WO2014057932A1 - 研磨用組成物の製造方法及び研磨用組成物 - Google Patents

研磨用組成物の製造方法及び研磨用組成物 Download PDF

Info

Publication number
WO2014057932A1
WO2014057932A1 PCT/JP2013/077333 JP2013077333W WO2014057932A1 WO 2014057932 A1 WO2014057932 A1 WO 2014057932A1 JP 2013077333 W JP2013077333 W JP 2013077333W WO 2014057932 A1 WO2014057932 A1 WO 2014057932A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
soluble polymer
polishing composition
less
polishing
Prior art date
Application number
PCT/JP2013/077333
Other languages
English (en)
French (fr)
Inventor
智宏 今尾
森 嘉男
Original Assignee
株式会社 フジミインコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 フジミインコーポレーテッド filed Critical 株式会社 フジミインコーポレーテッド
Publication of WO2014057932A1 publication Critical patent/WO2014057932A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02024Mirror polishing

Definitions

  • the present invention relates to a method for producing a polishing composition containing a water-soluble polymer and a polishing composition.
  • LPD Light Point Defects
  • LPD-N Light Point Defect Non-cleanable
  • Patent Document 1 describes that LPD is reduced by using a polishing composition having a specific ion concentration reduced.
  • An object of the present invention is to provide a method for producing a polishing composition containing a water-soluble polymer and capable of easily reducing LPD-N, and a polishing composition.
  • water is mixed with a water-soluble polymer powder having a particle size of 50 ⁇ m or less and a content of particles of 40 ⁇ % or less.
  • a method for producing a polishing composition comprising the step of preparing a water-soluble polymer mixture.
  • a water-soluble polymer mixture is prepared by mixing a water-soluble polymer powder having a particle size of 50 ⁇ m or less and a volume of 40 ⁇ % or less with water. Polishing composition manufactured through a process is provided.
  • the water-soluble polymer powder preferably has a content of particles having a particle diameter of 10 ⁇ m or less of less than 1% by volume.
  • the water-soluble polymer mixture is preferably basic.
  • the method for producing a polishing composition preferably further includes a step of mixing a silica particle mixture obtained by mixing silica particles, a basic compound, and water with the water-soluble polymer mixture. It is preferable that the said polishing composition is manufactured through this mixing process further.
  • the polishing composition is preferably used for polishing a silicon substrate.
  • the polishing is preferably final polishing of the silicon substrate.
  • the present invention it becomes easy to reduce the LPD-N of the surface after polishing with the polishing composition.
  • the method for producing a polishing composition comprises preparing a water-soluble polymer mixture by mixing water with a water-soluble polymer powder having a particle size of 50 ⁇ m or less and a particle size of 50 ⁇ m or less. Process.
  • the production method of the present embodiment further includes a step of mixing a silica particle mixture obtained by mixing silica particles, a basic compound, and water with a basic water-soluble polymer mixture.
  • the polishing composition obtained by the manufacturing method of this embodiment is a stock solution for dilution, and is suitably used for polishing a polishing object such as a silicon substrate after dilution with water.
  • the polishing of the silicon substrate is performed, for example, by a preliminary polishing step (primary polishing and secondary polishing) for flattening the surface of a disk-shaped silicon substrate sliced from a silicon single crystal ingot, and the surface of the silicon substrate after the preliminary polishing step And a final polishing step of removing the fine irregularities present in the surface to make a mirror surface.
  • the polishing composition of this embodiment is particularly preferably used in the step of final polishing of the silicon substrate.
  • the water-soluble polymer powder and water are mixed.
  • the water-soluble polymer has a function of improving the wettability of the polished surface after polishing with the polishing composition.
  • the content of particles having a particle size of 50 ⁇ m or less in the water-soluble polymer powder mixed with water is 40% by volume or less, preferably 30% by volume or less, more preferably 20% by volume or less, and still more preferably. Is 10% by volume or less, most preferably 5% by volume or less.
  • the content of particles having a particle size of 10 ⁇ m or less in the water-soluble polymer powder is preferably less than 1% by volume.
  • the content of particles having a particle size of 50 ⁇ m or less and the content of particles having a particle size of 10 ⁇ m or less are based on a volume basis in which the volume of particles in the water-soluble polymer powder is accumulated in order from particles having a small particle size. In the cumulative distribution, it is measured as a cumulative rate [%] of particles having a particle size of 50 ⁇ m or less and a cumulative rate [%] of particles having a particle size of 10 ⁇ m or less.
  • the average particle size of the water-soluble polymer powder is preferably 50 ⁇ m or more, more preferably 70 ⁇ m or more, and still more preferably 100 ⁇ m or more.
  • the average particle diameter of the water-soluble polymer powder tends to increase. That is, since the weight average molecular weight increases as the average particle diameter increases, the wettability of the polished surface tends to increase.
  • the average particle diameter of the water-soluble polymer powder is preferably 250 ⁇ m or less, more preferably 200 ⁇ m or less, and still more preferably 150 ⁇ m or less. The smaller the average particle size, the more uniformly the water-soluble polymer is dissolved.
  • water-soluble polymer those having at least one functional group (hydrophilic group) selected from a cationic group, an anionic group and a nonionic group in the molecule can be used.
  • the water-soluble polymer include those containing a hydroxyl group, a carboxyl group, an acyloxy group, a sulfo group, a quaternary nitrogen structure, a heterocyclic structure, a vinyl structure, and a polyoxyalkylene structure in the molecule.
  • water-soluble polymers include, for example, cellulose derivatives, imine derivatives such as poly (N-acylalkyleneimine), polyvinyl alcohol, polyvinyl pyrrolidone, copolymers containing polyvinyl pyrrolidone as part of the structure, and polyvinyl caprolactam. , Copolymers containing polyvinyl caprolactam as part of the structure, polyoxyethylene, polymers having a polyoxyalkylene structure, copolymers having a plurality of types of structures such as diblock type, triblock type, random type, and alternating type. Examples include polymers and polyether-modified silicones.
  • water-soluble polymer one kind may be used alone, or two or more kinds may be used in combination.
  • a cellulose derivative, polyvinyl pyrrolidone, and a polymer having a polyoxyalkylene structure are preferable because they have a good function of increasing the wettability of the polished surface.
  • the cellulose derivative include hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxyethyl methyl cellulose, hydroxypropyl methyl cellulose, methyl cellulose, ethyl cellulose, ethyl hydroxyethyl cellulose, and carboxymethyl cellulose.
  • hydroxyethyl cellulose is preferable because it has an excellent function of increasing the wettability of the polished surface and is easily removed in a cleaning step after polishing (that is, has good cleaning properties).
  • the hydroxyl group of the water-soluble polymer is hydrophobized with, for example, dialdehyde.
  • dialdehyde examples include oxalic acid dialdehyde (ethane dial), malonic acid dialdehyde (propane dial), and succinic acid dialdehyde (butane dial).
  • the weight average molecular weight of the water-soluble polymer is preferably 1000 or more in terms of polyethylene oxide, more preferably 10,000 or more, still more preferably 100,000 or more, and still more preferably 200,000 or more. As the weight average molecular weight of the water-soluble polymer increases, the wettability of the polished surface increases.
  • the weight average molecular weight of the water-soluble polymer is preferably 200000 or less, more preferably 1500,000 or less, still more preferably 1000000 or less, and most preferably 500000 or less. As the weight average molecular weight of the water-soluble polymer decreases, the dispersion stability of the polishing composition improves.
  • the weight average molecular weight of the water-soluble polymer in terms of polyethylene oxide can be measured by gel permeation chromatography (Gel Permeation Chromatography, GPC).
  • the water used in the step of preparing the water-soluble polymer mixture does not hinder the function of other components in the polishing composition.
  • examples of such water include water having a total content of transition metal ions of 100 ppb or less.
  • the purity of water can be increased by operations such as removal of impurity ions using an ion exchange resin, removal of foreign matters by a filter, and distillation.
  • the water of the same quality is used also in processes other than the process of preparing a water-soluble polymer mixture.
  • the mixing container includes a stirrer or a disperser.
  • the stirrer or disperser include a wing stirrer, an ultrasonic disperser, and a homomixer.
  • the capacity of the mixing container is preferably 10 to 10,000 L, for example, in consideration of production efficiency and quality stability.
  • the mixing container is preferably made of resin.
  • the mixing container may be made of metal, but it is preferable that at least the inner surface of the mixing container is covered with a resin layer in order to suppress the mixing of metal impurities into the polishing composition.
  • the content of the water-soluble polymer in the water-soluble polymer mixture is preferably 0.02% by mass or more, more preferably 0.05% by mass or more, when the total mass of the water-soluble polymer and water is 100. More preferably, it is 0.1% by mass or more. As the content of the water-soluble polymer increases, the content of the water-soluble polymer in the polishing composition can be set higher.
  • the content of the water-soluble polymer in the water-soluble polymer mixture is preferably 10% by mass or less, more preferably 5% by mass or less, where the total mass of the water-soluble polymer and water is 100. Yes, and more preferably 3% by mass or less. As the content of the water-soluble polymer decreases, the dispersibility of the water-soluble polymer improves.
  • the water-soluble polymer mixture is preferably basic.
  • the pH of the water-soluble polymer mixture is preferably 8 or more, more preferably 9 or more, as measured at 25 ° C. As the pH of the water-soluble polymer mixture increases, the dispersibility of the silica particles is easily maintained when the water-soluble polymer mixture and the silica particle mixture are mixed.
  • the pH of the water-soluble polymer mixture is preferably 12 or less, more preferably 10.5 or less, as measured at 25 ° C. As the pH of the water-soluble polymer mixture decreases, dissolution of the silica particles is suppressed.
  • the pH of the water-soluble polymer mixture is adjusted by adding a basic compound to the water-soluble polymer mixture.
  • the basic compound is preferably the same as the basic compound used as a raw material for the silica particle mixture.
  • the water-soluble polymer mixture is preferably filtered in order to reduce foreign matters or aggregates contained in the mixture. Filtration can be performed by a conventional method using a filter.
  • the material and structure of the filter used for filtration are not particularly limited. Examples of the filter material include cellulose, polyamide, polysulfone, polyethersulfone, polypropylene, polytetrafluoroethylene (PTFE), polycarbonate, and glass. Examples of the filter structure include a depth filter, a pleated filter, and a membrane filter.
  • the filter used for filtration can be selected based on the opening.
  • the aperture of the filter is preferably 0.05 ⁇ m or more, more preferably 0.1 ⁇ m or more, and further preferably 0.2 ⁇ m or more. The greater the filter opening, the better the filtration efficiency.
  • the opening of the filter is preferably 100 ⁇ m or less, more preferably 20 ⁇ m or less, further preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less, still more preferably 2 ⁇ m or less, and most preferably 1 ⁇ m or less. As the opening of the filter becomes smaller, a polishing composition with higher quality can be obtained.
  • the nominal value of the opening of the filter is provided by the filter manufacturer.
  • the filtration of the water-soluble polymer mixture may be natural filtration performed at normal pressure, suction filtration, pressure filtration, or centrifugal filtration.
  • the water-soluble polymer mixture obtained in the step of preparing the water-soluble polymer mixture is mixed with the silica particle mixture.
  • the silica particle mixture is prepared by mixing silica particles, a basic compound, and water.
  • the silica particle mixture is prepared in a step different from the step of preparing the water-soluble polymer mixture.
  • silica particles, a basic compound, and water are mixed in a mixing container.
  • the order of mixing the raw materials is not particularly limited.
  • an aqueous dispersion of silica particles may be used as a raw material, or an aqueous solution of a basic compound may be used.
  • other raw materials may be mixed with the water first supplied alone in the mixing container, or an aqueous dispersion of silica particles or an aqueous solution of a basic compound is first added to the mixing container.
  • the other raw materials may be mixed thereafter.
  • the mixing container used in the step of preparing the silica particle mixture can be the same as the mixing container used in the step of preparing the water-soluble polymer mixture, detailed description thereof is omitted.
  • Silica particles have a function of mechanically polishing the surface to be polished.
  • examples of the silica particles include colloidal silica, fumed silica, and sol-gel silica.
  • One kind of silica particles may be used alone, or two or more kinds may be used in combination.
  • silica particles when colloidal silica or fumed silica is used, particularly when colloidal silica is used, scratches generated on the polished surface of the silicon substrate are reduced.
  • the average primary particle diameter of the silica particles is preferably 5 nm or more, more preferably 10 nm or more, and further preferably 20 nm or more. As the average primary particle diameter of the silica particles increases, the polishing rate improves.
  • the average primary particle diameter of the silica particles is preferably 100 nm or less, more preferably 70 nm or less, and even more preferably 50 nm or less. As the average primary particle diameter of the silica particles decreases, the dispersion stability of the polishing composition improves.
  • the primary particle diameter of the silica particles can be calculated based on a photograph taken with a scanning electron microscope such as S-4700 manufactured by Hitachi High-Technologies Corporation. For example, a predetermined number (eg, 100 or more) of silica particle images are randomly selected from an electron micrograph of silica particles taken at a magnification of 10,000 to 50,000 times. The area of the image of the selected silica particle is measured, and the diameter of a circle having the same area as that area is obtained as the primary particle diameter of the silica particle. The average primary particle diameter of the silica particles is calculated as an average value of primary particle diameters thus obtained (50% particle diameter in a volume-based integrated fraction). In addition, calculation of a primary particle diameter and an average primary particle diameter can be performed using a commercially available image analyzer.
  • the average secondary particle diameter of the silica particles is preferably 10 nm or more, more preferably 20 nm or more, and further preferably 30 nm or more. As the average secondary particle diameter of the silica particles increases, the polishing rate improves.
  • the average secondary particle diameter of the silica particles is preferably 200 nm or less, more preferably 150 nm or less, and still more preferably 100 nm or less. As the average secondary particle diameter of the silica particles decreases, the dispersion stability of the polishing composition improves.
  • the average secondary particle diameter of the silica particles can be measured, for example, by a dynamic light scattering method using FPAR-1000 manufactured by Otsuka Electronics Co., Ltd.
  • the content of silica particles in the silica particle mixture is preferably 1% by mass or more, more preferably 3% by mass or more, and still more preferably 5% by mass when the total amount of silica particles, basic compound, and water is 100. % Or more. As the content of the silica particles increases, the content of the silica particles in the polishing composition can be set higher.
  • the content of silica particles in the silica particle mixture is preferably 50% by mass or less, more preferably 40% by mass or less, and still more preferably 30% by mass when the total amount of silica particles, basic compound, and water is 100. % Or less. As the content of the silica particles decreases, the dispersibility of the silica particles tends to be maintained during mixing with the water-soluble polymer mixture.
  • the basic compound has a function of chemically polishing the surface to be polished. Further, the basic compound has a function of improving the dispersion stability of the polishing composition.
  • Examples of basic compounds include alkali metal hydroxides, quaternary ammonium hydroxides or salts thereof, ammonia, and amines.
  • Examples of the alkali metal hydroxide include potassium hydroxide and sodium hydroxide.
  • Examples of the quaternary ammonium hydroxide or a salt thereof include tetramethylammonium hydroxide, tetraethylammonium hydroxide, and tetrabutylammonium hydroxide.
  • amines include methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, ethylenediamine, monoethanolamine, N- ( ⁇ -aminoethyl) ethanolamine, hexamethylenediamine, diethylenetriamine, triethylenetetramine, anhydrous piperazine, Examples include piperazine hexahydrate, 1- (2-aminoethyl) piperazine, N-methylpiperazine, and guanidine.
  • a basic compound may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the basic compound is preferably at least one selected from ammonia, an alkali metal hydroxide, and a quaternary ammonium hydroxide.
  • the basic compound is more preferably at least one selected from ammonia, potassium hydroxide, sodium hydroxide, tetramethylammonium hydroxide, and tetraethylammonium hydroxide, and more preferably at least one of ammonia and tetramethylammonium hydroxide. And most preferably ammonia.
  • the content of the basic compound in the silica particle mixture is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, when the total amount of silica particles, basic compound, and water is 100. More preferably, it is 0.1 mass% or more. As the content of the basic compound increases, the dispersibility of the silica particles is easily maintained during mixing with the water-soluble polymer mixture.
  • the content of the basic compound in the silica particle mixture is preferably 10% by mass or less, more preferably 5% by mass or less, and further preferably 3 when the total amount of silica particles, basic compound, and water is 100. It is below mass%. As the content of the basic compound decreases, the content of the basic compound in the polishing composition can be set lower.
  • the water in the silica particle mixture acts as a dispersion medium for silica particles and a solvent for basic compounds. Since the water used in the step of preparing the silica particle mixture can be the same as the water used in the step of preparing the water-soluble polymer mixture, detailed description thereof is omitted.
  • the silica particle mixture obtained in the step of preparing the silica particle mixture is mixed with the water-soluble polymer mixture.
  • the mixing of the silica particle mixture and the water-soluble polymer mixture in the present embodiment includes a step of supplying the silica particle mixture into the mixing vessel and a step of supplying the water-soluble polymer mixture into the same mixing vessel. Since the mixing container used here can be the same as the mixing container used in the step of preparing the water-soluble polymer mixture, detailed description thereof is omitted.
  • the process of supplying the water-soluble polymer mixture is started after the process of supplying the silica particle mixture to the mixing container is completed.
  • the completion of the step of supplying the silica particle mixture means that the supply pump provided in the pipe for supplying the silica particle mixture to the mixing container is stopped, the valve provided in the pipe is closed, or supplied. The point when the silica particle mixture is exhausted.
  • the stirring operation or dispersing operation in the mixing container by the stirrer or the dispersing machine may be continuously performed in the step of supplying the silica particle mixture to the mixing container and the step of supplying the water-soluble polymer mixture to the mixing container. It may be done intermittently.
  • the stirring operation or dispersing operation in the mixing vessel is preferably continued after the step of supplying the silica particle mixture is completed until the step of supplying the water-soluble polymer mixture is completed.
  • the stirring operation or the dispersing operation in the mixing container is preferably continued even after the step of supplying the water-soluble polymer mixture is completed in order to obtain a polishing composition with higher dispersibility.
  • the supply speed of the step of supplying the silica particle mixture and the step of supplying the water-soluble polymer mixture is set in accordance with, for example, supply efficiency and supply equipment such as a pump.
  • the supply rate of the water-soluble polymer in the step of supplying the water-soluble polymer mixture is preferably 1 part by mass / min or more, more preferably 3 parts by mass / min or more with respect to 100 parts by mass of the silica particles. More preferably, it is 5 parts by mass / min or more. As the supply rate of the water-soluble polymer increases, the time required for the step of supplying the water-soluble polymer mixture can be shortened.
  • the supply rate of the water-soluble polymer in the step of supplying the water-soluble polymer mixture is preferably 50 parts by mass or less, more preferably 20 parts by mass or less, with respect to 100 parts by mass of the silica particles. More preferably, it is 10 parts by mass / min or less. As the supply rate of the water-soluble polymer decreases, it becomes easier to disperse the water-soluble polymer.
  • At least one of the silica particle mixture and the water-soluble polymer mixture may contain components other than those described above.
  • the method for producing the polishing composition is a container containing a mixture of a surfactant, an organic acid, an organic acid salt, an inorganic acid, an inorganic acid salt, and a chelating agent other than the silica particle mixture and the water-soluble polymer mixture. You may have the supply process supplied to.
  • Surfactant has a function of improving the dispersibility and polishing performance of the polishing composition.
  • surfactant examples include ionic or nonionic surfactants having a weight average molecular weight of less than 1000.
  • nonionic surfactants are preferably used.
  • nonionic surfactants include oxyalkylene polymers such as polyethylene glycol and polypropylene glycol, polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene alkyl amine, polyoxyethylene fatty acid ester, polyoxyethylene.
  • examples include polyoxyalkylene adducts such as glycerether fatty acid esters and polyoxyethylene sorbitan fatty acid esters.
  • polyoxyethylene polyoxypropylene copolymer polyoxyethylene glycol, polyoxyethylene propyl ether, polyoxyethylene butyl ether, polyoxyethylene pentyl ether, polyoxyethylene hexyl ether, polyoxyethylene octyl ether, Polyoxyethylene-2-ethylhexyl ether, polyoxyethylene nonyl ether, polyoxyethylene decyl ether, polyoxyethylene isodecyl ether, polyoxyethylene tridecyl ether, polyoxyethylene lauryl ether, polyoxyethylene cetyl ether, polyoxyethylene Stearyl ether, polyoxyethylene isostearyl ether, polyoxyethylene oleyl ether, polyoxyethylene Phenyl ether, polyoxyethylene octyl phenyl ether, polyoxyethylene nonyl phenyl ether, polyoxyethylene dodecyl phenyl ether, polyoxyethylene styrenated phenyl ether, polyoxyethylene lauryl
  • Surfactant may be used alone or in combination of two or more.
  • organic acid examples include fatty acids such as formic acid, acetic acid and propionic acid, aromatic carboxylic acids such as benzoic acid and phthalic acid, citric acid, oxalic acid, tartaric acid, malic acid, maleic acid, fumaric acid, succinic acid, organic Examples include sulfonic acid and organic phosphonic acid.
  • organic acid salts include alkali metal salts such as sodium salts and potassium salts of organic acids, and ammonium salts.
  • inorganic acids include sulfuric acid, nitric acid, hydrochloric acid, and carbonic acid.
  • examples of the inorganic acid salt include alkali metal salts such as sodium salt and potassium salt of inorganic acid, and ammonium salt.
  • Organic acids and salts thereof and inorganic acids and salts thereof may be used alone or in combination of two or more.
  • the mixture obtained by mixing the silica particle mixture and the water-soluble polymer mixture is preferably filtered in a filtration step after being discharged from the mixing container.
  • the filtration step can be performed by a conventional method using a filter.
  • the filtration step can be performed in the same manner as the filtration of the water-soluble polymer mixture.
  • the opening of the filter used in the filtration step is preferably 0.05 ⁇ m or more, more preferably 0.1 ⁇ m or more. The greater the filter opening, the better the filtration efficiency.
  • the aperture of the filter used in the filtration step is preferably 1 ⁇ m or less, more preferably 0.45 ⁇ m or less, and still more preferably 0.2 ⁇ m or less. As the aperture of the filter becomes smaller, it becomes easier to obtain a polishing composition with higher quality.
  • the polishing composition of the present embodiment is accommodated in a container for transportation or storage.
  • the polishing composition is diluted with water or a basic aqueous solution.
  • a solution obtained by dissolving the above basic compound in water can be used.
  • the dilution factor is preferably 2 times or more, more preferably 5 times or more, and further preferably 10 times or more.
  • the dilution factor is preferably 100 times or less, more preferably 50 times or less, and still more preferably 40 times or less. As the dilution factor decreases, the stability of the polishing composition before dilution is easily maintained.
  • the pH of the polishing composition before dilution is preferably in the range of 10 to 12, and the pH of the polishing composition at the time of use after dilution is preferably in the range of 10 to 11.
  • the content of the water-soluble polymer in the polishing composition at the time of use (after dilution) is preferably 0.002% by mass or more, more preferably 0.004% by mass or more, and still more preferably 0.8. It is 006 mass% or more. As the content of the water-soluble polymer increases, the wettability of the polished surface increases.
  • the content of the water-soluble polymer in the polishing composition at the time of use is preferably 0.5% by mass or less, more preferably 0.2% by mass or less, and further preferably 0.1% by mass or less. is there. As the content of the water-soluble polymer decreases, the dispersion stability of the polishing composition is easily ensured.
  • the content of silica particles in the polishing composition at the time of use is preferably 0.1% by mass or more, more preferably 0.2% by mass or more, and further preferably 0.3% by mass or more. As the content of silica particles increases, the polishing rate improves.
  • the content of silica particles in the polishing composition at the time of use is preferably 10% by mass or less, more preferably 8% by mass or less, and further preferably 6% by mass or less. As the silica particle content decreases, the dispersion stability of the polishing composition improves.
  • the content of the basic compound in the polishing composition at the time of use is preferably 0.001% by mass or more, more preferably 0.002% by mass or more, and further preferably 0.003% by mass or more. . As the content of the basic compound increases, the function of chemically polishing the surface to be polished increases, and the dispersion stability of the polishing composition is easily secured.
  • the content of the basic compound in the polishing composition at the time of use is preferably 1.0% by mass or less, more preferably 0.5% by mass or less, and further preferably 0.2% by mass or less. . As the content of the basic compound decreases, the smoothness of the polished surface improves.
  • the polishing pad used for polishing is not particularly limited in terms of its material, physical properties such as hardness and thickness.
  • the polishing pad may be, for example, any type of polyurethane type, non-woven fabric type, and suede type. Further, the polishing pad may include abrasive grains or may not include abrasive grains.
  • the silicon substrate after the final polishing step is subjected to, for example, a rinsing step and then washed with a chemical solution and dried, whereby a silicon substrate that is a semiconductor substrate as a polishing product is obtained.
  • a rinsing composition containing the above-described water-soluble polymer, surfactant, or the like, or water is used.
  • the increase in the number of defects called LPD-N may be caused by water-soluble polymer powder used as a raw material for the polishing composition.
  • the present inventors have found that particles having a small particle size contained in a water-soluble polymer powder are related to LPD-N.
  • the manufacturing method of the polishing composition of this embodiment mixes the powder of water-soluble polymer whose content of the particle
  • a method for producing a polishing composition comprises mixing a water-soluble polymer powder having a particle size of 50 ⁇ m or less and a water-soluble polymer powder having a particle size of 40% by volume or less with water and mixing the mixture with water. The process of preparing. According to the polishing composition obtained by this production method, LPD-N can be easily reduced.
  • the water-soluble polymer mixture is basic, it becomes easy to reduce LPD-N by a polishing composition obtained by mixing a water-soluble polymer mixture and, for example, a silica particle mixture.
  • the method for producing a polishing composition includes a step of mixing a water-soluble polymer mixture and a silica particle mixture. According to the polishing composition obtained by this production method, LPD-N can be easily reduced while performing chemical polishing with a basic compound and mechanical polishing with silica particles.
  • polishing composition for the purpose of polishing a silicon substrate, particularly for the purpose of final polishing of the silicon substrate, it becomes easy to obtain a silicon substrate with reduced LPD-N.
  • the step of supplying the water-soluble polymer mixture is started after the step of supplying the silica particle mixture is started until it is completed instead of starting after the step of supplying the silica particle mixture is completed. Also good.
  • the step of supplying the water-soluble polymer mixture may be started simultaneously with the step of supplying the silica particle mixture.
  • the step of supplying the silica particle mixture may be started after the step of supplying the water-soluble polymer mixture is started.
  • the water-soluble polymer mixture may be neutral instead of basic.
  • the method for producing the polishing composition is not the production of a polishing composition that is used after being diluted, but a polishing composition that contains each component in a preferred amount at the time of use and can be used without dilution. It may be applied to the manufacture of goods.
  • the polishing composition obtained by the manufacturing method of the said polishing composition can also be used for the use added to the used polishing composition after using for grinding
  • the polishing composition may be used for polishing an object to be polished other than a silicon substrate.
  • the polishing object other than the silicon substrate include metals such as stainless steel, silicon oxide substrates, plastic substrates, glass substrates, and quartz substrates.
  • the polishing composition can also contain abrasive grains other than silica particles.
  • abrasive grains other than the silica particles include alumina particles, zirconia particles, ceria particles, and titania particles. Silica particles and other particles may be used in combination.
  • the surface of the abrasive grains may be chemically modified.
  • the step of supplying abrasive grains to the mixing container may be performed before or after the step of supplying the water-soluble polymer mixture to the mixing container, It may be performed simultaneously with the step of supplying the water-soluble polymer mixture.
  • a method for producing a polishing composition further comprising a step of supplying the silica particle mixture into a mixing vessel and a step of supplying the water-soluble polymer mixture into the same mixing vessel.
  • the process for supplying the water-soluble polymer mixture into the mixing container is a method for producing a polishing composition that is started after the process of supplying the silica particle mixture into the mixing container.
  • Example 1 to 4 and Comparative Example 1 In Examples 1 to 4 and Comparative Example 1, as a first step, a silica particle mixture is supplied into a mixing vessel equipped with a stirrer, and after the completion, as a second step, a water-soluble polymer mixture is put into the same mixing vessel. Was further supplied. The polishing composition as a mixture thus obtained was continuously stirred until it became uniform.
  • the silica particle mixture was produced by mixing colloidal silica dispersion (concentration 20% by mass) with pH 7.0 and 29% ammonia water.
  • the pH of the silica particle mixture was 10.3.
  • the average primary particle diameter of the silica particles was 35 ⁇ m as a result of determination using a scanning electron microscope “S-4700” manufactured by Hitachi, Ltd.
  • the water-soluble polymer mixture was produced by mixing dialdehyde-treated hydroxyethyl cellulose powder, water, and 29% ammonia water.
  • the pH of the water-soluble polymer mixture was 10.0.
  • A described in the “type of process” column of Table 1 indicates a process of supplying the silica particle mixture to the mixing container
  • B indicates a process of supplying the water-soluble polymer mixture to the mixing container.
  • “Content of particles of 50 ⁇ m or less” and “Content of particles of 10 ⁇ m or less” in Table 1 respectively indicate the content of particles having a particle diameter of 50 ⁇ m or less and the particle diameter of 10 ⁇ m or less in the hydroxyethyl cellulose powder.
  • grains to have by Microtrac MT3000 (brand name) by Nikkiso Co., Ltd. is shown.
  • compositions obtained in Examples 1 to 4 and Comparative Example 1 were filtered under the conditions shown in Table 2.
  • the polishing compositions of Examples 1 to 4 and Comparative Example 1 were diluted 20 times with water.
  • the diluted polishing composition had a silica particle content of 0.5 mass%, an ammonia content of 0.01 mass%, and a hydroxyethylcellulose content of 0.01 mass%. .
  • the silicon substrate has a diameter of 300 mm, a conductivity type of P-type, a crystal orientation of ⁇ 100>, a resistivity of 0.1 ⁇ ⁇ cm or more and less than 100 ⁇ ⁇ cm, and a polishing slurry manufactured by Fujimi Incorporated (trade name: It was pre-polished using GLANZOX 1103).
  • the LPD-N on the polished surface of the silicon substrate was measured in the DCO mode of the same apparatus using a wafer inspection apparatus “Surfscan SP2” manufactured by KLA-Tencor. The results are shown in the column “Number of defects (LPD-N)” in Table 1.

Abstract

研磨用組成物の製造方法は、50μm以下の粒子径を有する粒子の含有量が40体積%以下である水溶性高分子の粉体と、水とを混合して水溶性高分子混合物を得る工程を有する。水溶性高分子の粉体は、10μm以下の粒子径を有する粒子の含有量が1体積%未満であることが好ましい。

Description

研磨用組成物の製造方法及び研磨用組成物
 本発明は、水溶性高分子を含有する研磨用組成物の製造方法及び研磨用組成物に関する。
 研磨用組成物を用いて研磨した後の研磨面で観察される欠陥の一種として、LPD(Light Point Defects)及びLPD-N(Light Point Defect Non-cleanable)が知られている。LPDとは、一般にパーティクルと呼ばれる欠陥を意味する。一方、LPD-Nとは、例えば、結晶欠陥等の研磨、洗浄、及び乾燥等で除去できない欠陥を意味する。例えば、特許文献1には、特定のイオン濃度を低減した研磨用組成物を用いることによりLPDが低減されることが記載されている。
特開2008-053414号公報
 LPD-Nの低減は近年の重要課題である。ところが、LPD-Nの低減に有効な研磨用組成物の製造方法については、未だ報告がないのが実情である。例えば、LPDを低減することのできる研磨用組成物を開示する特許文献1を参酌したとしても、LPD-Nの低減について予測する技術的根拠を見出すことはできない。
 本発明の目的は、水溶性高分子を含有した、LPD-Nを低減させることの容易な研磨用組成物の製造方法及び研磨用組成物を提供することにある。
 上記の目的を達成するために、本発明の第1の態様では、50μm以下の粒子径を有する粒子の含有量が40体積%以下である水溶性高分子の粉体と、水とを混合して水溶性高分子混合物を調製する工程を有する研磨用組成物の製造方法が提供される。
 本発明の第2の態様では、50μm以下の粒子径を有する粒子の含有量が40体積%以下である水溶性高分子の粉体と、水とを混合して水溶性高分子混合物を調製する工程を通じて製造される研磨用組成物が提供される。
 上記研磨用組成物の製造方法及び研磨用組成物では、前記水溶性高分子の粉体は、10μm以下の粒子径を有する粒子の含有量が1体積%未満であることが好ましい。
 上記研磨用組成物の製造方法及び研磨用組成物では、前記水溶性高分子混合物が塩基性であることが好ましい。
 上記研磨用組成物の製造方法は、シリカ粒子、塩基性化合物、及び水を混合してなるシリカ粒子混合物を前記水溶性高分子混合物と混合する工程をさらに有することが好ましい。上記研磨用組成物は、この混合工程をさらに通じて製造されることが好ましい。
 前記研磨用組成物は、シリコン基板を研磨する用途に用いられることが好ましい。
 前記研磨は、シリコン基板の最終研磨であることが好ましい。
 本発明によれば、研磨用組成物を用いて研磨した後の面のLPD-Nを低減させることが容易となる。
 以下、本発明の一実施形態を説明する。
 研磨用組成物の製造方法は、50μm以下の粒子径を有する粒子の含有量が40体積%以下である水溶性高分子の粉体と、水とを混合して水溶性高分子混合物を調製する工程を有する。本実施形態の製造方法は、シリカ粒子、塩基性化合物、及び水を混合してなるシリカ粒子混合物を、塩基性である水溶性高分子混合物と混合する工程を更に有する。
 本実施形態の製造方法で得られる研磨用組成物は、希釈用の原液であり、水で希釈した後にシリコン基板などの研磨対象物を研磨する用途に好適に用いられる。シリコン基板の研磨は、例えば、シリコン単結晶インゴットからスライスされた円盤状のシリコン基板の表面を平担化する予備研磨工程(一次研磨及び二次研磨)と、予備研磨工程後のシリコン基板の表面に存在する微細な凹凸を除去して鏡面化する最終研磨工程とを含む。本実施形態の研磨用組成物は、シリコン基板を最終研磨する工程で特に好適に用いられる。
 水溶性高分子混合物を調製する工程では、水溶性高分子の粉体と水とが混合される。
 水溶性高分子は、研磨用組成物を用いて研磨した後の研磨面の濡れ性を高める働きを有する。水と混合される水溶性高分子の粉体中における50μm以下の粒子径を有する粒子の含有量は40体積%以下であり、好ましくは30体積%以下、更に好ましくは20体積%以下、一層好ましくは10体積%以下、最も好ましくは5体積%以下である。水溶性高分子の粉体中における10μm以下の粒子径を有する粒子の含有量は1体積%未満であることが好ましい。水溶性高分子の粉体中における微細な粒子の含有量を減少することによって、LPD-Nを低減させることが容易となる。
 50μm以下の粒子径を有する粒子の含有量及び10μm以下の粒子径を有する粒子の含有量は、水溶性高分子の粉体中の粒子の体積を粒子径の小さい粒子から順に累積した体積基準の累積分布において、粒子径50μm以下の粒子の累積率[%]及び粒子径10μm以下の粒子の累積率[%]として測定される。
 このように微細な粒子の含有量が減少された水溶性高分子の粉体を得るためには、例えば、篩や気流を用いた分級を使用することができる。
 水溶性高分子の粉体の平均粒子径は、50μm以上であることが好ましく、より好ましくは70μm以上、更に好ましくは100μm以上である。一般的に水溶性高分子の重量平均分子量が大きくなるにしたがって、水溶性高分子の粉体の平均粒子径が大きくなる傾向にある。すなわち、平均粒子径が大きくなるにつれて重量平均分子量が増加するため、研磨面の濡れ性が高まる傾向となる。
 水溶性高分子の粉体の平均粒子径は、250μm以下であることが好ましく、より好ましくは200μm以下、更に好ましくは150μm以下である。平均粒子径が小さいほど水溶性高分子はより均一に溶解する。
 水溶性高分子としては、分子中に、カチオン基、アニオン基及びノニオン基から選ばれる少なくとも一種の官能基(親水性基)を有するものを使用することができる。水溶性高分子の例としては、例えば、分子中に水酸基、カルボキシル基、アシルオキシ基、スルホ基、第四級窒素構造、複素環構造、ビニル構造、及びポリオキシアルキレン構造を含むものが挙げられる。
 水溶性高分子の別の例としては、例えば、セルロース誘導体、ポリ(N-アシルアルキレンイミン)等のイミン誘導体、ポリビニルアルコール、ポリビニルピロリドン、ポリビニルピロリドンを構造の一部に含む共重合体、ポリビニルカプロラクタム、ポリビニルカプロラクタムを構造の一部に含む共重合体、ポリオキシエチレン、ポリオキシアルキレン構造を有する重合体、これらのジブロック型やトリブロック型、ランダム型、交互型といった複数種の構造を有する共重合体、及びポリエーテル変性シリコーンが挙げられる。
 水溶性高分子は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 水溶性高分子の中でも、研磨面の濡れ性を高める働きが良好であることから、セルロース誘導体、ポリビニルピロリドン、及びポリオキシアルキレン構造を有する重合体が好適である。セルロース誘導体としては、例えば、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルメチルセルロース、メチルセルロース、エチルセルロース、エチルヒドロキシエチルセルロース、及びカルボキシメチルセルロースが挙げられる。セルロース誘導体の中でも、研磨面の濡れ性を高める働きに優れるとともに、研磨後の洗浄工程で除去されやすい(すなわち良好な洗浄性を有する)ことから、ヒドロキシエチルセルロースが好ましい。
 水溶性高分子の溶解不良(不溶解物の発生)を抑制するためには、水溶性高分子の水酸基が例えばジアルデヒドにより疎水化処理されていることが好ましい。ジアルデヒドとしては、例えば、シュウ酸ジアルデヒド(エタンジアール)、マロン酸ジアルデヒド(プロパンジアール)、及びコハク酸ジアルデヒド(ブタンジアール)が挙げられる。
 水溶性高分子の重量平均分子量は、ポリエチレンオキサイド換算で、1000以上であることが好ましく、より好ましくは10000以上、更に好ましくは100000以上、一層好ましくは200000以上である。水溶性高分子の重量平均分子量の増加につれて、研磨面の濡れ性が高まる。
 水溶性高分子の重量平均分子量は、2000000以下であることが好ましく、より好ましくは1500000以下、更に好ましくは1000000以下、最も好ましくは500000以下である。水溶性高分子の重量平均分子量の減少につれて、研磨用組成物の分散安定性が向上する。
 ポリエチレンオキサイド換算の水溶性高分子の重量平均分子量は、ゲル浸透クロマトグラフィー(Gel Permeation Chromatography,GPC)によって測定することができる。
 水溶性高分子混合物を調製する工程で用いられる水は、研磨用組成物中の他の成分の働きを阻害しないことが好ましい。そのような水の例としては、例えば遷移金属イオンの合計含有量が100ppb以下の水が挙げられる。水の純度は、例えば、イオン交換樹脂を用いる不純物イオンの除去、フィルターによる異物の除去、蒸留等の操作によって高めることができる。具体的には、例えば、イオン交換水、純水、超純水、又は蒸留水を用いることが好ましい。なお、研磨用組成物の製造方法において、水溶性高分子混合物を調製する工程以外の工程でも、同様の品質の水が用いられることが好ましい。
 水溶性高分子混合物を調製する工程では、混合容器内で水溶性高分子の粉体と水とが混合される。混合容器は、撹拌機又は分散機を備えることが好ましい。撹拌機又は分散機としては、例えば、翼式攪拌機、超音波分散機、及びホモミキサーが挙げられる。混合容器の容量は、生産効率及び品質の安定性を考慮して、例えば10~10000Lであることが好ましい。混合容器は樹脂製であることが好ましい。混合容器は金属製であってもよいが、研磨用組成物への金属不純物の混入を抑制するためには、混合容器の少なくとも内面は樹脂層で覆われていることが好ましい。
 水溶性高分子混合物中における水溶性高分子の含有量は、水溶性高分子と水との合計質量を100としたとき、好ましくは0.02質量%以上、より好ましくは0.05質量%以上、更に好ましくは0.1質量%以上である。水溶性高分子の含有量の増大につれて、研磨用組成物中の水溶性高分子の含有量を高く設定することができる。
 水溶性高分子混合物中における水溶性高分子の含有量は、水溶性高分子と水との合計質量を100としたとき、10質量%以下であることが好ましく、より好ましくは5質量%以下であり、更に好ましくは3質量%以下である。水溶性高分子の含有量の減少につれて、水溶性高分子の分散性が向上する。
 水溶性高分子混合物は、塩基性であることが好ましい。水溶性高分子混合物のpHは25℃での測定で、8以上であることが好ましく、より好ましくは9以上である。水溶性高分子混合物のpHが高くなるにつれて、水溶性高分子混合物とシリカ粒子混合物との混合の際にシリカ粒子の分散性が保たれ易くなる。
 水溶性高分子混合物のpHは25℃での測定で、12以下が好ましく、より好ましくは10.5以下である。水溶性高分子混合物のpHが低くなるにつれて、シリカ粒子の溶解が抑制される。
 水溶性高分子混合物のpHは、塩基性化合物を水溶性高分子混合物に添加することで調整される。塩基性化合物としては、シリカ粒子混合物の原料として用いられる塩基性化合物と同じものが好適である。
 水溶性高分子混合物は、その混合物中に含まれる異物又は凝集物を削減するためにろ過されることが好ましい。ろ過は、フィルターを用いる常法によって実施することができる。ろ過で用いるフィルターの材質及び構造は特に限定されるものではない。フィルターの材質としては、例えば、セルロース、ポリアミド、ポリスルホン、ポリエーテルスルホン、ポリプロピレン、ポリテトラフルオロエチレン(PTFE)、ポリカーボネート、及びガラスが挙げられる。フィルターの構造としては、例えばデプスフィルター、プリーツフィルター、及びメンブレンフィルターが挙げられる。
 ろ過で用いるフィルターは、目開きを基準に選択することができる。フィルターの目開きは0.05μm以上であることが好ましく、より好ましくは0.1μm以上、更に好ましくは0.2μm以上である。フィルターの目開きが大きいほどろ過効率が向上する。
 フィルターの目開きは100μm以下であることが好ましく、より好ましくは20μm以下、更に好ましくは10μm以下、一層好ましくは5μm以下、より一層好ましくは2μm以下、最も好ましくは1μm以下である。フィルターの目開きが小さくなるにつれて、より品質の高い研磨用組成物が得られる。
 なお、フィルターの目開きは、フィルターメーカーにより公称値が提示されている。
 水溶性高分子混合物のろ過は、常圧状態で行われる自然ろ過であってもよいし、吸引ろ過、加圧ろ過、又は遠心ろ過で行なってもよい。
 水溶性高分子混合物を調製する工程で得られた水溶性高分子混合物は、シリカ粒子混合物と混合される。
 シリカ粒子混合物は、シリカ粒子、塩基性化合物、及び水を混合して調製される。シリカ粒子混合物は、水溶性高分子混合物を調製する工程とは異なる工程で調製される。シリカ粒子混合物を調製する工程では、混合容器内でシリカ粒子、塩基性化合物、及び水が混合される。シリカ粒子混合物を調製する工程において、各原料の混合順序は特に限定されない。シリカ粒子混合物を調製する工程では、原料としてシリカ粒子の水分散液を用いてもよいし、塩基性化合物の水溶液を用いてもよい。すなわち、シリカ粒子混合物を調製する工程では、混合容器内にまず単独で供給した水にその他の原料を混合してもよいし、シリカ粒子の水分散液又は塩基性化合物の水溶液をまず混合容器内に供給し、その後にその他の原料を混合してもよい。
 シリカ粒子混合物を調製する工程で用いられる混合容器は、水溶性高分子混合物を調製する工程で用いられる混合容器と同様のものが可能であるため、その詳細な説明を省略する。
 シリカ粒子は、研磨対象面を機械的に研磨する働きを有する。シリカ粒子としては、例えば、コロイダルシリカ、フュームドシリカ、及びゾルゲル法シリカが挙げられる。シリカ粒子は、一種を単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
 シリカ粒子の中でも、コロイダルシリカ又はフュームドシリカを使用した場合、特にコロイダルシリカを使用した場合には、シリコン基板の研磨面に発生するスクラッチが減少する。
 シリカ粒子の平均一次粒子径は5nm以上であることが好ましく、より好ましくは10nm以上、さらに好ましくは20nm以上である。シリカ粒子の平均一次粒子径の増大につれて、研磨速度が向上する。
 シリカ粒子の平均一次粒子径は100nm以下であることが好ましく、より好ましくは70nm以下、さらに好ましくは50nm以下である。シリカ粒子の平均一次粒子径の減少につれて、研磨用組成物の分散安定性が向上する。
 シリカ粒子の一次粒子径は、例えば株式会社日立ハイテクノロジーズ製S-4700等の走査型電子顕微鏡により撮影される写真に基づいて算出できる。例えば、倍率10000~50000倍で撮影されたシリカ粒子の電子顕微鏡写真から所定数(例えば、100個以上)のシリカ粒子の画像を無作為に選択する。選択したシリカ粒子の画像の面積を計測し、その面積と同じ面積の円の直径をシリカ粒子の一次粒子径として求める。シリカ粒子の平均一次粒子径は、こうして求められる一次粒子径の平均値(体積基準の積算分率における50%粒子径)として算出される。なお、一次粒子径及び平均一次粒子径の算出は市販の画像解析装置を用いて行うことができる。
 シリカ粒子の平均二次粒子径は10nm以上であることが好ましく、より好ましくは20nm以上、更に好ましくは30nm以上である。シリカ粒子の平均二次粒子径の増大につれて、研磨速度が向上する。シリカ粒子の平均二次粒子径は200nm以下であることが好ましく、より好ましくは150nm以下、更に好ましくは100nm以下である。シリカ粒子の平均二次粒子径の減少につれて、研磨用組成物の分散安定性が向上する。なお、シリカ粒子の平均二次粒子径は、例えば、大塚電子社製のFPAR-1000を用いた動的光散乱法により測定することができる。
 シリカ粒子混合物中におけるシリカ粒子の含有量は、シリカ粒子、塩基性化合物、及び水の合計量を100としたとき、好ましくは1質量%以上、より好ましくは3質量%以上、更に好ましくは5質量%以上である。シリカ粒子の含有量の増大につれて、研磨用組成物中のシリカ粒子の含有量を高く設定することができる。
 シリカ粒子混合物中におけるシリカ粒子の含有量は、シリカ粒子、塩基性化合物、及び水の合計量を100としたとき、好ましくは50質量%以下、より好ましくは40質量%以下、更に好ましくは30質量%以下である。シリカ粒子の含有量の減少につれて、水溶性高分子混合物との混合の際にシリカ粒子の分散性が保たれ易くなる。
 塩基性化合物は、研磨対象面を化学的に研磨する働きを有する。また、塩基性化合物は、研磨用組成物の分散安定性を向上させる働きを有する。
 塩基性化合物としては、例えば、アルカリ金属の水酸化物、水酸化第四級アンモニウム又はその塩、アンモニア、及びアミンが挙げられる。アルカリ金属の水酸化物としては、例えば、水酸化カリウム、及び水酸化ナトリウムが挙げられる。水酸化第四級アンモニウム又はその塩としては、例えば、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、及び水酸化テトラブチルアンモニウムが挙げられる。アミンとしては、例えば、メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、エチレンジアミン、モノエタノールアミン、N-(β-アミノエチル)エタノールアミン、ヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、無水ピペラジン、ピペラジン六水和物、1-(2-アミノエチル)ピペラジン、N-メチルピペラジン、及びグアニジンが挙げられる。
 塩基性化合物は、一種を単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
 塩基性化合物は、好ましくはアンモニア、アルカリ金属の水酸化物、及び第四級アンモニウム水酸化物から選ばれる少なくとも一種である。
 塩基性化合物は、より好ましくはアンモニア、水酸化カリウム、水酸化ナトリウム、水酸化テトラメチルアンモニウム、及び水酸化テトラエチルアンモニウムから選ばれる少なくとも一種であり、更に好ましくはアンモニア及び水酸化テトラメチルアンモニウムの少なくとも一方であり、最も好ましくはアンモニアである。
 シリカ粒子混合物中における塩基性化合物の含有量は、シリカ粒子、塩基性化合物、及び水の合計量を100としたとき、好ましくは0.01質量%以上、より好ましくは0.05質量%以上、更に好ましくは0.1質量%以上である。塩基性化合物の含有量の増大につれて、水溶性高分子混合物との混合の際にシリカ粒子の分散性が保たれ易くなる。
 シリカ粒子混合物中における塩基性化合物の含有量は、シリカ粒子、塩基性化合物、及び水の合計量を100としたとき、好ましくは10質量%以下、より好ましくは5質量%以下、更に好ましくは3質量%以下である。塩基性化合物の含有量の減少につれて、研磨用組成物中の塩基性化合物の含有量を低く設定することができる。
 シリカ粒子混合物中の水は、シリカ粒子の分散媒、及び塩基性化合物の溶媒として働く。シリカ粒子混合物を調製する工程で用いられる水は、水溶性高分子混合物を調製する工程で用いられる水と同様のものが可能であるため、その詳細な説明を省略する。
 シリカ粒子混合物を調製する工程で得られたシリカ粒子混合物は、水溶性高分子混合物と混合される。本実施形態におけるシリカ粒子混合物と水溶性高分子混合物との混合は、混合容器内にシリカ粒子混合物を供給する工程と、同じ混合容器内に水溶性高分子混合物を供給する工程とを含む。ここで用いられる混合容器は、水溶性高分子混合物を調製する工程で用いられる混合容器と同様のものが可能であるため、その詳細な説明を省略する。
 本実施形態では、シリカ粒子混合物を混合容器に供給する工程が完了した後に、水溶性高分子混合物を供給する工程が開始される。なお、シリカ粒子混合物を供給する工程の完了とは、混合容器にシリカ粒子混合物を供給する配管に備えられた供給用ポンプを停止した時点、配管に備えられた弁を閉じた時点、又は供給するシリカ粒子混合物がなくなった時点をいう。
 撹拌機又は分散機による混合容器内の撹拌操作又は分散操作は、シリカ粒子混合物を混合容器に供給する工程、及び水溶性高分子混合物を混合容器に供給する工程において継続して行ってもよいし、断続的に行ってもよい。混合容器内の撹拌操作又は分散操作は、シリカ粒子混合物を供給する工程が完了した後から水溶性高分子混合物を供給する工程が完了するまで継続されることが好ましい。更に、混合容器内の撹拌操作又は分散操作は、より分散性の高い研磨用組成物を得るために、水溶性高分子混合物を供給する工程が完了した後も、継続されることが好ましい。
 シリカ粒子混合物を供給する工程、及び水溶性高分子混合物を供給する工程の供給速度は、例えば、供給の効率やポンプ等の供給設備に応じて設定される。
 水溶性高分子混合物を供給する工程における水溶性高分子の供給速度は、シリカ粒子100質量部に対して、好ましくは1質量部/分以上であり、より好ましくは3質量部/分以上であり、更に好ましくは5質量部/分以上である。水溶性高分子の供給速度の上昇につれて、水溶性高分子混合物を供給する工程に要する時間を短縮できる。
 水溶性高分子混合物を供給する工程における水溶性高分子の供給速度は、シリカ粒子100質量部に対して、好ましくは50質量部/分以下であり、より好ましくは20質量部/分以下であり、更に好ましくは10質量部/分以下である。水溶性高分子の供給速度の低下につれて、水溶性高分子を分散させることが容易となる。
 シリカ粒子混合物及び水溶性高分子混合物の少なくとも一方は、上記以外の成分を含有してもよい。また、研磨用組成物の製造方法は、シリカ粒子混合物及び水溶性高分子混合物以外のもの、例えば、界面活性剤、有機酸、有機酸塩、無機酸、無機酸塩、及びキレート剤を混合容器に供給する供給工程を有していてもよい。
 界面活性剤は、研磨用組成物の分散性や研磨性能を向上させる働きを有する。
 界面活性剤としては、例えば、重量平均分子量が1000未満のイオン性又はノニオン性の界面活性剤が挙げられる。界面活性剤の中でも、ノニオン性界面活性剤が好適に用いられる。
 ノニオン性界面活性剤の例としては、ポリエチレングリコール、ポリプロピレングリコール等のオキシアルキレン重合体、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンアルキルアミン、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレングリセルエーテル脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル等のポリオキシアルキレン付加物等が挙げられる。より具体的には、ポリオキシエチレンポリオキシプロピレン共重合体、ポリオキシエチレングリコール、ポリオキシエチレンプロピルエーテル、ポリオキシエチレンブチルエーテル、ポリオキシエチレンペンチルエーテル、ポリオキシエチレンヘキシルエーテル、ポリオキシエチレンオクチルエーテル、ポリオキシエチレン-2-エチルヘキシルエーテル、ポリオキシエチレンノニルエーテル、ポリオキシエチレンデシルエーテル、ポリオキシエチレンイソデシルエーテル、ポリオキシエチレントリデシルエーテル、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンイソステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンフェニルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンドデシルフェニルエーテル、ポリオキシエチレンスチレン化フェニルエーテル、ポリオキシエチレンラウリルアミン、ポリオキシエチレンステアリルアミン、ポリオキシエチレンオレイルアミン、ポリオキシエチレンステアリルアミド、ポリオキシエチレンオレイルアミド、ポリオキシエチレンモノラウリン酸エステル、ポリオキシエチレンモノステアリン酸エステル、ポリオキシエチレンジステアリン酸エステル、ポリオキシエチレンモノオレイン酸エステル、ポリオキシエチレンジオレイン酸エステル、モノラウリン酸ポリオキシエチレンソルビタン、モノパルミチン酸ポリオキシエチレンソルビタン、モノステアリン酸ポリオキシエチレンソルビタン、モノオレイン酸ポリオキシエチレンソルビタン、トリオレイン酸ポリオキシエチレンソルビタン、テトラオレイン酸ポリオキシエチレンソルビット、ポリオキシエチレンヒマシ油、ポリオキシエチレン硬化ヒマシ油、及びアセチレングリコールが挙げられる。
 界面活性剤は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 有機酸としては、例えば、ギ酸、酢酸、プロピオン酸等の脂肪酸、安息香酸、フタル酸等の芳香族カルボン酸、クエン酸、シュウ酸、酒石酸、リンゴ酸、マレイン酸、フマル酸、コハク酸、有機スルホン酸、及び有機ホスホン酸が挙げられる。有機酸塩としては、例えば、有機酸のナトリウム塩、カリウム塩等のアルカリ金属塩、並びにアンモニウム塩が挙げられる。
 無機酸としては、例えば、硫酸、硝酸、塩酸、及び炭酸が挙げられる。無機酸塩としては、例えば、無機酸のナトリウム塩、カリウム塩等のアルカリ金属塩、並びにアンモニウム塩が挙げられる。
 有機酸及びその塩、並びに無機酸及びその塩は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 シリカ粒子混合物と水溶性高分子混合物を混合して得られた混合物は、混合容器から排出された後に、ろ過工程でろ過されることが好ましい。ろ過工程は、フィルターを用いる常法によって実施することができる。ろ過工程は、水溶性高分子混合物のろ過と同様に行うことができる。ろ過工程で用いるフィルターの目開きは、0.05μm以上であることが好ましく、より好ましくは0.1μm以上である。フィルターの目開きが大きいほどろ過効率が向上する。ろ過工程で用いるフィルターの目開きは、1μm以下であることが好ましく、より好ましくは0.45μm以下、更に好ましくは0.2μm以下である。フィルターの目開きが小さくなるにつれて、より品質の高い研磨用組成物が得られ易くなる。
 本実施形態の研磨用組成物は、搬送又は保管用の容器内に収容される。研磨用組成物を使用する際には、水又塩基性水溶液で希釈される。塩基性水溶液は、上記塩基性化合物を水に溶解したものを用いることができる。希釈倍率は、好ましくは2倍以上であり、より好ましくは5倍以上であり、更に好ましくは10倍以上である。上記希釈倍率が増大することにつれて、希釈する前の研磨用組成物の輸送コストが安価になるとともに、保管場所を節約することができる。希釈倍率は、好ましくは100倍以下であり、より好ましくは50倍以下であり、更に好ましくは40倍以下である。上記希釈倍率が減少するにつれて、希釈する前の研磨用組成物の安定性が保たれ易くなる。
 希釈する前の研磨用組成物のpHは、10~12の範囲であることが好ましく、希釈した後の使用時の研磨用組成物のpHは、10~11の範囲であることが好ましい。
 使用時(希釈した後)の研磨用組成物中における水溶性高分子の含有量は、0.002質量%以上であることが好ましく、より好ましくは0.004質量%以上、更に好ましくは0.006質量%以上である。水溶性高分子の含有量の増大につれて、研磨面の濡れ性がより高まる。
 使用時の研磨用組成物中における水溶性高分子の含有量は、0.5質量%以下であることが好ましく、より好ましくは0.2質量%以下、更に好ましくは0.1質量%以下である。水溶性高分子の含有量の減少につれて、研磨用組成物の分散安定性が確保され易くなる。
 使用時の研磨用組成物中におけるシリカ粒子の含有量は、0.1質量%以上であることが好ましく、より好ましくは0.2質量%以上、更に好ましくは0.3質量%以上である。シリカ粒子の含有量の増大につれて、研磨速度が向上する。
 使用時の研磨用組成物中におけるシリカ粒子の含有量は、10質量%以下であることが好ましく、より好ましくは8質量%以下、更に好ましくは6質量%以下である。シリカ粒子の含有量の減少につれて、研磨用組成物の分散安定性が向上する。
 使用時の研磨用組成物中における塩基性化合物の含有量は、0.001質量%以上であることが好ましく、より好ましくは0.002質量%以上、更に好ましくは0.003質量%以上である。塩基性化合物の含有量の増大につれて、研磨対象面を化学的に研磨する働きが高まり、また研磨用組成物の分散安定性が確保され易くなる。
 使用時の研磨用組成物中における塩基性化合物の含有量は、1.0質量%以下であることが好ましく、より好ましくは0.5質量%以下、更に好ましくは0.2質量%以下である。塩基性化合物の含有量の減少につれて、研磨面の平滑性が向上する。
 研磨用組成物を用いた研磨には、例えば、片面研磨装置や両面研磨装置を用いることができる。研磨に用いられる研磨パッドは、その材質、硬度や厚み等の物性等について特に限定されない。研磨パッドは、例えば、ポリウレタンタイプ、不織布タイプ、及びスウェードタイプのいずれのタイプであってもよい。また、研磨パッドは、砥粒を含んでも、砥粒を含まなくてもよい。
 最終研磨工程後のシリコン基板は、例えばリンス工程が行われた後に薬液洗浄されて乾燥され、これにより、研磨製品としての半導体用基板であるシリコン基板が得られる。リンス工程では、例えば、前述の水溶性高分子、界面活性剤などを含有するリンス用組成物、又は水が用いられる。
 次に、研磨用組成物の製造方法の作用について説明する。
 シリコン基板の研磨面において、LPD-Nと呼ばれる欠陥の個数の増加は、研磨用組成物の原料として用いられる水溶性高分子の粉体を原因とする場合がある。この点、本発明者らは、水溶性高分子の粉体中に含まれる粒子径の小さい粒子がLPD-Nに関係していることを見出した。そして、本実施形態の研磨用組成物の製造方法は、50μm以下の粒子径を有する粒子の含有量が40体積%以下である水溶性高分子の粉体と、水とを混合して水溶性高分子混合物を調製する工程を有している。すなわち、粒子径の小さい粒子の含有量が低い水溶性高分子の粉体を用いることで、LPD-Nの原因となる物質の発生や、LPD-Nの原因となる物質が研磨面に残存することが抑制されると推測される。
 以上詳述した本実施形態によれば、次のような効果が発揮される。
 (1)研磨用組成物の製造方法は、50μm以下の粒子径を有する粒子の含有量が40体積%以下である水溶性高分子の粉体と、水とを混合して水溶性高分子混合物を調製する工程を有する。この製造方法で得られた研磨用組成物によれば、LPD-Nを低減させることが容易となる。
 (2)水溶性高分子の粉体中の10μm以下の粒子径を有する粒子の含有量が1体積%未満である場合、LPD-Nを更に低減させることが容易となる。
 (3)水溶性高分子混合物が塩基性であることで、水溶性高分子混合物と例えばシリカ粒子混合物を混合して得られる研磨用組成物により、LPD-Nを低減させることが容易となる。
 (4)研磨用組成物の製造方法は、水溶性高分子混合物とシリカ粒子混合物を混合する工程を有する。この製造方法で得られた研磨用組成物によれば、塩基性化合物による化学的な研磨とシリカ粒子による機械的な研磨を発揮しつつ、LPD-Nを低減させることが容易となる。
 (5)シリコン基板を研磨する用途、特にシリコン基板を最終研磨する用途に研磨用組成物を用いることで、LPD-Nを低減したシリコン基板を得ることが容易となる。
 (変更例)
 前記実施形態は、次のように変更されてもよい。
 ・前記水溶性高分子混合物を供給する工程は、シリカ粒子混合物を供給する工程が完了した後に開始する代わりに、シリカ粒子混合物を供給する工程が開始されてから完了するまでの間に開始されてもよい。
 ・水溶性高分子混合物を供給する工程は、シリカ粒子混合物を供給する工程と同時に開始されてもよい。あるいは、水溶性高分子混合物を供給する工程が開始された後に、シリカ粒子混合物を供給する工程が開始されてもよい。
 ・前記水溶性高分子混合物は、塩基性ではなく、中性であってもよい。
 ・前記研磨用組成物の製造方法は、希釈してから使用される研磨用組成物の製造ではなく、各成分を使用時に好ましい量で含有して希釈せずに使用することができる研磨用組成物の製造に適用されてもよい。
 ・前記研磨用組成物の製造方法で得られた研磨用組成物は、研磨に使用した後の使用済みの研磨用組成物に添加する用途で用いることもできる。
 ・前記研磨用組成物は、シリコン基板以外の研磨対象物を研磨する用途で使用されてもよい。シリコン基板以外の研磨対象物としては、例えば、ステンレス鋼等の金属、酸化シリコン基板、プラスチック基板、ガラス基板、及び石英基板が挙げられる。
 ・研磨用組成物は、シリカ粒子以外の砥粒を含有することもできる。シリカ粒子以外の砥粒としては、例えば、アルミナ粒子、ジルコニア粒子、セリア粒子、及びチタニア粒子が挙げられる。シリカ粒子とその他の粒子とを併用してもよい。砥粒は、表面が化学修飾されていてもよい。研磨用組成物にシリカ粒子以外の砥粒を含有させる場合、混合容器に砥粒を供給する工程は、水溶性高分子混合物を混合容器に供給する工程の前又は後に実施されてもよいし、水溶性高分子混合物を供給する工程と同時に実施されてもよい。
 上記実施形態から把握できる技術的思想について以下に記載する。
 (I)前記シリカ粒子混合物を混合容器内に供給する工程と、同じ混合容器内に前記水溶性高分子混合物を供給する工程とをさらに有する研磨用組成物の製造方法。
 (II)前記水溶性高分子混合物を混合容器内に供給する工程は、前記シリカ粒子混合物を混合容器内に供給する工程の開始後に開始される研磨用組成物の製造方法。
 次に、実施例及び比較例を挙げて前記実施形態を具体的に説明する。
 (実施例1~4、及び比較例1)
 実施例1~4及び比較例1では、第1段階として、撹拌機を備える混合容器内にシリカ粒子混合物を供給し、その完了後に、第2段階として、同じ混合容器内に水溶性高分子混合物をさらに供給した。こうして得られた混合物である研磨用組成物を均一になるまで継続して撹拌した。
 シリカ粒子混合物は、pH7.0のコロイダルシリカ分散液(濃度20質量%)と29%アンモニア水とを混合することで製造した。シリカ粒子混合物のpHは、10.3であった。シリカ粒子の平均一次粒子径は、株式会社日立製作所製の走査型電子顕微鏡“S-4700”を用いて求めた結果、35μmであった。
 水溶性高分子混合物は、ジアルデヒド処理されたヒドロキシエチルセルロースの粉体と水と29%アンモニア水とを混合することで製造した。水溶性高分子混合物のpHは10.0であった。
Figure JPOXMLDOC01-appb-T000001
 表1の“工程の種類”欄に記載する“A”は、シリカ粒子混合物を混合容器に供給する工程を示し、“B”は、水溶性高分子混合物を混合容器に供給する工程を示す。
 表1中の“50μm以下の粒子の含有量”及び“10μm以下の粒子の含有量”はそれぞれ、ヒドロキシエチルセルロースの粉体における50μm以下の粒子径を有する粒子の含有量及び10μm以下の粒子径を有する粒子の含有量を日機装株式会社製のMicrotrac MT3000(商品名)で測定した結果を示す。
 実施例1~4及び比較例1で得られた組成物を表2に示す条件でろ過した。
Figure JPOXMLDOC01-appb-T000002
 実施例1~4及び比較例1の各研磨用組成物を水で20倍に希釈した。希釈後の研磨用組成物は、シリカ粒子の含有量が0.5質量%であり、アンモニアの含有量が0.01質量%であり、ヒドロキシエチルセルロースの含有量が0.01質量%であった。
 次に、希釈後の研磨用組成物を用いて、シリコン基板の表面を表3に記載の条件で研磨した。シリコン基板は、直径が300mm、伝導型がP型、結晶方位が<100>、抵抗率が0.1Ω・cm以上100Ω・cm未満であり、株式会社フジミインコーポレーテッド製の研磨スラリー(商品名:GLANZOX 1103)を用いて予備研磨したものであった。
Figure JPOXMLDOC01-appb-T000003
 シリコン基板の研磨面におけるLPD-Nをケーエルエー・テンコール社製のウェーハ検査装置“Surfscan SP2”を用いて、同装置のDCOモードで計測した。その結果を表1の“欠陥(LPD-N)の個数”欄に示す。
 表1に示すように、実施例1~4におけるLPD-Nの個数は、比較例1の場合に比べて少なかった。

Claims (12)

  1.  50μm以下の粒子径を有する粒子の含有量が40体積%以下である水溶性高分子の粉体と、水とを混合して水溶性高分子混合物を調製する工程を有することを特徴とする研磨用組成物の製造方法。
  2.  前記水溶性高分子の粉体は、10μm以下の粒子径を有する粒子の含有量が1体積%未満である請求項1に記載の研磨用組成物の製造方法。
  3.  前記水溶性高分子混合物が塩基性である請求項1又は請求項2に記載の研磨用組成物の製造方法。
  4.  シリカ粒子、塩基性化合物、及び水を混合してなるシリカ粒子混合物を前記水溶性高分子混合物と混合する工程をさらに有する請求項3に記載の研磨用組成物の製造方法。
  5.  前記研磨用組成物は、シリコン基板を研磨する用途に用いられる請求項1から請求項4のいずれか一項に記載の研磨用組成物の製造方法。
  6.  前記研磨は、シリコン基板の最終研磨である請求項5に記載の研磨用組成物の製造方法。
  7.  50μm以下の粒子径を有する粒子の含有量が40体積%以下である水溶性高分子の粉体と、水とを混合して水溶性高分子混合物を得る工程を通じて製造されることを特徴とする研磨用組成物。
  8.  前記水溶性高分子の粉体は、10μm以下の粒子径を有する粒子の含有量が1体積%未満である請求項7に記載の研磨用組成物。
  9.  前記水溶性高分子混合物が塩基性である請求項7又は請求項8に記載の研磨用組成物。
  10.  シリカ粒子、塩基性化合物、及び水を混合してなるシリカ粒子混合物を前記水溶性高分子混合物と混合する工程をさらに通じて製造される請求項9に記載の研磨用組成物。
  11.  前記研磨用組成物は、シリコン基板を研磨する用途に用いられる請求項7から請求項10のいずれか一項に記載の研磨用組成物。
  12.  前記研磨は、シリコン基板の最終研磨である請求項11に記載の研磨用組成物。
PCT/JP2013/077333 2012-10-12 2013-10-08 研磨用組成物の製造方法及び研磨用組成物 WO2014057932A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012227405A JP2014080461A (ja) 2012-10-12 2012-10-12 研磨用組成物の製造方法及び研磨用組成物
JP2012-227405 2012-10-12

Publications (1)

Publication Number Publication Date
WO2014057932A1 true WO2014057932A1 (ja) 2014-04-17

Family

ID=50477399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077333 WO2014057932A1 (ja) 2012-10-12 2013-10-08 研磨用組成物の製造方法及び研磨用組成物

Country Status (3)

Country Link
JP (1) JP2014080461A (ja)
TW (1) TW201422797A (ja)
WO (1) WO2014057932A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019111686A1 (ja) * 2017-12-08 2019-06-13 株式会社フジミインコーポレーテッド 研磨用組成物
JP7370689B2 (ja) * 2017-12-08 2023-10-30 ダイセルミライズ株式会社 疎水化ヒドロキシエチルセルロースの製造方法及び研磨助剤

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10309660A (ja) * 1997-05-07 1998-11-24 Tokuyama Corp 仕上げ研磨剤
JP2004128089A (ja) * 2002-09-30 2004-04-22 Fujimi Inc 研磨用組成物及びそれを用いたシリコンウエハの研磨方法、並びにリンス用組成物及びそれを用いたシリコンウエハのリンス方法
JP2006186384A (ja) * 2006-02-06 2006-07-13 Hitachi Chem Co Ltd 酸化セリウム研磨剤および基板の研磨法
JP2008053415A (ja) * 2006-08-24 2008-03-06 Fujimi Inc 研磨用組成物及び研磨方法
JP2008235491A (ja) * 2007-03-19 2008-10-02 Nitta Haas Inc 研磨用組成物
JP2009035701A (ja) * 2006-09-08 2009-02-19 Kao Corp 研磨液組成物
JP2010010167A (ja) * 2008-06-24 2010-01-14 Jsr Corp 化学機械研磨用水系分散体、化学機械研磨用水系分散体の製造方法および化学機械研磨方法
JP2010017841A (ja) * 2008-06-11 2010-01-28 Shin-Etsu Chemical Co Ltd 合成石英ガラス基板用研磨剤
JP2010034509A (ja) * 2008-07-03 2010-02-12 Fujimi Inc 半導体用濡れ剤、それを用いた研磨用組成物および研磨方法
JP2011061089A (ja) * 2009-09-11 2011-03-24 Kao Corp 研磨液組成物
JP2011097045A (ja) * 2009-09-30 2011-05-12 Nitta Haas Inc 研磨組成物
WO2012105651A1 (ja) * 2011-02-03 2012-08-09 ニッタ・ハース株式会社 研磨用組成物およびそれを用いた研磨方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10309660A (ja) * 1997-05-07 1998-11-24 Tokuyama Corp 仕上げ研磨剤
JP2004128089A (ja) * 2002-09-30 2004-04-22 Fujimi Inc 研磨用組成物及びそれを用いたシリコンウエハの研磨方法、並びにリンス用組成物及びそれを用いたシリコンウエハのリンス方法
JP2006186384A (ja) * 2006-02-06 2006-07-13 Hitachi Chem Co Ltd 酸化セリウム研磨剤および基板の研磨法
JP2008053415A (ja) * 2006-08-24 2008-03-06 Fujimi Inc 研磨用組成物及び研磨方法
JP2009035701A (ja) * 2006-09-08 2009-02-19 Kao Corp 研磨液組成物
JP2008235491A (ja) * 2007-03-19 2008-10-02 Nitta Haas Inc 研磨用組成物
JP2010017841A (ja) * 2008-06-11 2010-01-28 Shin-Etsu Chemical Co Ltd 合成石英ガラス基板用研磨剤
JP2010010167A (ja) * 2008-06-24 2010-01-14 Jsr Corp 化学機械研磨用水系分散体、化学機械研磨用水系分散体の製造方法および化学機械研磨方法
JP2010034509A (ja) * 2008-07-03 2010-02-12 Fujimi Inc 半導体用濡れ剤、それを用いた研磨用組成物および研磨方法
JP2011061089A (ja) * 2009-09-11 2011-03-24 Kao Corp 研磨液組成物
JP2011097045A (ja) * 2009-09-30 2011-05-12 Nitta Haas Inc 研磨組成物
WO2012105651A1 (ja) * 2011-02-03 2012-08-09 ニッタ・ハース株式会社 研磨用組成物およびそれを用いた研磨方法

Also Published As

Publication number Publication date
JP2014080461A (ja) 2014-05-08
TW201422797A (zh) 2014-06-16

Similar Documents

Publication Publication Date Title
JP6387032B2 (ja) 研磨用組成物、研磨用組成物製造方法および研磨物製造方法
TWI624537B (zh) Grinding composition and method for producing the same
JP6184962B2 (ja) 研磨用組成物及び基板の製造方法
TWI535803B (zh) Silicon wafer with grinding composition and silicon wafer grinding method
JP7148506B2 (ja) 研磨用組成物およびこれを用いた研磨方法
JP6110681B2 (ja) 研磨用組成物、研磨用組成物製造方法および研磨物製造方法
JP5889921B2 (ja) 研磨用組成物、その製造方法、希釈用原液、及びシリコン基板の製造方法
JP2017101248A (ja) 研磨用組成物、研磨用組成物製造方法および研磨物製造方法
JP5873882B2 (ja) 研磨用組成物、その製造方法、シリコン基板の製造方法、及びシリコン基板
JP6069308B2 (ja) 研磨用組成物の製造方法
JP6691774B2 (ja) 研磨用組成物およびその製造方法
JP6029895B2 (ja) 研磨用組成物及び基板の製造方法
WO2014057932A1 (ja) 研磨用組成物の製造方法及び研磨用組成物
WO2014024930A1 (ja) 研磨用組成物、当該研磨用組成物の製造方法、及び当該研磨用組成物を用いた半導体基板の製造方法
JP2014038906A (ja) 研磨用組成物、当該研磨用組成物の製造方法、及び当該研磨用組成物を用いた半導体基板の製造方法
JP6305674B2 (ja) 研磨用組成物及び半導体基板の製造方法
JP6280688B2 (ja) 研磨用組成物の製造方法及び研磨用組成物
JP6122783B2 (ja) 研磨用組成物及び半導体基板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13845994

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13845994

Country of ref document: EP

Kind code of ref document: A1