WO2014057945A1 - 液晶配向剤、液晶配向膜及び液晶表示素子 - Google Patents

液晶配向剤、液晶配向膜及び液晶表示素子 Download PDF

Info

Publication number
WO2014057945A1
WO2014057945A1 PCT/JP2013/077370 JP2013077370W WO2014057945A1 WO 2014057945 A1 WO2014057945 A1 WO 2014057945A1 JP 2013077370 W JP2013077370 W JP 2013077370W WO 2014057945 A1 WO2014057945 A1 WO 2014057945A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
carbon atoms
ring
crystal aligning
Prior art date
Application number
PCT/JP2013/077370
Other languages
English (en)
French (fr)
Inventor
洋一 山之内
亮一 芦澤
淳彦 萬代
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to JP2014540853A priority Critical patent/JP6314827B2/ja
Priority to KR1020157011911A priority patent/KR102118762B1/ko
Priority to CN201380052047.6A priority patent/CN104718491B/zh
Publication of WO2014057945A1 publication Critical patent/WO2014057945A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • C08G73/1078Partially aromatic polyimides wholly aromatic in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation

Definitions

  • the present invention relates to a liquid crystal aligning agent, a liquid crystal alignment film, and a liquid crystal display element suitable for providing a liquid crystal display element having excellent display quality.
  • the liquid crystal display element is known as a light, thin, and low power consumption display device, and has been remarkably developed in recent years.
  • the liquid crystal display element is configured by sandwiching and enclosing a liquid crystal layer between a pair of substrates, and orienting liquid crystals in the liquid crystal layer in a predetermined direction between the substrates.
  • a liquid crystal responds by applying a voltage to electrodes provided on a pair of substrates, and a desired image can be displayed using an orientation change due to the response of the liquid crystal.
  • This liquid crystal display element has various liquid crystal modes in which the initial alignment state of liquid crystal molecules and the form of alignment change by voltage application are different.
  • a TN (Twisted Nematic) mode in which the liquid crystal is twisted by 90 ° between a pair of substrates is known.
  • liquid crystal display elements in a vertical alignment (VA) mode in which liquid crystal molecules having negative dielectric anisotropy are aligned perpendicularly to a substrate have been actively developed (for example, see Patent Documents 1 and 2.)
  • VA mode liquid crystal display element, by applying a voltage, the vertically aligned liquid crystal changes its orientation so as to be parallel to the substrate and toward the predetermined direction while being inclined in a predetermined direction.
  • the VA mode can realize a high contrast ratio, a wide viewing angle, and an excellent response characteristic.
  • this VA liquid crystal display element enables the above-described liquid crystal orientation changing operation, as the initial orientation state of the liquid crystal when no voltage is applied, the liquid crystal is directed from the normal direction of the substrate toward a predetermined direction in the plane. It is required to form a slightly tilted state.
  • the VA liquid crystal display element there is known an MVA (Multi-domain Vertical Alignment) system in which a protrusion structure is formed on a TFT substrate or a color filter substrate in order to control the tilt direction of the liquid crystal by voltage application. Further, a PVA (Patterned Vertical Alignment) method is known in which a slit structure is provided in an electrode made of ITO (Indiumtinoxide) or the like of a substrate sandwiching a liquid crystal layer, and the tilt direction of the liquid crystal is controlled by a formed oblique electric field.
  • ITO Indiumtinoxide
  • liquid crystal alignment film is provided between the substrate and the liquid crystal layer, this is rubbed, and the liquid crystal molecules are slightly tilted from the normal direction of the substrate toward one direction in the substrate surface, and patent literature A photo-alignment method disclosed in 3, 4 and the like is known.
  • Patent Document 3 a diamine compound having a cinnamic acid ester structure in the molecule is used. And the polyamic acid which is a polyimide precursor is synthesize
  • Polyimide is a high heat-resistant polymer material, has high reliability, and is a material suitable for use as a liquid crystal alignment film.
  • the VA mode liquid crystal display device having the above-described configuration has the above-described excellent characteristics, and has come to be used for large-sized TVs and high-definition, high-quality mobile applications (display units of digital cameras and mobile phones). ing.
  • VA mode liquid crystal display elements are required to further improve display quality in accordance with the expansion of applications to large-sized TVs and high-quality mobile devices.
  • improvement of display defects called burn-in is required.
  • Burn-in in a liquid crystal display element is one of display defects in which the same image is displayed for a long time and then the previous display is displayed as a shadow when the display is switched.
  • Such display defects due to image sticking cause a reduction in display quality of the liquid crystal display element.
  • Display defects due to image sticking may occur in any mode of liquid crystal display element, although there is a difference in lightness of occurrence.
  • VA mode liquid crystal display elements that are frequently used in applications that require particularly high display quality.
  • An object of the present invention is to provide a liquid crystal aligning agent capable of forming a liquid crystal alignment film suitable for providing a liquid crystal display element having excellent display quality, a liquid crystal alignment film suitable for providing a liquid crystal display element having excellent display quality, and an excellent display. It is to provide a quality liquid crystal display element.
  • the gist of the present invention is as follows.
  • a polyimide precursor having a metabenzyl-type side chain structure and a side chain structure containing a photoreactive group, and at least one polymer selected from the group consisting of polyimides obtained by imidizing the polyimide precursor A liquid crystal aligning agent characterized by containing.
  • the polyimide precursor includes a diamine component and a tetracarboxylic anhydride dianhydride including a first diamine compound represented by the following formula (1) and a second diamine compound having the photoreactive group.
  • the liquid crystal aligning agent as described in said (1) which is polyamic acid obtained by making these react.
  • (X 1 is a hydrocarbon group having 8 to 22 carbon atoms or a group represented by the following formula (1A).)
  • (Y 1 is a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or OCO—, Y 2 is a single bond.
  • Y 3 is a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O— -CH 2 O-, -COO- or -OCO- Y 4 is a cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring and a heterocyclic ring (an arbitrary hydrogen atom on these cyclic groups is , An alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom.
  • Valent organic group .Y 5 is a benzene ring, any hydrogen atom on the cyclic group (which cyclic group selected from the group consisting of hexane ring and heterocyclic cycloheteroalkyl represents an alkyl group having 1 to 3 carbon atoms, Y 6 may be substituted with an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom.
  • alkyl group having 1 to 18 carbon atoms a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms, where n is an integer of 0 to 4.
  • the photoreactive group of the second diamine compound has at least one structure selected from the group consisting of a cinnamoyl structure, a coumarin structure, and a chalcone structure, as described in (2) or (3) above Liquid crystal aligning agent.
  • R represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms (however, any hydrogen atom may be substituted with a fluorine atom)), Or an alkoxy group having 1 to 10 carbon atoms (wherein any hydrogen atom may be substituted with a fluorine atom)
  • a and B are each independently a single bond or any one of the following formulas: Wherein any hydrogen atom in the ring structure may be substituted with an alkoxy group having 1 to 10 carbon atoms, each of T 1 to T 4 independently represents a single bond, ether Represents an ester, amide, or ketone bond, and S represents a single bond or an alkylene group having 1 to 10 carbon atoms.
  • a liquid crystal aligning agent capable of forming a liquid crystal alignment film suitable for providing a liquid crystal display element having excellent display quality, a liquid crystal alignment film suitable for providing a liquid crystal display element having excellent display quality, and an excellent display A high quality liquid crystal display element can be provided.
  • the inventor examined the problem of burn-in of the VA mode liquid crystal display element, and found that the main factor was the fluctuation of the pretilt angle of the liquid crystal in the liquid crystal layer, which occurred when the AC voltage was continuously applied. .
  • the pretilt angle of the liquid crystal of the liquid crystal layer sandwiched between the pair of substrates is constant, and it is required that the fluctuation is small even when the liquid crystal is driven.
  • the pretilt angle of the liquid crystal is formed by, for example, an alignment-treated liquid crystal alignment film.
  • the pretilt angle formed between the liquid crystal alignment film and the liquid crystal may be changed by driving the liquid crystal by applying an alternating voltage for a long time.
  • the fluctuation of the pretilt angle occurs only in that region.
  • the drive characteristics of the liquid crystal may change between these regions.
  • the change of the drive characteristic of the liquid crystal in such a partial region may be visually recognized as burn-in of the VA mode liquid crystal display.
  • the present inventors have found that by specifying the structure of the liquid crystal alignment film used in the VA mode liquid crystal display element, it is effective in improving the above-described burn-in, and to complete the present invention. It came.
  • the VA mode liquid crystal display element can be configured using a liquid crystal alignment film.
  • a photo-alignment vertical alignment type liquid crystal alignment film can be used. In this photo-alignment vertical alignment type liquid crystal alignment film, it is not necessary to provide an electrode with an additional structure such as a slit structure. Moreover, the optical alignment process of a liquid crystal aligning film is possible, and the conventionally known rubbing process can be made unnecessary.
  • the rubbing treatment which is one of the orientation treatment methods, is an orientation treatment method in which the surface of the polyimide film is rubbed in a certain direction using a cloth.
  • This rubbing treatment may generate dust by rubbing an organic film such as a polyimide film constituting the liquid crystal alignment film, and may cause unevenness of liquid crystal alignment by leaving scratches on the surface of the liquid crystal alignment film. Therefore, the liquid crystal alignment film preferably employs a photo-alignment process that does not require a rubbing process.
  • the photo-alignment vertical alignment type liquid crystal alignment film of the VA mode liquid crystal display element is composed of a polymer in the same manner as a conventional liquid crystal alignment film. And it can form by apply
  • a liquid crystal aligning agent is comprised including the polymer suitable for formation of a liquid crystal aligning film as a component.
  • the polymer component of the liquid crystal aligning agent is used by copolymerizing a component for realizing vertical alignment of liquid crystal and a component having a photoreactive group for realizing photo-alignment treatment. It is formed.
  • the liquid crystal aligning agent can provide the photo-alignment vertical alignment-type liquid crystal display element suitable for a VA mode liquid crystal display element by including the formed polymer.
  • the present inventor further specifies the structure of the liquid crystal alignment film, specifically, the structure of the polymer component contained in the liquid crystal aligning agent, thereby improving the photo-alignment property.
  • a vertically aligned liquid crystal alignment film is provided. More specifically, the structure of the component for realizing the vertical alignment of the liquid crystal is specified, and the structure of the component having a photoreactive group for realizing the photo-alignment treatment is specified, and thus obtained. Specify the structure of the polymer.
  • the liquid crystal aligning agent of the present invention provides a photoalignment type vertical alignment type liquid crystal alignment film and a liquid crystal display element containing a polymer having a specific structure and reduced image sticking due to application of an alternating voltage.
  • the liquid crystal aligning agent of the present invention includes a polymer whose structure is specified, and the polymer includes a metabenzyl-type side chain structure and a side chain structure including a photoreactive group that enables photoreaction processing. It is at least 1 type of polymer selected from the group which consists of the polyimide precursor which has, and the polyimide obtained by imidating it.
  • the polyimide precursor include polyamic acid and other polyamic acid esters. In particular, a polyamic acid that can easily form polyimide is preferable.
  • the polyimide precursor contained in the liquid crystal aligning agent of the present invention and the polyimide obtained by imidizing the polyimide precursor enable metabenzyl type side chain structure and photoreaction treatment in the molecule. And a side chain structure containing a photoreactive group.
  • the polyimide precursor can be synthesized by reacting a diamine component containing at least one diamine compound and a tetracarboxylic acid derivative component such as tetracarboxylic dianhydride according to a known method.
  • a diamine compound having a structure for realizing a metabenzyl-type side chain structure in the molecule is used as the first diamine compound for the diamine component used for the synthesis.
  • the second diamine compound a diamine compound having a photoreactive group that enables photo-alignment treatment in the molecule can be used.
  • a polyimide can be obtained.
  • diamine components such as the first and second diamine compounds described above will be described. That is, a diamine compound having a structure for realizing a metabenzyl-type side chain structure in the molecule (hereinafter also referred to as a metabenzyl-type diamine compound), which is suitable for obtaining a polyimide precursor having the structure as described above, and A diamine compound having a photoreactive group that enables photoalignment treatment in the molecule (hereinafter also referred to as a photoreactive diamine compound) and the like will be described. And a preferable tetracarboxylic acid derivative is demonstrated and the polyimide precursor in this invention, a polyimide, etc. are demonstrated as a component which is formed using them and can be contained in the liquid crystal aligning agent in this invention.
  • the metabenzyl type diamine compound in the present invention is represented by, for example, the following formula (1). That is, the metabenzyl-type diamine compound in the present invention has a benzene ring structure in which two amino groups are introduced at the 1-position and 3-position, and a benzyl group at the 5-position of the benzene ring, which is the meta-position of the amino group, respectively.
  • the introduced compound is preferred.
  • the liquid crystal aligning agent containing at least one polymer of a polyimide precursor and a polyimide synthesized using the compound has a vertical alignment property.
  • the liquid crystal alignment film of the present invention can be formed.
  • the metabenzyl type diamine compound in this invention can be used with the photoreactive diamine compound explained in full detail later, and can form the polyimide precursor etc. of the desired structure mentioned above.
  • the liquid crystal aligning agent of the present invention containing this polyimide precursor etc. controls the size of the pretilt angle of the liquid crystal of the liquid crystal display element, and at the same time, forms the liquid crystal aligning film of the present invention that improves the image sticking due to the application of an alternating voltage. can do.
  • X 1 is a hydrocarbon group having 8 to 22 carbon atoms or a group represented by the following formula (1A).
  • Y 1 is a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or OCO—.
  • Y 2 is a single bond or — (CH 2 ) b — (b is an integer of 1 to 15).
  • Y 3 is a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO—.
  • Y 4 is a cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring and a heterocyclic ring (an arbitrary hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms or an alkoxyl group having 1 to 3 carbon atoms) Or a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom, or an organic group having 12 to 25 carbon atoms having a steroid skeleton.
  • a divalent organic group selected from the group consisting of Y 5 is a cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring and a heterocyclic ring (an arbitrary hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms) Or a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom.
  • Y 6 is an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms.
  • n is an integer of 0-4.
  • Y 1 is a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O—, —COO—, or —OCO -.
  • a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O—, or —COO— facilitates the synthesis of the diamine compound.
  • a single bond, — (CH 2 ) a — (a is an integer of 1 to 10), —O—, —CH 2 O— or —COO— is more preferable.
  • Y 2 is a single bond or — (CH 2 ) b — (b is an integer of 1 to 15). Among these, a single bond or — (CH 2 ) b — (b is an integer of 1 to 10) is preferable.
  • Y 3 is a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO—. is there.
  • a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO— is the synthesis of the diamine compound. From the viewpoint of facilitating the process. Further, a single bond, — (CH 2 ) c — (c is an integer of 1 to 10), —O—, —CH 2 O—, —COO— or —OCO— is more preferable.
  • Y 4 represents a cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring and a heterocyclic ring (an arbitrary hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms, carbon Any one of an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms and a fluorine atom), or a steroid skeleton
  • a divalent organic group selected from the group consisting of organic groups having 12 to 25 carbon atoms Among these, a divalent organic group having 12 to 25 carbon atoms and having a benzene ring, a cyclohexane ring, or a steroid skeleton is preferable.
  • Y 5 is a cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring and a heterocyclic ring, and any hydrogen atom on these cyclic groups is an alkyl having 1 to 3 carbon atoms.
  • n is an integer of 0-4.
  • it is an integer of 0-2.
  • Y 6 represents an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms. is there. Among these, an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 10 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 10 carbon atoms is preferable.
  • it is an alkyl group having 1 to 12 carbon atoms or an alkoxyl group having 1 to 12 carbon atoms. More preferably, it is an alkyl group having 1 to 9 carbon atoms or an alkoxyl group having 1 to 9 carbon atoms.
  • R 3 is —CH 2 OCO—, —CH 2 O— or —CH 2 —
  • R 4 is a straight chain having 1 to 18 carbon atoms or A branched alkyl group, a linear or branched alkoxyl group having 1 to 18 carbon atoms, a linear or branched fluorine-containing alkyl group having 1 to 18 carbon atoms, or a linear or branched group having 1 to 18 carbon atoms It is a fluorine-containing alkoxyl group.
  • R 5 is —CH 2 OCO—, —CH 2 O— or CH 2 —
  • R 6 is linear or branched having 1 to 18 carbon atoms. Alkyl group.
  • R 8 is a linear or branched alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is trans. Isomer.
  • L 4 is a linear or branched alkyl group having 3 to 20 carbon atoms which may be substituted with a fluorine atom
  • L 3 is a 1,4-cyclohexylene group or 1 , 4-phenylene group
  • L 2 is an oxygen atom or COO- * (where a bond marked with “*” is bonded to A 3 )
  • L 1 is an oxygen atom or COO— * (wherein , A bond marked with “*” binds to (CH 2 ) a 2 ).
  • a 1 is an integer of 0 or 1
  • a 2 is an integer of 2 to 10
  • a 3 is an integer of 0 or 1.
  • the preferred content of the metabenzyl type diamine compound contained in the diamine component is not particularly limited. 50 mol% is preferable, and more preferably 5 mol% to 30 mol%.
  • the photoreactive diamine compound in the present invention has a photoreactive group.
  • the photoreactive group of the photoreactive diamine compound in the present invention is preferably a group that generates either a photodimerization reaction or a photoisomerization reaction.
  • a liquid crystal alignment agent containing at least one polymer of a polyimide precursor and a polyimide synthesized using a photoreactive diamine compound forms a liquid crystal alignment film capable of photoalignment treatment. can do.
  • it can be used with the metabenzyl type diamine compound mentioned above, can form a polymer of desired structures, such as a polyimide precursor, and can form the vertical alignment type liquid crystal aligning film in which photo-alignment processing is possible.
  • the photoreactive diamine compound preferably has a photoreactive group having at least one structure selected from the group consisting of a cinnamoyl structure, a coumarin structure, and a chalcone structure.
  • a photoreactive group having such a structure a liquid crystal aligning agent containing at least one polymer of a polyimide precursor and a polyimide synthesized using a photoreactive diamine compound enables highly efficient photoalignment treatment.
  • a liquid crystal alignment film having high liquid crystal alignment control performance can be formed.
  • the photoreactive diamine compound in the present invention is preferably a compound represented by the following formula (2).
  • X 2 represents a substituent and is a group having a structure represented by the following formula (2A) or the following formula (2B).
  • R is a hydrogen atom, an alkyl group having 1 to 18 carbon atoms (however, any hydrogen atom may be substituted with a fluorine atom), or Represents an alkoxy group having 1 to 18 carbon atoms (wherein any hydrogen atom may be substituted with a fluorine atom).
  • a and B each independently represent a single bond or any one of the ring structures represented by the following formulae. However, any hydrogen atom in the ring structure may be substituted with an alkoxy group having 1 to 10 carbon atoms.
  • T 1 to T 4 each independently represents a single bond, an ether, an ester, an amide or a ketone bond.
  • S represents a single bond or an alkylene group having 1 to 10 carbon atoms.
  • n represents an integer of 0 to 18.
  • the following compounds are particularly preferable from the viewpoint of photoreactivity and the like.
  • n represents an integer of 0 to 18.
  • the diamine component suitable for the formation of the polyimide precursor having the above-mentioned desired structure, which is contained in the liquid crystal aligning agent of the present invention includes other diamines besides the above-mentioned benzyl type diamine compound and photoreactive diamine compound. It is also possible to contain a compound (sometimes referred to as other diamine compound).
  • Other diamine compounds are not particularly limited, and examples thereof include alicyclic diamines, aromatic diamines, aromatic-aliphatic diamines, heterocyclic diamines, and aliphatic diamines. Specific examples are as follows.
  • alicyclic diamines examples include 1,4-diaminocyclohexane, 1,3-diaminocyclohexane, 4,4′-diaminodicyclohexylmethane, 4,4′-diamino-3,3′-dimethyldicyclohexylamine, isophorone Examples include diamines.
  • aromatic diamines examples include o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, 2,4-diaminotoluene, 2,5-diaminotoluene, 3,5-diaminotoluene, 1,4-diamino -2-methoxybenzene, 2,5-diamino-p-xylene, 1,3-diamino-4-chlorobenzene, 3,5-diaminobenzoic acid, 1,4-diamino-2,5-dichlorobenzene, 4,4 '-Diamino-1,2-diphenylethane, 4,4'-diamino-2,2'-dimethylbibenzyl, 4,4'-diaminodiphenylmethane, 3,3'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane 4,4′-diamin
  • aromatic-aliphatic diamines include 3-aminobenzylamine, 4-aminobenzylamine, 3-amino-N-methylbenzylamine, 4-amino-N-methylbenzylamine, 3-aminophenethylamine, 4-aminobenzylamine, Aminophenethylamine, 3-amino-N-methylphenethylamine, 4-amino-N-methylphenethylamine, 3- (3-aminopropyl) aniline, 4- (3-aminopropyl) aniline, 3- (3-methylaminopropyl) Aniline, 4- (3-methylaminopropyl) aniline, 3- (4-aminobutyl) aniline, 4- (4-aminobutyl) aniline, 3- (4-methylaminobutyl) aniline, 4- (4-methyl Aminobutyl) aniline, 3- (5-aminopentyl) aniline, 4- (5-aminopentyl) Aniline, 3- (5-methyl)
  • heterocyclic diamines examples include 2,6-diaminopyridine, 2,4-diaminopyridine, 2,4-diamino-1,3,5-triazine, 2,7-diaminodibenzofuran, 3,6-diamino
  • examples thereof include carbazole, 2,4-diamino-6-isopropyl-1,3,5-triazine, 2,5-bis (4-aminophenyl) -1,3,4-oxadiazole.
  • aliphatic diamines examples include 1,2-diaminoethane, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 1,7-diaminoheptane 1,8-diaminooctane, 1,9-diaminononane, 1,10-diaminodecane, 1,3-diamino-2,2-dimethylpropane, 1,6-diamino-2,5-dimethylhexane, 1,7 -Diamino-2,5-dimethylheptane, 1,7-diamino-4,4-dimethylheptane, 1,7-diamino-3-methylheptane, 1,9-diamino-5-methylheptane, 1,12-diamino Examples include dodecane, 1,18-diaminoocta
  • tetracarboxylic acid derivative used for the reaction with the diamine compound described above and for synthesizing the polyimide precursor or polyimide that can be contained in the liquid crystal aligning agent of the present invention is not particularly limited.
  • examples of preferable tetracarboxylic acid derivatives include tetracarboxylic dianhydrides frequently used for the synthesis of polyamic acids. Specific examples are shown below.
  • Examples of the tetracarboxylic dianhydride having an alicyclic structure or an aliphatic structure include 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2-dimethyl-1,2,3,4-cyclobutane.
  • Tetracarboxylic dianhydride 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-tetramethyl-1,2,3,4-cyclobutanetetra Carboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 2,3,4,5-tetrahydrofurantetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic Acid dianhydride, 3,4-dicarboxy-1-cyclohexylsuccinic dianhydride, 3,4-dicarboxy-1,2,3,4-tetrahydro-1-naphthalene succinic dianhydride, 1, , 3,4-Butanetetracarboxylic dianhydride, bicyclo [3,3,0] octane-2,4,6,8-tetracarboxylic dianhydride, 3,3 ′, 4,4′-dicyclo
  • Aromatic tetracarboxylic dianhydrides include pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,2 ′, 3,3′-biphenyltetracarboxylic acid Dianhydride, 2,3,3 ′, 4-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 2,3,3 ′, 4-benzophenonetetra Carboxylic dianhydride, bis (3,4-dicarboxyphenyl) ether dianhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride And 2,3,6,7-naphthalenetetracarboxylic dianhydride.
  • Tetracarboxylic dianhydride When aromatic tetracarboxylic dianhydride is used in addition to the above-mentioned tetracarboxylic dianhydride having an alicyclic structure or aliphatic structure, the liquid crystal alignment is improved and the accumulated charge of the liquid crystal cell is reduced. This is preferable. Tetracarboxylic dianhydride can be used alone or in combination of two or more depending on the liquid crystal alignment properties of the liquid crystal alignment film to be formed, such as voltage holding characteristics and accumulated charges.
  • polyamic acid As a polyimide precursor contained in the liquid crystal aligning agent of this invention, polyamic acid ester, polyamide, etc. other than polyamic acid are contained. In particular, it is preferable to select a polyamic acid that allows easy formation of polyimide.
  • a polyamic acid preferable as a polyimide precursor contained in the liquid crystal aligning agent of the present invention is obtained by a reaction between a tetracarboxylic dianhydride which is a preferable tetracarboxylic acid derivative described above and a diamine component composed of the diamine compound described above. Can do.
  • a known synthesis method can be used.
  • tetracarboxylic dianhydride and a diamine component are reacted in an organic solvent.
  • the reaction between the tetracarboxylic dianhydride and the diamine component is advantageous in that it proceeds relatively easily in an organic solvent and no by-product is generated.
  • the formed polyamic acid has a metabenzyl-type side chain structure with the above-described metabenzyl-type diamine compound and a side-chain structure containing a photoreactive group that enables photoreaction treatment with the photoreactive diamine compound.
  • the benzene ring structure of the metabenzyl type diamine compound of the formula (1) described above forms a part of the main chain structure of the polyamic acid, and the substituent X 1 bonded thereto is the side chain structure. It becomes the structure which constitutes.
  • the side chain structure containing the photoreactive group which enables photoreaction processing originates from the photoreactive diamine compound mentioned above, and contains either of the following side chain structures.
  • R, A, B, T 1 , T 2 , T 3 , T 4 and S are synonymous with the above-described formulas (2A) and (2B).
  • R is a hydrogen atom, an alkyl group having 1 to 10 carbon atoms (wherein any hydrogen atom may be substituted with a fluorine atom), or an alkoxy having 1 to 10 carbon atoms. Represents a group (wherein any hydrogen atom may be substituted with a fluorine atom).
  • a and B each independently represent a single bond or any one of the ring structures represented by the following formulae.
  • any hydrogen atom in the ring structure may be substituted with an alkoxy group having 1 to 10 carbon atoms.
  • T 1 to T 4 each independently represents a single bond, an ether, an ester, an amide or a ketone bond.
  • S represents a single bond or an alkylene group having 1 to 10 carbon atoms.
  • the organic solvent used for the reaction between the tetracarboxylic dianhydride and the diamine component is not particularly limited as long as the generated polyamic acid dissolves. Specific examples are given below.
  • organic solvents may be used alone or in combination. Further, even a solvent that does not dissolve the polyamic acid may be used by mixing with the above-mentioned organic solvent as long as the generated polyamic acid does not precipitate. Further, since water in the organic solvent inhibits the polymerization reaction and further causes hydrolysis of the produced polyamic acid, it is preferable to use an organic solvent that has been dehydrated and dried to the extent possible.
  • the solution in which the diamine component is dispersed or dissolved in the organic solvent is stirred, and the tetracarboxylic dianhydride is used as it is or in an organic solvent.
  • a method of adding by dispersing or dissolving a method of adding a diamine component to a solution in which tetracarboxylic dianhydride is dispersed or dissolved in an organic solvent, and alternately adding a tetracarboxylic dianhydride and a diamine component. Any of these methods may be used.
  • tetracarboxylic dianhydride or diamine component when they are composed of a plurality of types of compounds, they may be reacted in a premixed state, may be individually reacted sequentially, or may be further reacted individually. May be mixed to form a high molecular weight product.
  • the polymerization temperature at that time can be selected from -20 ° C. to 150 ° C., but is preferably in the range of ⁇ 5 ° C. to 100 ° C.
  • the reaction can be carried out at any concentration, but if the concentration is too low, it is difficult to obtain a high molecular weight polymer, and if the concentration is too high, the viscosity of the reaction solution becomes too high and uniform stirring is difficult. Therefore, the total concentration of the tetracarboxylic dianhydride and the diamine component in the reaction solution is preferably 1% by mass to 50% by mass, more preferably 5% by mass to 30% by mass.
  • the initial stage of the reaction is carried out at a high concentration, and then an organic solvent can be added.
  • the ratio of the total number of moles of tetracarboxylic dianhydride to the total number of moles of the diamine component is preferably 0.8 to 1.2, more preferably 0.9 to 1.1. . Similar to the normal polycondensation reaction, the molecular weight of the polyamic acid produced increases as the molar ratio approaches 1.0.
  • polyamic acid ester As a polyimide precursor of the component of the liquid crystal aligning agent of this invention, it is also possible to use polyamic acid ester and polyamide other than the polyamic acid mentioned above.
  • a method for synthesizing a preferable polyamic acid ester a method of reacting a tetracarboxylic acid diester dichloride with the above-mentioned preferable diamine component, or a method of reacting a tetracarboxylic acid diester with the above-mentioned preferable diamine component in the presence of a condensing agent, a base or the like. There is.
  • a polyamic acid ester which is a kind of polyimide precursor can be obtained.
  • the polyamic acid ester can be obtained by polymerizing the polyamic acid in advance and esterifying the carboxylic acid in the amic acid using a polymer reaction.
  • tetracarboxylic acid diester dichloride and the above-mentioned preferred diamine component in the presence of a base and an organic solvent at ⁇ 20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C., for 30 minutes to 24 hours, preferably Can be synthesized by reacting for 1 to 4 hours.
  • pyridine triethylamine, 4-dimethylaminopyridine and the like can be used, but pyridine is preferable because the reaction proceeds gently.
  • the addition amount of the base is preferably 2 to 4 moles relative to the tetracarboxylic acid diester dichloride from the viewpoint of easy removal and high molecular weight.
  • condensation polymerization reaction When the condensation polymerization reaction is performed in the presence of a condensing agent, examples of the condensing agent include triphenyl phosphite, dicyclohexylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, and N, N′-carbonyldioxide.
  • the condensing agent include triphenyl phosphite, dicyclohexylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, and N, N′-carbonyldioxide.
  • Imidazole dimethoxy-1,3,5-triazinylmethylmorpholinium, O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium tetrafluoroborate, O— (Benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium hexafluorophosphate, (2,3-dihydro-2-thioxo-3-benzoxazolyl) phosphonate diphenyl, 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) 4-methoxymorpholium chloride - hydrate and the like can be used.
  • the reaction proceeds efficiently.
  • the Lewis acid lithium halides such as lithium chloride and lithium bromide are preferable.
  • the addition amount of the Lewis acid is preferably 0.1 to 1.0 mol times with respect to the tetracarboxylic acid diester.
  • the solvent used in the above-described polymerization of tetracarboxylic dianhydride and a preferred diamine component to obtain a polyamic acid can be used.
  • N-methyl Use of -2-pyrrolidone, ⁇ -butyrolactone, etc. is preferred.
  • These solvents may be used alone or in combination of two or more.
  • the solvent used for the synthesis of the polyamic acid ester is preferably dehydrated as much as possible.
  • the total concentration of the tetracarboxylic acid diester dichloride and the diamine component in the reaction solution is preferably 1% by mass to 30% by mass from the viewpoint that polymer precipitation is difficult to occur and a high molecular weight product is easily obtained. More preferable is 20% by mass.
  • the reaction is preferably performed in a nitrogen atmosphere to prevent outside air from being mixed.
  • polyamide preferable as the polyimide precursor described above can also be synthesized in the same manner as the polyamic acid ester described above.
  • polyimide As a polymer component contained in the liquid crystal aligning agent of the present invention, polyimide is a preferable polymer component in addition to the polyamic acid described above.
  • the polyimide having a specific structure in the present invention can be obtained by dehydrating and ring-closing (imidizing) the polyamic acid described above.
  • the dehydration cyclization rate (imidation rate) of the amic acid group is not necessarily 100%, and is 100% or less depending on the application and purpose. It can be adjusted arbitrarily.
  • Examples of the method for imidizing the polyamic acid include thermal imidization in which the polyamic acid solution is heated as it is, and catalytic imidization in which a catalyst is added to the polyamic acid solution.
  • the temperature at which the polyamic acid is thermally imidized in the solution is 100 ° C. to 400 ° C., preferably 120 ° C. to 250 ° C., and the method is preferably performed while removing water generated by the imidization reaction from the system.
  • the catalytic imidation of polyamic acid can be performed by adding a basic catalyst and an acid anhydride to a polyamic acid solution and stirring at -20 ° C to 250 ° C, preferably 0 ° C to 180 ° C.
  • the amount of the basic catalyst is 0.5 mol times to 30 mol times, preferably 2 mol times to 20 mol times of the amic acid group, and the amount of the acid anhydride is 1 mol times to 50 mol of the amic acid group. Double, preferably 3 to 30 mole times.
  • Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine, and the like. Among them, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction.
  • Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated.
  • the imidization rate by catalytic imidation can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
  • the polymer collected by precipitation is redissolved in an organic solvent and reprecipitation and collection is repeated 2 to 10 times, impurities in the polymer can be reduced.
  • the poor solvent at this time include alcohols, ketones, hydrocarbons and the like, and it is preferable to use three or more kinds of poor solvents selected from these because purification efficiency is further improved.
  • the molecular weight of the preferred polymer component polyamic acid and / or polyimide contained in the liquid crystal aligning agent of the present invention takes into consideration the strength of the resulting coating film, the workability during coating film formation, and the uniformity of the coating film.
  • the weight average molecular weight measured by GPC (Gel Permeation Chromatography) method is preferably 2,000 to 1,000,000, more preferably 5,000 to 100,000.
  • the liquid crystal aligning agent of this invention can contain a crosslinking agent other than polymer components, such as a polyamic acid and / or a polyimide mentioned above.
  • a crosslinking agent other than polymer components, such as a polyamic acid and / or a polyimide mentioned above.
  • the crosslinking agent is not particularly limited.
  • the amount used is preferably 0.1 to 30 parts by mass, more preferably 1 part by mass with respect to 100 parts by mass of the polymer component such as the above-mentioned polyimide precursor contained in the liquid crystal aligning agent. ⁇ 20 parts by mass. If the amount used is less than 0.1 parts by mass, the effect of crosslinking cannot be expected, and if it exceeds 30 parts by mass, the orientation of the liquid crystal may deteriorate.
  • a compound having a structure in which a group represented by the formula (3A) is bonded to an aromatic ring (hereinafter also referred to as a specific compound) can be exemplified.
  • Z represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • the liquid crystal alignment film can increase the pretilt angle of the liquid crystal while maintaining uniform alignment of the liquid crystal, and accelerate the discharge of charge accumulated in the liquid crystal display element. Is preferable.
  • the specific compound will be described in more detail.
  • the specific compound has a structure in which a group represented by the above formula (3A) is bonded to an aromatic ring, but a group represented by the above formula (3A) (—CH 2 —OZ group) ) Directly bonded to the aromatic ring facilitates the binding reaction between the polyamic acid and the polyimide, and also facilitates the self-reaction between specific compounds. This is presumed to be a factor that exhibits the above-described effects.
  • At least one compound selected from the group consisting of a compound represented by the following formula (3-1) and a compound represented by the formula (3-2) is preferable.
  • Z 1 , Z 2 , and Z 3 are each independently a hydrogen atom or an alkyl group having 1 to 3 carbon atoms
  • Y 1 , Y 2 And Y 3 each independently represents an aromatic ring. Any hydrogen atom of the aromatic ring may be substituted with a hydroxyl group, an alkyl group having 1 to 3 carbon atoms, a halogen atom, an alkoxy group having 1 to 3 carbon atoms, or a vinyl group.
  • G 1 is a divalent saturated hydrocarbon group having 1 to 10 carbon atoms which may be bonded to form a cyclic structure by combining a single bond or all or part thereof, and any hydrogen atom is substituted with a fluorine atom And —NH—, —N (CH 3 ) —, or a group represented by the following formula (3B).
  • t 1 is an integer of 2 to 4
  • t 2 and t 3 are each independently an integer of 1 to 3
  • a and b are each independently an integer of 1 to 3.
  • P 1 and P 2 are each independently an alkylene group having 1 to 5 carbon atoms, and Q 1 represents an aromatic ring. Since the —CH 2 —OZ 1 group, —CH 2 —OZ 2 group and —CH 2 —OZ 3 group in the above formula (3-1) and the above formula (3-2) are directly bonded to the aromatic ring, Y 1 , Y 2 and Y 3 are each independently an aromatic ring.
  • aromatic ring examples include benzene ring, naphthalene ring, tetrahydronaphthalene ring, azulene ring, indene ring, fluorene ring, anthracene ring, phenanthrene ring, phenalene ring, pyrrole ring, imidazole ring, oxazole ring, thiazole ring, pyrazole Ring, pyridine ring, pyrimidine ring, quinoline ring, pyrazoline ring, isoquinoline ring, carbazole ring, purine ring, thiadiazole ring, pyridazine ring, triazine ring, pyrazolidine ring, triazole ring, pyrazine ring, benzimidazole ring, benzimidazole ring, thioline Ring, phenanthroline ring, indole ring, quinoxaline ring, benzothi
  • more preferable aromatic rings include benzene ring, naphthalene ring, fluorene ring, anthracene ring, pyrrole ring, imidazole ring, pyrazole ring, pyridine ring, pyrimidine ring, quinoline ring, isoquinoline ring, carbazole ring, pyridazine ring, pyrazine. Ring, benzimidazole ring, benzimidazole ring, indole ring, quinoxaline ring, acridine ring and the like.
  • a benzene ring More preferred is a benzene ring, naphthalene ring, pyridine ring or carbazole ring, and most preferred is a benzene ring or pyridine ring.
  • the hydrogen atoms of these aromatic rings may be substituted with a hydroxyl group, an alkyl group having 1 to 3 carbon atoms, a halogen atom, an alkoxy group having 1 to 3 carbon atoms, or a vinyl group.
  • T 2 and t 3 in the above formula (3-2) are more preferably integers of 1 or 2. Moreover, a and b are more preferably 1 or 2.
  • X 1 in formula (3-1) and X 2 and X 3 in formula (3-2) are each independently selected from the group consisting of a hydrogen atom, CH 3 , C 2 H 5 and C 3 H 7. One group is preferred, and the smaller the number of carbons, the better the bond reaction with polyimide and polyamic acid, or the easier the self-reaction between specific compounds.
  • Z 1 in the above formula (3-2) is a divalent saturated hydrocarbon group having 1 to 10 carbon atoms, preferably 1 to 5 carbon atoms, which may be bonded to all or part of it to form a cyclic structure.
  • an arbitrary hydrogen atom contained therein may be substituted with a fluorine atom.
  • G 1 include an alkylene group having 1 to 10 carbon atoms, an alicyclic hydrocarbon group having 3 to 10 carbon atoms, a combination of an alkylene group and an alicyclic hydrocarbon group, and 1 carbon atom. ⁇ 10 groups.
  • a group in which any hydrogen atom of the above-described group is substituted with a fluorine atom is exemplified.
  • Q 1 in the higher formula (3B) is an aromatic ring, and specific examples thereof include a benzene ring, naphthalene ring, tetrahydronaphthalene ring, azulene ring, indene ring, fluorene ring, anthracene ring, phenanthrene ring, phenalene ring, Pyrrole ring, imidazole ring, oxazole ring, thiazole ring, pyrazole ring, pyridine ring, pyrimidine ring, quinoline ring, pyrazoline ring, isoquinoline ring, carbazole ring, purine ring, thiadiazole ring, pyridazine ring, triazine ring, pyrazolidine ring, triazole ring , Pyrazine ring, benzimidazole ring, benzimidazole ring, thionoline ring, phenanthroline ring,
  • more preferable aromatic rings include benzene ring, naphthalene ring, fluorene ring, anthracene ring, pyrrole ring, imidazole ring, pyrazole ring, pyridine ring, pyrimidine ring, quinoline ring, isoquinoline ring, carbazole ring, pyridazine ring, pyrazine. Ring, benzimidazole ring, benzimidazole ring, indole ring, quinoxaline ring, acridine ring and the like. More preferably, a benzene ring, a naphthalene ring, a pyridine ring, a carbazole ring, a fluorene ring, etc. are mentioned.
  • liquid crystal aligning agent of the present invention at least one compound selected from the group consisting of the above formula (3-1) and the above formula (3-2) can be used for the preparation.
  • Specific examples of the specific compound used for the liquid crystal aligning agent of the present invention include [P1] to [P45], but are not limited thereto.
  • compounds represented by [P15], [P17], [P19], [P29], [P31], or [P41] are preferable, and among them, [P15], [P17], The compound represented by [P29], [P31], or [P41] is more preferable.
  • the liquid crystal aligning agent of the present invention includes a metabenzyl-type side chain structure such as a polyimide precursor and a polyimide obtained by imidizing the polyimide precursor, and a photoreactive group that enables a photoreactive treatment.
  • a polymer component having a specific structure having a side chain structure is contained.
  • the liquid crystal aligning agent in this invention can contain a crosslinking agent.
  • the liquid crystal aligning agent of the present invention is preferably prepared as a solution in which a resin component for forming a resin film is dissolved in an organic solvent.
  • the resin component is a resin component including the polymer component described above.
  • the content of the resin component is preferably 1% by mass to 20% by mass, more preferably 3% by mass to 15% by mass, and particularly preferably 3% by mass to 10% by mass.
  • the above-described resin component may be a polymer having the specific structure described above, or other polymers may be mixed.
  • the content of the other polymer in the resin component is 0.5 to 15% by mass, preferably 1 to 10% by mass.
  • Such other polymers are composed of, for example, polyamic acid, polyimide, and the like, such as a metabenzyl type side chain structure, or a polymer that does not have a side chain structure including a photoreactive group that enables photoreaction treatment. Can be mentioned.
  • the organic solvent used in the liquid crystal aligning agent of the present invention is not particularly limited as long as it dissolves the resin component and dissolves the crosslinking agent contained when necessary. Specific examples are given below.
  • the organic solvent used in the liquid crystal aligning agent of the present invention is preferably N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, or ⁇ -butyllactone.
  • the liquid crystal aligning agent of this invention may contain components other than above-described components, such as a polymer of a specific structure.
  • examples thereof include solvents and compounds that improve the film thickness uniformity and surface smoothness when a liquid crystal aligning agent is applied, and compounds that improve the adhesion between the liquid crystal aligning film and the substrate.
  • the following are mentioned as a specific example of the solvent (poor solvent) which improves the uniformity of film thickness and surface smoothness.
  • the poor solvent used in the liquid crystal aligning agent of the present invention is preferably butyl cellosolve, propylene glycol monobutyl ether, or dipropylene glycol monomethyl ether.
  • Examples of the compound that improves film thickness uniformity and surface smoothness include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants.
  • fluorine-based surfactants silicone-based surfactants, and nonionic surfactants.
  • Ftop registered trademark
  • EF303 EF352
  • MegaFac registered trademark
  • F171, F173, R-30 manufactured by DIC
  • Florard FC430, FC431 Sumitomo 3M Co., Ltd.
  • Asahi Guard registered trademark
  • Surflon registered trademark
  • SC101, SC102, SC103, SC104, SC105, SC106 manufactured by AGC Seimi Chemical Co., Ltd.
  • the ratio of these surfactants to be used is preferably 0.01 parts by weight to 2 parts by weight, more preferably 0.01 parts by weight to 1 part by weight with respect to 100 parts by weight of the resin
  • the compound that improves the adhesion between the liquid crystal alignment film and the substrate include the following functional silane-containing compounds and epoxy group-containing compounds.
  • a dielectric or conductive material may be used for the purpose of changing electrical characteristics such as dielectric constant and conductivity of the liquid crystal aligning film as long as the effects of the present invention are not impaired.
  • a crosslinkable compound may be added for the purpose of increasing the hardness and density of the substance and, further, the liquid crystal alignment film.
  • liquid crystal aligning agent of the present invention described above can be applied to other methods by applying and baking on a substrate in the same manner as the liquid crystal aligning agent for forming a liquid crystal aligning film made of conventional polyimide.
  • the liquid crystal alignment film in the present invention can be formed. Then, by performing a photo-alignment treatment by light irradiation, alignment control ability can be imparted and used for manufacturing a liquid crystal display element.
  • the substrate used for forming the liquid crystal alignment film by applying the liquid crystal alignment agent of the present invention it is preferable to use a highly transparent substrate when the manufactured liquid crystal display element is a transmission type.
  • a glass substrate or a plastic substrate such as an acrylic substrate or a polycarbonate substrate can be used.
  • a transparent electrode such as an ITO (Indium Tin Oxide) electrode is formed from the viewpoint of simplifying the manufacturing process.
  • an opaque object such as a silicon wafer can be used as long as it is only on one substrate, and the electrode in this case can be made of a material that reflects light such as aluminum.
  • the method for applying the liquid crystal aligning agent in the present invention is not particularly limited.
  • the application method of the liquid crystal aligning agent industrially, screen printing, offset printing, flexographic printing, ink jet, and the like are common.
  • other coating methods there are methods using a dip, a roll coater, a slit coater, a spinner and the like, and these may be used according to the purpose.
  • Firing after applying the liquid crystal aligning agent of the present invention onto the substrate is performed at 50 ° C. to 300 ° C., preferably 80 ° C. to 250 ° C. by a heating means such as a hot plate, for example, by evaporating the solvent which is an organic solvent.
  • a coating film can be formed.
  • the thickness of the coating film formed after baking is preferably 5 nm to 300 nm, more preferably 10 nm to 100 nm.
  • the fired coating film is treated with polarized ultraviolet rays. That is, a photo-alignment process is performed.
  • the liquid crystal alignment film in the present invention can be imparted with alignment control ability, in particular, a pretilt angle can be formed by rubbing treatment.
  • the liquid crystal display element of the present invention after obtaining the substrate with the liquid crystal alignment film on which the liquid crystal alignment film of the present invention is formed from the liquid crystal aligning agent of the present invention by the above-described method, It is a liquid crystal display element.
  • a VA mode liquid crystal display element can be provided.
  • a pair of substrates on which the liquid crystal alignment film of the present invention is formed is prepared, spacers are scattered on the liquid crystal alignment film of one substrate, and the liquid crystal alignment film surface is on the inside. Then, the other substrate is bonded, the liquid crystal is injected under reduced pressure and sealed, or the liquid crystal is dropped on the liquid crystal alignment film surface on which the spacers are dispersed, and then the substrate is bonded and sealed, Etc. can be illustrated.
  • the diameter of the spacer at this time is preferably 1 ⁇ m to 30 ⁇ m, more preferably 2 ⁇ m to 10 ⁇ m. This spacer diameter determines the distance between the pair of substrates that sandwich the liquid crystal layer, that is, the thickness of the liquid crystal layer.
  • the liquid crystal display element produced using the liquid crystal alignment treatment agent of the present invention has excellent reliability, excellent display quality, and suitable for use in a large-screen, high-definition liquid crystal television. it can.
  • the molecular weight of polyimide was measured as follows using a normal temperature gel permeation chromatography (GPC) apparatus (SSC-7200) manufactured by Senshu Scientific Co., Ltd. and a column (KD-803, KD-805) manufactured by Shodex.
  • GPC gel permeation chromatography
  • the imidation ratio of polyimide was measured as follows. Add 20 mg of polyimide powder to an NMR sample tube (NMR sampling tube standard ⁇ 5 by Kusano Kagaku Co., Ltd.), add 1.0 ml of deuterated dimethyl sulfoxide (DMSO-d 6 , 0.05% TMS mixture), and apply ultrasonic waves. To dissolve completely. This solution was measured for proton NMR at 500 MHz with an NMR measuring instrument (JNW-ECA500) manufactured by JEOL Datum.
  • JNW-ECA500 deuterated dimethyl sulfoxide
  • the imidation rate is determined based on protons derived from structures that do not change before and after imidation as reference protons, and the peak integrated value of these protons and proton peaks derived from NH groups of amic acid appearing in the vicinity of 9.5 to 10.0 ppm. It calculated
  • x is the proton peak integrated value derived from the NH group of the amic acid
  • y is the peak integrated value of the reference proton
  • is the NH group of the amic acid in the case of polyamic acid (imidation rate is 0%). It is the number ratio of the reference proton to one proton.
  • Imidization rate (%) (1 ⁇ ⁇ x / y) ⁇ 100
  • This reaction solution was poured into methanol (520 ml), and the resulting precipitate was separated by filtration. This deposit was wash
  • the imidation ratio of this polyimide was 60%, the number average molecular weight was 10,000, and the weight average molecular weight was 35000.
  • NMP (44.0 g) was added to the obtained polyimide powder (A1) (6.0 g), and the mixture was stirred and dissolved at 50 ° C. for 12 hours. BCS (50.0g) was added to this solution, and the liquid crystal aligning agent (B1) was obtained by stirring at 50 degreeC for 5 hours.
  • the reaction solution was poured into methanol (520 ml), and the resulting precipitate was separated by filtration. This deposit was wash
  • the imidation ratio of this polyimide was 60%, the number average molecular weight was 12000, and the weight average molecular weight was 38000.
  • NMP (44.0 g) was added to the obtained polyimide powder (A2) (6.0 g), and the mixture was dissolved by stirring at 50 ° C. for 12 hours. BCS (50.0 g) was added to this solution, and the liquid crystal aligning agent (B2) was obtained by stirring at 50 degreeC for 5 hours.
  • the liquid crystal aligning agent (B2) is a liquid crystal aligning agent containing a polyimide having the above-described metabenzyl-type side chain structure and a side chain structure containing a photoreactive group that enables photoreaction treatment.
  • This reaction solution was poured into methanol (520 ml), and the resulting precipitate was separated by filtration. This deposit was wash
  • the imidation ratio of this polyimide was 60%, the number average molecular weight was 10,000, and the weight average molecular weight was 35000.
  • NMP (44.0 g) was added to the obtained polyimide powder (A3) (6.0 g), and the mixture was dissolved by stirring at 50 ° C. for 12 hours. BCS (50.0g) was added to this solution, and the liquid crystal aligning agent (B5) was obtained by stirring at 50 degreeC for 5 hours.
  • the reaction solution was poured into methanol (520 ml), and the resulting precipitate was separated by filtration. This deposit was wash
  • the imidation ratio of this polyimide was 60%, the number average molecular weight was 12000, and the weight average molecular weight was 38000.
  • NMP (44.0 g) was added to the obtained polyimide powder (A4) (6.0 g), and the mixture was dissolved by stirring at 50 ° C. for 12 hours. BCS (50.0 g) was added to this solution, and the liquid crystal aligning agent (B6) was obtained by stirring at 50 degreeC for 5 hours.
  • the liquid crystal aligning agent (B6) is a liquid crystal aligning agent containing a polyimide having the above-described metabenzyl-type side chain structure and a side chain structure containing a photoreactive group that enables photoreaction treatment.
  • This reaction solution was poured into methanol (520 ml), and the resulting precipitate was separated by filtration. This deposit was wash
  • the imidation ratio of this polyimide was 60%, the number average molecular weight was 12000, and the weight average molecular weight was 38000.
  • NMP (44.0 g) was added to the obtained polyimide powder (A5) (6.0 g), and the mixture was dissolved by stirring at 50 ° C. for 12 hours. BCS (50.0g) was added to this solution, and the liquid crystal aligning agent (B9) was obtained by stirring at 50 degreeC for 5 hours.
  • This reaction solution was poured into methanol (520 ml), and the resulting precipitate was separated by filtration. This deposit was wash
  • the imidation ratio of this polyimide was 60%, the number average molecular weight was 12000, and the weight average molecular weight was 38000.
  • NMP (44.0 g) was added to the obtained polyimide powder (A6) (6.0 g), and the mixture was dissolved by stirring at 50 ° C. for 12 hours. BCS (50.0 g) was added to this solution, and the liquid crystal aligning agent (B10) was obtained by stirring at 50 degreeC for 5 hours.
  • the liquid crystal aligning agent (B1) obtained in Synthesis Example 1 is spin-coated on the ITO surface of a glass substrate with a transparent electrode made of an ITO film, dried for 90 seconds on an 80 ° C. hot plate, and then heated at 200 ° C. Baking was performed for 30 minutes in an oven to form a liquid crystal alignment film having a thickness of 100 nm.
  • the substrate was subjected to photo-alignment treatment by irradiating 20 mJ of linearly polarized UV light of 313 nm with an irradiation intensity of 10.0 mW / cm ⁇ 2 .
  • the direction of the incident light was inclined by 40 ° with respect to the normal direction of the substrate.
  • the linearly polarized light UV was prepared by passing a 313 nm band pass filter through the ultraviolet light of a high pressure mercury lamp and then passing it through a 313 nm polarizing plate.
  • liquid crystal alignment film of one of the two substrates After spraying 6 ⁇ m bead spacers on the liquid crystal alignment film of one of the two substrates, a sealant (solvent type thermosetting epoxy resin) was printed thereon. Next, the surface of the other substrate on which the liquid crystal alignment film was formed was faced inward and bonded to the previous substrate, and then the sealing agent was cured to produce an empty cell. Liquid crystal MLC-6608 (trade name, manufactured by Merck & Co., Inc.) was injected into this empty cell by a reduced pressure injection method to produce a liquid crystal cell. The pretilt angle of the obtained liquid crystal cell was measured by the following method.
  • the pretilt angle of the liquid crystal cell was measured by the Mueller matrix method using “Axo Scan” manufactured by Axo Metrix.
  • Example 1 Except for using the liquid crystal aligning agent (B2) in place of the liquid crystal aligning agent (B1), the same operation as in Comparative Example 1 was performed to form a liquid crystal aligning film, and the AC drive of the liquid crystal cell manufactured using the same The change of the pretilt angle before and after was evaluated.
  • Example 2 Except for using the liquid crystal aligning agent (B3) in place of the liquid crystal aligning agent (B1), the same operation as in Comparative Example 1 was performed to form a liquid crystal aligning film, and the AC drive of the liquid crystal cell produced using the liquid crystal aligning film The pretilt angle change before and after was evaluated.
  • Example 3 Except for using the liquid crystal aligning agent (B4) in place of the liquid crystal aligning agent (B1), the same operation as in Comparative Example 1 was performed to form a liquid crystal aligning film, and the AC drive of the liquid crystal cell manufactured using the same The pretilt angle change before and after was evaluated.
  • Comparative Example 3 Except for using the liquid crystal aligning agent (B5) in place of the liquid crystal aligning agent (B1), the same operation as in Comparative Example 1 was performed to form a liquid crystal aligning film, and the AC driving of the liquid crystal cell produced using the liquid crystal aligning film The pretilt angle change before and after was evaluated.
  • Example 4 Except for using the liquid crystal aligning agent (B6) in place of the liquid crystal aligning agent (B1), the same operation as in Comparative Example 1 was performed to form a liquid crystal aligning film, and the AC drive of the liquid crystal cell manufactured using the same The pretilt angle change before and after was evaluated.
  • Example 5 Except for using the liquid crystal aligning agent (B7) instead of the liquid crystal aligning agent (B1), the same operation as in Comparative Example 1 was performed to form a liquid crystal aligning film, and the AC driving of the liquid crystal cell manufactured using the same The pretilt angle change before and after was evaluated.
  • Example 6 Except for using the liquid crystal aligning agent (B8) instead of the liquid crystal aligning agent (B1), the same operation as in Comparative Example 1 was performed to form a liquid crystal aligning film, and the AC driving of the liquid crystal cell manufactured using the same The pretilt angle change before and after was evaluated.
  • Comparative Example 2 Except for using the liquid crystal aligning agent (B9) in place of the liquid crystal aligning agent (B1), the same operation as in Comparative Example 1 was performed to form a liquid crystal aligning film, and the AC drive of the liquid crystal cell produced using the liquid crystal aligning film The pretilt angle change before and after was evaluated.
  • Comparative Example 4 Except for using the liquid crystal aligning agent (B10) instead of the liquid crystal aligning agent (B1), the same operation as in Comparative Example 1 was performed to form a liquid crystal aligning film, and the AC driving of the liquid crystal cell manufactured using the same The pretilt angle change before and after was evaluated.
  • FIG. 1 is a graph showing comparison results of the evaluation results of the liquid crystal cell of the example of the present invention.
  • the liquid crystal cell produced in Example 1 and Example 4 is a liquid crystal alignment containing a polyimide having the above-described metabenzyl-type side chain structure and a side chain structure containing a photoreactive group capable of photoreactive treatment.
  • a liquid crystal cell having a liquid crystal alignment film formed using the agent (B2) and the liquid crystal alignment agent (B6) is obtained.
  • the liquid crystal cells produced in Examples 2 and 3 and Examples 5 and 6 have the above-described metabenzyl-type side chain structure and a side chain containing a photoreactive group that enables photoreactive treatment.
  • the liquid crystal cells produced in Comparative Example 1 and Comparative Example 3 contain a polyimide having an ortho ether type side chain structure and a side chain structure containing a photoreactive group that enables photoreaction treatment. It becomes a liquid crystal cell which has the liquid crystal aligning film formed using the liquid crystal aligning agent (B1) and the liquid crystal aligning agent (B5).
  • Example 2 Example 3, Example 5 and Example 6, it was confirmed that the change in the pretilt angle due to AC driving is further suppressed by the effect of the crosslinking agent contained in the liquid crystal aligning agent. It was done.
  • the liquid crystal aligning film obtained from the liquid crystal aligning agent containing the polyimide which has the metabenzyl type side chain structure of a present Example and the side chain structure containing the photoreactive group which enables photoreaction processing was used. It has been found that the VA mode liquid crystal display element can reduce image sticking due to application of an alternating voltage. That is, a liquid crystal alignment film obtained from a liquid crystal aligning agent containing a polyimide having a metabenzyl-type side chain structure of this example and a side chain structure containing a photoreactive group capable of photoreaction treatment is an alternating voltage. It has been found that the present invention is suitable for providing a VA mode liquid crystal display element in which image sticking due to application of is reduced.
  • the liquid crystal aligning agent of the present invention can provide a vertical alignment liquid crystal aligning film that can be photo-aligned and is effective in improving display defects such as image sticking. Therefore, it is possible to manufacture a VA mode liquid crystal display element with high productivity and excellent display quality, and a liquid crystal display for a portable information terminal such as a large-sized liquid crystal TV or a smartphone displaying high-definition images. It can use suitably for manufacture of an element. That is, the liquid crystal surface element of the present invention having the liquid crystal alignment film of the present invention constitutes a VA mode liquid crystal display element of high display quality, and is a portable information terminal such as a large TV or a smartphone displaying a high-definition image. It can be suitably used as a display element.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Liquid Crystal (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 優れた表示品位の液晶表示素子に好適な液晶配向膜を形成する液晶配向剤を提供する。 液晶配向剤は、メタベンジル型の側鎖構造と光反応性基を含む側鎖構造とを有するポリイミド前駆体及び該ポリイミド前駆体をイミド化して得られるポリイミドからなる群から選択される少なくとも一種の重合体を含有して調製される。そのポリイミド前駆体は、メタベンジル型の側鎖構造を実現するためのジアミン化合物と、光反応性基を有するジアミン化合物とを用い、テトラカルボン酸無水物二無水物と共重合反応を行って形成する。その液晶配向剤を用いて、光配向性の垂直配向型の液晶配向膜を形成する。その液晶配向膜を用いて液晶表示素子を製造する。

Description

液晶配向剤、液晶配向膜及び液晶表示素子
 本発明は、優れた表示品位の液晶表示素子の提供に好適な液晶配向剤、液晶配向膜及び液晶表示素子に関する。
 液晶表示素子は、軽量、薄型かつ低消費電力の表示デバイスとして知られ、近年では大型のテレビ用途に用いられる等、目覚ましい発展を遂げている。
 液晶表示素子は、液晶層を一対の基板間に挟持して封入するとともに、液晶層の液晶を基板間で所定方向に配向させて構成される。液晶表示素子では、一対の基板上に設けられた電極への電圧印加により液晶が応答し、その液晶の応答による配向変化を利用して、所望とする画像の表示を行うことができる。
 この液晶表示素子は、液晶分子の初期の配向状態や、電圧印加による配向変化の形態が異なる多様な液晶モードがある。例えば、液晶分子の初期の配向状態として、一対の基板間で液晶が90°ツイスト配向をするTN(Twisted Nematic)モード等が知られている。
 近年、液晶表示素子の表示方式の中でも、負の誘電異方性を有する液晶分子を基板に垂直に配向させる、垂直配向(VA:Vertical Alignment)モードの液晶表示素子が盛んに開発されている(例えば、特許文献1、2を参照。)。
 このVAモード液晶表示素子では、電圧印加により、垂直配向する液晶が所定の方向に傾斜しながら、基板に平行となるように、且つ、所定の方向に向かうように配向変化する。そして、VAモードは、高いコントラスト比と広い視野角、さらに優れた応答特性を実現することができる。
 このVA方式液晶表示素子は、上述した液晶の配向変化動作を可能とするため、電圧無印加時の液晶の初期配向状態として、液晶が基板の法線方向から面内の所定の方向に向かってわずかに傾く状態を形成することが求められる。
 VA方式液晶表示素子には、電圧印加による液晶の傾斜方向を制御するため、突起構造をTFT基板やカラーフィルタ基板に形成するMVA(Multi-domain Vertical Alignment)方式が知られている。
 また、液晶層を挟持する基板のITO(Indiumtinoxide)等からなる電極にスリット構造を設け、形成される斜め電界によって液晶の傾斜方向を制御するPVA(Patterned Vertical Alignment)方式が知られている。
 さらに、基板と液晶層との間に液晶配向膜を設け、これをラビング処理し、液晶分子を基板法線方向から基板面内の一方向に向けてわずかに傾けて配向させる方法や、特許文献3、4等に開示される光配向法等が知られている。
 例えば、特許文献3では、分子内にケイ皮酸エステル構造を有するジアミン化合物を用いている。そして、そのジアミン化合物とテトラカルボン酸二無水物とからポリイミド前駆体であるポリアミック酸を合成し、そのポリアミック酸からポリイミドを形成して、光配向性の垂直配向型の液晶配向膜を得ている。ポリイミドは、高耐熱性の高分子材料であって高信頼性を有し、液晶配向膜の用途に好適な材料である。
 以上の構成のVAモード液晶表示素子は、上述した優れた特性を有し、大型のテレビや高精細で高画質のモバイル用途(デジタルカメラや携帯電話の表示部)等に利用されるようになっている。
国際公開第2008/117615号パンフレット 日本特開2008-76950号公報 日本特表2009-520702号公報 日本特開2011-100099号公報
 VAモード液晶表示素子は、大型TVや高画質のモバイル機器等への用途拡大に応じて、さらなる表示品位の向上が求められている。
 そして、表示品位の向上に向けた課題の1つとして、焼き付き等と称される表示不良の改善が求められている。
 液晶表示素子における焼き付きは、長時間、同じ画像を表示し続けた後、その表示を切り替えたときに前の表示が影のように表示される表示不良の1つである。こうした焼き付きによる表示不良は、液晶表示素子の表示品位を低下させる原因となる。
 焼き付きによる表示不良は、発生程度の軽重に差異はあるものの、いずれのモードの液晶表示素子においても発生する懸念がある。しかしながら、特に高い表示品位が求められる用途で多用されるVAモード液晶表示素子では、その改善が強く求められている。
 本発明の目的は、優れた表示品位の液晶表示素子の提供に好適な液晶配向膜を形成できる液晶配向剤、優れた表示品位の液晶表示素子の提供に好適な液晶配向膜、及び優れた表示品位の液晶表示素子を提供することである。
 本発明は、以下の構成を要旨とするものである。
(1)メタベンジル型の側鎖構造と光反応性基を含む側鎖構造とを有するポリイミド前駆体及び該ポリイミド前駆体をイミド化して得られるポリイミドからなる群から選択される少なくとも一種の重合体を含有することを特徴とする液晶配向剤。
(2)前記ポリイミド前駆体は、下記式(1)で示される第1のジアミン化合物と、前記光反応性基を有する第2のジアミン化合物とを含むジアミン成分とテトラカルボン酸無水物二無水物とを反応させて得られるポリアミック酸である上記(1)に記載の液晶配向剤。
Figure JPOXMLDOC01-appb-C000006

(Xは、炭素数8~22の炭化水素基又は下記式(1A)で示される基である。)
Figure JPOXMLDOC01-appb-C000007
(Yは単結合、-(CH-(aは1~15の整数である)、-O-、-CHO-、-COO-又はOCO-である。Yは単結合又は-(CH-(bは1~15の整数である)である。Yは単結合、-(CH-(cは1~15の整数である)、-O-、-CHO-、-COO-又は-OCO-である。Yはベンゼン環、シクロへキサン環及び複素環からなる群から選ばれる環状基(これらの環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよい。)、又は、ステロイド骨格を有する炭素数12~25の有機基からなる群から選ばれる2価の有機基である。Yはベンゼン環、シクロへキサン環及び複素環からなる群から選ばれる環状基(これらの環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよい。)である。Yは炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基又は炭素数1~18のフッ素含有アルコキシル基である。nは0~4の整数である。)
(3)前記第2のジアミン化合物の前記光反応性基が、光二量化反応及び光異性化反応のうちのいずれかを生じる基である上記(2)に記載の液晶配向剤。
(4)前記第2のジアミン化合物の前記光反応性基が、シンナモイル構造、クマリン構造及びカルコン構造からなる群から選択される少なくとも1種の構造を有する上記(2)又は(3)に記載の液晶配向剤。
(5)前記第2のジアミン化合物の前記光反応性基が、下記式(2A)及び下記式(2B)のうちのいずれかで示される構造を含む上記(2)~(4)のいずれかに記載の液晶配向剤。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009

(上記式(2A)及び上記式(2B)中、Rは、水素原子、炭素原子数1~10のアルキル基(ただし、その任意の水素原子はフッ素原子に置換されていてもよい。)、又は炭素原子数1~10のアルコキシ基(ただし、その任意の水素原子はフッ素原子に置換されていてもよい。)を表す。A及びBは、それぞれ独立に、単結合又は下記式に示すいずれかの環構造を表す。ただし、環構造中の任意の水素原子は、炭素数1~10のアルコキシ基で置換されていてもよい。T~Tは、それぞれ独立に、単結合、エーテル、エステル、アミド又はケトン結合を表す。Sは単結合又は炭素原子数1~10のアルキレン基を表す。)
Figure JPOXMLDOC01-appb-C000010
(6)前記ジアミン成分中に含まれるメタベンジル型ジアミン化合物の含有量が5モル%~50モル%であり、第2のジアミン化合物の含有量が20モル%~95モル%である上記(2)~(5)のいずれかに記載の液晶配向剤。
(7)前記重合体の含有量が1~20質量%である上記(1)~(6)のいずれかに記載の液晶配向剤。
(8)さらに、架橋剤を含む上記(1)~(7)のいずれかに記載の液晶配向剤。
(9)上記(1)~(8)のいずれかに記載の液晶配向剤を用いて得られる液晶配向膜。
(10)上記(9)に記載の液晶配向膜を有する液晶表示素子。
 本発明によれば、優れた表示品位の液晶表示素子の提供に好適な液晶配向膜を形成できる液晶配向剤、優れた表示品位の液晶表示素子の提供に好適な液晶配向膜、及び優れた表示品位の液晶表示素子を提供できる。
本発明の実施例の液晶セルの評価結果を比較して示すグラフである。
 本発明者は、VAモード液晶表示素子の焼き付きの問題について検討し、それは、交流電圧を印加し続けるときに発生する、液晶層の液晶のプレチルト角の変動が主な要因であることを見出した。
 通常、一対の基板間に挟持される液晶層の液晶のプレチルト角は一定であって、液晶の駆動によっても変動の小さいことが求められている。VAモード液晶表示素子は、上述したように、例えば、配向処理された液晶配向膜によって、液晶のプレチルト角の形成がなされている。このとき、VAモード液晶表示素子では、長時間の交流電圧の印加による液晶の駆動によって、液晶配向膜と液晶との間で形成されるプレチルト角に変化が生じることがある。
 その場合、長時間の交流電圧の印加が、液晶表示素子の面内の一部の領域でなされると、その領域のみでプレチルト角の変動が発生する。一方、交流電圧の印加がなされていない領域では、そうしたプレチルト角の変動は発生せず、初期の状態が維持されている。その結果、それらの領域間で、液晶の駆動特性に変化が生じることがある。そして、そうした一部領域での液晶の駆動特性の変化が、VAモード液晶表示の焼き付きとして視認されることがある。
 本発明者は、さらなる検討の結果、VAモード液晶表示素子に使用される液晶配向膜の構造を特定化することで、上述の焼き付きの改善に有効であることを見出し、本発明を完成するに至った。
 VAモード液晶表示素子は、上述したように、液晶配向膜を用いて構成することができる。そして、その液晶配向膜としては、光配向性の垂直配向型の液晶配向膜を用いることができる。この光配向性の垂直配向型の液晶配向膜は、電極にスリット構造等の追加の構造を設けることが不要である。また、液晶配向膜の光配向処理が可能であり、従来から知られたラビング処理を不要とすることができる。
 配向処理法の1つであるラビング処理は、布を用いてポリイミド膜の表面を一定方向に擦る配向処理の方法である。このラビング処理は、液晶配向膜を構成するポリイミド膜等の有機膜を擦ることにより塵を発生させる他、液晶配向膜の表面に傷を残して液晶の配向のムラを発生させる懸念がある。したがって、液晶配向膜では、ラビング処理の不要な、光配向処理の採用が好ましい。
 そこで、本発明者は、VAモード液晶表示素子に光配向性の垂直配向型の液晶配向膜の技術を適用し、その液晶配向膜によって、VAモード液晶表示素子の交流電圧の印加による焼き付きを改善する。
 VAモード液晶表示素子の光配向性の垂直配向型の液晶配向膜は、従来の液晶配向膜と同様に重合体から構成される。そして、その液晶配向膜を形成するための液晶配向剤を用い、塗布及び成膜をすることによって形成することができる。その場合、液晶配向剤は、成分として、液晶配向膜の形成に好適な重合体を含んで構成される。本発明では、液晶配向剤の重合体成分が、液晶の垂直配向を実現するための成分と、光配向処理を実現するための光反応性基を有する成分と用い、それらを共重合することにより形成される。そして、液晶配向剤は、その形成された重合体を含むことにより、VAモード液晶表示素子に好適な、光配向性の垂直配向型液晶表示素子を提供することができる。
 本発明者は、さらに、液晶配向膜の構造を特定化すること、具体的には、液晶配向剤に含有される重合体成分の構造を特定化することで、焼き付きの改善された光配向性の垂直配向性の液晶配向膜を提供する。より具体的には、液晶の垂直配向を実現するための成分の構造を特定化し、かつ光配向処理を実現するための光反応性基を有する成分の構造を特定化し、そうすることで得られる重合体の構造を特定化する。かくして、本発明の液晶配向剤は、その特定構造の重合体を含有し、交流電圧の印加による焼き付きの低減された、光配向性の垂直配向型の液晶配向膜及び液晶表示素子を提供する。
<液晶配向剤>
 本発明の液晶配向剤は、構造が特定化された重合体を含み、該重合体は、メタベンジル型の側鎖構造と、光反応処理を可能とする光反応性基を含む側鎖構造とを有するポリイミド前駆体及びそれをイミド化させて得られるポリイミドからなる群から選択される少なくとも一種の重合体である。本発明において、ポリイミド前駆体としては、ポリアミック酸の他、ポリアミック酸エステル等が含まれる。特に、ポリイミドの形成が容易なポリアミック酸が好ましい。
 本発明の液晶配向剤に含有されるポリイミド前駆体及び該ポリイミド前駆体をイミド化して得られるポリイミドは、上述したように、分子内にメタベンジル型の側鎖構造と、光反応処理を可能とする光反応性基を含む側鎖構造とを有する。ポリイミド前駆体は、公知の方法に従い、少なくとも1種のジアミン化合物を含むジアミン成分とテトラカルボン酸二無水物等のテトラカルボン酸誘導体成分とを反応させることによって合成できる。
 上述の構造のポリイミド前駆体を得る方法としては、その合成に用いるジアミン成分に、第1のジアミン化合物として、分子内にメタベンジル型の側鎖構造を実現するための構造を有するジアミン化合物を用いることができる。第2のジアミン化合物として、分子内に光配向処理を可能とする光反応性基を有するジアミン化合物を用いることができる。そして、それら第1のジアミン化合物及び第2のジアミン化合物を用い、テトラカルボン酸誘導体成分との間で共重合反応させることにより、本発明において所望される構造のポリイミド前駆体及びそれをイミド化してポリイミドを得ることができる。
 以下では、上述した第1及び第2のジアミン化合物等のジアミン成分について説明する。すなわち、上述のような構造のポリイミド前駆体を得るのに好適な、分子内にメタベンジル型の側鎖構造を実現するための構造を有するジアミン化合物(以下、メタベンジル型ジアミン化合物とも言う。)、及び、分子内に光配向処理を可能とする光反応性基を有するジアミン化合物(以下、光反応性ジアミン化合物とも言う。)等について説明する。そして、好ましいテトラカルボン酸誘導体について説明し、それらを用いて形成され、本発明における液晶配向剤に含有可能な成分として、本発明におけるポリイミド前駆体及びポリイミド等について説明をする。
〔メタベンジル型ジアミン化合物〕
 本発明におけるメタベンジル型ジアミン化合物は、例えば、下記式(1)で示される。すなわち、本発明におけるメタベンジル型ジアミン化合物は、ふたつのアミノ基が1位と3位に導入されたベンゼン環構造を有するとともに、それぞれアミノ基のメタ位となる、ベンゼン環の5位にベンジル基が導入された化合物であるのが好ましい。
 本発明におけるメタベンジル型ジアミン化合物が下記式(1)で示される構造を有することにより、これを用いて合成されたポリイミド前駆体及びポリイミドの少なくとも一方の重合体を含む液晶配向剤は、垂直配向性の本発明の液晶配向膜を形成することができる。そして、本発明におけるメタベンジル型ジアミン化合物は、後に詳述する光反応性ジアミン化合物とともに用いられて、上述した所望構造のポリイミド前駆体等を形成することができる。このポリイミド前駆体等を含む本発明の液晶配向剤は、液晶表示素子の液晶のプレチルト角の大きさを制御し、併せて、交流電圧の印加による焼き付きを改善する本発明の液晶配向膜を形成することができる。
Figure JPOXMLDOC01-appb-C000011

 式(1)中、Xは、炭素数8~22の炭化水素基又は下記式(1A)で示される基である。
Figure JPOXMLDOC01-appb-C000012
 式(1A)中、Yは単結合、-(CH-(aは1~15の整数である)、-O-、-CHO-、-COO-又はOCO-である。Yは単結合又は-(CH-(bは1~15の整数である)である。Yは単結合、-(CH-(cは1~15の整数である)、-O-、-CHO-、-COO-又は-OCO-である。Yはベンゼン環、シクロへキサン環及び複素環からなる群から選ばれる環状基(これらの環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよい。)、又は、ステロイド骨格を有する炭素数12~25の有機基からなる群から選ばれる2価の有機基である。Yはベンゼン環、シクロへキサン環及び複素環からなる群から選ばれる環状基(これらの環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよい。)である。Yは炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基又は炭素数1~18のフッ素含有アルコキシル基である。nは0~4の整数である。
 上記式(1A)中、Yは単結合、-(CH-(aは1~15の整数である。)、-O-、-CHO-、-COO-、又は-OCO-である。なかでも、単結合、-(CH-(aは1~15の整数である。)、-O-、-CHO-、又は-COO-が、そのジアミン化合物の合成を容易にする観点から好ましい。また、単結合、-(CH-(aは1~10の整数である。)、-O-、-CHO-又は-COO-がより好ましい。
 式(1A)中、Yは単結合、又は-(CH-(bは1~15の整数である。)である。なかでも、単結合、又は-(CH-(bは1~10の整数である。)が好ましい。
 式(1A)中、Yは単結合、-(CH-(cは1~15の整数である。)、-O-、-CHO-、-COO-又は-OCO-である。なかでも、単結合、-(CH-(cは1~15の整数である。)、-O-、-CHO-、-COO-又は-OCO-が、そのジアミン化合物の合成を容易にする観点から好ましい。また、単結合、-(CH-(cは1~10の整数である。)、-O-、-CHO-、-COO-又は-OCO-がより好ましい。
 式(1A)中、Yはベンゼン環、シクロへキサン環及び複素環からなる群から選ばれる環状基(これらの環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基及びフッ素原子のうちのいずれかにより置換されていてもよい。)、又はステロイド骨格を有する炭素数12~25の有機基からなる群から選ばれる2価の有機基である。なかでも、ベンゼン環、シクロへキサン環、又はステロイド骨格を有する炭素数12~25の2価の有機基が好ましい。
 式(1A)中、Yはベンゼン環、シクロへキサン環及び複素環からなる群から選ばれる環状基であって、これらの環状基上の任意の水素原子が、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基、又はフッ素原子で置換されていてもよい。
 上記式(1A)中、nは0~4の整数である。好ましくは、0~2の整数である。
 式(1A)中、Yは炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基、又は炭素数1~18のフッ素含有アルコキシル基である。なかでも、炭素数1~18のアルキル基、炭素数1~10のフッ素含有アルキル基、炭素数1~18のアルコキシル基、又は炭素数1~10のフッ素含有アルコキシル基であることが好ましい。より好ましくは、炭素数1~12のアルキル基、又は炭素数1~12のアルコキシル基である。さらに好ましくは、炭素数1~9のアルキル基、又は炭素数1~9のアルコキシル基である。
 次に、上記式(1)で示される構造のジアミン化合物の具体例を挙げるが、これらの例に限定されない。
Figure JPOXMLDOC01-appb-C000013
 式[1A-1]~[1A-3]中、Rは、-CHOCO-、-CHO-又は-CH-であり、Rは炭素数1~18の直鎖状若しくは分岐状アルキル基、炭素数1~18の直鎖状若しくは分岐状アルコキシル基、炭素数1~18の直鎖状若しくは分岐状フッ素含有アルキル基、又は炭素数1~18の直鎖状若しくは分岐状フッ素含有アルコキシル基である。
Figure JPOXMLDOC01-appb-C000014
 式[1A-4]及び式[1A-5]中、Rは-CHOCO-、-CHO-又はCH-であり、Rは炭素数1~18の直鎖状若しくは分岐状アルキル基である。)
Figure JPOXMLDOC01-appb-C000015
 式[1A-6]及び式[1A-7]中、Rは炭素数3~12の直鎖状又は分岐状アルキル基であり、1,4-シクロヘキシレンのシス-トランス異性は、それぞれトランス異性体である。
Figure JPOXMLDOC01-appb-C000016
 式[1A-8]中、Lはフッ素原子で置換されていてもよい炭素数3~20の直鎖状又は分岐状アルキル基であり、Lは1,4-シクロへキシレン基又は1,4-フェニレン基であり、Lは酸素原子又はCOO-*(ただし、「*」を付した結合手がAと結合する。)であり、Lは酸素原子又はCOO-*(ただし、「*」を付した結合手が(CH)a)と結合する。)である。また、aは0又は1の整数であり、aは2~10の整数であり、aは0又は1の整数である)
Figure JPOXMLDOC01-appb-C000017
 上記のメタベンジル型ジアミン化合物を含むジアミン成分を用いて重合体を合成する場合、ジアミン成分中に含まれるメタベンジル型ジアミン化合物の好ましい含有量は、特に限定はされないが、ジアミン成分中、5モル%~50モル%が好ましく、より好ましくは5モル%~30モル%である。
〔光反応性ジアミン化合物〕
 本発明における光反応性ジアミン化合物は、光反応性基を有する。本発明における光反応性ジアミン化合物の光反応性基は、光二量化反応及び光異性化反応のうちのいずれかを生じる基であることが好ましい。こうした光反応性基を有することで、光反応性ジアミン化合物を用いて合成されたポリイミド前駆体及びポリイミドの少なくとも一方の重合体を含む液晶配向剤は、光配向処理が可能な液晶配向膜を形成することができる。そして、上述したメタベンジル型ジアミン化合物とともに用いられて、ポリイミド前駆体等の所望構造の重合体を形成し、光配向処理の可能な垂直配向型の液晶配向膜を形成することができる。
 より具体的には、光反応性ジアミン化合物は、その光反応性基が、シンナモイル構造、クマリン構造及びカルコン構造からなる群から選択される少なくとも1種の構造を有することが好ましい。こうした構造の光反応性基を有することで、光反応性ジアミン化合物を用いて合成されたポリイミド前駆体及びポリイミドの少なくとも一方の重合体を含む液晶配向剤は、高効率な光配向処理を可能とし、高い液晶配向制御性能を有する液晶配向膜を形成することができる。
 本発明における光反応性ジアミン化合物は、下記式(2)で示す化合物が好ましい。
Figure JPOXMLDOC01-appb-C000018
 上記式(2)中、Xは置換基を表し、下記式(2A)、又は下記式(2B)で示される構造の基である。
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
 上記式(2A)及び上記式(2B)中、Rは、水素原子、炭素原子数1~18のアルキル基(ただし、その任意の水素原子はフッ素原子に置換されていてもよい。)、又は炭素原子数1~18のアルコキシ基(ただし、その任意の水素原子はフッ素原子に置換されていてもよい。)を表す。A及びBは、それぞれ独立に、単結合又は下記式に示すいずれかの環構造を表す。ただし、環構造中の任意の水素原子は、炭素数1~10のアルコキシ基で置換されていてもよい。T~Tは、それぞれ独立に、単結合、エーテル、エステル、アミド又はケトン結合を表す。Sは単結合、又は炭素原子数1~10のアルキレン基を表す。
Figure JPOXMLDOC01-appb-C000021
 以下、光反応性ジアミン化合物の好ましい例を示す。
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
 尚、上記各式で例示されたジアミン化合物のC2n+1部分において、nは0~18の整数を表す。
 そして、光反応性等の観点からは、特に、以下の化合物が好ましい。
Figure JPOXMLDOC01-appb-C000040
 上記各式で例示された特に好ましいジアミン化合物のC2n+1部分において、nは0~18の整数を表す。
 また、本発明の液晶配向剤に含有される、上述の所望構造のポリイミド前駆体の形成に好適なジアミン成分には、上述したベンジル型ジアミン化合物及び光反応性ジアミン化合物の他、それら以外のジアミン化合物(その他のジアミン化合物と称することがある。)を含有することも可能である。その他のジアミン化合物は、特に限定されないが、脂環式ジアミン類、芳香族ジアミン類、芳香族-脂肪族ジアミン、複素環式ジアミン類及び脂肪族ジアミン類等を挙げることができる。その具体例を挙げると、以下の通りである。
 脂環式ジアミン類の例としては、1,4-ジアミノシクロヘキサン、1,3-ジアミノシクロヘキサン、4,4’-ジアミノジシクロヘキシルメタン、4,4’-ジアミノ-3,3’-ジメチルジシクロヘキシルアミン、イソホロンジアミン等が挙げられる。
 芳香族ジアミン類の例としては、o-フェニレンジアミン、m-フェニレンジアミン、p-フェニレンジアミン、2,4-ジアミノトルエン、2,5-ジアミノトルエン、3,5-ジアミノトルエン、1,4-ジアミノ-2-メトキシベンゼン、2,5-ジアミノ-p-キシレン、1,3-ジアミノ-4-クロロベンゼン、3,5-ジアミノ安息香酸、1,4-ジアミノ-2,5-ジクロロベンゼン、4,4’-ジアミノ-1,2-ジフェニルエタン、4,4’-ジアミノ-2,2’-ジメチルビベンジル、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノ-3,3’―ジメチルジフェニルメタン、2,2’-ジアミノスチルベン、4,4’-ジアミノスチルベン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノベンゾフェノン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、3,5-ビス(4-アミノフェノキシ)安息香酸、4,4’-ビス(4-アミノフェノキシ)ビベンジル、2,2-ビス[(4-アミノフェノキシ)メチル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフロロプロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、1,1-ビス(4-アミノフェニル)シクロヘキサン、α、α’-ビス(4-アミノフェニル)-1,4-ジイソプロピルベンゼン、9,9-ビス(4-アミノフェニル)フルオレン、2,2-ビス(3-アミノフェニル)ヘキサフロロプロパン、2,2-ビス(4-アミノフェニル)ヘキサフロロプロパン、4,4’-ジアミノジフェニルアミン、2,4-ジアミノジフェニルアミン、1,8-ジアミノナフタレン、1,5-ジアミノナフタレン、1,5-ジアミノアントラキノン、1,3-ジアミノピレン、1,6-ジアミノピレン、1,8―ジアミノピレン、2,7-ジアミノフルオレン、1,3-ビス(4-アミノフェニル)テトラメチルジシロキサン、ベンジジン、2,2’-ジメチルベンジジン、1,2-ビス(4-アミノフェニル)エタン、1,3-ビス(4-アミノフェニル)プロパン、1,4-ビス(4-アミノフェニル)ブタン、1,5-ビス(4-アミノフェニル)ペンタン、1,6-ビス(4-アミノフェニル)ヘキサン、1,7-ビス(4-アミノフェニル)ヘプタン、1,8-ビス(4-アミノフェニル)オクタン、1,9-ビス(4-アミノフェニル)ノナン、1,10-ビス(4-アミノフェニル)デカン、1,3-ビス(4-アミノフェノキシ)プロパン、1,4-ビス(4-アミノフェノキシ)ブタン、1,5-ビス(4-アミノフェノキシ)ペンタン、1,6-ビス(4-アミノフェノキシ)ヘキサン、1,7-ビス(4-アミノフェノキシ)ヘプタン、1,8-ビス(4-アミノフェノキシ)オクタン、1,9-ビス(4-アミノフェノキシ)ノナン、1,10-ビス(4-アミノフェノキシ)デカン、ジ(4-アミノフェニル)プロパン-1,3-ジオエート、ジ(4-アミノフェニル)ブタン-1,4-ジオエート、ジ(4-アミノフェニル)ペンタン-1,5-ジオエート、ジ(4-アミノフェニル)ヘキサン-1,6-ジオエート、ジ(4-アミノフェニル)ヘプタン-1,7-ジオエート、ジ(4-アミノフェニル)オクタン-1,8-ジオエート、ジ(4-アミノフェニル)ノナン-1,9-ジオエート、ジ(4-アミノフェニル)デカン-1,10-ジオエート、1,3-ビス〔4-(4-アミノフェノキシ)フェノキシ〕プロパン、1,4-ビス〔4-(4-アミノフェノキシ)フェノキシ〕ブタン、1,5-ビス〔4-(4-アミノフェノキシ)フェノキシ〕ペンタン、1,6-ビス〔4-(4-アミノフェノキシ)フェノキシ〕ヘキサン、1,7-ビス〔4-(4-アミノフェノキシ)フェノキシ〕ヘプタン、1,8-ビス〔4-(4-アミノフェノキシ)フェノキシ〕オクタン、1,9-ビス〔4-(4-アミノフェノキシ)フェノキシ〕ノナン、1,10-ビス〔4-(4-アミノフェノキシ)フェノキシ〕デカン等が挙げられる。
 芳香族-脂肪族ジアミンの例としては、3-アミノベンジルアミン、4-アミノベンジルアミン、3-アミノ-N-メチルベンジルアミン、4-アミノ-N-メチルベンジルアミン、3-アミノフェネチルアミン、4-アミノフェネチルアミン、3-アミノ-N-メチルフェネチルアミン、4-アミノ-N-メチルフェネチルアミン、3-(3-アミノプロピル)アニリン、4-(3-アミノプロピル)アニリン、3-(3-メチルアミノプロピル)アニリン、4-(3-メチルアミノプロピル)アニリン、3-(4-アミノブチル)アニリン、4-(4-アミノブチル)アニリン、3-(4-メチルアミノブチル)アニリン、4-(4-メチルアミノブチル)アニリン、3-(5-アミノペンチル)アニリン、4-(5-アミノペンチル)アニリン、3-(5-メチルアミノペンチル)アニリン、4-(5-メチルアミノペンチル)アニリン、2-(6-アミノナフチル)メチルアミン、3-(6-アミノナフチル)メチルアミン、2-(6-アミノナフチル)エチルアミン、3-(6-アミノナフチル)エチルアミン等が挙げられる。
 複素環式ジアミン類の例としては、2,6-ジアミノピリジン、2,4-ジアミノピリジン、2,4-ジアミノ-1,3,5-トリアジン、2,7-ジアミノジベンゾフラン、3,6-ジアミノカルバゾール、2,4-ジアミノ-6-イソプロピル-1,3,5-トリアジン、2,5-ビス(4-アミノフェニル)-1,3,4-オキサジアゾール等が挙げられる。
 脂肪族ジアミン類の例としては、1,2-ジアミノエタン、1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノヘキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、1,3-ジアミノ-2,2-ジメチルプロパン、1,6-ジアミノ-2,5-ジメチルヘキサン、1,7-ジアミノ-2,5-ジメチルヘプタン、1,7-ジアミノ-4,4-ジメチルヘプタン、1,7-ジアミノ-3-メチルヘプタン、1,9-ジアミノ-5-メチルヘプタン、1,12-ジアミノドデカン、1,18-ジアミノオクタデカン、1,2-ビス(3-アミノプロポキシ)エタン等が挙げられる。
<テトラカルボン酸誘導体>
 上述したジアミン化合物との反応に用いられ、本発明の液晶配向剤に含有可能なポリイミド前駆体又はポリイミドを合成するテトラカルボン酸誘導体は、特に限定されない。好ましいテトラカルボン酸誘導体としては、ポリアミック酸の合成に多用されているテトラカルボン酸二無水物を挙げることができる。その具体例を以下に示す。
 脂環式構造又は脂肪族構造を有するテトラカルボン酸二無水物としては、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-テトラメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、2,3,4,5-テトラヒドロフランテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、3,4-ジカルボキシ-1-シクロヘキシルコハク酸二無水物、3,4-ジカルボキシ-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸二無水物、1,2,3,4-ブタンテトラカルボン酸二無水物、ビシクロ[3,3,0]オクタン-2,4,6,8-テトラカルボン酸二無水物、3,3’,4,4’-ジシクロヘキシルテトラカルボン酸二無水物、2,3,5-トリカルボキシシクロペンチル酢酸二無水物、シス-3,7-ジブチルシクロオクタ-1,5-ジエン-1,2,5,6-テトラカルボン酸二無水物、トリシクロ[4.2.1.02,5]ノナン-3,4,7,8-テトラカルボン酸-3,4:7,8-二無水物、ヘキサシクロ[6.6.0.12,7.03,6.19,14.010,13]ヘキサデカン-4,5,11,12-テトラカルボン酸-4,5:11,12-二無水物、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレンー1,2-ジカルボン酸無水物等が挙げられる。
 芳香族テトラカルボン酸二無水物としては、ピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、2,3,3’,4-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,3,3’,4-ベンゾフェノンテトラカルボン酸二無水物、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物等が挙げられる。
 上述した脂環式構造又は脂肪族構造を有するテトラカルボン酸二無水物に加えて、芳香族テトラカルボン酸二無水物を使用すると、液晶配向性が向上し、かつ液晶セルの蓄積電荷を低減させることができるので好ましい。
 テトラカルボン酸二無水物は、形成される液晶配向膜の液晶配向性、電圧保持特性、蓄積電荷などの特性に応じて、1種類又は2種類以上併用することができる。
〔ポリアミック酸〕
 本発明の液晶配向剤に含有されるポリイミド前駆体としては、ポリアミック酸の他、ポリアミック酸エステルやポリアミド等が含まれる。そして、特に、ポリイミドの形成の容易なポリアミック酸の選択が好ましい。
 本発明の液晶配向剤に含有されるポリイミド前駆体として好ましいポリアミック酸は、上述した好ましいテトラカルボン酸誘導体であるテトラカルボン酸二無水物と、上述したジアミン化合物からなるジアミン成分との反応により得ることができる。そのポリアミック酸を得るにあたっては、公知の合成手法を用いることができる。一般的にはテトラカルボン酸二無水物とジアミン成分とを有機溶媒中で反応させる方法である。テトラカルボン酸二無水物とジアミン成分との反応は、有機溶媒中で比較的容易に進行し、かつ副生成物が発生しない点で有利である。
 そして形成されたポリアミック酸は、上述したメタベンジル型ジアミン化合物によるメタベンジル型の側鎖構造と、光反応性ジアミン化合物による、光反応処理を可能とする光反応性基を含む側鎖構造とを有する。
 メタベンジル型の側鎖構造は、上述した式(1)のメタベンジル型ジアミン化合物のベンゼン環構造がポリアミック酸の主鎖構造の一部を形成し、それに結合している置換基Xが側鎖構造を構成する構造となる。
 また、光反応処理を可能とする光反応性基を含む側鎖構造は、上述した光反応性ジアミン化合物に由来し、下記の側鎖構造のうちのいずれかを含むことが好ましい。
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
 上記式(2A’)及び上記式(2B’)中、破線はポリアミック酸の主鎖への結合基を表す。R、A、B、T、T、T、T及びSは、上述した式(2A)及び式(2B)と同義である。具体的には、Rは、水素原子、炭素原子数1~10のアルキル基(ただし、その任意の水素原子はフッ素原子に置換されていてもよい。)、又は炭素原子数1~10のアルコキシ基(ただし、その任意の水素原子はフッ素原子に置換されていてもよい。)を表す。A及びBは、それぞれ独立に、単結合又は下記式に示すいずれかの環構造を表す。ただし、環構造中の任意の水素原子は、炭素数1~10のアルコキシ基で置換されていてもよい。T~Tは、それぞれ独立に、単結合、エーテル、エステル、アミド又はケトン結合を表す。Sは単結合、又は炭素原子数1~10のアルキレン基を表す。)
Figure JPOXMLDOC01-appb-C000043
 テトラカルボン酸二無水物とジアミン成分との反応に用いる有機溶媒としては、生成したポリアミック酸が溶解するものであれば特に限定されない。その具体例を以下に挙げる。
 N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-メチルカプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン、イソプロピルアルコール、メトキシメチルペンタノール、ジペンテン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、メチルセルソルブ、エチルセルソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、ジオキサン、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノン、3-メトキシ-N,N-ジメチルプロパンアミド、3-エトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド等が挙げられる。
 これら有機溶媒は単独で使用しても、混合して使用してもよい。さらに、ポリアミック酸を溶解させない溶媒であっても、生成したポリアミック酸が析出しない範囲で、上述の有機溶媒に混合して使用してもよい。
 また、有機溶媒中の水分は重合反応を阻害し、さらには生成したポリアミド酸を加水分解させる原因となるので、有機溶媒は可能な程度に脱水乾燥されたものを用いることが好ましい。
 テトラカルボン酸二無水物とジアミン成分とを有機溶媒中で反応させる際には、ジアミン成分を有機溶媒に分散あるいは溶解させた溶液を攪拌させ、テトラカルボン酸二無水物をそのまま、又は有機溶媒に分散あるいは溶解させて添加する方法、逆にテトラカルボン酸二無水物を有機溶媒に分散あるいは溶解させた溶液にジアミン成分を添加する方法、テトラカルボン酸二無水物とジアミン成分とを交互に添加する方法などが挙げられ、これらのいずれの方法を用いてもよい。また、テトラカルボン酸二無水物又はジアミン成分が複数種の化合物からなる場合は、あらかじめ混合した状態で反応させても良く、個別に順次反応させても良く、さらに個別に反応させた低分子量体を混合反応させて高分子量体としてもよい。
 その際の重合温度は-20℃~150℃の任意の温度を選択することができるが、好ましくは-5℃~100℃の範囲である。また、反応は任意の濃度で行うことができるが、濃度が低すぎると高分子量の重合体を得ることが難しくなり、濃度が高すぎると反応液の粘性が高くなり過ぎて均一な攪拌が困難となるので、テトラカルボン酸二無水物とジアミン成分の反応溶液中での合計濃度が、好ましくは1質量%~50質量%、より好ましくは5質量%~30質量%である。反応初期は高濃度で行い、その後、有機溶媒を追加することができる。
 上述の反応においては、テトラカルボン酸二無水物の合計モル数と、ジアミン成分の合計モル数の比は0.8~1.2であることが好ましく、0.9~1.1がより好ましい。通常の重縮合反応と同様に、このモル比が1.0に近いほど生成するポリアミック酸の分子量は大きくなる。
〔ポリアミック酸エステル〕
 尚、本発明の液晶配向剤の成分のポリイミド前駆体としては、上述したポリアミック酸の他、ポリアミック酸エステルやポリアミドとすることも可能である。
 好ましいポリアミック酸エステルを合成する方法としては、テトラカルボン酸ジエステルジクロリドと上述した好ましいジアミン成分との反応や、テトラカルボン酸ジエステルと上述した好ましいジアミン成分を縮合剤、塩基等の存在下、反応させる方法がある。これらの方法によりポリイミドの前駆体の一種であるポリアミック酸エステルを得ることができる。又は、予めポリアミック酸を重合し、高分子反応を利用してアミック酸中のカルボン酸をエステル化することでも、ポリアミック酸エステルを得ることができる。
 具体的には、テトラカルボン酸ジエステルジクロリドと上述した好ましいジアミン成分とを塩基と有機溶剤の存在下で、-20℃~150℃、好ましくは0℃~50℃において、30分間~24時間、好ましくは1時間~4時間反応させることによって合成することができる。
 塩基には、ピリジン、トリエチルアミン、4-ジメチルアミノピリジン等が使用できるが、反応が穏和に進行するためにピリジンが好ましい。塩基の添加量は、除去が容易な量で、かつ高分子量体が得やすいという観点から、テトラカルボン酸ジエステルジクロリドに対して、2~4モル倍であることが好ましい。
 縮合剤の存在下で縮重合反応を行なう場合、縮合剤としては、トリフェニルホスファイト、ジシクロヘキシルカルボジイミド、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩、N,N’-カルボニルジイミダゾール、ジメトキシ-1,3,5-トリアジニルメチルモルホリニウム、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウム テトラフルオロボラート、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロホスファート、(2,3-ジヒドロ-2-チオキソ-3-ベンゾオキサゾリル)ホスホン酸ジフェニル、4-(4,6-ジメトキシ-1,3,5-トリアジンー2-イル)4-メトキシモルホリウムクロリド n-水和物等が使用できる。
 また、縮合剤を用いる方法において、ルイス酸を添加剤として加えると、反応が効率的に進行する。ルイス酸としては、塩化リチウム、臭化リチウムなどのハロゲン化リチウムが好ましい。ルイス酸の添加量は、テトラカルボン酸ジエステルに対して0.1モル倍~1.0モル倍であることが好ましい。
 溶媒としては、上述した、テトラカルボン酸二無水物と好ましいジアミン成分とを重合してポリアミック酸を得る際に用いられる溶媒が使用できるが、モノマー及び得られる重合体の溶解性から、N-メチル-2-ピロリドン、γ-ブチロラクトン等の使用が好ましい。これらの溶媒は、1種又は2種以上を混合して用いてもよい。また、テトラカルボン酸ジエステルジクロリドの加水分解を防ぐため、ポリアミック酸エステルの合成に用いる溶媒は、できるだけ脱水されていることが好ましい。
 テトラカルボン酸ジエステルジクロリドとジアミン成分の反応溶液中での合計濃度は、重合体の析出が起こりにくく、かつ高分子量体が得やすいという観点から、1質量%~30質量%が好ましく、5質量%~20質量%がより好ましい。
 さらに、反応は窒素雰囲気中で行ない、外気の混入を防ぐのが好ましい。
〔ポリアミド〕
 上述したポリイミド前駆体として好ましいポリアミドも、上述したポリアミック酸エステルと同様にして合成することができる。
〔ポリイミド〕
 本発明の液晶配向剤に含有される重合体成分としては、上述したポリアミック酸の他、ポリイミドが好ましい重合体成分となる。本発明における特定構造のポリイミドは、上述したポリアミック酸を脱水閉環(イミド化)させて得ることができる。
 本発明の液晶配向剤に含有されるポリイミドにおいて、アミック酸基の脱水閉環率(イミド化率)は、必ずしも100%である必要はなく、用途や目的に応じて100%以下となるように、任意に調整することができる。
 ポリアミック酸をイミド化させる方法としては、ポリアミック酸の溶液をそのまま加熱する熱イミド化、ポリアミック酸の溶液に触媒を添加する触媒イミド化が挙げられる。
 ポリアミド酸を溶液中で熱イミド化させる場合の温度は、100℃~400℃、好ましくは120℃~250℃であり、イミド化反応により生成する水を系外に除きながら行う方法が好ましい。
 ポリアミック酸の触媒イミド化は、ポリアミック酸の溶液に、塩基性触媒と酸無水物とを添加し、-20℃~250℃、好ましくは0℃~180℃で攪拌することにより行うことができる。塩基性触媒の量は、アミック酸基の0.5モル倍~30モル倍、好ましくは2モル倍~20モル倍であり、酸無水物の量は、アミック酸基の1モル倍~50モル倍、好ましくは3モル倍~30モル倍である。
 上述の塩基性触媒としては、ピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミン等を挙げることができ、中でもピリジンは、反応を進行させるのに適度な塩基性を持つので好ましい。
 上述の酸無水物としては、無水酢酸、無水トリメリット酸、無水ピロメリット酸等を挙げることができ、中でも無水酢酸を用いると、反応終了後の精製が容易となるので好ましい。触媒イミド化によるイミド化率は、触媒量、反応温度、反応時間を調節することにより制御することができる。
〔重合体の回収〕
 上述の反応により得られた、好ましい重合体成分のポリアミック酸及びポリイミド等の反応溶液から、生成したポリアミック酸及びポリイミド等を回収する場合には、反応溶液を貧溶媒に投入して、それら重合体を沈殿させればよい。沈殿に用いる貧溶媒としては、メタノール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン、水等を挙げることができる。貧溶媒に投入して沈殿させた重合体は、濾過して回収した後、常圧あるいは減圧下で、常温あるいは加熱して乾燥することができる。
 また、沈殿回収した重合体を、有機溶媒に再溶解させ、再沈殿回収する操作を2回~10回繰り返すと、重合体中の不純物を少なくすることができる。この際の貧溶媒として、例えば、アルコール類、ケトン類、炭化水素等が挙げられ、これらの中から選ばれる3種類以上の貧溶媒を用いると、より一層精製の効率が上がるので好ましい。
 本発明の液晶配向剤に含有される、好ましい重合体成分のポリアミック酸及び/又はポリイミドの分子量は、得られる塗膜の強度、塗膜形成時の作業性、及び塗膜の均一性を考慮した場合、GPC(Gel Permeation Chromatography)法で測定した重量平均分子量が、2000~1000000が好ましく、より好ましくは、5000~100000である。
〔架橋剤〕
 本発明の液晶配向剤は、上述したポリアミック酸及び/又はポリイミド等の重合体成分の他、架橋剤を含有させることができる。架橋剤を含むことで、液晶配向剤に含有される重合体成分での架橋反応が進み、得られる液晶配向膜と液晶との間で形成されるプレチルト角の安定性が増して、交流電圧の印加による液晶表示素子の焼き付きを低減することができる。
 架橋剤は、特に限定されない。その使用量は、液晶配向剤に含有される上述のポリイミド前駆体等の重合体成分の100質量部に対して0.1質量部~30質量部であることが好ましく、より好ましくは1質量部~20質量部である。使用量が0.1質量部未満であると架橋の効果は期待できず、30質量部よりも多くなると液晶の配向性が悪くなる場合がある。
 好ましい架橋剤としては、式(3A)で表される基が芳香環に結合した構造を有する化合物(以下、特定化合物ともいう。)を挙げることができる。
Figure JPOXMLDOC01-appb-C000044
 上記式(3A)において、Zは水素原子又は炭素原子数1~3のアルキル基を表す。なかでも、Zが水素原子である場合、液晶配向膜では、均一な液晶の配向を保ったまま、液晶のプレチルト角を上げることができるとともに、液晶表示素子に蓄積した電荷の抜けを速くすることができるので好ましい。
 特定化合物についてより詳細に説明すると、特定化合物は上記式(3A)で表される基が芳香環に結合した構造を有するが、上記式(3A)で表される基(-CH-OZ基)が芳香環に直接結合している構造が、ポリアミック酸及びポリイミドとの結合反応を容易にするとともに、特定化合物同士の自己反応をも容易にする。このことが上述した効果を奏する要因と推定される。
 特定化合物のなかでも、下記式(3-1)で表される化合物及び式(3-2)で表される化合物からなる群から選ばれる少なくとも一種の化合物が好ましい。
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
 上記式(3-1)及び式(3-2)中、Z、Z、及びZは、それぞれ独立に水素原子又は炭素原子数1~3のアルキル基であり、Y、Y及びYは、それぞれ独立に、芳香環を表わす。その芳香環の任意の水素原子は、水酸基、炭素原子数1~3のアルキル基、ハロゲン原子、炭素原子数1~3のアルコキシ基又はビニル基で置換されていてもよい。Gは、単結合、全部又は一部が結合して環状構造を形成してもよい炭素原子数1~10の2価の飽和炭化水素基であり、任意の水素原子はフッ素原子で置換されていてもよい、-NH-、-N(CH)-、又は下記式(3B)で表される基である。tは2~4の整数であり、t及びtは、それぞれ独立に、1~3の整数であり、a及びbは、それぞれ独立に、1~3の整数である。
Figure JPOXMLDOC01-appb-C000047
 式(3B)中、P及びPは、それぞれ独立に、炭素原子数1~5のアルキレン基であり、Qは芳香環を表す。
 上記式(3-1)及び上記式(3-2)の-CH-OZ基、-CH-OZ基及び-CH-OZ基は芳香環に直接結合しているので、Y、Y及びYは、それぞれ独立に、芳香環である。
 その芳香環の具体例としては、ベンゼン環、ナフタレン環、テトラヒドロナフタレン環、アズレン環、インデン環、フルオレン環、アントラセン環、フェナントレン環、フェナレン環、ピロール環、イミダゾール環、オキサゾール環、チアゾール環、ピラゾール環、ピリジン環、ピリミジン環、キノリン環、ピラゾリン環、イソキノリン環、カルバゾール環、プリン環、チアジアゾール環、ピリダジン環、トリアジン環、ピラゾリジン環、トリアゾール環、ピラジン環、ベンズイミダゾール環、ベンゾイミダゾール環、チノリン環、フェナントロリン環、インドール環、キノキサリン環、ベンゾチアゾール環、フェノチアジン環、アクリジン環、オキサゾール環等が挙げられる。より好ましい芳香環の具体例としては、ベンゼン環、ナフタレン環、フルオレン環、アントラセン環、ピロール環、イミダゾール環、ピラゾール環、ピリジン環、ピリミジン環、キノリン環、イソキノリン環、カルバゾール環、ピリダジン環、ピラジン環、ベンズイミダゾール環、ベンゾイミダゾール環、インドール環、キノキサリン環、アクリジン環等が挙げられる。さらに好ましくは、ベンゼン環、ナフタレン環、ピリジン環、又はカルバゾール環であり、最も好ましくはベンゼン環、又はピリジン環である。
 尚、これら芳香環の水素原子は、水酸基、炭素原子数1~3のアルキル基、ハロゲン原子、炭素原子数1~3のアルコキシ基又はビニル基で置換されていてもよい。
 上記式(3-2)中のt及びtは、より好ましくは1又は2の整数である。また、a及びbは、より好ましくは1又は2である。
 上記式(3-1)におけるX及び式(3-2)におけるX及びXは、それぞれ独立に、水素原子、CH、C及びCからなる群から選ばれる1種の基が好ましく、炭素数が少ないほどポリイミド及びポリアミック酸との結合反応のしやすさ、又は、特定化合物同士の自己反応のしやすさに優れる。一方、炭素数が多くなると、-CH-OZ基、-CH-OZ基及び-CH-OZ基の反応性が低下するため、特定化合物を含有する溶液の保存安定性が増す。なかでも、上記式(3-1)におけるZ及び上記式(3-2)におけるZ及びZが水素原子である場合、均一な液晶の配向を保ったまま、液晶のプレチルト角を上げることができるとともに、液晶表示素子に蓄積した電荷の抜けを速くすることができるので好ましい。
 上記式(3-2)におけるZは、その全部又は一部が結合して環状構造を形成してもよい炭素原子数1~10、好ましくは、1~5の2価の飽和炭化水素基の場合、その有する任意の水素原子がフッ素原子で置換されていてもよい。
 Gの例としては、炭素原子数1~10のアルキレン基、炭素原子数3~10の脂環式炭化水素基、アルキレン基と脂環式炭化水素基とが組み合わされ、且つ炭素原子数1~10の基が挙げられる。加えて、前記した基の任意の水素原子がフッ素原子で置換された基が挙げられる。
 上位式(3B)中のQは芳香環であるが、その具体例としては、ベンゼン環、ナフタレン環、テトラヒドロナフタレン環、アズレン環、インデン環、フルオレン環、アントラセン環、フェナントレン環、フェナレン環、ピロール環、イミダゾール環、オキサゾール環、チアゾール環、ピラゾール環、ピリジン環、ピリミジン環、キノリン環、ピラゾリン環、イソキノリン環、カルバゾール環、プリン環、チアジアゾール環、ピリダジン環、トリアジン環、ピラゾリジン環、トリアゾール環、ピラジン環、ベンズイミダゾール環、ベンゾイミダゾール環、チノリン環、フェナントロリン環、インドール環、キノキサリン環、ベンゾチアゾール環、フェノチアジン環、アクリジン環、オキサゾール環等が挙げられる。より好ましい芳香環の具体例としては、ベンゼン環、ナフタレン環、フルオレン環、アントラセン環、ピロール環、イミダゾール環、ピラゾール環、ピリジン環、ピリミジン環、キノリン環、イソキノリン環、カルバゾール環、ピリダジン環、ピラジン環、ベンズイミダゾール環、ベンゾイミダゾール環、インドール環、キノキサリン環、アクリジン環等が挙げられる。さらに好ましくは、ベンゼン環、ナフタレン環、ピリジン環、カルバゾール環、フルオレン環等が挙げられる。
 本発明の液晶配向剤では、その調製に、上記式(3-1)及び上記式(3-2)からなる群から選ばれる少なくとも一種の化合物を用いることも可能である。
 本発明の液晶配向剤に用いる特定化合物の具体例としては、[P1]~[P45]の化合物が挙げられるが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
 上記された特定化合物において、[P15]、[P17]、[P19]、[P29]、[P31]、又は[P41]で表される化合物が好ましく、なかでも、[P15]、[P17]、[P29]、[P31]、又は[P41]で表される化合物がより好ましい。
〔液晶配向剤の調製〕
 本発明の液晶配向剤は、上述したように、ポリイミド前駆体及びそれをイミド化させて得られるポリイミド等の、メタベンジル型の側鎖構造と、光反応処理を可能とする光反応性基を含む側鎖構造とを有する特定構造の重合体成分を含有して構成される。そして、本発明における液晶配向剤は、架橋剤を含有することができる。
 本発明の液晶配向膜の形成に好適となるように塗布液として調製されることが好ましい。すなわち、本発明の液晶配向剤は、樹脂被膜を形成するための樹脂成分が有機溶媒に溶解した溶液として調製されることが好ましい。ここで、その樹脂成分とは、叙述の重合体成分等を含む樹脂成分である。その際、樹脂成分の含有量は、1質量%~20質量%が好ましく、より好ましくは3質量%~15質量%、特に好ましくは3質量%~10質量%である。
 本発明の液晶配向剤において、前述の樹脂成分は、全てが上述した特定構造の重合体であってもよいが、それら以外の他の重合体が混合されていてもよい。その際、樹脂成分中における他の重合体の含有量は、0.5質量%~15質量%、好ましくは1質量%~10質量%である。
 そのような他の重合体は、例えば、ポリアミック酸やポリイミド等からなり、メタベンジル型の側鎖構造や、光反応処理を可能とする光反応性基を含む側鎖構造を有しない重合体等が挙げられる。
 本発明の液晶配向剤に用いる有機溶媒は、樹脂成分を溶解させ、また、必要な場合に含有される架橋剤を溶解させる有機溶媒であれば特に限定されない。その具体例を以下に挙げる。
 N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-メチルカプロラクタム、2-ピロリドン、N-エチルピロリドン、N-ビニルピロリドン、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン、3-メトキシ-N,N-ジメチルプロパンアミド、3-エトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、1,3-ジメチル-イミダゾリジノン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノン等が挙げられる。これらは単独で使用しても、混合して使用してもよい。本発明の液晶配向剤に用いる有機溶媒は、なかでもN-メチル-2-ピロリドン、N-エチル-2-ピロリドン、又はγ-ブチルラクトンが好ましい。
 本発明の液晶配向剤は、特定構造の重合体等の上記した成分以外の成分を含有してもよい。その例としては、液晶配向剤を塗布した際の、膜厚均一性や表面平滑性を向上させる溶媒や化合物、液晶配向膜と基板との密着性を向上させる化合物等である。
 膜厚の均一性や表面平滑性を向上させる溶媒(貧溶媒)の具体例としては、次のものが挙げられる。
 例えば、イソプロピルアルコール、メトキシメチルペンタノール、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチルカルビトールアセテート、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、1-ヘキサノール、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、1-フェノキシ-2-プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ジプロピレングリコール、2-(2-エトキシプロポキシ)プロパノール、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステル等の低表面張力を有する溶媒等が挙げられる。
 これらの貧溶媒は、1種類でも複数種類を混合して用いてもよい。上述のような溶媒を用いる場合は、液晶配向剤に含まれる溶媒全体の溶解性を著しく低下させることが無いように、溶媒全体の5質量%~80質量%であることが好ましく、より好ましくは20質量%~60質量%である。本発明の液晶配向剤に用いる貧溶媒は、なかでもブチルセロソルブ、プロピレングリコールモノブチルエーテル、又はジプロピレングリコールモノメチルエーテルが好ましい。
 膜厚の均一性や表面平滑性を向上させる化合物としては、フッ素系界面活性剤、シリコーン系界面活性剤及びノ二オン系界面活性剤等が挙げられる。
 具体的には、例えば、エフトップ(登録商標)301、EF303、EF352(トーケムプロダクツ社製)、メガファック(登録商標)F171、F173、R-30(DIC社製)、フロラードFC430、FC431(住友スリーエム社製)、アサヒガード(登録商標)AG710(旭硝子社製)、サーフロン(登録商標)S-382、SC101、SC102、SC103、SC104、SC105、SC106(AGCセイミケミカル社製)等が挙げられる。これらの界面活性剤の使用割合は、液晶配向剤に含有される樹脂成分の100質量部に対して、好ましくは0.01質量部~2質量部、より好ましくは0.01質量部~1質量部である。
 液晶配向膜と基板との密着性を向上させる化合物の具体例としては、次に示す官能性シラン含有化合物やエポキシ基含有化合物などが挙げられる。
 例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリエトキシシラン、N-トリエトキシシリルプロピルトリエチレントリアミン、N-トリメトキシシリルプロピルトリエチレントリアミン、10-トリメトキシシリル-1,4,7-トリアザデカン、10-トリエトキシシリル-1,4,7-トリアザデカン、9-トリメトキシシリル-3,6-ジアザノニルアセテート、9-トリエトキシシリル-3,6-ジアザノニルアセテート、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリメトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリエトキシシラン、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2-ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6-テトラグリシジル-2,4-ヘキサンジオール、N,N,N’,N’,-テトラグリシジル-m-キシレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’,-テトラグリシジル-4、4’-ジアミノジフェニルメタン等が挙げられる。
 本発明の液晶配向剤には、上述したものの他、本発明の効果が損なわれない範囲であれば、液晶配向膜の誘電率や導電性などの電気特性を変化させる目的で、誘電体や導電物質、さらには、液晶配向膜にした際の膜の硬度や緻密度を高める目的で、架橋性化合物を添加してもよい。
<液晶配向膜及び液晶表示素子>
 上述した本発明の液晶配向剤は、従来のポリイミドからなる液晶配向膜を形成するための液晶配向剤と同様に、基板上に塗布し、焼成を行うことで、別にその他の方法を適用すること無く、本発明における液晶配向膜を形成することができる。そして、光照射による光配向処理を施すことで配向制御能を付与することができ、液晶表示素子の製造に用いることができる。
 本発明の液晶配向剤を塗布して液晶配向膜を形成する際に用いる基板としては、製造される液晶表示素子が透過型である場合、透明性の高い基板が用いられることが好ましい。その場合、特に限定はされず、ガラス基板、又はアクリル基板やポリカーボネート基板等のプラスチック基板等を用いることができる。また、液晶表示素子における液晶駆動のため、ITO(Indium Tin Oxide:酸化インジウム錫)電極等の透明電極が形成された基板を用いることが、製造プロセスの簡素化の観点から好ましい。また、反射型の液晶表示素子では、片側の基板のみにならば、シリコンウエハ等の不透明な物でも使用でき、この場合の電極はアルミ等の光を反射する材料から構成することができる。
 本発明の液晶配向膜の形成において、本発明における液晶配向剤の塗布方法は特に限定されない。液晶配向剤の塗布法として、工業的には、スクリーン印刷、オフセット印刷、フレキソ印刷、インクジェット等が一般的である。その他の塗布方法としては、ディップ、ロールコータ、スリットコータ、スピンナ等を用いる方法があり、目的に応じてこれらを用いてもよい。
 本発明の液晶配向剤を基板上に塗布した後の焼成は、ホットプレート等の加熱手段により50℃~300℃、好ましくは80℃~250℃で行い、例えば、有機溶媒である溶媒を蒸発させて、塗膜を形成させることができる。焼成後に形成される塗膜の厚みは、厚すぎると液晶表示素子に用いられた場合に、その消費電力の面で不利となり、薄すぎると液晶表示素子の信頼性が低下する場合がある。したがって、焼成後の塗膜の厚みは、好ましくは5nm~300nm、より好ましくは10nm~100nmである。
 液晶を、プレチルト角形成をしながら垂直配向させる場合は、焼成後の塗膜を偏光紫外線照射で処理する。すなわち、光配向処理を行う。尚、本発明における液晶配向膜は、ラビング処理によっても配向制御能の付与、特に、プレチルト角の形成が可能である。
 本発明の液晶表示素子は、上述の方法により本発明の液晶配向剤から、本発明の液晶配向膜の形成された液晶配向膜付き基板を得た後、公知の方法で液晶セルを作製し、液晶表示素子としたものである。本発明においては、VAモード液晶表示素子を提供することができる。
 液晶セル作製の一例を挙げるならば、本発明の液晶配向膜の形成された一対の基板を用意し、片方の基板の液晶配向膜上にスペーサを散布し、液晶配向膜面が内側になるようにして、もう片方の基板を貼り合わせ、液晶を減圧注入して封止する方法、又は、スペーサを散布した液晶配向膜面に液晶を滴下した後に、基板を貼り合わせて封止を行う方法、等を例示することができる。このときのスペーサの径は、好ましくは1μm~30μm、より好ましくは2μm~10μmである。このスペーサ径が、液晶層を挟持する一対の基板間距離、すなわち、液晶層の厚みを決めることになる。
 以上のようにして、本発明の液晶配向処理剤を用いて作製された液晶表示素子は、信頼性に優れたものとなり、表示品位に優れ、大画面で高精細の液晶テレビ等に好適に利用できる。
 以下に実施例を挙げ、本発明をさらに詳しく説明する。尚、本発明はこれらに限定して解釈されるものではない。合成例及び実施例で使用する主な化合物並びにその略号及び構造は以下のとおりである。
 (テトラカルボン酸二無水物)
BODA:ビシクロ[3,3,0]オクタン-2,4,6,8-テトラカルボン酸二無水物
CBDA:1,2,3,4-シクロブタンテトラカルボン酸二無水物
 (ジアミン)
DA-1: 下記式で表される化合物
Figure JPOXMLDOC01-appb-C000054
DA-2:下記式で表される化合物
Figure JPOXMLDOC01-appb-C000055
DA-3:下記式で表される化合物
Figure JPOXMLDOC01-appb-C000056
DA-4:下記式で表される化合物
Figure JPOXMLDOC01-appb-C000057
DA-5:下記式で表される化合物
Figure JPOXMLDOC01-appb-C000058
DA-6:下記式で表される化合物
Figure JPOXMLDOC01-appb-C000059
DA-7:下記式で表される化合物
Figure JPOXMLDOC01-appb-C000060
(架橋剤)
TM-BIP:2,2’-ビス(4ーヒドロキシ-3,5-ジヒドロキシメチルフェニル)プロパン
(溶媒)
NMP:N-メチル-2-ピロリドン
BCS:ブチルセロソルブ
 次に、分子量測定及びポリイミドのイミド化率測定の方法について説明する。
[分子量測定]
 ポリイミドの分子量は、センシュー科学社製 常温ゲル浸透クロマトグラフィー(GPC)装置(SSC-7200)、Shodex社製カラム(KD-803、KD-805)を用い以下のようにして測定した。
 カラム温度:50℃
 溶離液:N,N’-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・H2O)が30mmol/L、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)
 流速:1.0ml/分
 検量線作成用標準サンプル:東ソー社製 TSK 標準ポリエチレンオキサイド(分子量約9000000、150000、100000、30000)、及び、ポリマーラボラトリー社製 ポリエチレングリコール(分子量 約12000、4000、1000)。
[イミド化率測定]
 ポリイミドのイミド化率は次のようにして測定した。ポリイミド粉末20mgをNMRサンプル管(草野科学社製 NMRサンプリングチューブスタンダード φ5)に入れ、重水素化ジメチルスルホキシド(DMSO-d、0.05%TMS混合品)1.0mlを添加し、超音波をかけて完全に溶解させた。この溶液を日本電子データム社製NMR測定器(JNW-ECA500)にて500MHzのプロトンNMRを測定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5~10.0ppm付近に現れるアミック酸のNH基に由来するプロトンピーク積算値とを用い以下の式によって求めた。尚、下記式において、xはアミック酸のNH基由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミック酸(イミド化率が0%)の場合におけるアミック酸のNH基のプロトン1個に対する基準プロトンの個数割合である。
[数1]
 イミド化率(%)=(1-α・x/y)×100
 (合成例1)
 BODA(3.00g、12.0mmol)、DA-7(4.96g、13.6mmol)、DA-1(1.04g、2.4mmol)をNMP(29.27g)中で溶解し、80℃で7時間反応させたのち、CBDA(0.75g、3.8mmol)とNMP(9.76g)を加え、40℃で10時間反応させポリアミック酸溶液を得た。このポリアミック酸溶液(42g)にNMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(4.22g)、及びピリジン(2.73g)を加え、80℃で4時間反応させた。この反応溶液をメタノール(520ml)に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(A1)を得た。このポリイミドのイミド化率は60%であり、数平均分子量は10000、重量平均分子量は35000であった。
 得られたポリイミド粉末(A1)(6.0g)にNMP(44.0g)を加え、50℃にて12時間攪拌して溶解させた。この溶液にBCS(50.0g)を加え、50℃にて5時間攪拌することにより液晶配向剤(B1)を得た。
 (合成例2)
 BODA(3.00g、12.0mmol)、DA-7(4.96g、13.6mmol)、DA-3(1.08g、2.4mmol)をNMP(29.37g)中で溶解し、80℃で7時間反応させたのち、CBDA(0.75g、3.8mmol)とNMP(9.79g)を加え、40℃で10時間反応させポリアミック酸溶液を得た。このポリアミック酸溶液(42g)にNMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(4.21g)、及びピリジン(2.72g)を加え、80℃で4時間反応させた。この反応溶液をメタノール(520ml)に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(A2)を得た。このポリイミドのイミド化率は60%であり、数平均分子量は12000、重量平均分子量は38000であった。
 得られたポリイミド粉末(A2)(6.0g)にNMP(44.0g)を加え、50℃にて12時間攪拌して溶解させた。この溶液にBCS(50.0g)を加え、50℃にて5時間攪拌することにより液晶配向剤(B2)を得た。液晶配向剤(B2)は、上述したメタベンジル型の側鎖構造と、光反応処理を可能とする光反応性基を含む側鎖構造とを有するポリイミドを含有する液晶配向剤となる。
 (合成例3)
 液晶配向剤(B2)10.0gに対して架橋剤TM-BIPを0.03g(固形分に対して5質量%)添加し、室温で3時間攪拌して溶解させ、液晶配向剤(B3)を調製した。
 (合成例4)
 液晶配向剤(B2)10.0gに対して架橋剤TM-BIPを0.06g(固形分に対して10質量%)添加し、室温で3時間攪拌して溶解させ、液晶配向剤(B4)を調製した。
 (合成例5)
 BODA(3.00g、12.0mmol)、DA-7(4.96g、13.6mmol)、DA-4(0.91g、2.4mmol)をNMP(28.88g)中で溶解し、80℃で7時間反応させたのち、CBDA(0.75g、3.8mmol)とNMP(9.63g)を加え、40℃で10時間反応させポリアミック酸溶液を得た。このポリアミック酸溶液(42g)にNMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(4.28g)、及びピリジン(2.76g)を加え、80℃で4時間反応させた。この反応溶液をメタノール(520ml)に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(A3)を得た。このポリイミドのイミド化率は60%であり、数平均分子量は10000、重量平均分子量は35000であった。
 得られたポリイミド粉末(A3)(6.0g)にNMP(44.0g)を加え、50℃にて12時間攪拌して溶解させた。この溶液にBCS(50.0g)を加え、50℃にて5時間攪拌することにより液晶配向剤(B5)を得た。
 (合成例6)
 BODA(3.00g、12.0mmol)、DA-7(4.96g、13.6mmol)、DA-6(0.95g、2.4mmol)をNMP(28.98g)中で溶解し、80℃で7時間反応させたのち、CBDA(0.75g、3.8mmol)とNMP(9.66g)を加え、40℃で10時間反応させポリアミック酸溶液を得た。このポリアミック酸溶液(42g)にNMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(4.26g)、及びピリジン(2.75g)を加え、80℃で4時間反応させた。この反応溶液をメタノール(520ml)に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(A4)を得た。このポリイミドのイミド化率は60%であり、数平均分子量は12000、重量平均分子量は38000であった。
 得られたポリイミド粉末(A4)(6.0g)にNMP(44.0g)を加え、50℃にて12時間攪拌して溶解させた。この溶液にBCS(50.0g)を加え、50℃にて5時間攪拌することにより液晶配向剤(B6)を得た。液晶配向剤(B6)は、上述したメタベンジル型の側鎖構造と、光反応処理を可能とする光反応性基を含む側鎖構造とを有するポリイミドを含有する液晶配向剤となる。
 (合成例7)
 液晶配向剤(B6)10.0gに対して架橋剤TM-BIPを0.03g(固形分に対して5質量%)添加し、室温で3時間攪拌して溶解させ、液晶配向剤(B7)を調製した。
 (合成例8)
 液晶配向剤(B6)10.0gに対して架橋剤TM-BIPを0.06g(固形分に対して10質量%)添加し、室温で3時間攪拌して溶解させ、液晶配向剤(B8)を調製した。
 (合成例9)
 BODA(3.00g、12.0mmol)、DA-7(4.96g、13.6mmol)、DA-2(1.11g、2.4mmol)をNMP(29.47g)中で溶解し、80℃で7時間反応させたのち、CBDA(0.75g、3.8mmol)とNMP(9.82g)を加え、40℃で10時間反応させポリアミック酸溶液を得た。このポリアミック酸溶液(42g)にNMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(4.19g)、及びピリジン(2.71g)を加え、80℃で4時間反応させた。この反応溶液をメタノール(520ml)に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(A5)を得た。このポリイミドのイミド化率は60%であり、数平均分子量は12000、重量平均分子量は38000であった。
 得られたポリイミド粉末(A5)(6.0g)にNMP(44.0g)を加え、50℃にて12時間攪拌して溶解させた。この溶液にBCS(50.0g)を加え、50℃にて5時間攪拌することにより液晶配向剤(B9)を得た。
 (合成例10)
 BODA(3.00g、12.0mmol)、DA-7(4.96g、13.6mmol)、DA-5(0.98g、2.4mmol)をNMP(29.08g)中で溶解し、80℃で7時間反応させたのち、CBDA(0.75g、3.8mmol)とNMP(9.69g)を加え、40℃で10時間反応させポリアミック酸溶液を得た。このポリアミック酸溶液(42g)にNMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(4.25g)、及びピリジン(2.74g)を加え、80℃で4時間反応させた。この反応溶液をメタノール(520ml)に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(A6)を得た。このポリイミドのイミド化率は60%であり、数平均分子量は12000、重量平均分子量は38000であった。
 得られたポリイミド粉末(A6)(6.0g)にNMP(44.0g)を加え、50℃にて12時間攪拌して溶解させた。この溶液にBCS(50.0g)を加え、50℃にて5時間攪拌することにより液晶配向剤(B10)を得た。
 <液晶配向膜の形成と液晶セルの作製>
 (比較例1)
 合成例1で得られた液晶配向剤(B1)を、ITO膜からなる透明電極付きガラス基板のITO面にスピンコートし、80℃のホットプレートで90秒間乾燥した後、200℃の熱風循環式オーブンで30分間焼成を行い、膜厚100nmの液晶配向膜を形成した。
 この基板に対して、照射強度10.0mW/cm-2の313nmの直線偏光UVを20mJ照射して光配向処理をした。入射光線の方向は基板法線方向に対して40°傾斜していた。直線偏光UVは高圧水銀ランプの紫外光に313nmのバンドパスフィルターを通した後、313nmの偏光板を通すことで調製した。
 上記の2枚の基板について一方の基板の液晶配向膜上に6μmのビーズスペーサを散布した後、その上からシール剤(溶剤型熱硬化タイプのエポキシ樹脂)を印刷した。次いで、もう一方の基板の液晶配向膜が形成された側の面を内側にして、先の基板と貼り合せた後、シール剤を硬化させて空セルを作製した。この空セルに液晶MLC-6608(メルク社製商品名)を減圧注入法によって注入し、液晶セルを作製した。
 得られた液晶セルのプレチルト角を、下記方法により測定した。
 その後、この液晶セルに30Hz、20Vp-pの交流電圧(AC)を室温で、168時間、印加(AC駆動)した。その後、再びプレチルト角を測定し、AC駆動前後でのプレチルト角の変化(プレチルト角変化)を評価した。結果を表1に示す。
[プレチルト角の測定]
 液晶セルのプレチルト角の測定は、Axo Metrix社製の「Axo Scan」を用いてミューラーマトリックス法により測定した。
 (実施例1)
 液晶配向剤(B1)のかわりに液晶配向剤(B2)を用いた以外は比較例1と同様の操作を行って、液晶配向膜を形成し、それを用いて製造された液晶セルのAC駆動前後でのプレチルト角の変化を評価した。
 (実施例2)
 液晶配向剤(B1)のかわりに液晶配向剤(B3)を用いた以外は比較例1と同様の操作を行って、液晶配向膜を形成し、それを用いて製造された液晶セルのAC駆動前後でのプレチルト角変化を評価した。
 (実施例3)
 液晶配向剤(B1)のかわりに液晶配向剤(B4)を用いた以外は比較例1と同様の操作を行って、液晶配向膜を形成し、それを用いて製造された液晶セルのAC駆動前後でのプレチルト角変化を評価した。
 (比較例3)
 液晶配向剤(B1)のかわりに液晶配向剤(B5)を用いた以外は比較例1と同様の操作を行って、液晶配向膜を形成し、それを用いて製造された液晶セルのAC駆動前後でのプレチルト角変化を評価した。
 (実施例4)
 液晶配向剤(B1)のかわりに液晶配向剤(B6)を用いた以外は比較例1と同様の操作を行って、液晶配向膜を形成し、それを用いて製造された液晶セルのAC駆動前後でのプレチルト角変化を評価した。
 (実施例5)
 液晶配向剤(B1)のかわりに液晶配向剤(B7)を用いた以外は比較例1と同様の操作を行って、液晶配向膜を形成し、それを用いて製造された液晶セルのAC駆動前後でのプレチルト角変化を評価した。
 (実施例6)
 液晶配向剤(B1)のかわりに液晶配向剤(B8)を用いた以外は比較例1と同様の操作を行って、液晶配向膜を形成し、それを用いて製造された液晶セルのAC駆動前後でのプレチルト角変化を評価した。
 (比較例2)
 液晶配向剤(B1)のかわりに液晶配向剤(B9)を用いた以外は比較例1と同様の操作を行って、液晶配向膜を形成し、それを用いて製造された液晶セルのAC駆動前後でのプレチルト角変化を評価した。
(比較例4)
 液晶配向剤(B1)のかわりに液晶配向剤(B10)を用いた以外は比較例1と同様の操作を行って、液晶配向膜を形成し、それを用いて製造された液晶セルのAC駆動前後でのプレチルト角変化を評価した。
 以上の実施例1~6、及び比較例1~4の評価結果を下記の表1と図1にまとめて示す。
 図1は、本発明の実施例の液晶セルの評価結果を比較して示すグラフである。
 実施例1及び実施例4で作製された液晶セルは、上述したメタベンジル型の側鎖構造と、光反応処理を可能とする光反応性基を含む側鎖構造とを有するポリイミドを含有する液晶配向剤(B2)及び液晶配向剤(B6)を用いて形成された液晶配向膜を有する液晶セルとなる。また、実施例2及び実施例3並びに実施例5及び実施例6で作製された液晶セルは、上述したメタベンジル型の側鎖構造と、光反応処理を可能とする光反応性基を含む側鎖構造とを有するポリイミドと架橋剤を含有する液晶配向剤(B3)、液晶配向剤(B4)、液晶配向剤(B7)及び液晶配向剤(B7)を用いて形成された液晶配向膜を有する液晶セルとなる。
 そして、例えば、比較例1及び比較例3で作製された液晶セルは、オルトエーテル型側鎖構造と、光反応処理を可能とする光反応性基を含む側鎖構造とを有するポリイミドを含有する液晶配向剤(B1)及び液晶配向剤(B5)を用いて形成された液晶配向膜を有する液晶セルとなる。
 表1及び図1に示すように、実施例1及び実施例4の液晶セルでは、比較例1及び比較例3と比較して、AC駆動によるプレチルト角の変化(表1においては、プレチルト角変化(°)として示す。)が抑制されることが確認された。
 また、実施例2、実施例3、実施例5及び実施例6の液晶セルでは、液晶配向剤に含有された架橋剤の効果により、AC駆動によるプレチルト角変化は、さらに抑制されることが確認された。
Figure JPOXMLDOC01-appb-T000061
 以上より、本実施例のメタベンジル型の側鎖構造と、光反応処理を可能とする光反応性基を含む側鎖構造とを有するポリイミドを含有する液晶配向剤から得られる液晶配向膜を用いたVAモード液晶表示素子は、交流電圧の印加による焼き付きを低減可能であることが分かった。すなわち、本実施例のメタベンジル型の側鎖構造と、光反応処理を可能とする光反応性基を含む側鎖構造とを有するポリイミドを含有する液晶配向剤から得られる液晶配向膜は、交流電圧の印加による焼き付きの低減されたVAモード液晶表示素子の提供に好適であることがわかった。
 本発明の液晶配向剤は、光配向処理が可能で、焼き付き等の表示不良の改善に有効な垂直配向性の液晶配向膜を提供することができる。したがって、高い生産性で、優れた表示品位を備えたVAモード液晶表示素子を製造することができ、大型の液晶TVや、高精細な画像を表示するスマートフォン等の携帯用情報端末用の液晶表示素子の製造に好適に用いることができる。すなわち、本発明の液晶配向膜を有する本発明の液晶表素子は、高表示品位のVAモード液晶表示素子を構成し、大型のTVや、高精細な画像を表示するスマートフォン等の携帯用情報端末用の表示素子として好適に用いることができる。
 なお、2012年10月9日に出願された日本特許出願2012-224017号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (10)

  1.  メタベンジル型の側鎖構造と光反応性基を含む側鎖構造とを有するポリイミド前駆体及び該ポリイミド前駆体をイミド化して得られるポリイミドからなる群から選択される少なくとも一種の重合体を含有することを特徴とする液晶配向剤。
  2.  前記ポリイミド前駆体が、下記式(1)で示される第1のジアミン化合物と、前記光反応性基を有する第2のジアミン化合物とを含むジアミン成分とテトラカルボン酸無水物二無水物とを反応させて得られるポリアミック酸である請求項1に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000001
    (Xは、炭素数8~22の炭化水素基又は下記式(1A)で示される基である。)
    Figure JPOXMLDOC01-appb-C000002
    (Yは単結合、-(CH-(aは1~15の整数である)、-O-、-CHO-、-COO-又はOCO-である。Yは単結合又は-(CH-(bは1~15の整数である)である。Yは単結合、-(CH-(cは1~15の整数である)、-O-、-CHO-、-COO-又は-OCO-である。Yはベンゼン環、シクロへキサン環及び複素環からなる群から選ばれる環状基(これらの環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよい。)、又は、ステロイド骨格を有する炭素数12~25の有機基からなる群から選ばれる2価の有機基である。Yはベンゼン環、シクロへキサン環及び複素環からなる群から選ばれる環状基(これらの環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよい。)である。Yは炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基又は炭素数1~18のフッ素含有アルコキシル基である。nは0~4の整数である。)
  3.  前記第2のジアミン化合物の前記光反応性基が、光二量化反応及び光異性化反応のうちのいずれかを生じる基である請求項2に記載の液晶配向剤。
  4.  前記第2のジアミン化合物の前記光反応性基が、シンナモイル構造、クマリン構造及びカルコン構造からなる群から選択される少なくとも1種の構造を有する請求項2又は3に記載の液晶配向剤。
  5.  前記第2のジアミン化合物の前記光反応性基が、下記式(2A)及び下記式(2B)のうちのいずれかで示される構造を含む請求項2~4のいずれか1項に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004

    (Rは、水素原子、炭素原子数1~10のアルキル基(ただし、その任意の水素原子はフッ素原子に置換されていてもよい。)、又は炭素原子数1~10のアルコキシ基(ただし、その任意の水素原子はフッ素原子に置換されていてもよい。)を表す。A及びBは、それぞれ独立に、単結合又は下記式に示すいずれかの環構造を表す。ただし、環構造中の任意の水素原子は、炭素数1~10のアルコキシ基で置換されていてもよい。T~Tは、それぞれ独立に、単結合、エーテル、エステル、アミド又はケトン結合を表す。Sは単結合又は炭素原子数1~10のアルキレン基を表す。)
    Figure JPOXMLDOC01-appb-C000005
     
  6.  前記ジアミン成分中に含まれる第1のジアミン化合物の含有量が5モル%~50モル%であり、第2のジアミン化合物の含有量が20モル%~95モル%である請求項2~5のいずれか1項に記載の液晶配向剤。
  7.  前記重合体の含有量が1~20質量%である請求項1~6のいずれか1項に記載の液晶配向剤。
  8. さらに、架橋剤を含む請求項1~7のいずれか1項に記載の液晶配向剤。
  9.  請求項1~8のいずれか1項に記載の液晶配向剤を用いて得られる液晶配向膜。
  10.  請求項9に記載の液晶配向膜を有する液晶表示素子。
PCT/JP2013/077370 2012-10-09 2013-10-08 液晶配向剤、液晶配向膜及び液晶表示素子 WO2014057945A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014540853A JP6314827B2 (ja) 2012-10-09 2013-10-08 液晶配向剤、液晶配向膜及び液晶表示素子
KR1020157011911A KR102118762B1 (ko) 2012-10-09 2013-10-08 액정 배향제, 액정 배향막 및 액정 표시 소자
CN201380052047.6A CN104718491B (zh) 2012-10-09 2013-10-08 液晶取向剂、液晶取向膜及液晶显示元件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012224017 2012-10-09
JP2012-224017 2012-10-09

Publications (1)

Publication Number Publication Date
WO2014057945A1 true WO2014057945A1 (ja) 2014-04-17

Family

ID=50477413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077370 WO2014057945A1 (ja) 2012-10-09 2013-10-08 液晶配向剤、液晶配向膜及び液晶表示素子

Country Status (5)

Country Link
JP (1) JP6314827B2 (ja)
KR (1) KR102118762B1 (ja)
CN (1) CN104718491B (ja)
TW (1) TWI620769B (ja)
WO (1) WO2014057945A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111263913A (zh) * 2017-10-25 2020-06-09 日产化学株式会社 液晶取向剂、液晶取向膜及液晶表示元件
WO2020153311A1 (ja) * 2019-01-22 2020-07-30 日産化学株式会社 液晶配向剤、液晶配向膜及び液晶表示素子

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180027530A (ko) * 2015-07-06 2018-03-14 닛산 가가쿠 고교 가부시키 가이샤 액정 배향막 제조용 조성물, 그 조성물을 사용한 액정 배향막 및 그 제조 방법, 그리고 액정 배향막을 갖는 액정 표시 소자 및 그 제조 방법
KR101856727B1 (ko) * 2016-06-21 2018-05-10 주식회사 엘지화학 액정 배향제 조성물, 이를 이용한 액정 배향막의 제조 방법, 및 이를 이용한 액정 배향막
JP7089231B2 (ja) * 2016-09-29 2022-06-22 日産化学株式会社 液晶配向剤、液晶配向膜、及び液晶表示素子
CN108485683B (zh) * 2018-05-21 2020-04-28 中节能万润股份有限公司 一种液晶取向剂、液晶取向膜以及液晶显示元件
WO2020040089A1 (ja) * 2018-08-20 2020-02-27 日産化学株式会社 液晶配向剤、その製造方法、液晶配向膜、及び液晶表示素子
CN109870852B (zh) * 2019-04-01 2021-06-22 苏州华星光电技术有限公司 改善光阻附着力的方法
TWI717889B (zh) * 2019-11-05 2021-02-01 達興材料股份有限公司 配向劑、二胺化合物、配向膜及液晶顯示元件
CN115584267B (zh) * 2022-09-26 2023-08-04 波米科技有限公司 一种液晶取向剂及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011085901A (ja) * 2009-09-15 2011-04-28 Chisso Corp 液晶配向剤、液晶配向膜および液晶表示素子
WO2011055643A1 (ja) * 2009-11-09 2011-05-12 Jnc株式会社 液晶表示素子、液晶組成物及び配向剤並びに液晶表示素子の製造方法及びその使用
JP2011095696A (ja) * 2009-01-30 2011-05-12 Sony Corp 液晶表示装置及びその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070021749A (ko) * 2005-08-19 2007-02-23 삼성전자주식회사 유기 조성물, 이를 포함하는 액정 표시 장치 및 이의 제조방법
WO2007071091A1 (en) 2005-12-23 2007-06-28 Rolic Ag Photocrosslinkable materials
JP2008076950A (ja) 2006-09-25 2008-04-03 Sharp Corp 液晶表示パネル及びその製造方法
JP4995267B2 (ja) 2007-03-26 2012-08-08 シャープ株式会社 液晶表示装置及び配向膜材料用重合体
KR101541018B1 (ko) * 2008-12-08 2015-07-31 삼성디스플레이 주식회사 광배향 화합물, 광배향 조성물, 배향막을 포함하는 표시 기판 및 이의 제조 방법
JP5527538B2 (ja) 2009-10-06 2014-06-18 Jsr株式会社 液晶配向剤、液晶配向膜の製造方法および液晶表示素子
JP2013011755A (ja) * 2011-06-29 2013-01-17 Sony Corp 液晶表示装置及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011095696A (ja) * 2009-01-30 2011-05-12 Sony Corp 液晶表示装置及びその製造方法
JP2011085901A (ja) * 2009-09-15 2011-04-28 Chisso Corp 液晶配向剤、液晶配向膜および液晶表示素子
WO2011055643A1 (ja) * 2009-11-09 2011-05-12 Jnc株式会社 液晶表示素子、液晶組成物及び配向剤並びに液晶表示素子の製造方法及びその使用

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111263913A (zh) * 2017-10-25 2020-06-09 日产化学株式会社 液晶取向剂、液晶取向膜及液晶表示元件
WO2020153311A1 (ja) * 2019-01-22 2020-07-30 日産化学株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
JP7425415B2 (ja) 2019-01-22 2024-01-31 日産化学株式会社 液晶配向剤、液晶配向膜及び液晶表示素子

Also Published As

Publication number Publication date
JP6314827B2 (ja) 2018-04-25
CN104718491A (zh) 2015-06-17
KR102118762B1 (ko) 2020-06-03
JPWO2014057945A1 (ja) 2016-09-05
KR20150068445A (ko) 2015-06-19
CN104718491B (zh) 2018-03-09
TWI620769B (zh) 2018-04-11
TW201428028A (zh) 2014-07-16

Similar Documents

Publication Publication Date Title
JP6314827B2 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JP6070958B2 (ja) 新規ジアミン、重合体、液晶配向剤、液晶配向膜、及びそれを用いた液晶表示素子
JP7027890B2 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JP6593603B2 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JP6249182B2 (ja) ポリイミド前駆体、ポリイミド、液晶配向剤、液晶配向膜及び液晶表示素子
JP6083388B2 (ja) 液晶配向剤の製造方法
WO2014104015A1 (ja) 新規ジアミン、重合体、液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子
JP5900328B2 (ja) 液晶配向剤、それを用いた液晶配向膜及び液晶表示素子
JP6146576B2 (ja) 液晶配向処理剤、液晶配向膜及びそれを用いた液晶表示素子
JP7081488B2 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JP6330662B2 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
KR102469387B1 (ko) 액정 배향제, 액정 배향막 및 그것을 사용한 액정 표시 소자
WO2014092170A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JP6143014B2 (ja) 重合体、液晶配向剤、液晶配向膜及び液晶表示素子並びにジアミン
JPWO2016125871A1 (ja) 液晶配向剤、液晶配向膜、及び液晶表示素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13845032

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014540853

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157011911

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13845032

Country of ref document: EP

Kind code of ref document: A1