午面上で見た位置と同じである。
図3に示すように、没水式発電機Aは、プロペラ軸心延在方向からみて左右対称の二股のアーム6を、回転モーメント中心Cを通り子午面に直交する軸線C’回りに相対回転可能にケーシング5の両側部に取り付け、スリップリング7を介して相対回転可能に且つ図3(b)から分かるように、抗力Dの作用線の延在方向に見て抗力Dの作用線に対して左右対称に、アーム6の自由端に係留索8の一端を取り付け、係留索8の他端を海底や河底100に設置したテトラポット等のアンカー9に連結することにより、抗力Dによってプロペラ4a、4bを図3に白抜矢印で示す水流の下流側へ自動的に差し向け、それに伴ってケーシング5のプロペラ4a、4bから離隔する砲弾頂部形状の端部を自動的に水流の上流側へ差し向けて、水平に水中に係留され、没水式発電システムBを形成している。
没水式発電システムBの係留索8が形成する曲線は、子午面上で見て、流速、前述の浮力F、重力W、抗力Dおよび係留索8に加わる重力と浮力により決まる懸垂曲線であり、流速の低下と共に曲率が減少し、流速が零になると係留索8はアンカー9から鉛直上方向に向けて延在する。従って、流速や流れの方向が変化しても係留索8はプロペラ4a、4bに干渉しない。
軸心の延在方向に対する翼の捩れ方向が互いに逆方向に設定された前後段のプロペラ4a、4bが、図3に白抜矢印で示す水流により互いに逆方向に回転し、外内軸1a、1bを介して外内回転電機子2a、2bを互いに逆方向に回転駆動し、発電する。発生した電力はアーム6、スリップリング7、係留索8と一体にした図示しないケーブルを介して外部に取り出され、更に水底に這わせたケーブルを介して陸上の電気機器に供給され、或いは水上へ立ち上げたケーブルを介して水上の電気機器に供給される。
没水式発電機Aにおいては、発電中、内外二重回転電機子2b、2aに働く相反回転トルクは一致し、ひいては、内側回転電機子2bと当該電機子に連結された内軸1bと後段プロペラ4bとが形成する内側回転系と、外側回転電機子2aと当該電機子に連結された外軸1aと前段プロペラ4aとが形成する外側回転系に働く相反トルクの大きさは、運動の第3法則から力学的および電磁気学的に一致し、相殺するので、ケーシング5には反作用としての回転トルクは一切発生しない。この結果、本発明に係る没水式発電機Aは、発電量や流速に関わらず、プロペラ軸心回りのケーシング5の回転を惹起することなく、安定して水中に係留することができる。
没水式発電機Aにおいては、発電機構3は外側回転電機子2aと外側回転電機子とは逆方向に回転する内側回転電機子2bとを有し、互いに逆方向に回転する前後二段のプロペラ4a、4bが対峙している外内回転電機子2a、2bを互いに逆方向に回転駆動するので、プロペラ4a、4bの回転速度の上昇を抑制しつつ外内回転電機子2a、2bの相対回転速度を上昇させて、回転電機子2a、2bが磁界を切る速度を上昇させることができ、その結果、増速ギヤやプーリ機構の配設等による大型化を招くことなく従来の没水式発電機に比べて高起電圧を得ることができる。他方、回転電機子2a、2bが磁界を切る速度が従来の没水式発電機に比べて大きいので、起電圧を従来の没水式発電機と同等にする場合には、電機子2a、2bの巻線数の低減や、同期発電機の電機子を形成する永久磁石の小型化や、電機子の回転半径の低減等により、従来の没水式発電機に比べて発電機を小型化できる。
稼働時に没水式発電機Aに働く浮力Fが没水式発電機Aに働く重力Wよりも大(係留索を用いて係留する場合にはF>W+係留索に働く重力-係留索に働く浮力)なので、浮体を別個に取り付けることなく、没水式発電機Aを水中に安定して保持することができる。
後段プロペラ4bの極慣性モーメントは前段プロペラ4aの極慣性モーメントよりも小さな値に設定されているので、水流中での後段プロペラ4bの起動が促進され、ひいては発電機Aの起動が促進される。
没水式発電システムBにおいては、抗力Dの作用線上に回転モーメント中心をとり、回転モーメント中心Cを通り子午面に直交する軸線C’回りに回転自在にケーシング5の両側部を支持したので、流速によらず没水式発電機Aを水平状態に保持することができる。
没水式発電システムBにおいては、没水式発電機Aは、回転モーメント中心Cを通り子午面に直交する軸線C’回りに相対回転可能にケーシング5に取り付けられた係留索8を介して水中に係留されるので、発電量や流速に関わらず安定して水中に保持される。係留索8は、抗力Dの作用線の延在方向に見て抗力Dの作用線に対して左右対称に、ケーシング5に取り付けられるので、没水式発電機Aは抗力Dにより左右方向の首振り運動を惹起されることなく安定して水中に保持される。
没水式発電システムBにおいては、二股のアーム6を回転モーメント中心Cを通り子午面に直交する軸線C’回りに相対回転可能にケーシング5に取り付け、スリップリング7を介して相対回転可能に且つ抗力Dの作用線の延在方向に見て抗力Dの作用線に対して左右対称に、アーム6に係留索8を取り付けることにより、発電量や流速に関わらず一本の係留索8で安定して発電機Aを水中に保持することができる。
回転モーメント中心Cを通り子午面に直交する軸線C’回りに回転自在に、ケーシング5の両側部に、且つ抗力Dの作用線の延在方向に見て抗力Dの作用線に対して左右対称位置に、一対の係留索8を取り付け、当該一対の係留索8を介して、没水式発電機Aを水中に係留しても良い。
ユニバーサルジョイントを介して相対枢動可能にアーム6の自由端に係留索8を取り付けても良い。
複数の係留索8をアーム6に取り付けても良い。この場合、係留索8の一端をアーム6の自由端に取り付ける位置は、抗力Dの作用線の延在方向に見て抗力Dの作用線に対して左右対称に配設するのが望ましい。
図3に一点鎖線で示すように、二股のアーム6の自由端のプロペラ4a、4b方向への揺動を規制するストッパー10をケーシング5に取り付けても良い。
二股のアーム6の自由端のプロペラ4a、4b方向への揺動を適正値に規制することにより、当該自由に取り付けられた係留索8がプロペラ4a、4bと干渉するのを容易に防止することができる。
図2に示すように、浮力Fの作用線を重力Wの作用線より上流側に位置させると、回転モーメント中心Cは浮力Fの作用線よりさらに上流側に位置することになるので、係留索8がプロペラ4a、4bから遠ざかり、係留索8とプロペラ4a、4bとの干渉が流速によらず効果的に防止される。
図4に示すように、二股のアーム6’を回転モーメント中心Cを通り子午面に直交する軸線C’回りに相対回転可能にケーシング5に取り付け、海底や河底100に固定されて上方へ延びる支柱11によって、上下軸線回りに回転可能にアーム6’の基部を支持しても良く、或いは図5に示すように、二股のアーム6’を回転モーメント中心Cを通り子午面に直交する軸線C’回りに相対回転可能にケーシング5に取り付け、水面上のフロート200から下方へ延びる支柱11によって、上下軸線回りに回転可能にアーム6’の基部を支持しても良い。上記の没水式発電システムにおいては、没水式発電機Aの浮力Fと重力Wの差分の上向きの力と、当該力に直交する抗力D以外には、没水式発電機Aから支柱11へ力が印加されないので、支柱11と没水式発電機Aのケーシング5との連結部の構成を簡素化できる。また、フロート200の係留も容易である.
上下軸線回りに回転可能にアーム6’の基部を支持することにより、没水式発電機Aを水流に沿わせることができる。
支柱11を伸縮可能にすることにより、水深方向の最適位置に没水式発電機Aを位置決めすることができる。
B 没水式発電システム
1a 外軸
1b 内軸
2a 外側回転電機子
2b 内側回転電機子
3 発電機構
4a 前段プロペラ
4b 後段プロペラ
5 ケーシング
6、6’ アーム
7 スリップリング
8 係留索
9 アンカー
10 ストッパー
11 支柱
100 海底や河底
200 フロート
Claims (12)
- 相対回転する内外電機子と内外電機子を相対回転駆動するプロペラと電機子を収容するケーシングとを備える没水式発電機であって、外側回転電機子と外側回転電機子に対峙し外側回転電機子とは逆方向に回転する内側回転電機子とを有する内外二重回転電機子形発電機構と、軸心を一致させて配設され軸心の延在方向に対する翼の捩れ方向が互いに逆方向の一組のプロペラとを備え、前記一組のプロペラの一方は前記内外の回転電機子の一方に、前記一組のプロペラの他方は前記内外の回転電機子の他方に、それぞれ連結されており、更に、内外二重回転電機子形発電機構を外部環境に対して密閉して収容するケーシングを備え、没水状態で水流中に置かれて稼働し、稼働時に没水式発電機に働く浮力Fは没水式発電機に働く重力Wよりも大(係留索を用いて係留する場合にはF>W+係留索に働く重力-係留索に働く浮力)であることを特徴とする没水式発電機。
- 一組のプロペラの一方の極慣性モーメントが他方の極慣性モーメントよりも小さな値に設定されていることを特徴とする請求項1に記載の没水式発電機。
- 子午面(プロペラ回転軸を含む鉛直面)上で見て、没水式発電機に働く前記浮力Fと前記重力Wと水流中で没水式発電機に働く抗力Dとによる回転モーメントの和が零になる回転モーメント中心が、ケーシング上に存在することを特徴とする請求項1又は2に記載の没水式発電機。
- 没水式発電機に働く抗力Dの作用線上に回転モーメント中心をとり、当該回転モーメント中心を通り子午面に直交する軸線上でケーシングを前記軸線回りに回転自在に支持することを特徴とする請求項3に記載の没水式発電機。
- 請求項3又は4に記載の没水式発電機が、回転モーメント中心を通り子午面に直交する軸線回りに相対回転可能にケーシングに取り付けられた係留索を介して水中に係留されていることを特徴とする没水式発電システム。
- 係留索は、抗力Dの作用線の延在方向に見て抗力Dの作用線に対して左右対称に、ケーシングに取り付けられていることを特徴とする請求項5に記載の没水式発電システム。
- 二股のアームが回転モーメント中心を通り子午面に直交する軸線回りに相対回転可能にケーシングに取り付けられ、係留索が相対回転可能に又は相対枢動可能にアームに取り付けられていることを特徴とする請求項5に記載の没水式発電システム。
- 係留索は、抗力Dの作用線の延在方向に見て抗力Dの作用線に対して左右対称に、アームに取り付けられていることを特徴とする請求項7に記載の没水式発電システム。
- 二股のアームの自由端のプロペラ方向への揺動を規制するストッパーがケーシングに取り付けられていることを特徴とする請求項7又は8に記載の没水式発電システム。
- 没水式発電機に働く前記浮力Fが前記重力Wより上流側に位置することを特徴とする請求項5乃至9の何れか1項に記載の没水式発電システム。
- 請求項3又は4に記載の没水式発電機が、回転モーメント中心を通り子午面に直交する軸線上で、海底や河底に固定されて上方へ延びる支柱によって支持されていることを特徴とする没水式発電システム。
- 請求項3又は4に記載の没水式発電機が、回転モーメント中心を通り子午面に直交する軸線上で、水面上のフロートから下方へ延びる支柱によって支持されていることを特徴とする没水式発電システム。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020147026550A KR101611840B1 (ko) | 2012-10-17 | 2012-10-17 | 잠수형 발전기 및 잠수형 발전 시스템 |
CN201280072404.0A CN104246209B (zh) | 2012-10-17 | 2012-10-17 | 潜水式发电机 |
US14/421,176 US9506450B2 (en) | 2012-10-17 | 2012-10-17 | Submersible power generator |
PCT/JP2012/076785 WO2014061116A1 (ja) | 2012-10-17 | 2012-10-17 | 没水式発電機 |
EP12886697.7A EP2896820B1 (en) | 2012-10-17 | 2012-10-17 | Submersible power generator |
JP2014509015A JP5541760B1 (ja) | 2012-10-17 | 2012-10-17 | 没水式発電機 |
BR112015008402A BR112015008402A2 (pt) | 2012-10-17 | 2012-10-17 | gerador de energia submergível |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/076785 WO2014061116A1 (ja) | 2012-10-17 | 2012-10-17 | 没水式発電機 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014061116A1 true WO2014061116A1 (ja) | 2014-04-24 |
Family
ID=50487705
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/076785 WO2014061116A1 (ja) | 2012-10-17 | 2012-10-17 | 没水式発電機 |
Country Status (7)
Country | Link |
---|---|
US (1) | US9506450B2 (ja) |
EP (1) | EP2896820B1 (ja) |
JP (1) | JP5541760B1 (ja) |
KR (1) | KR101611840B1 (ja) |
CN (1) | CN104246209B (ja) |
BR (1) | BR112015008402A2 (ja) |
WO (1) | WO2014061116A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016065733A1 (zh) * | 2014-10-27 | 2016-05-06 | 王承辉 | 一种水流发电装置 |
JP2022529286A (ja) * | 2019-04-18 | 2022-06-20 | フレックス マリン パワー リミテッド | 軸流タービン装置 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9617979B2 (en) * | 2013-10-30 | 2017-04-11 | Airgenesis, LLC | Motor assisted power generation system |
CN111422343B (zh) * | 2020-03-31 | 2021-08-27 | 山东大学 | 一种半航空瞬变电磁探测接收系统专用无人机 |
NO347801B1 (en) * | 2023-08-22 | 2024-03-25 | Roy Magne Juvik | Tidal power plant |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007016786A (ja) | 2005-07-05 | 2007-01-25 | Gencor Industries Inc | 水流発電機 |
JP2007170282A (ja) * | 2005-12-22 | 2007-07-05 | Chuichi Suzuki | 波力及び水流発電装置 |
JP2008063961A (ja) * | 2006-09-05 | 2008-03-21 | Masataka Murahara | 風水車同心回転軸直接駆動型電気エネルギー抽出装置 |
JP3145233U (ja) * | 2008-07-18 | 2008-10-02 | 二郎 廣瀬 | 発電機 |
JP2011122508A (ja) * | 2009-12-10 | 2011-06-23 | Kayseven Co Ltd | 発電装置 |
Family Cites Families (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2501696A (en) * | 1946-01-12 | 1950-03-28 | Wolfgang Kmentt | Stream turbine |
US4219303A (en) * | 1977-10-27 | 1980-08-26 | Mouton William J Jr | Submarine turbine power plant |
JPS551445A (en) * | 1978-06-20 | 1980-01-08 | Fuji Electric Co Ltd | Tide generating facilities |
DE2933907A1 (de) * | 1979-08-22 | 1981-03-12 | Hans-Dieter 6100 Darmstadt Kelm | Anlage zum gewinnen von elektrischer energie aus stroemenden gewaessern und turbinenaggregat fuer eine solche anlage |
US4613279A (en) | 1984-03-22 | 1986-09-23 | Riverside Energy Technology, Inc. | Kinetic hydro energy conversion system |
JP3145233B2 (ja) * | 1992-08-07 | 2001-03-12 | 株式会社鷺宮製作所 | 双方向電磁弁 |
JPH1089373A (ja) * | 1996-09-11 | 1998-04-07 | Koyo Seiko Co Ltd | 弾性軸継手 |
JP4458641B2 (ja) | 1999-08-20 | 2010-04-28 | 株式会社東芝 | 軸流水車発電装置 |
US6806586B2 (en) * | 1999-10-06 | 2004-10-19 | Aloys Wobben | Apparatus and method to convert marine current into electrical power |
JP2001153021A (ja) | 1999-11-29 | 2001-06-05 | Tone Corp | 低落差用水力発電装置 |
DE10152712B4 (de) | 2001-10-19 | 2015-10-15 | Aloys Wobben | Generator für ein Wasserkraftwerk |
US7042113B2 (en) * | 2002-01-18 | 2006-05-09 | Aukon Dennis W | Hydroelectric generator |
EP1540177B1 (fr) * | 2002-09-17 | 2011-10-19 | Eotheme Sarl | Dispositif d'entrainement pour une eolienne munie de deux helices contre rotatives |
GB0229042D0 (en) | 2002-12-13 | 2003-01-15 | Marine Current Turbines Ltd | Hydraulic speed-increasing transmission for water current powered turbine |
NO320252B1 (no) | 2003-05-21 | 2005-11-14 | Hydra Tidal Energy Technology | Anordning for forankring av en flytende struktur |
DE10338395A1 (de) | 2003-08-21 | 2005-03-17 | Anton Niederbrunner | Laufradanordnung einer Strömungsmaschine |
ES2235647B1 (es) | 2003-12-22 | 2006-11-01 | Antonio Balseiro Pernas | Turbina hidrodinamica en corrientes marinas. |
GB0516149D0 (en) * | 2005-08-05 | 2005-09-14 | Univ Strathclyde | Turbine |
JP2007215329A (ja) * | 2006-02-10 | 2007-08-23 | Jiro Hirose | 発電機 |
GB0710822D0 (en) * | 2007-06-05 | 2007-07-18 | Overberg Ltd | Mooring system for tidal stream and ocean current turbines |
RU2368797C2 (ru) * | 2007-08-01 | 2009-09-27 | Сергей Евгеньевич Варламов | Гидроэнергетическая установка |
CN201090357Y (zh) | 2007-10-12 | 2008-07-23 | 鹤壁职业技术学院机电工程学院 | 对转水力发电机 |
US7830033B2 (en) * | 2008-05-19 | 2010-11-09 | Moshe Meller | Wind turbine electricity generating system |
US20110148117A1 (en) * | 2008-08-11 | 2011-06-23 | Ralph-Peter Bailey | Underwater turbine with finned diffuser for flow enhancement |
JP5105369B2 (ja) | 2008-10-24 | 2012-12-26 | 独立行政法人国立高等専門学校機構 | 風力発電装置 |
JP5359316B2 (ja) | 2009-01-28 | 2013-12-04 | 国立大学法人 宮崎大学 | 水力エネルギー回収装置 |
US8264096B2 (en) * | 2009-03-05 | 2012-09-11 | Tarfin Micu | Drive system for use with flowing fluids having gears to support counter-rotative turbines |
KR20120042746A (ko) | 2009-04-28 | 2012-05-03 | 아틀란티스 리소시스 코포레이션 피티이 리미티드 | 수중 동력 발생기 |
WO2010141347A2 (en) * | 2009-06-01 | 2010-12-09 | Synkinetics, Inc. | Multi-rotor fluid turbine drive with speed converter |
WO2011008352A1 (en) * | 2009-06-30 | 2011-01-20 | Turner Hunt | Variable control rotor hub with self-contained energy storage reservoir |
JP2012092651A (ja) | 2010-10-22 | 2012-05-17 | Natural Invention Kk | 風力発電装置 |
US8742612B1 (en) * | 2010-12-01 | 2014-06-03 | Associated Energy Technology LLC | Turbine having counter-rotating armature and field |
US8766466B2 (en) * | 2011-10-31 | 2014-07-01 | Aquantis, Inc. | Submerged electricity generation plane with marine current-driven rotors |
-
2012
- 2012-10-17 WO PCT/JP2012/076785 patent/WO2014061116A1/ja active Application Filing
- 2012-10-17 KR KR1020147026550A patent/KR101611840B1/ko active IP Right Grant
- 2012-10-17 BR BR112015008402A patent/BR112015008402A2/pt not_active IP Right Cessation
- 2012-10-17 US US14/421,176 patent/US9506450B2/en active Active
- 2012-10-17 JP JP2014509015A patent/JP5541760B1/ja active Active
- 2012-10-17 EP EP12886697.7A patent/EP2896820B1/en not_active Not-in-force
- 2012-10-17 CN CN201280072404.0A patent/CN104246209B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007016786A (ja) | 2005-07-05 | 2007-01-25 | Gencor Industries Inc | 水流発電機 |
JP2007170282A (ja) * | 2005-12-22 | 2007-07-05 | Chuichi Suzuki | 波力及び水流発電装置 |
JP2008063961A (ja) * | 2006-09-05 | 2008-03-21 | Masataka Murahara | 風水車同心回転軸直接駆動型電気エネルギー抽出装置 |
JP3145233U (ja) * | 2008-07-18 | 2008-10-02 | 二郎 廣瀬 | 発電機 |
JP2011122508A (ja) * | 2009-12-10 | 2011-06-23 | Kayseven Co Ltd | 発電装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2896820A4 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016065733A1 (zh) * | 2014-10-27 | 2016-05-06 | 王承辉 | 一种水流发电装置 |
US10495051B2 (en) | 2014-10-27 | 2019-12-03 | Chenghui Wang | Power generating device having hollow structures |
JP2022529286A (ja) * | 2019-04-18 | 2022-06-20 | フレックス マリン パワー リミテッド | 軸流タービン装置 |
JP7514024B2 (ja) | 2019-04-18 | 2024-07-10 | フレックス マリン パワー リミテッド | 軸流タービン装置 |
Also Published As
Publication number | Publication date |
---|---|
US20150240778A1 (en) | 2015-08-27 |
JP5541760B1 (ja) | 2014-07-09 |
JPWO2014061116A1 (ja) | 2016-09-05 |
EP2896820A1 (en) | 2015-07-22 |
KR20140126760A (ko) | 2014-10-31 |
US9506450B2 (en) | 2016-11-29 |
EP2896820B1 (en) | 2017-05-31 |
CN104246209B (zh) | 2016-10-26 |
KR101611840B1 (ko) | 2016-04-26 |
CN104246209A (zh) | 2014-12-24 |
EP2896820A4 (en) | 2016-02-24 |
BR112015008402A2 (pt) | 2017-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5541760B1 (ja) | 没水式発電機 | |
WO2011010675A1 (ja) | 水力発電装置 | |
ZA201006620B (en) | Fin-ring propeller for a water current power generation system | |
WO2010033147A2 (en) | Apparatus for generating electricity from flowing fluid using generally prolate turbine | |
KR102054786B1 (ko) | 선박용 추진 유닛 | |
TWI780570B (zh) | 多軸波浪發電裝置 | |
GB2489308A (en) | Swinging flap turbine with fluid guide | |
JP5366150B2 (ja) | 潮流・海流発電システム | |
JP5518276B1 (ja) | 没水式発電機 | |
WO2018139587A1 (ja) | 水流発電装置 | |
EP4030589A1 (en) | Permanent magnet generator for ocean energy conversion | |
KR20120063367A (ko) | 선박용 추진 장치 및 이를 포함하는 선박 | |
CN115263654A (zh) | 潜标供电的潮流能发电装置 | |
KR101185513B1 (ko) | 선박의 프로펠러 | |
JP6787094B2 (ja) | 水中浮遊式発電装置 | |
JP2015218716A (ja) | 発電装置 | |
JP3222806U (ja) | 回転軸軸支構造 | |
CN108374744B (zh) | 一种水流发电装置及系统 | |
JP2024042757A (ja) | 水流発電装置 | |
JP2023167084A (ja) | 水流発電装置 | |
KR20180003489U (ko) | 자이로스코프 파력발전기 새로운 구조 장치 | |
WO2017043298A1 (ja) | 回転軸軸支構造 | |
JP2012225302A (ja) | 潜水式流体機械 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2014509015 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12886697 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20147026550 Country of ref document: KR Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2012886697 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012886697 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14421176 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112015008402 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112015008402 Country of ref document: BR Kind code of ref document: A2 Effective date: 20150415 |