JP2012092651A - 風力発電装置 - Google Patents

風力発電装置 Download PDF

Info

Publication number
JP2012092651A
JP2012092651A JP2010237872A JP2010237872A JP2012092651A JP 2012092651 A JP2012092651 A JP 2012092651A JP 2010237872 A JP2010237872 A JP 2010237872A JP 2010237872 A JP2010237872 A JP 2010237872A JP 2012092651 A JP2012092651 A JP 2012092651A
Authority
JP
Japan
Prior art keywords
wind
wind turbine
windmill
propeller
power generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010237872A
Other languages
English (en)
Inventor
Yoshio Aoki
美男 青木
Yasuo Suzuki
康夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NATURAL INV KK
NATURAL INVENTION KK
Original Assignee
NATURAL INV KK
NATURAL INVENTION KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NATURAL INV KK, NATURAL INVENTION KK filed Critical NATURAL INV KK
Priority to JP2010237872A priority Critical patent/JP2012092651A/ja
Publication of JP2012092651A publication Critical patent/JP2012092651A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Abstract

【課題】風車や発電機が大型重量化した場合でも、風車支持装置や支柱の大型重量化を抑制しコスト低減を図ることができる高効率の風力発電装置を提供する。
【解決手段】水平回転軸をそれぞれ有し、所要の一方向に回転する前部プロペラ風車3とその逆方向に回転する後部プロヘラ風車4とを少なくとも有する複数の風車と、これら前部,後部プロペラ風車を風受け方向に並設して回転可能に支持し、これら風車の各水平回転軸を同軸状に配設したナセル2と、このナセルに配設されて前部,後部プロペラ風車の各水平回転軸により回転駆動される発電機と、ナセルを支持するタワー5と、を具備している。
【選択図】 図1

Description

本発明の実施形態は、所要の一方向に回転する第1の風車と、その逆方向に回転する第2の風車とを少なくとも有する風力発電装置に関する。
現代において地球上のエネルギー問題は極めて緊急性を有する課題である。このために、従来から、自然エネルギーの風力を利用する風力発電装置も種々提案されている(例えば、特許文献1,2参照)。そして、これら風力発電装置は、より高い効率の向上を求めて大型化の方向に進んでいる。
この風力発電開発の一つのテーマは、受風面積に入る全風力パワーの何割を風車の回転パワーに効率よく変換できるかにある。つまり、風力の風車回転力への変換効率を上げて、発電装置を搭載するタワー(支柱)1台当たりの発電量を増大させることが要請されている。
特開2007−9822号公報 特開2007−85327号公報
しかしながら、理想気体を対象とした空気力学的研究により、風力と電気変換効率には、図6で示すベッツの限界と呼ばれる上限値が存在する。図6はベッツの限界を示すグラフであり、図中横軸が風車による風速の減速の割合を示す誘導係数aである。縦軸はいわゆる出力係数Cで、風力パワーの電気出力への変換効率を示している。つまり、図6に示すように風速の減速率は、1/3程度が最適であり、その時、変換効率が最高となる。これがベッツの限界0.593(約59%)である。しかも、この限界は、風上の風速と風車の所要面との風速の減速率から導き出されたもので風車のタイプ(型)に依存しない理論的限界である。
このために、従来の風力発電装置では、このベッツの限界を超えるものはない。そこで現在の風力発電装置の開発では、より大きな発電量を図るために大型化して受風面積を増やし、受風する風力エネルギーそのものを増大させ、一台あたりの発電量の増大を図っている。
このために、風車と発電機の大型重量化に伴ってこれら風車と発電機等の水平回転軸の回転モーメントも増大するので、これら風車と、発電機等を支持する風車支持装置であるナセルと、このナセルを空中高く支持する支柱(タワー)の大型重量化を招く、という課題がある。特に支柱のコストは一般にプロペラ型風力発電装置では、その全体のイニシャルコストの約1/4程度を占めるので、大きなコストアップを招くという課題がある。
本発明はこのような事情を考慮してなされたもので、その目的は、風車や発電機が大型重量化した場合でも、風車支持装置や支柱の大型重量化を抑制しコスト低減を図ることができる高効率の風力発電装置を提供することにある。
本実施形態によれば、水平回転軸をそれぞれ有し、所要の一方向に回転する第1の風車とその逆方向に回転する第2の風車とを少なくとも有する複数の風車と、これら前部,後部の風車を風受け方向に並設して回転可能に支持し、これら風車の各水平回転軸を同軸状に配設した風車支持装置と、この風車支持装置に配設されて前記前部,後部の風車の各水平回転軸により回転駆動される発電機と、前記風車支持装置を支持する支柱と、を具備している。
本実施形態によれば、第1の風車と第2の風車の両水平回転軸が同軸状で逆回転するので、これら両水平回転軸の回転モーメント同士が相殺されて低減される。このために、風車と発電機を支持する風車支持装置とこの風車支持装置を支持する支柱の小型軽量化を図ることができ、ひいてはコスト低減を図ることができる。また、これら複数の水平回転軸により複数の発電機をそれぞれ駆動するので、発電量の増大を図ることができる。
本発明の第1の実施形態に係る風力発電装置の全体構成を示す模式図。 図1で示すナセルと第1,第2のプロペラ風車の翼の一部をそれぞれ切欠いて示す要部側面図。 図1,図2で示す第1,第2のプロペラ風車の翼の翼断面(エーロフォイル)と、受風による回転力等各種力との相対関係を示す図。 本発明の第1の実施形態のスペックを示す表。 本発明の第2の実施形態に係る風力発電装置の模式図。 ベッツの限界を示すグラフ。
以下、本発明の実施形態を図面に基づいて説明する。なお、これら複数の図面中、同一または相当部分には同一符号を付している。
図1に示すように本発明の第1の実施形態に係る風力発電装置1は、風車支持装置の一例であるナセル2に、前部,後部の風車であって、ほぼ同形、同大の前部プロペラ風車3と後部プロペラ4とを、図中矢印で示す受風の前後方向(図中左右方向)に所要の間隔を置いて回転可能に配設している。このナセル2は、支柱の一例であるタワー5により回動可能に支持されている。
上記前部プロペラ風車3と後部プロペラ風車4との所要の間隔とは、例えばこれら風車3,4の半径以内であればよい。すなわち、前部プロペラ風車3より後方の風は、前部プロペラ風車3から後方に向けて末広状に漸次拡径するので、これら両風車3,4の間隔が半径以上になると、前部プロペラ風車3からの後方風の垂直方向断面形状、すなわち、ナセル2の軸方向にほぼ平行に通風する受風の通風方向に対して直交する方向の断面形状が後部プロペラ風車4よりも大径になる。このために、後部プロペラ風車4により受風されずに、その直径方向外側を通風する風量が増大するので、後部プロペラ風車4の受風面積が減少する。このために、後部プロペラ風車4の風力パワーが低下する。
これに対して、前部,後部プロペラ風車3,4同士の間隔が近い場合には、後部プロペラ風車4が受ける受風の垂直断面形状の末広がりの拡径が少ないので、後部プロペラ風車4の受風の風速が約1/3程度減速するものの、受風面積の減少は抑制される。したがって、前部,後部プロペラ風車3,4同士の間隔は短いほど好ましい。
タワー5は、その図1中、下端部に、地面6より下の地中に埋設される基礎部5aを一体に連成し、この基礎部5aを、地中に埋設された基台7上に立設している。タワー5は、その下端部内に変圧器8を配設し、地面6上には、系統連係保護装置9、方位制御装置10を配設している。系統連係保護装置9は、風力発電装置1により発電された電力を、変圧器8により所要の電圧に変圧した後、図示しない電力系統に連係させる。
方位制御装置10は、風向を検出する風向検出器(図示省略)からの風向検出信号を受けて、ナセル2、すなわち、前部プロペラ風車3と後部プロヘラ4とを風の吹き出し方向(受風方向)に正対させる方角に制御するための方位制御信号を方位制御用モータ10a(図2参照)に与える。方位制御用モータ10aは、例えばタワー5内の上端部に配設されたステップモータ等により構成されており、このステップモータの回転出力軸10bの回転力によりナセル2の方角を制御し、タワー5内を挿通する図示しない配線により方位制御装置10に電気的に接続されている。
ナセル2は、ほぼ円筒状のナセルハウジング2aを具備している。このナセルハウジング2aは、その図1,図2中、前端部に、先端部がドーム状の流線形状のフロントフェアリング2bを一体に形成し、後端部には風向板の一例である単一または複数の尾翼2c,2cを形成している。また、ナセルハウジング2aは、このフロントフェアリング2bの後方(図1,図2では右側方)に、円筒状の前部ロータ部3aを回転可能に同心状に設け、さらに、この前部ロータ部3aの後方に、円筒状の後部ロータ部4aを同心状に回転可能に配設している。これら前部,後部の両ロータ部3a,4aは、これらロータ部3a,4a本体内に配設された図示省略のベアリングを介してナセルハウジング2aにより回転可能に支持されている。
前部,後部ロータ部3a,4aは、その各円筒状外周面に、周方向に例えば120°等所要のピッチを置いて、前部,後部プロペラ風車3,4の複数、例えば3枚の翼3b,3b,3b、4b,4b,4bをそれぞれ固着している。
そして、これら前部,後部プロペラ風車3,4は、その回転方向が相互に逆転するように各翼3b,4bの翼横断面形状を正反対に形成している。すなわち、図3に示すように前部,後部プロペラ風車3,4は、その各一面をほぼ平坦面に形成する一方、その他面の曲面側の形状を前部,後部プロペラ風車3,4で正反対に形成している。つまり、前部プロペラ風車3はその曲面側を、各翼3aの、翼横断面形状を、例えば図1,図2中、前縁部を山形の肉厚部a(図3参照)に形成し、後縁部に行くに従って漸次薄くなる薄肉部bに一体に連成している。
これに対し、後部プロペラ風車4は、その曲面側を、例えば図1,図2中、前縁部を薄肉部bに形成し、後縁部に行くに従って漸次厚くなる山形の肉厚部aに一体に連成している。但し、前部,後部プロペラ風車3,4は、上記曲面側形状を逆に形成してもよい。すなわち、前部プロペラ風車3の翼横断面形状を上記後部プロペラ風車4の翼断面形状のように、前縁部を薄肉部bに形成する一方、後縁部を厚肉部aに形成してもよい。また、後部プロペラ風車4の翼横断面形状を上記前部プロペラ風車3の翼断面形状のように前縁部を厚肉部aに形成する一方、後縁部を薄肉部bに形成してもよい。
図3は、これらプロペラ風車3,4が風を受けたときに、その風速と風向によって、どのような回転力(接線力)dTが生ずるかを示す。前部,後部プロペラ風車3,4の各翼3b,4bに風が当たると、その翼の翼型とピッチ角によって、揚力dLと抗力dDが生ずる。接線力dTはその揚力dLと抗力dDの回転面への投影を合成したものである。この接線力dTにより前部,後部プロペラ風車3,4を回転させる。
次に、これら前部,後部プロペラ風車3,4のエネルギー変換効率について述べる。
まず、出力係数Cは、前部,後部プロペラ風車3,4の回転面積(受風面積)を単位時間当りに通過する気流の運動エネルギーと風力発電出力の比で定義され、総合効率に相当する。つまり、次式が成立する。
[数1]
=P/(1/2)ρv
ここで、P:発電出力、ρ:空気密度、v:風速、A:受風面積である。
また、出力係数Cは風速比とピッチ角の関数であり、相似則が成り立つ。ここで、風速比λは、半径×角速度/流入風速=RΩ/vである。
の解析式は以下の通りである。
Figure 2012092651
ある受風面積の風力エネルギーをいかに風車の回転エネルギーに変換できるかは、前部,後部プロペラ風車3,4の出力係数Cを周速比λの関数として示す風車の特性曲線により表わすことができる。
なお、空気力学の理論的研究から、損失のない理想流体では、出力係数C最大値は16/27=0.593であり、これをベッツの限界という。これは風力を利用しての発電出力は最大でも0.593倍にしかならないということであり、現実の設計では例えば最大値は0.45付近である。
そして、図2に示すように前部プロペラ風車3は、その前部回転ロータ3aに、前部水平回転軸11を同心状に固着している。この前部水平回転軸11は調速機の一例である前部増速機12の入力軸に接続される。この前部増速機12により所要の回転数(回転速度)に制御される。前部増速機12の出力軸12aは発電機13の図2中前面側から内部に延在して、図示しない電機子と界磁の一方、例えば電機子に同心状に接続され、この出力軸12aにより電機子が回転駆動される。発電機13は、例えば永久磁石形同期発電機や誘導発電機等からなり、電機子と界磁が同心状に逆回転して発電するように構成されている。
一方、後部プロペラ風車4は、その後部回転ロータ4aに、後部水平回転軸14を同心状に固着している。この後部水平回転軸14は後部増速機15の入力軸に接続される。この後部増速機15の出力軸15aは発電機13の図2中、背面側から、その内部に延在して、界磁に接続され、界磁を回転駆動する。これら前部,後部水平回転軸11,14と、前部,後部増速機12,15の各出力軸12a,15aとはみな同軸状に配設されている。
次に、上記風力発電装置1の作用を説明する。図1に示すように、風力発電装置1が図中矢印で示す方向から風を受けると、前部プロペラ風車3は、その翼横断面形状により発生する揚力により、例えば図1中矢印方向に回転(これを例えば正転という)する。
これにより、前部プロペラ風車3の後方の風の風速は前部プロペラ風車3が受ける風速のほぼ2/3に減速して後部プロペラ風車4に対して向い風となって受風される。すなわち、前部プロペラ風車3を通風した後方風は、軸方向の風速が例えば約1/3程度減速して2/3程度になるものの、前部プロペラ風車3の回転により、後部プロペラ風車4の回転方向と同じ方向の回転力が付与される。これにより、後部プロペラ風車4の回転パワーが増大する。後部プロペラ風車4はその翼横断面形状が前部プロペラ風車3と前後方向(前縁部と後縁部)の形状が正反対であるために前部プロペラ風車3とは反対方向へ回転、すなわち逆転する。
このために、前部プロペラ風車3の前部ロータ3aと前部水平回転軸11が正転し、前部増速機12により所要の単位時間当りの回転数(回転速度)に制御されてから発電機13の電機子を正転させる。
一方、後部プロペラ風車4の後部ロータ4aと後部水平回転軸14が逆転し、後部増速機15により所要の回転速度に制御されてから発電機13の界磁を逆転させる。
このために、発電機13は、その例えば電機子と界磁とを相互に逆転させるので、電機子と界磁の一方をステータとして静止させる場合に比して、界磁と電機子との相対的な回転速度をほぼ2倍に増加させることができるので、発電機13の電気出力を例えば約2倍程度に増大させることができる。この発電機13の全体の電気出力等は図4で示す表の通りである。
なお、表中、Dは比例定数であり、風力パワー(PW)は風速vの3乗に比例する。
また、前部,後部プロペラ風車3,4の発電パワーP1,P2は、次式によりそれぞれ算出される。
[数3]
P1=Cp×PW1=0.593×Dv ……(1)
P2=Cp×PW2=0.593×D(2v/3) ……(2)
さらに、風力発電装置1全体の発電力(Po)と、風力電力変換効率(Cp)は次の通りである。
[数4]
Po=0.593・Dv(1+8/27) ……(3)
Cp=P/PW1=0.593×35/27=0.77 ……(4)
しかし、この風力発電装置1全体の変換効率(Cp0)0.77は、空気を粘性の無い理想気体として想定した場合の計算値であり、実際の空気の場合の変換効率は上述したように例えば0.45程度であるから、実際の変換効率は0.77×0.45/0.593=0.58となる。しかし、この変換効率は理想気体を前提とするベッツの限界に近い効率である。
そして、前部,後部両プロペラ風車3,4は、2対以上設けてもよく、その場合の変換効率は等比級数的に向上する。さらに、前部,後部プロペラ風車3,4は、これらの半径以内の間隔を置いて3台以上設けてもよく、この場合の変換効率の限界値は次の(5)式に示すように約0.84程度になると考えられる。
Figure 2012092651
また、風力発電装置1は、前部,後部プロペラ風車3,4により1台の発電機13の電機子と界磁を相互に逆転させ、これらの相対速度を例えば2倍に増加させているので、ほぼ2倍の電力を発電し出力することができる。
この発電機13の電力は変圧器8と系統連係保護装置9を介して図示しない電力系統に供給される。
そして、前部プロペラ風車3の前部水平回転軸11および前部増速機12の出力軸12aと、後部プロペラ風車4の後部水平回転軸14および後部増速機15の出力軸15aとがみな同一軸上にあって、相互に逆転するので、これらの回転モーメントを相殺し、低減することができる。
このために、発電機13に負荷される回転モーメントを低減することができるうえに、前部,後部ロータ3a,4a、前部,後部水平回転軸11,14を回転可能に支持する図示省略のベアリングや前部,後部増速機12,15に負荷される回転モーメントも相殺されて低減され、その機械的強度の軽減を図ることができる。
これにより、前部,後部ロータ3a,4a、前部,後部水平回転軸11,14、前部,後部増速機12,15、発電機13を内部に収容し支持するナセルハウジング2aの回転モーメントも低減でき、その機械的強度の軽減を図ることができる。
その結果、ナセルハウジング2aの小型軽量化を図ることができ、ひいてはこのナセルハウジング2aを支持するタワー5の機械的強度の軽減を図ることができるので、その小型軽量化も図ることができる。これにより、風力発電装置1のコスト低減を図ることができる。特に、タワー5は風力発電装置1の製造コストの例えばほぼ1/4程度を占めるので、このタワー5のコスト低減効果は大きい。
さらに、ナセルハウジング2aは、発電機13の前後に、図2に示すように前部,後部ロータ3a,4a、前部,後部水平回転軸11,14、前部,後部増速機12,15およびその出力軸12a,15aを、それぞれ対称に配置し、重量が比較的重い発電機13の下部の重心部にて、タワー5により支持されているので、ナセル2の重量バランスをとることができる。このために、発電機13の前後に発生する回転モーメントの大きさがほぼ等しくなるので、回転モーメントの相殺量、すなわち、低減量の増大を図ることができる。タワー5によるナセルハウジング2aの支持の安定性の向上を図ることができる。
また、風力発電装置1は、ナセル2の方位を、方向板2cと方位制御装置10の両者により、風受け方向に制御するので、方位制御装置10のみにより方位制御する場合に比して方位制御装置10の駆動電力の低減を図ることができる。
図5は本発明の第2の実施形態に係る風力発電装置1Aの斜視図である。この風力発電装置1Aは、前部プロペラ風車3を、これよりも直径が小さい小形前部プロペラ風車16に置換した点に特徴があり、これ以外の構成は、上記第1の実施形態に係る風力発電装置1とほぼ同様の構成である。
この風力発電装置1Aによれば、小形前部プロペラ風車16が上記前部プロペラ風車3よりも小径であるので、その分、回転トルクが低下するので、風力パワーが低下し発電機13の電機子の回転速度が低下する。
しかし、小形前部プロペラ風車16の後方で、これよりも大径の後部プロペラ風車4の受風面積が小形前部プロペラ風車16よりも大きい分増大するので、その分、後部プロペラ風車4の風力パワーが増大し、発電機13の界磁速度を上げることができる。このために、小形前部プロペラ風車16による回転速度の低下分を所要量補償することができる。このために、風力発電装置1Aの全体の変換効率の低下を抑制できる。
また、小形前部プロペラ風車16と後部プロペラ風車4の前後を入れ替えて、後部プロペラ風車4を小形前部プロペラ風車16に置換してもよい。これによっても、風力発電装置1Aとほぼ同様の作用効果を奏することができる。なお、上記各実施形態では、前部,後部増速機12,15を具備した場合について説明したが、本発明はこれに限定されるものではなく、前部,後部増速機12,15を削除して前部,後部水平回転軸11,14により直接発電機13を回転駆動するように構成してもよい。この場合、発電機13の出力電力の周波数をインバータにより所要周波数に変換してから変圧器8により所要電圧に制御し、系統連係保護装置9により電力系統に連係させてもよい。また、発電機13から出力された交流電力を整流器により直流に整流して蓄電池に充電させ、この直流をインバータにより所要周波数の交流に再び変換して変圧器8と系統連係保護装置9を介して電力系統に連係させてもよい。
以上、本発明の幾つかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
1,1A…風力発電装置、2…ナセル、2a…ナセルハウジング、3…前部プロペラ風車、3a…前部ロータ、3b,4b…翼、4…後部プロペラ風車、4a…後部ロータ、5…タワー、10…方位制御装置、10a…方位制御用モータ、10b…回転出力軸、11…前部水平回転軸、12…前部増速機、12a…出力軸、14…後部水平回転軸、15…後部増速機、15a…出力軸、16…小形前部プロペラ風車。

Claims (8)

  1. 水平回転軸をそれぞれ有し、所要の一方向に回転する第1の風車とその逆方向に回転する第2の風車とを少なくとも有する複数の風車と、
    これら前部,後部の風車を風受け方向に並設して回転可能に支持し、これら風車の各水平回転軸を同軸状に配設した風車支持装置と、
    この風車支持装置に配設されて前記前部,後部の風車の各水平回転軸により回転駆動される発電機と、
    前記風車支持装置を支持する支柱と、
    を具備していることを特徴とする風力発電装置。
  2. 前記第1の風車と第2の風車は、その翼横断面形状を、それらの揚力を発生させる方向が相互に逆向きになるように形成されたプロペラ風車であることを特徴とする請求項1記載の風力発電装置。
  3. 前記発電機は、前記前部,後部の風車の一方により回転駆動される界磁と、その他方の風車により回転駆動される電機子と、を具備していることを特徴とする請求項1または2記載の風力発電装置。
  4. 前記前部,後部の風車は、その一方を他方よりも小径に形成していることを特徴とする請求項1ないし3のいずれか1項に記載の風力発電装置。
  5. 前記風車支持装置は、前記第1の風車と第2の風車の中間位置に、前記発電機を配設していることを特徴とする請求項1ないし4のいずれか1項に記載の風力発電装置。
  6. 前記風車支持装置は、前記前部,後部の風車の各水平回転軸の回転数を制御する調速機をそれぞれ配設していることを特徴とする請求項1ないし5のいずれか1項に記載の風力発電装置。
  7. 前記風車支持装置は、前記支柱に、その中心軸回りに回転可能に支持され、前記風車支持装置を、風を受けた方向に向ける風向板を具備していることを特徴とする請求項1ないし6のいずれか1項に記載の風力発電装置。
  8. 前記支柱は、前記風車支持装置を、その重心部で回転可能に支持していることを特徴とする請求項1ないし6のいずれか1項に記載の風力発電装置。
JP2010237872A 2010-10-22 2010-10-22 風力発電装置 Pending JP2012092651A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010237872A JP2012092651A (ja) 2010-10-22 2010-10-22 風力発電装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010237872A JP2012092651A (ja) 2010-10-22 2010-10-22 風力発電装置

Publications (1)

Publication Number Publication Date
JP2012092651A true JP2012092651A (ja) 2012-05-17

Family

ID=46386279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010237872A Pending JP2012092651A (ja) 2010-10-22 2010-10-22 風力発電装置

Country Status (1)

Country Link
JP (1) JP2012092651A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101331478B1 (ko) 2012-08-27 2013-11-21 김병만 회전력 증폭기능을 구비한 하이브리드 풍ㆍ수력 발전 시스템
JP2014010016A (ja) * 2012-06-28 2014-01-20 Sumitomo Heavy Ind Ltd モニタリング方法およびモニタリング装置
JP5518276B1 (ja) * 2013-03-05 2014-06-11 株式会社協和コンサルタンツ 没水式発電機
JP2016094853A (ja) * 2014-11-13 2016-05-26 中国電力株式会社 風力発電装置
US9506450B2 (en) 2012-10-17 2016-11-29 Kyowa Engineering Consultants Co., Ltd. Submersible power generator
US10094355B2 (en) 2012-10-03 2018-10-09 Kyowa Engineering Consultants Co., Ltd. Water turbine generator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003129935A (ja) * 2001-10-26 2003-05-08 Mitsubishi Heavy Ind Ltd 風力発電装置
WO2009133993A1 (en) * 2008-05-02 2009-11-05 Hyun Kang Heo Wind power generator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003129935A (ja) * 2001-10-26 2003-05-08 Mitsubishi Heavy Ind Ltd 風力発電装置
WO2009133993A1 (en) * 2008-05-02 2009-11-05 Hyun Kang Heo Wind power generator

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014010016A (ja) * 2012-06-28 2014-01-20 Sumitomo Heavy Ind Ltd モニタリング方法およびモニタリング装置
KR101331478B1 (ko) 2012-08-27 2013-11-21 김병만 회전력 증폭기능을 구비한 하이브리드 풍ㆍ수력 발전 시스템
US10094355B2 (en) 2012-10-03 2018-10-09 Kyowa Engineering Consultants Co., Ltd. Water turbine generator
US9506450B2 (en) 2012-10-17 2016-11-29 Kyowa Engineering Consultants Co., Ltd. Submersible power generator
JP5518276B1 (ja) * 2013-03-05 2014-06-11 株式会社協和コンサルタンツ 没水式発電機
WO2014136203A1 (ja) * 2013-03-05 2014-09-12 株式会社協和コンサルタンツ 没水式発電機
CN104246211A (zh) * 2013-03-05 2014-12-24 株式会社协和工程顾问 潜水式发电机
EP2896822A4 (en) * 2013-03-05 2016-02-24 Kyowa Engineering Consultants Co Ltd SUBMERSIBLE GENERATOR
KR101611839B1 (ko) 2013-03-05 2016-04-12 가부시키가이샤 교와 컨설턴츠 잠수형 발전기 및 잠수형 발전 시스템
US9506449B2 (en) 2013-03-05 2016-11-29 Kyowa Engineering Consultants Co., Ltd. Submersible power generator
JP2016094853A (ja) * 2014-11-13 2016-05-26 中国電力株式会社 風力発電装置

Similar Documents

Publication Publication Date Title
US20140227092A1 (en) Diffuser augmented wind turbines
US20150233353A1 (en) Vertical axis wind turbine
JP2012092651A (ja) 風力発電装置
US11236724B2 (en) Vertical axis wind turbine
US9046075B2 (en) Wind turbine generator
US9234498B2 (en) High efficiency wind turbine
US9537371B2 (en) Contra rotor wind turbine system using a hydraulic power transmission device
EP2923077B1 (en) Wind turbine rotor and methods of assembling the same
US20170138336A1 (en) Multi-tiered wind turbine apparatus
JP2004084590A (ja) ウイングレット付き風車
US8148841B1 (en) Modular wind turbine system
Kubo et al. Development of intelligent wind turbine unit with tandem wind rotors and double rotational armatures (2nd report, characteristics of tandem wind rotors)
CN101713380A (zh) 离心风轮风力发电机
CN206419164U (zh) 一种风力发电机的转架机构
EP3396153A1 (en) A combination of a wind jet turbine and a wind turbine
CN201574890U (zh) 离心风轮风力发电机
RU2351798C1 (ru) Ветровая энергетическая установка
CN201090373Y (zh) 对转风力发电机
RU120152U1 (ru) Ветроэлектрический генератор
CN107237720A (zh) 相向旋转垂直轴式风力发电机控制系统
CN103557119A (zh) 一种风、光发电机
CN104295451A (zh) 一种小风力发电装置及发电系统
CN105888962A (zh) 风叶偏转式风力发电机
CN203548068U (zh) 一种风、光发电机
KR20150096553A (ko) 휘어진 블레이드 팁을 갖는 다운윈드 풍력 발전 장치

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140701

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141125