WO2014057640A1 - トランクピストン型ディーゼル機関用潤滑油組成物 - Google Patents

トランクピストン型ディーゼル機関用潤滑油組成物 Download PDF

Info

Publication number
WO2014057640A1
WO2014057640A1 PCT/JP2013/005933 JP2013005933W WO2014057640A1 WO 2014057640 A1 WO2014057640 A1 WO 2014057640A1 JP 2013005933 W JP2013005933 W JP 2013005933W WO 2014057640 A1 WO2014057640 A1 WO 2014057640A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
oil
base oil
less
content
Prior art date
Application number
PCT/JP2013/005933
Other languages
English (en)
French (fr)
Inventor
洋子 守田
一生 田川
Original Assignee
Jx日鉱日石エネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石エネルギー株式会社 filed Critical Jx日鉱日石エネルギー株式会社
Priority to JP2014540732A priority Critical patent/JP6155275B2/ja
Priority to CN201380064364.XA priority patent/CN104837970B/zh
Priority to KR1020157011490A priority patent/KR102092021B1/ko
Priority to SG11201502836TA priority patent/SG11201502836TA/en
Publication of WO2014057640A1 publication Critical patent/WO2014057640A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M111/00Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential
    • C10M111/02Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential at least one of them being a non-macromolecular organic compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/1006Petroleum or coal fractions, e.g. tars, solvents, bitumen used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/102Aliphatic fractions
    • C10M2203/1025Aliphatic fractions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/104Aromatic fractions
    • C10M2203/1045Aromatic fractions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/026Butene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/028Overbased salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/26Overbased carboxylic acid salts
    • C10M2207/262Overbased carboxylic acid salts derived from hydroxy substituted aromatic acids, e.g. salicylates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/28Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/04Detergent property or dispersant property
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/08Resistance to extreme temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/40Low content or no content compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/52Base number [TBN]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/64Environmental friendly compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/252Diesel engines

Definitions

  • the present invention relates to a lubricating oil composition for a trunk piston type diesel engine.
  • marine trunk piston type diesel engines As a fuel for marine trunk piston type diesel engines, fuels containing asphaltene components such as A heavy oil and C heavy oil are often used. In general, a large amount of detergent is blended (see Patent Document 1 below). Therefore, marine trunk piston type diesel engine lubricating oil is required to have a solubility of a detergent added in large amounts and a solubility of unburned asphaltenes and combustion-generated resins mixed from fuel. In particular, the solubility of unburned asphaltenes is important to prevent the generation of black sludge that can lead to piston failure.
  • the base oil used for the conventional trunk piston type diesel engine lubricating oil is mainly the atmospheric distillation residue obtained by distilling and separating gasoline and light oil from crude oil, and further distilling under reduced pressure to obtain the required viscosity. It is manufactured by taking a fraction and purifying it. These base oils are classified as Group I in the API base oil classification.
  • a base oil having an extremely high viscosity index is produced by hydrocracking petroleum wax produced as a by-product when producing a wax or base oil produced by the Fischer-Tropsch process.
  • These base oils produced by hydrocracking are classified into Group II or III according to API base oil classification.
  • the heavy fuel when heavy fuel is used, the heavy fuel contains polycyclic aromatics such as asphaltenes, and in the case of an internal combustion engine, it is mixed into the lubricating oil as a part of unburned matter.
  • This unburned product dissolves relatively easily in Group I base oils, but has poor solubility in Group II base oils and Group III base oils. Since it is easy to deteriorate, a deposit is more easily formed.
  • the present invention has excellent high temperature cleanliness even when a group II or group III base oil is used as a lubricating oil for a trunk piston type diesel engine using heavy fuel. It is an object to provide a lubricating oil for a trunk piston type diesel engine having
  • the present invention (A) Mineral oil having a saturated hydrocarbon of 90% by mass or more, a sulfur content of 0.03% by mass or less, a viscosity index of 80 or more, and a kinematic viscosity at 100 ° C. of 3 to 35 mm 2 / s.
  • Base lubricant base oil (B) Extract containing 15% or more of an aromatic hydrocarbon compound (% C A ) by the composition analysis method defined in ASTM D2140, which is by-produced during solvent refining in the process of producing a mineral oil base oil B1) is 5% by mass or more based on the total amount of the base oil, or the saturated hydrocarbon is less than 90% by mass, the sulfur content exceeds 0.03% by mass, and the kinematic viscosity at 100 ° C. is 30 mm 2 / s.
  • a metallic detergent (E) A lubricating oil composition for a trunk piston type diesel engine comprising: an ashless dispersant.
  • Base lubricant base oil (B) Extract containing 15% or more of an aromatic hydrocarbon compound (% C A ) by the composition analysis method defined in ASTM D2140, which is by-produced during solvent refining in the process of producing a mineral oil base oil B1) is 5% by mass or more based on the total amount of base oil, (C) a base oil having a polybutene synthetic oil or a hydride thereof and having a kinematic viscosity at 100 ° C. of 5 to 16 mm 2 / s, (D) a metallic detergent, A lubricating oil composition comprising (E) an ashless dispersant is preferred.
  • the component (B) is preferably an extract having a PCA content of less than 3% by mass.
  • the component (B) has an MI value of less than 1.0 and a benzo [a] pyrene content of 1 mg / kg or less. It is also preferable that the extract has an aromatic compound (PAH) content of 10 mg / kg or less.
  • the aromatic content of two or more rings contained in the base oil is 2% by mass or more.
  • the trunk piston type diesel engine lubricating oil composition of the present invention has a kinematic viscosity at 100 ° C. of 5.6 to 16.3 mm 2 / s and a base number of 9 to 55 mgKOH / g (perchloric acid method). It is preferable that
  • a trunk piston type diesel engine lubricating oil that generates a small amount of deposit even when a group II or group III base oil is used as a lubricating oil of a trunk piston type diesel engine that uses heavy fuel. Can be provided.
  • the present invention is described in detail below.
  • the base oil in the trunk piston type diesel engine lubricating oil composition of the present invention (hereinafter also simply referred to as the lubricating oil composition)
  • the above mineral oil base oil (B2) contains 20% by mass or more based on the total amount of the base oil, and the kinematic viscosity at 100 ° C. is 5 to 16 mm 2 / s.
  • the base oil of the lubricating oil composition of the present invention contains, as component (B), a fragrance obtained by a composition analysis method defined in ASTM D2140, which is a by-product of solvent refining in the process of producing a mineral oil base oil.
  • component (B) a fragrance obtained by a composition analysis method defined in ASTM D2140, which is a by-product of solvent refining in the process of producing a mineral oil base oil.
  • the extract (B1) containing 15% or more of the group hydrocarbon compound (% C A ) is contained in an amount of 5% by mass or more based on the total amount of the base oil, it may further contain (C) a polybutene synthetic oil or a hydride thereof. preferable.
  • the component (A) has a saturated hydrocarbon of 90% by mass or more, a sulfur content of 0.03% by mass or less, a viscosity index of 80 or more, and a kinematic viscosity at 100 ° C. of 3 to 35 mm 2 / s mineral oil base oil and classified into group II and group III based on the base oil classification by API (American Petroleum Institute).
  • the saturated hydrocarbon content means a value measured by ASTM D-2007.
  • the method for producing the mineral oil base oil is not particularly limited, but in general, an atmospheric residue obtained by atmospheric distillation of crude oil is desulfurized, hydrocracked, and a set viscosity is obtained.
  • the grade is fractionally distilled or its residual oil is subjected to solvent dewaxing or catalytic dewaxing, and if necessary, further solvent extraction and hydrogenated base oil.
  • the above-mentioned component (A) is also subjected to distillation under reduced pressure from atmospheric distillation residue, fractionated to the required viscosity grade, and then subjected to processes such as solvent refining and hydrorefining to dewax the solvent.
  • GTL WAX gas
  • GTL-based wax isomerized lubricating base oils and the like produced by isomerizing (Turi Liquid Wax).
  • the basic method of producing the wax isomerized lubricating base oil is the same as that of the hydrocracking base oil.
  • the total aromatic content of the mineral oil-based lubricating base oil of component (A) is not particularly limited, but is 3% by mass or less in one embodiment, 1% by mass or less in another embodiment, and other In this embodiment, it is 0.5% by mass or less.
  • the said total aromatic content means the aromatic fraction content measured based on ASTMD2549.
  • the sulfur content of the mineral oil-based lubricating base oil that is the component (A) is 0.03% by mass or less, in one embodiment, 0.01% by mass or less, and in another embodiment, The mineral oil base oil is substantially free of sulfur.
  • the smaller the sulfur content the higher the degree of purification, and the problem of sludge solubility is likely to occur.
  • the kinematic viscosity at 100 ° C. of the mineral oil base oil which is the component (A) is 3 to 35 mm 2 / s, preferably 4 mm 2 / s or more, particularly preferably 5 mm 2 / s or more, Moreover, Preferably it is 34 mm ⁇ 2 > / s or less, Most preferably, it is 33 mm ⁇ 2 > / s or less.
  • the kinematic viscosity at 100 ° C. refers to the kinematic viscosity at 100 ° C. defined in ASTM D-445.
  • the viscosity index of the mineral oil base oil that is the component (A) is 80 or more, in one embodiment, 95 or more, and in another embodiment, 105 or more.
  • the viscosity index means a viscosity index measured in accordance with JIS K2283-2000.
  • the upper limit of the viscosity index of the mineral oil base oil of the component (A) is not particularly limited, but the viscosity is similar to normal paraffin, slack wax, GTL wax, etc., or isoparaffin mineral oil obtained by isomerizing these. Those having an index of about 125 to 170 can also be used. However, the viscosity index of the mineral oil base oil is preferably 160 or less from the viewpoint of low temperature fluidity.
  • the blending amount of the mineral oil-based lubricating base oil of the component (A) is preferably 50% by mass or more, more preferably 55% by mass or more, still more preferably 60% by mass or more based on the total amount of the base oil. Moreover, it is preferably 95% by mass or less, and more preferably 90% by mass or less.
  • the base oil in the trunk piston type diesel engine lubricating oil composition of the present invention is obtained by using, as component (B), an extract (B1) produced as a by-product during solvent refining in the mineral oil-based lubricating base oil production process.
  • Mineral oil-based lubrication with 5% by mass or more based on the total amount, or saturated hydrocarbons less than 90% by mass, sulfur content exceeding 0.03% by mass, and kinematic viscosity at 100 ° C. of 30 mm 2 / s or more
  • Oil base oil (B2) is contained in an amount of 20% by mass or more based on the total amount of base oil.
  • the extract produced as a by-product during the solvent purification contains 70 to 99% of aromatic compounds according to column chromatography, and is an aromatic hydrocarbon compound (% C A ) according to the composition analysis method defined in ASTM D2140. Is contained in an amount of 5 to 25% by weight of PCA (polycyclic aromatic compound) extracted with DMSO (dimethyl sulfoxide) according to the IP346 method defined by the British Petroleum Institute.
  • PCA polycyclic aromatic compound
  • DMSO dimethyl sulfoxide
  • the method for producing the extract produced as a by-product during the solvent refining is not particularly limited, but as an example, after removing the lubricating oil fraction obtained by vacuum distillation of the crude oil and the vacuum distillation residue, if necessary, Oil obtained by performing dewaxing treatment or hydrorefining treatment and subjecting the oil to solvent extraction with a solvent having affinity for aromatic hydrocarbons is used.
  • the above solvent extraction treatment refers to an operation of using a solvent to separate a raffinate having a low aromatic content and an extract having a high aromatic content.
  • a solvent furfural, phenol, cresol, sulfolane, N-methylpyrrolidone. , Dimethyl sulfoxide, formylmorpholine, glycol solvents and the like are used.
  • the extract (B1) as the component (B) has a PCA content of less than 3% by mass, that is, PCA (polycyclic sulfoxide) extracted with DMSO (dimethyl sulfoxide) according to the IP346 method defined by the British Petroleum Institute.
  • the content of the aromatic compound is preferably less than 3% by mass.
  • the content of PCA in the extract varies depending on the separability in the solvent extraction process, the solvent used, the ratio of raw material oil / solvent, reaction temperature, and the like. Therefore, it is possible to control the PCA content to 3% by mass or less by appropriately changing these conditions. In order to control the PCA content of the extract (B1) to 3% by mass or less, hydrocracking treatment is also preferably used.
  • Japanese National Publication No. 6-505524 discloses a process for producing a process oil in which a residue obtained by distillation under reduced pressure is removed and dewaxed to reduce the PCA content to less than 3% by mass. ing.
  • Japanese Patent Publication No. 7-501346 discloses a non-carcinogenic bright stock extract, a debris oil having a low PCA content, and a process for producing the same, and the publication discloses debris removal from a residue in a vacuum distillation column. Oils obtained by reducing the aromatic compounds by the extraction treatment of the oil obtained by the above or deasphalting oil or the oil obtained by the dewaxing treatment thereof are disclosed.
  • Japanese Patent Application Laid-Open No. 11-80751 discloses a polycyclic ring according to the IP346 test method from a petroleum hydrocarbon mixture by performing extraction under specific conditions using a countercurrent contact type extraction tower in solvent extraction. An extraction residual oil having an aromatic compound content of less than 1.6% by mass is obtained, and a petroleum aromatic hydrocarbon oil having a polycyclic aromatic compound content of less than 3% by mass according to the IP346 test method is further obtained by solvent extraction in the second stage. A production method obtained as an extracted oil is disclosed.
  • Japanese Patent Application Laid-Open No. 2000-80208 discloses a raw material preparation step for preparing a raw material oil selected from the group consisting of a lubricating oil fraction obtained by distillation of crude oil under reduced pressure and a debris oil obtained by removal of a crude oil vacuum distillation residue.
  • a solvent extraction step of solvent extraction of the feedstock with a solvent having a selective affinity for aromatic hydrocarbons, and the content of the polycyclic aromatic compound in the extract determined by the IP346 method in the solvent extraction step Discloses a process for producing a rubber process oil, characterized in that the extraction conditions are determined so that the aniline point is 80 ° C. or less.
  • the extract (B1) as the component (B) preferably has a low carcinogenicity by PCA as described above, or preferably has a mutagenicity index MI of less than 1.0.
  • the PCA is less than 3% by mass and the mutagenicity index MI is less than 1.0. More preferably, the PCA is less than 3% by mass and the mutagenicity index MI is less than 0.4.
  • mutagenicity index MI is an index based on the “Standard Test Method for Determining Carcinogenic Potential of Virgin Base Oils in Metalworking stipulated by ASTM-E-1687-10.”
  • the production method of the extract (B1) as the component (B) having a mutagenicity index MI of less than 1.0 is not particularly limited, but as an example, a process oil is disclosed in Japanese Patent No. 3624646.
  • the extract (B1) as the component (B) has a benzo [a] pyrene (BaP) content of 1 mg / kg or less and a specific aromatic compound (PAH) of 10 mg / kg or less.
  • a specific aromatic compound (PAH) means an aromatic compound (PAH) of the following 1) to 8).
  • the production method is not limited.
  • JP-a-2010-229314 discloses, a% C a is 25 to 45 according to ASTMD3238, benzo [a] content of pyrene (BaP) is not more than 1 mg / kg, certain aromatic compounds (PAH) is A method for producing an extract of 10 mg / kg or less is disclosed.
  • the extract (B1) as the component (B) preferably has a bay proton concentration (% H Bay ) of less than 0.35%.
  • bai proton is a 1 H-NMR measurement of the proportion of hydrogen atoms in the part called “Bay region” surrounded by a condensed benzene ring, and is used to judge the carcinogenicity associated with the structure of aromatic compounds. is there.
  • the measurement method is ISO 21461 “Rubber-Determination of the aromatity of oil in rubberized compound”. It is said that the higher the bay proton concentration, the higher the carcinogenicity, and it is preferably less than 0.35%.
  • the extract (B1) as the component (B) has a benzo (a) pyrene (BaP) content of 1 mg / kg or less, a specific aromatic compound (PAH) of 10 mg / kg or less, and a bay proton concentration ( % H Bay ) is particularly preferably less than 0.35% and the mutagenicity index MI is less than 1.0.
  • the extract (B1) as the component (B) preferably has a kinematic viscosity at 100 ° C. of 5 to 100 mm 2 / s.
  • a kinematic viscosity at 100 ° C. exceeds 100 mm 2 / s, workability deteriorates.
  • the kinematic viscosity at 100 ° C. is less than 5 mm 2 / s, it is extremely difficult to ensure sufficient aromaticity, and the effects of the present invention may not be exhibited.
  • the kinematic viscosity at 100 ° C. is preferably 50 mm 2 / s or less, and more preferably 20 mm 2 / s or more.
  • the high temperature cleanability is high.
  • the kinematic viscosity at 100 ° C. is 50 mm 2 / s or less
  • the high temperature cleanability is high.
  • the kinematic viscosity at 100 ° C. is 20 mm 2 / s or more
  • the high temperature cleanability is high.
  • the extract (B1) as the component (B) may not have sufficient solubility when% C A (ASTM D2140) is less than 15%.
  • the% C A (ASTM D2140) of the extract exceeds 50%, it is extremely difficult to make the DMSO extract less than 3%, which is not preferable because the economical efficiency of the purification process deteriorates.
  • the extract (B1) as the component (B) preferably has an aniline point of 90 ° C. or lower.
  • the aniline point of the extract exceeds 90 ° C., the solubility is lowered, which is not preferable.
  • the amount of the extract (B1) is 5% by mass or more based on the total amount of the base oil, preferably 10% by mass. % Or more. Further, the blending amount of the extract is preferably 90% by mass or less, more preferably 80% by mass or less, based on the total amount of the base oil.
  • the blending amount of the extract as the component (B) is less than 5% by mass, the piston cleanliness deteriorates. On the other hand, when it exceeds 90% by mass, the viscosity index decreases and the increase in viscosity at low temperatures increases. Therefore, it is not preferable.
  • the saturated hydrocarbon is less than 90% by mass, the sulfur content exceeds 0.03% by mass, and the kinematic viscosity at 100 ° C. is 30 mm.
  • the mineral oil base oil (B2) of 2 / s or more may be contained in an amount of 20% by mass or more based on the total amount of the base oil.
  • the mineral oil base oil (B2) as the component (B) has a saturated hydrocarbon content of less than 90% by mass, a sulfur content exceeding 0.03% by mass, and a kinematic viscosity at 100 ° C. of 30 mm. 2 / s or more, and is classified into Group I based on the classification of base oil by API (American Petroleum Institute).
  • the atmospheric distillation residue oil obtained by carrying out atmospheric pressure distillation of the crude oil is further distilled under reduced pressure, and it is required It is produced by removing the viscosity fraction to be purified.
  • the total aromatic content of the mineral oil base oil (B2) is not particularly limited, but is preferably 30% by mass or more, more preferably 35% by mass or more, and particularly preferably 40 to 60% by mass. It is. In addition, this total aromatic content means the aromatic fraction content measured based on ASTMD2549.
  • the sulfur content of the mineral oil base oil (B2) exceeds 0.03% by mass, is 0.1% by mass or more in one embodiment, and is 0.2-1 mass in another embodiment. %.
  • the kinematic viscosity at 100 ° C. of the mineral oil base oil (B2) is 30 mm 2 / s or more, preferably 30 to 40 mm 2 / s, particularly preferably 30 to 35 mm 2 / s.
  • the solubility of sludge decreases.
  • the blending amount of the mineral lubricating base oil (B2) is 20% by mass based on the total amount of the base oil. It is above, Preferably it is 25 mass% or more, More preferably, it is 30 mass% or more, Preferably it is 50 mass% or less, More preferably, it is 45 mass% or less.
  • the base oil in the trunk piston type diesel engine lubricating oil composition of the present invention contains 5% by mass or more of the extract (B1) as a component (B) based on the total amount of the base oil, (C) It is preferable to contain a polybutene synthetic oil or a hydride thereof.
  • polybutene synthetic oil or a hydride thereof polybutene is particularly preferable, and the polybutene is a polymer of butene which is an olefin having 4 carbon atoms.
  • the butane-butene fraction includes isobutane, n-butane, isobutylene, 1-butene, trans-2-butene, cis-2-butene and the like.
  • the kinematic viscosity at 100 ° C. of the polybutene synthetic oil or hydride thereof is preferably 60 mm 2 / s or more, more preferably 100 mm 2 / s or more, preferably 350 mm 2 / s or less, 250 mm 2 / s. S or less is more preferable.
  • the kinematic viscosity at 100 ° C. of the polybutene synthetic oil or its hydride is 60 mm 2 / s or more, the viscosity of the base oil is sufficiently increased, the engine lubricity is sufficient, and the viscosity of 250 mm 2 / s or less is sufficient. In this case, the piston cleanliness is improved, and an increase in the amount of carbon deposited in the exhaust system can be suppressed.
  • the polybutene synthetic oil or hydride thereof preferably has a number average molecular weight of 500 or more and less than 1500, more preferably a number average molecular weight of 500 to 1000, and still more preferably a number average molecular weight of 500 to 900.
  • the number average molecular weight of the polybutene synthetic oil or its hydride is 500 or more, the viscosity of the base oil is sufficiently increased, the engine has sufficient lubricity, and when the number average molecular weight is less than 1500, the piston cleanliness is low. In addition, an increase in the amount of carbon deposition in the exhaust system can be suppressed.
  • the blending amount thereof is preferably in the range of 5 to 60% by mass, more preferably 50% based on the total amount of base oil. % By mass or less, more preferably 40% by mass or less, and most preferably 30% by mass or less. If the blending amount of the component (C) is 5% by mass or more, the viscosity as a lubricating oil can be sufficiently secured, and if it is 60% by mass or less, poor lubrication due to excessive viscosity is prevented. it can.
  • the base oil of the lubricating oil composition of the present invention can be mixed with a synthetic base oil other than the component (C).
  • synthetic oil-based base oils include isobutene oligomers, 1-octene, 1-decene, 1-dodecene homo-oligomers and / or co-oligomers, and the like.
  • ⁇ -olefins which are oligomers of olefins or their hydrides; diesters such as ditridecyl glutarate, di-2-ethylhexyl adipate, diisodecyl adipate, ditridecyl adipate, di-2-ethylhexyl sebacate; trimethylolpropane caprylate Polyol ester such as trimethylolpropane pelargonate, pentaerythritol-2-ethylhexanoate, pentaerythritol pelargonate, etc .; copolymer of dicarboxylic acid such as dibutyl maleate and ⁇ -olefin having 2 to 30 carbon atoms; Le naphthalene, alkylbenzenes, aromatic synthetic oils, and mixtures thereof and aromatic esters can be exemplified.
  • a preferred synthetic base oil is an organic solvent, and organic solvent
  • the base oil of the lubricating oil composition of the present invention has a kinematic viscosity at 100 ° C. in the range of 5 to 16 mm 2 / s, preferably 6 mm 2 / s or more, more preferably 7 mm 2 / s or more, Preferably it is 15 mm ⁇ 2 > / s or less, More preferably, it is 14 mm ⁇ 2 > / s or less. If the base oil has a kinematic viscosity at 100 ° C. of less than 5 mm 2 / s, the oil film is not sufficiently formed at the lubrication point, so that the lubricity is poor and the evaporation loss of the base oil may increase. Moreover, when the kinematic viscosity at 100 ° C. of the base oil exceeds 12 mm 2 / s, there is a concern that a problem occurs in the fluidity at a low temperature.
  • the base oil of the lubricating oil composition of the present invention preferably has a viscosity index of 85 or more, and more preferably 90 or more.
  • the viscosity index of the base oil is 85 or more, oil film retention at high temperatures and viscous resistance suppression at low temperatures are good.
  • the aromatic content of two or more rings by alumina silica chromatography analysis contained in the base oil is preferably 2% by mass or more, and more preferably in the range of 3 to 20% by mass.
  • the aromatic content of two or more rings contained in the base oil is 2 mass% or more, the high temperature cleanability of the lubricating oil composition is particularly good.
  • the amount of evaporation loss of the base oil of the lubricating oil composition of the present invention is preferably 20% by mass or less, more preferably 16% by mass or less, and more preferably 10% by mass or less in terms of NOACK evaporation. Is particularly preferred.
  • NOACK evaporation amount of the base oil exceeds 20% by mass, the evaporation loss of the lubricating oil composition is large, which causes an increase in viscosity and the like, which is not preferable.
  • the NOACK evaporation amount is a value obtained by measuring the evaporation amount of the base oil measured in accordance with ASTM D5800.
  • the trunk piston type diesel engine lubricating oil composition of the present invention contains (D) a metal-based detergent (hereinafter also referred to as (D) component) as an essential component.
  • D a metal-based detergent
  • any compound usually used for lubricating oils can be used.
  • these metal detergents can be used alone or in combination of two or more.
  • Examples of the sulfonate detergent include alkali metal salts and alkaline earth metals of alkyl aromatic sulfonic acids obtained by sulfonating alkyl aromatic compounds having a weight average molecular weight of 400 to 1500, preferably 700 to 1300. A salt or a (over) basic salt thereof can be used.
  • Examples of the alkali metal or alkaline earth metal include sodium, potassium, magnesium, barium, and calcium. Magnesium or calcium is preferable, and calcium is particularly preferable.
  • Examples of the alkyl aromatic sulfonic acid include so-called petroleum sulfonic acid and synthetic sulfonic acid.
  • Examples of the petroleum sulfonic acid herein include those obtained by sulfonating an alkyl aromatic compound of a lubricating oil fraction of mineral oil, and so-called mahoganic acid that is by-produced during white oil production.
  • the synthetic sulfonic acid for example, an alkylbenzene having a linear or branched alkyl group, which is produced as a by-product from an alkylbenzene production plant that is a raw material of a detergent or obtained by alkylating a polyolefin with benzene, is used.
  • a sulfonated one or a sulfonated alkylnaphthalene such as dinonylnaphthalene is used.
  • the sulfonating agent for sulfonating these alkyl aromatic compounds is not particularly limited, but usually fuming sulfuric acid or sulfuric anhydride is used.
  • the alkali metal salt, alkaline-earth metal salt, or its (over) basic salt of alkylphenol sulfide which has a structure shown by following formula (1) can be used.
  • the alkali metal or alkaline earth metal include sodium, potassium, magnesium, barium, and calcium. Magnesium or calcium is preferable, and calcium is particularly preferable.
  • R 1 represents a straight or branched, saturated or unsaturated alkyl group or alkenyl group having 6 to 21 carbon atoms
  • m is a degree of polymerization
  • S is sulfur.
  • x represents an integer of 1 to 3.
  • the carbon number of the alkyl group and alkenyl group in the formula (1) is preferably 9-18, more preferably 9-15. If the carbon number is less than 6, the solubility in the base oil may be inferior. On the other hand, if the carbon number exceeds 21, the production is difficult and the heat resistance may be inferior.
  • phenate metal detergents those containing an alkylphenol sulfide metal salt having a polymerization degree m of 4 or more, particularly m of 4 to 5 shown in the formula (1) are preferable because of excellent heat resistance.
  • the salicylate detergent examples include alkali metal having one hydrocarbon group having 1 to 19 carbon atoms, alkaline earth metal salicylate or a (over) basic salt thereof, and hydrocarbon group having 20 to 40 carbon atoms.
  • These hydrocarbon groups may be the same or different.
  • the alkali metal or alkaline earth metal include sodium, potassium, magnesium, barium, and calcium. Magnesium and / or calcium are preferable, and calcium is particularly preferably used.
  • the base value of the component (D) is preferably in the range of 50 to 500 mgKOH / g, more preferably in the range of 100 to 450 mgKOH / g, and still more preferably in the range of 120 to 400 mgKOH / g.
  • the base number is less than 50 mgKOH / g, the corrosion wear may increase.
  • it exceeds 500 mgKOH / g there may be a problem in solubility.
  • the metal ratio of the component (D) is not particularly limited, but the lower limit is preferably 1 or more, more preferably 2 or more, particularly preferably 2.5 or more, and the upper limit is preferably 20 or less, more preferably 19 or less, particularly It is desirable to use 18 or less.
  • the metal ratio here is represented by the valence of the metal element in the component (D) ⁇ metal element content (mol%) / soap group content (mol%).
  • the metal element means calcium, magnesium and the like
  • the soap group means a sulfonic acid group, a phenol group, a salicylic acid group and the like.
  • the component (D) can be used alone, but it is preferable to use two or more kinds in combination.
  • the component (D) can be used alone, but it is preferable to use two or more kinds in combination.
  • overbased Ca phenate / overbased Ca sulfonate (2) overbased Ca phenate / overbased Ca salicylate, (3) overbased Ca phenate / overbased Ca sulfonate / A combination of overbased Ca salicylate is preferred.
  • a preferred ratio of (1) overbased Ca phenate / overbased Ca sulfonate or (2) overbased Ca phenate / overbased Ca salicylate is 0.1 or more in terms of the weight ratio of the additive. 2 or more is more preferable, and 0.3 or more is most preferable. This is because the heat resistance is inferior when the ratio is less than 0.1.
  • the ratio is preferably 9 or less, more preferably 7 or less, and most preferably 5 or less. This is because when the ratio exceeds 9, the height in the TGA firing test is not sufficient, and the deposit on the piston top land is not sufficiently reduced.
  • overbased Ca phenate / overbased Ca sulfonate / overbased Ca salicylate the sum of the overbased Ca sulfonate and the overbased Ca salicylate with respect to the overbased Ca phenate is the above ratio. Is preferred.
  • 0.1 or more are preferable, 0.2 or more are further more preferable, and 0.3 or more are the most preferable. This is because if the weight ratio is less than 0.1, the deposit may increase conversely in a state far exceeding 300 ° C.
  • the weight ratio is preferably 9 or less, more preferably 7 or less, and most preferably 5 or less. When the weight ratio exceeds 9, the cleanliness deteriorates.
  • the content of the component (D) is preferably 3 to 30% by mass, more preferably 6 to 25% by mass, and particularly preferably 8 to 20% by mass based on the total amount of the composition. It is.
  • the content ratio of the component (D) is less than 3% by mass, the required cleanliness and acid neutralization may not be obtained.
  • the content exceeds 30% by mass the excess metal component is a piston. There is a risk of accumulation.
  • the metal content based on the component (D) is preferably 0.35 to 3.6% by mass, more preferably 1.0 to 2.% by mass based on the total amount of the composition. It is 9% by mass, particularly preferably 1.4 to 2.7% by mass.
  • the content of the metal component based on the component (D) is less than 0.7% by mass, the required cleanliness and acid neutralization may not be obtained, whereas when it exceeds 3.6% by mass In this case, excessive ash may accumulate on the piston top land, causing bore polishing or scuffing of the liner.
  • the trunk piston type diesel engine lubricating oil composition of the present invention contains (E) an ashless dispersant (hereinafter sometimes referred to as (E) component) as an essential component.
  • any ashless dispersant used in lubricating oils can be used.
  • a linear or branched alkyl group or alkenyl group having 40 to 400 carbon atoms, preferably 60 to 350 carbon atoms is used as the molecule.
  • examples thereof include at least one nitrogen-containing compound or derivative thereof, a Mannich dispersant, or a modified product of alkenyl succinimide. In use, one kind or two or more kinds arbitrarily selected from these can be blended.
  • the alkyl group or alkenyl group may be linear or branched, and is preferably a branch derived from an olefin oligomer such as propylene, 1-butene, isobutylene, or a co-oligomer of ethylene and propylene.
  • An alkyl group and a branched alkenyl group may be linear or branched, and is preferably a branch derived from an olefin oligomer such as propylene, 1-butene, isobutylene, or a co-oligomer of ethylene and propylene.
  • Examples of the component (E) include one or more compounds selected from the following components (E-1) to (E-3).
  • E-1) A succinimide having at least one alkyl group or alkenyl group having 40 to 400 carbon atoms in the molecule, or a derivative thereof
  • E-2) benzylamine having at least one alkyl group or alkenyl group having 40 to 400 carbon atoms in the molecule, or a derivative thereof
  • E-3) A polyamine having at least one alkyl group or alkenyl group having 40 to 400 carbon atoms in the molecule, or a derivative thereof.
  • Examples of the component (E-1) include compounds represented by the following formula (2) or (3).
  • R 2 represents an alkyl or alkenyl group having 40 to 400 carbon atoms, preferably 60 to 350, and h represents an integer of 1 to 5, preferably 2 to 4.
  • R 3 and R 4 each independently represents an alkyl group or an alkenyl group having 40 to 400 carbon atoms, preferably 60 to 350 carbon atoms, and particularly preferably a polybutenyl group.
  • I represents an integer of 0 to 4, preferably 1 to 3.
  • the component (E-1) includes a so-called monotype succinimide represented by the formula (2) in which succinic anhydride is added to one end of the polyamine, and a formula in which succinic anhydride is added to both ends of the polyamine (although the so-called bis-type succinimide represented by 3) is included, any of these or a mixture thereof may be included in the composition of the present invention.
  • the method for producing the succinimide as the component (E-1) is not particularly limited.
  • a compound having an alkyl group or an alkenyl group having 40 to 400 carbon atoms is reacted with maleic anhydride at 100 to 200 ° C. It is obtained by reacting the obtained alkyl succinic acid or alkenyl succinic acid with a polyamine.
  • the polyamine include diethylenetriamine, triethylenetetramine, tetraethylenepentamine, and pentaethylenehexamine.
  • Examples of the component (E-2) include compounds represented by the following formula (4).
  • R 5 represents an alkyl or alkenyl group having 40 to 400 carbon atoms, preferably 60 to 350 carbon atoms, and j represents an integer of 1 to 5, preferably 2 to 4.
  • the method for producing the benzylamine as the component (E-2) is not particularly limited.
  • a polyolefin such as a propylene oligomer, polybutene, or ethylene- ⁇ -olefin copolymer is reacted with phenol to obtain an alkylphenol.
  • examples thereof include a method in which formaldehyde and a polyamine such as diethylenetriamine, triethylenetetramine, tetraethylenepentamine, or pentaethylenehexamine are reacted by a Mannich reaction.
  • Examples of the component (E-3) include compounds represented by the following formula (5).
  • R 6 represents an alkyl or alkenyl group having 40 to 400 carbon atoms, preferably 60 to 350, and k represents an integer of 1 to 5, preferably 2 to 4.
  • the production method of the polyamine as the component (E-3) is not particularly limited.
  • a polyolefin such as a propylene oligomer, polybutene, or ethylene- ⁇ -olefin copolymer
  • ammonia ethylenediamine
  • diethylenetriamine is added thereto.
  • a method of reacting polyamines such as triethylenetetramine, tetraethylenepentamine, or pentaethylenehexamine.
  • Examples of the derivative of the nitrogen-containing compound exemplified as the component (E) include, for example, monocarboxylic acids such as fatty acids having 1 to 30 carbon atoms, oxalic acid, phthalic acid, trimellitic acid, pyromellitic to the aforementioned nitrogen-containing compounds.
  • monocarboxylic acids such as fatty acids having 1 to 30 carbon atoms, oxalic acid, phthalic acid, trimellitic acid, pyromellitic to the aforementioned nitrogen-containing compounds.
  • the remaining amino group and / or the reaction of a polycarboxylic acid having 2 to 30 carbon atoms such as an acid, or an anhydride thereof, or an ester compound, an alkylene oxide having 2 to 6 carbon atoms, or a hydroxy (poly) oxyalkylene carbonate.
  • the nitrogen-containing compound described above Examples include modified compounds in which two or more types of modifications selected from modification with oxygen-containing organic compounds, boron modification, phosphoric acid modification, and sulfur modification are combined.
  • the boric acid-modified compound of alkenyl succinimide particularly the boric acid-modified compound of bis-type alkenyl succinimide, can further improve the heat resistance when used in combination with the above-mentioned component (A). .
  • the content ratio of the component (E) is preferably 0.1 to 3.0% by mass, more preferably 0.2 to 2.5% by mass, based on the total amount of the composition. Particularly preferred is 0.3 to 2.0% by mass.
  • the content of the component (E) is usually 0.005 to 0.4% by mass, preferably 0.01 to 0.2% by mass, and more preferably 0.005% by mass based on the total amount of the composition.
  • the content is 01 to 0.1% by mass, particularly preferably 0.02 to 0.05% by mass.
  • the mass ratio (B / N ratio) between the boron content and the nitrogen content is not particularly limited, but preferably 0.5 to 1 More preferably, it is 0.7 to 0.9. The higher the B / N ratio is, the easier it is to improve the wear resistance and seizure resistance.
  • the content ratio is not particularly limited, but is preferably 0.001 to 0.1% by mass, more preferably 0.005 as the boron content based on the total amount of the composition. The content is 0.05 to 0.05% by mass, particularly preferably 0.01 to 0.04% by mass.
  • the component (E) preferably has a boron content of 0.5% by mass or more, more preferably 1.0% by mass or more, still more preferably 1.5% by mass or more, particularly preferably. It is most desirable to include 1.8% by mass of a boron-containing ashless dispersant, in particular, a bis-type boron-containing succinimide-based ashless dispersant.
  • the boron-containing ashless dispersant having a boron content of 0.5% by mass or more here includes 10 to 90% by mass, preferably 30 to 70% by mass, for example, a diluent oil such as mineral oil or synthetic oil.
  • the boron content usually means the boron content in a state including a diluent oil.
  • the number average molecular weight (Mn) of the ashless dispersant as the component (E) in the lubricating oil composition of the present invention is preferably 2500 or more, more preferably 3000 or more, still more preferably 4000 or more, and most preferably 5000 or more. However, it is preferably 10,000 or less. If the number average molecular weight of the ashless dispersant is less than 2500, the dispersibility may not be sufficient. On the other hand, when the number average molecular weight of the ashless dispersant exceeds 10,000, the viscosity is too high, the fluidity becomes insufficient, and the deposit increases.
  • the blended amount and effective concentration of the ashless dispersant as the component (E) are preferably such that the product of the number average molecular weight (Mn) of the ashless dispersant, the blended amount and the effective concentration is 9000 or more.
  • the effective concentration of the ashless dispersant of the component ratio of the mass remaining in the rubber film to the amount of the sample initially collected as a sample
  • the concentration of the ash dispersant in the composition is preferably in the range of 0.9 to 14% by mass based on the total amount of the lubricating oil composition.
  • the lubricating oil composition of the present invention preferably contains a sulfur-based extreme pressure agent as the other component.
  • a sulfur-based extreme pressure agent include dihydrocarbyl polysulfide, sulfurized fatty acid, sulfurized olefin, sulfurized ester, sulfurized fat, sulfurized mineral oil, thiazole compound, thiadiazole compound, and alkylthiocarbamate compound.
  • the lubricating oil composition of the present invention preferably contains an organic molybdenum compound.
  • the organic molybdenum compound include organic molybdenum compounds containing sulfur such as molybdenum dithiophosphate and molybdenum dithiocarbamate (MoDTC); molybdenum compounds (eg, molybdenum oxide such as molybdenum dioxide and molybdenum trioxide; orthomolybdic acid, para Molybdic acid such as molybdic acid and (poly) sulfurized molybdic acid; molybdate such as metal salt and ammonium salt of molybdic acid; molybdenum sulfide such as molybdenum disulfide, molybdenum trisulfide, molybdenum pentasulfide, and polysulfide molybdenum; Metal salts or amine salts of molybdic acid, sulfurized molybdic acid, molybdenum halides such as moly
  • the lubricating oil composition of the present invention preferably contains zinc dithiophosphate (ZnDTP) as an antiwear agent.
  • ZnDTP zinc dithiophosphate
  • the zinc dithiophosphate include 3 to 18 carbon atoms such as zinc dipropyldithiophosphate, zinc dibutyldithiophosphate, zinc dipentyldithiophosphate, zinc dihexyldithiophosphate, zinc diheptyldithiophosphate, or zinc dioctyldithiophosphate.
  • a dialkyldithiophosphate zinc having a linear or branched (primary, secondary or tertiary, preferably primary or secondary) alkyl group having 3 to 10 carbon atoms
  • the lubricating oil composition of the present invention is generally used in lubricating oils depending on its purpose in order to further improve its performance or to add other required performance in addition to the above components.
  • Optional additives can be further included. Examples of such additives include antioxidants, ashless friction modifiers, corrosion inhibitors, rust inhibitors, demulsifiers, metal deactivators, antifoaming agents, and colorants.
  • antioxidants examples include ashless antioxidants such as phenols and amines; and metal antioxidants such as zinc, copper, and molybdenum. When these are contained, the ratio is usually 0.1 to 5% by mass based on the total amount of the composition.
  • ashless friction modifier examples include fatty acid ester, aliphatic amine, and fatty acid amide. When these are contained, the ratio is usually 0.1 to 5% by mass based on the total amount of the composition.
  • corrosion inhibitor examples include benzotriazole, tolyltriazole, thiadiazole, and imidazole compounds.
  • rust inhibitor examples include petroleum sulfonate, alkylbenzene sulfonate, dinonylnaphthalene sulfonate, alkenyl succinate, and polyhydric alcohol ester.
  • demulsifier examples include polyalkylene glycol nonionic surfactants such as polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, and polyoxyethylene alkyl naphthyl ether.
  • metal deactivator examples include imidazoline, pyrimidine derivatives, alkylthiadiazoles, mercaptobenzothiazoles, benzotriazoles or derivatives thereof, 1,3,4-thiadiazole polysulfide, 1,3,4-thiadiazolyl-2,5- Bisdialkyldithiocarbamate, 2- (alkyldithio) benzimidazole, or ⁇ - (o-carboxybenzylthio) propiononitrile.
  • antifoaming agent examples include silicone oils and alkenyl succinic acid derivatives having a kinematic viscosity at 25 ° C. of less than 0.1 to 100 mm 2 / s.
  • the content is usually 0.005 to 5% by mass based on the total amount of the composition, and usually 0.0005 to 1% by mass for the antifoaming agent. It is chosen from the range.
  • Trunk piston type diesel engine lubricating oil composition of the present invention is preferably a kinematic viscosity at 100 ° C. is 5.6 ⁇ 16.3mm 2 / s, and further preferably from 7 ⁇ 15mm 2 / s . If the kinematic viscosity at 100 ° C. of the lubricating oil composition is 5.6 mm 2 / s or more, the oil film forming ability is sufficient, the occurrence of scuffing and excessive wear can be suppressed, and 16.3 mm 2 / If it is s or less, the spreadability between piston liners is good and sufficient lubrication performance can be maintained.
  • the trunk piston type diesel engine lubricating oil composition of the present invention preferably has a base number of 9 to 55 mgKOH / g (perchloric acid method), more preferably 10 to 50 mgKOH / g, still more preferably 11 to 45 mg KOH / g.
  • base number of the lubricating oil composition is less than 9 mgKOH / g, acid neutralization is insufficient and piston cleanliness is insufficient.
  • the base number of the lubricating oil composition exceeds 55 mgKOH / g, excessive base number, that is, metal carbonate forms a deposit and causes wear and piston ring sticking.
  • the base number is determined according to JIS K2501 “Petroleum products and lubricating oils—Neutralization number test method”. Means the base number measured by the perchloric acid method according to the above.
  • Example 1 A lubricating oil composition having the formulation shown in Table 1 was prepared, and a hot tube test was conducted in accordance with JPI-5S-55-99. The results are shown in Table 1.
  • the amount of the base oil is the content based on the total amount of the base oil, while the amount of the additive is the content based on the total amount of the composition.
  • test oil consisting of Group II type mineral base oil was further combined with an extract to add an aromatic component (Example) It can be seen that 1-4) show excellent high temperature cleanliness.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)
  • Engineering & Computer Science (AREA)

Abstract

 本発明は、グループIIやグループIIIの基油を使用してもデポジットの生成が少なく、優れた高温清浄性を有するトランクピストン型ディーゼル機関用潤滑油として、(A)飽和炭化水素が90質量%以上、硫黄分が元素量で0.03質量%以下、粘度指数が80以上、100℃での動粘度が3~35mm2/sの鉱油系潤滑油基油と、(B)鉱油系潤滑油基油製造過程において、溶剤精製する際に副生する%Cが15%以上のエキストラクト(B1)を基油全量基準で5質量%以上、又は、飽和炭化水素が90質量%より少なく、硫黄分が元素量で0.03質量%を超え、100℃での動粘度が30mm2/s以上の鉱油系潤滑油基油(B2)を基油全量基準で20質量%以上とを含み、100℃での動粘度が5~16mm2/sである基油に、(D)金属系清浄剤と(E)無灰分散剤とを配合してなるトランクピストン型ディーゼル機関用潤滑油組成物を提供する。

Description

トランクピストン型ディーゼル機関用潤滑油組成物
 本発明は、トランクピストン型ディーゼル機関用潤滑油組成物に関する。
 舶用のトランクピストン型ディーゼル機関の燃料としては、A重油やC重油等のアスファルテン成分を含む燃料が使用されることが多いが、燃料由来のアスファルテン成分でディーゼル機関が汚損されるため、潤滑油に清浄剤を多量に配合することが一般的である(下記特許文献1参照)。そのため、舶用のトランクピストン型ディーゼル機関用潤滑油には、多量に添加する清浄剤の溶解性と、燃料から混入する未燃アスファルテンや燃焼生成樹脂等の溶解性が求められる。特に、未燃アスファルテンの溶解性は、ピストンの破損につながる恐れのあるブラックスラッジの発生防止のために重要である。
 ところで、従来のトランクピストン型ディーゼル機関用潤滑油に使用される基油は、主として、原油からガソリンや軽油分を蒸留分離した後の常圧蒸留残渣油を、さらに減圧蒸留し、必要とする粘度留分を取り出し、それを精製して製造されている。これらの基油はAPIの基油分類でグループIに分類されるものである。
 近年では、基油に含まれる硫黄分並びに芳香族分が、基油の酸化安定性に悪影響を与えるため、上記残渣油を水素化分解し、硫黄分や芳香族分が極めて少ない基油が製造されるようになってきている。
 また、フィッシャー・トロプシュ法で製造されるワックスや基油を製造する際に副生する石油系ワックス等を水素化分解して、極めて粘度指数の高い基油が製造されている。これらの水素化分解して製造された基油は、APIの基油分類でグループIIあるいはIIIに分類されるものである。
 前者の基油(グループI)の精製過程では、フルフラール、フェノール、メチルピロリドン等の溶剤を使用して、芳香族分を中心とする、不安定な化合物を選択的に抽出除去するプロセスが多く採用されている。これに対し、後者の基油の製造方法では、基油中の芳香族分は極めて少なく、前述した溶剤精製工程を経る必要はほとんどない。このため、相対的に溶剤精製プロセスを経た基油の製造量が減少しつつある。
 ところで、重質な燃料を使用する場合、重質燃料にはアスファルテンのような多環芳香族が含まれており、内燃機関の場合、未燃焼物の一部として潤滑油に混入する。この未燃焼物はグループI基油には比較的容易に溶解するが、グループII基油やグループIII基油には溶解性が悪いため、潤滑油経路や潤滑部に堆積したり、また、酸化劣化し易いため、さらに容易にデポジットを形成してしまう。
特表2002-515933号公報
 本発明は、これらの状況から、重質燃料を使用する、トランクピストン型ディーゼル機関用潤滑油として、グループIIやグループIIIの基油を使用してもデポジットの生成が少なく、優れた高温清浄性を有するトランクピストン型ディーゼル機関用潤滑油を提供することを目的とする。
 本発明者らは上記課題を解決するために鋭意研究した結果、グループII及び/又はグループIIIの基油に、溶剤精製時に副生するエキストラクト又はグループIの基油を加えることにより、上記課題を改善できることを見出し、本発明を完成するに至ったものである。
 即ち、本発明は、
(A)飽和炭化水素が90質量%以上で、硫黄分が元素量で0.03質量%以下で、粘度指数が80以上で、100℃での動粘度が3~35mm2/sである鉱油系潤滑油基油と、
(B)鉱油系潤滑油基油製造過程において、溶剤精製する際に副生するASTM D2140に規定される組成分析法による芳香族炭化水素化合物(%C)を15%以上含有するエキストラクト(B1)を基油全量基準で5質量%以上、又は、飽和炭化水素が90質量%より少なく、硫黄分が元素量で0.03質量%を超え、100℃での動粘度が30mm2/s以上の鉱油系潤滑油基油(B2)を基油全量基準で20質量%以上と
 を含み、100℃での動粘度が5~16mm2/sである基油に、
(D)金属系清浄剤と、
(E)無灰分散剤と
 を配合してなるトランクピストン型ディーゼル機関用潤滑油組成物である。
 本発明のトランクピストン型ディーゼル機関用潤滑油組成物としては、
(A)飽和炭化水素が90質量%以上で、硫黄分が元素量で0.03質量%以下で、粘度指数が80以上で、100℃での動粘度が3~35mm2/sである鉱油系潤滑油基油と、
(B)鉱油系潤滑油基油製造過程において、溶剤精製する際に副生するASTM D2140に規定される組成分析法による芳香族炭化水素化合物(%C)を15%以上含有するエキストラクト(B1)を基油全量基準で5質量%以上と、
(C)ポリブテン系合成油又はその水素化物と
 を含み、100℃での動粘度が5~16mm2/sである基油に、
(D)金属系清浄剤と、
(E)無灰分散剤と
 を配合してなる潤滑油組成物が好ましい。
 本発明のトランクピストン型ディーゼル機関用潤滑油組成物においては、前記(B)成分は、PCAの含有量が3質量%未満であるエキストラクトであることが好ましい。
 また、本発明のトランクピストン型ディーゼル機関用潤滑油組成物においては、前記(B)成分は、MI値が1.0未満で、ベンゾ[a]ピレンの含有量が1mg/kg以下で、特定芳香族化合物(PAH)の含有量が10mg/kg以下であるエキストラクトであることも好ましい。
 また、本発明のトランクピストン型ディーゼル機関用潤滑油組成物においては、前記基油に含まれる2環以上の芳香族分が2質量%以上であることが好ましい。
 また、本発明のトランクピストン型ディーゼル機関用潤滑油組成物は、100℃での動粘度が5.6~16.3mm2/sで、塩基価が9~55mgKOH/g(過塩素酸法)であることが好ましい。
 本発明によれば、重質燃料を使用する、トランクピストン型ディーゼル機関の潤滑油として、グループIIやグループIIIの基油を使用してもデポジットの生成が少ないトランクピストン型ディーゼル機関用潤滑油を提供することができる。
 以下に、本発明を詳細に説明する。本発明のトランクピストン型ディーゼル機関用潤滑油組成物(以下、単に潤滑油組成物ともいう)における基油は、
(A)飽和炭化水素が90質量%以上で、硫黄分が元素量で0.03質量%以下で、粘度指数が80以上で、100℃での動粘度が3~35mm2/sである鉱油系潤滑油基油と、
(B)鉱油系潤滑油基油製造過程において、溶剤精製する際に副生するASTM D2140に規定される組成分析法による芳香族炭化水素化合物(%C)を15%以上含有するエキストラクト(B1)を基油全量基準で5質量%以上、又は、飽和炭化水素が90質量%より少なく、硫黄分が元素量で0.03質量%を超え、100℃での動粘度が30mm2/s以上の鉱油系潤滑油基油(B2)を基油全量基準で20質量%以上と
 を含み、100℃での動粘度が5~16mm2/sである。また、本発明の潤滑油組成物の基油は、上記(B)成分として、鉱油系潤滑油基油製造過程において、溶剤精製する際に副生するASTM D2140に規定される組成分析法による芳香族炭化水素化合物(%C)を15%以上含有するエキストラクト(B1)を基油全量基準で5質量%以上含む場合、更に、(C)ポリブテン系合成油又はその水素化物を含むことが好ましい。
 上記(A)成分は、飽和炭化水素が90質量%以上で、硫黄分が元素量で0.03質量%以下で、粘度指数が80以上で、100℃での動粘度が3~35mm2/sの鉱油系潤滑油基油であり、API(米国石油学会)による基油分類に基づく分類でグループII及びグループIIIに分類されるものである。なお、本発明において、飽和炭化水素の含有量は、ASTM D-2007で測定された値を意味する。
 上記鉱油系潤滑油基油の製造方法については、特に制限はないが、一般的には、原油を常圧蒸留して得られる常圧残油を、脱硫、水素化分解し、設定された粘度グレードに分留、あるいはその残油を溶剤脱ろう、あるいは接触脱ろうし、必要であればさらに、溶剤抽出、水素化し基油としたものである。
 上記(A)成分には、また、近年は、常圧蒸留残油をさらに減圧蒸留し、必要な粘度グレードに分留した後、溶剤精製、水素化精製等のプロセスを経て、溶剤脱ろうして製造する基油製造過程において、脱ろう過程において副性する、石油系ワックスを、水素化異性化した石油系ワックス異性化潤滑油基油や、フィッシャー・トロプシュプロセス等により製造されるGTL WAX(ガストゥリキッドワックス)を異性化する手法で製造されるGTL系ワックス異性化潤滑油基油等も含まれる。この場合のワックス異性化潤滑油基油の製造方法は、基本的な製造過程は水素化分解基油の製造方法と同じである。
 上記(A)成分の鉱油系潤滑油基油の全芳香族分は、特に制限はないが、一実施態様では3質量%以下であり、他の実施態様では1質量%以下であり、更に他の実施態様では0.5質量%以下である。ここで、鉱油系潤滑油基油の全芳香族分が少ないほど、即ち、芳香族性が低いほど、スラッジの溶解性の問題が発生し易いことになる。なお、上記全芳香族分とは、ASTM D2549に準拠して測定した芳香族留分含有量を意味する。
 また、上記(A)成分である鉱油系潤滑油基油の硫黄分は、0.03質量%以下であり、一実施態様では0.01質量%以下であり、また、他の実施態様では、該鉱油系潤滑油基油は、実質的に硫黄を含有しない。ここで、硫黄分が少ないほど精製度が高いことを意味し、スラッジの溶解性の問題が発生し易いことになる。
 上記(A)成分である鉱油系潤滑油基油の100℃での動粘度は、3~35mm2/sであり、好ましくは4mm2/s以上、特に好ましくは5mm2/s以上であり、また、好ましくは34mm2/s以下、特に好ましくは33mm2/s以下である。(A)成分の鉱油系潤滑油基油の100℃での動粘度が35mm2/sを超える場合は、低温粘度特性が悪化し、一方、その動粘度が3mm2/s未満の場合は、潤滑箇所での油膜形成が不十分であるため潤滑性に劣り、また潤滑油基油の蒸発損失が大きくなる。なお、本発明において、100℃での動粘度とは、ASTM D-445に規定される100℃での動粘度を指す。
 上記(A)成分である鉱油系潤滑油基油の粘度指数は、80以上であり、一実施態様では95以上であり、他の実施態様では105以上である。ここで、鉱油系潤滑油基油の粘度指数が高いほど、スラッジの溶解性の問題が発生し易いことになる。なお、本発明において、粘度指数は、JIS K2283-2000に準拠して測定された粘度指数を意味する。
 一方、上記(A)成分の鉱油系潤滑油基油の粘度指数の上限については特に制限はないが、ノルマルパラフィン、スラックワックスやGTLワックス等、あるいはこれらを異性化したイソパラフィン系鉱油のような粘度指数が125~170程度のものも使用することができる。但し、低温流動性の点で、上記鉱油系潤滑油基油の粘度指数は160以下であることが好ましい。
 上述の(A)成分の鉱油系潤滑油基油の配合量は、基油全量基準で50質量%以上が好ましく、より好ましくは55質量%以上であり、より一層好ましくは60質量%以上であり、また、好ましくは95質量%以下であり、より好ましくは90質量%以下である。
 本発明のトランクピストン型ディーゼル機関用潤滑油組成物における基油は、(B)成分として、鉱油系潤滑油基油製造過程において、溶剤精製する際に副生するエキストラクト(B1)を基油全量基準で5質量%以上、又は、飽和炭化水素が90質量%より少なく、硫黄分が元素量で0.03質量%を超え、100℃での動粘度が30mm2/s以上の鉱油系潤滑油基油(B2)を基油全量基準で20質量%以上含有する。
 上記溶剤精製する際に副生するエキストラクトは、カラムクロマトグラフィによれば70~99%の芳香族化合物を含有し、ASTM D2140に規定される組成分析法による芳香族炭化水素化合物(%C)を15%以上含み、イギリス石油協会の規定によるIP346法に従ってDMSO(ジメチルスルホキシド)により抽出されるPCA(多環芳香族化合物)を5~25質量%含有するものである。
 上記溶剤精製する際に副生するエキストラクトの製法は特に限定されないが、一つの例として、原油の減圧蒸留によって得られる潤滑油留分、減圧蒸留残油を脱れきした後、必要に応じて脱ろう処理や水素化精製処理し、芳香族炭化水素に親和性を有する溶剤で油を溶剤抽出処理することによって得られる油が用いられる。
 上記溶剤抽出処理とは、溶剤を用いて芳香族含有量の少ないラフィネートと芳香族含有量の多いエキストラクトに分離する操作をいい、溶剤としては、フルフラール、フェノール、クレゾール、スルフォラン、N-メチルピロリドン、ジメチルスルホキシド、フォルミルモルフォリン、グリコール系溶剤等が用いられる。
 しかしながら、近年、PCA(多環芳香族化合物)による発ガン性が重要視され、ヨーロッパでは、3質量%以上のPCAを含有する油などには有毒表示が義務づけられ、使用を規制する動きがある。従って、上記(B)成分としてのエキストラクト(B1)は、PCAの含有量が3質量%未満、即ち、イギリス石油協会の規定によるIP346法に従ってDMSO(ジメチルスルホキシド)により抽出されるPCA(多環芳香族化合物)の含有量が3質量%未満であることが好ましい。
 エキストラクト中のPCAの含有量は、溶剤抽出処理における分離能、用いた溶剤、原料油/溶剤比、反応温度などにより変化する。従って、これらの条件を適宜変えることによってPCA含有量を3質量%以下に制御することが可能である。また、エキストラクト(B1)のPCA含有量を3質量%以下に制御するために、水素化分解処理も好ましく用いられる。
 PCA含量が3質量%未満の(B)成分としてのエキストラクト(B1)について、その製造方法に制限はないが、以下のような製造方法を例示できる。
 特表平6-505524号公報は、減圧蒸留残留分を脱れき処理し、得られた油を脱ろう処理してPCA含量を3質量%未満に減少させたプロセス油を製造するプロセスを開示している。また、特表平7-501346号公報は、非発ガン性ブライトストック抽出物及びPCA含量の低い脱れき油並びにその生成プロセスを開示し、該公報には、真空蒸留カラム中の残渣の脱れきによって得られる油又は脱れき油の抽出処理によって芳香族化合物が減少した油あるいはその脱ろう処理によって得られる油が開示されている。
 また、特開平11-80751号公報には、溶剤抽出で、向流接触型の抽出塔を用い、特定の条件で抽出処理を行うことにより、石油系炭化水素混合物から、IP346試験法による多環芳香族化合物含有量1.6質量%未満の抽出残油を得、更に第2段階の溶剤抽出でIP346試験法による多環芳香族化合物含有量3質量%未満の石油系芳香族炭化水素油を抽出油として得る製造方法が開示されている。
 更に、特開2000-80208号公報には、原油の減圧蒸留による潤滑油留分と原油の減圧蒸留残渣の脱れきによる脱れき油とからなる群より選択される原料油を調製する原料調製工程と、該原料油を芳香族炭化水素に選択的親和性を有する溶剤で溶剤抽出する溶剤抽出工程とを有し、該溶剤抽出工程においてIP346法によって決定されるエキストラクトの多環芳香族化合物含量が3質量%未満でアニリン点が80℃以下となるように抽出条件を定めることを特徴とするゴムプロセス油の製造方法が開示されている。
 また、上記(B)成分としてのエキストラクト(B1)は、前述したようにPCAによる発ガン性が低いことが好ましいが、または、変異原性指数MIが1.0未満であることも好ましい。もちろんPCAが3質量%未満であり且つ変異原性指数MIが1.0未満であることがより好ましい。また、PCAが3質量%未満であり且つ変異原性指数MIが0.4未満であることが更に好ましい。
 上記変異原性指数MIは、ASTM-E-1687-10に規定する“Standard Test Method for Determining Carcinogenic Potential of Virgin Base Oils in Metalworking Fluids”に準拠して規定される変異原性指数MIである。
 変異原性指数MIが1.0未満である(B)成分としてのエキストラクト(B1)の製造法は特に限定されないが、例として、プロセス油が、特許第3624646号公報に開示されている。
 また、上記(B)成分としてのエキストラクト(B1)は、ベンゾ[a]ピレン(BaP)の含有量が1mg/kg以下であり、特定芳香族化合物(PAH)が10mg/kg以下であると発ガン性の懸念がなく、好ましい。ここで、該特定芳香族化合物(PAH)とは、下記1)~8)の芳香族化合物(PAH)を意味する。
 1)ベンゾ[a]ピレン(BaP)
 2)ベンゾ[e]ピレン(BeP)
 3)ベンゾ[a]アントラセン(BaA)
 4)クリセン(CHR)
 5)ベンゾ[b]フルオランテン(BbFA)
 6)ベンゾ[j]フルオランテン(BjFA)
 7)ベンゾ[k]フルオランテン(BkFA)
 8)ジベンゾ[a,h]アントラセン(DBAhA)
 なお、これらの特定芳香族化合物は、対象成分を分離・濃縮した後、内部標準物質を添加した試料を調製して、GC-MS分析により定量分析することができる。
 ベンゾ[a]ピレン(BaP)の含有量が1mg/kg以下であり、特定芳香族化合物(PAH)が10mg/kg以下のエキストラクトの製造方法について、その製造方法に制限はないが、例えば、特開2010-229314号公報には、ASTMD3238による%Cが25~45であって、ベンゾ[a]ピレン(BaP)の含有量が1mg/kg以下であり、特定芳香族化合物(PAH)が10mg/kg以下のエキストラクトの製造方法が開示されている。
 また、上記(B)成分としてのエキストラクト(B1)は、そのベイプロトン濃度(%HBay)が0.35%未満であることが好ましい。ここで、ベイプロトンとは縮合ベンゼン環に囲まれた「Bay region」と呼ばれる部分の水素原子の割合を1H-NMRにて測定し、芳香族化合物の構造に伴う発がん性を判断するものである。測定方法はISO 21461「Rubber-Determination of the aromaticity of oil in vulcanized rubber compound」である。該ベイプロトン濃度が高いほど発がん性が高くなるといわれており、0.35%未満であることが好ましい。
 上記(B)成分としてのエキストラクト(B1)は、ベンゾ(a)ピレン(BaP)の含有量が1mg/kg以下で、特定芳香族化合物(PAH)が10mg/kg以下で、ベイプロトン濃度(%HBay)が0.35%未満で、且つ変異原性指数MIが1.0未満であることが特に好ましい。
 本発明において、上記(B)成分としてのエキストラクト(B1)は、100℃での動粘度が5~100mm2/sであることが好ましい。100℃での動粘度が100mm2/sを超えると、作業性が低下する。一方、100℃での動粘度が5mm2/s未満では、十分な芳香族性を確保することが著しく困難になり、本願発明の効果を発揮できなくなるおそれがある。また、100℃での動粘度は、50mm2/s以下が好ましく、また、20mm2/s以上が好ましい。100℃での動粘度が50mm2/s以下の場合、高温清浄性が高い。また、100℃での動粘度が20mm2/s以上の場合も、高温清浄性が高い。
 また、上記(B)成分としてのエキストラクト(B1)は、%C(ASTM D2140)が15%未満の場合、溶解性が十分でない可能性がある。他方、エキストラクトの%C(ASTM D2140)が50%を超える場合、DMSO抽出分を3%未満にすることが著しく困難になり、精製工程の経済性が悪くなるため好ましくない。
 上記(B)成分としてのエキストラクト(B1)は、アニリン点が90℃以下であることが好ましい。エキストラクトのアニリン点が90℃を超えると、溶解性が低下するため好ましくない。
 また、上記(B)成分としてのエキストラクト(B1)のカラムクロマトグラフィによる芳香族分が60%未満の場合、溶解性が低下する恐れがある。他方、エキストラクトのカラムクロマトグラフィによる芳香族分が95%を超える場合、DMSO抽出分を3%未満にすることが著しく困難になり、精製工程の経済性が悪くなるため好ましくない。
 本発明の潤滑油組成物が上記(B)成分としてエキストラクト(B1)を含む場合、該エキストラクト(B1)の配合量は、基油全量基準で5質量%以上であり、好ましくは10質量%以上である。また、該エキストラクトの配合量は、基油全量基準で90質量%以下が好ましく、より好ましくは80質量%以下である。上記(B)成分としてのエキストラクトの配合量が5質量%未満であるとピストン清浄性が悪化し、一方、90質量%を超えると粘度指数が低下し、低温時の粘度の増加が大きくなるため好ましくない。
 一方、本発明の潤滑油組成物は、上記(B)成分として、飽和炭化水素が90質量%より少なく、硫黄分が元素量で0.03質量%を超え、100℃での動粘度が30mm2/s以上の鉱油系潤滑油基油(B2)を基油全量基準で20質量%以上含んでもよい。
 上記(B)成分としての鉱油系潤滑油基油(B2)は、飽和炭化水素が90質量%より少なく、硫黄分が元素量で0.03質量%を超え、100℃での動粘度が30mm2/s以上であり、API(米国石油学会)による基油分類に基づく分類でグループIに分類されるものである。
 上記鉱油系潤滑油基油(B2)の製造方法については、特に制限はないが、一般的には、原油を常圧蒸留して得られる常圧蒸留残渣油を、さらに減圧蒸留し、必要とする粘度留分を取り出し、それを精製して製造される。
 上記鉱油系潤滑油基油(B2)の全芳香族分は、特に制限はないが、好ましくは30質量%以上であり、更に好ましくは35質量%以上であり、特に好ましくは40~60質量%である。なお、該全芳香族分とは、ASTM D2549に準拠して測定した芳香族留分含有量を意味する。
 また、上記鉱油系潤滑油基油(B2)の硫黄分は、0.03質量%を超え、一実施態様では0.1質量%以上であり、他の一実施態様では0.2~1質量%である。
 上記鉱油系潤滑油基油(B2)の100℃での動粘度は、30mm2/s以上であり、好ましくは30~40mm2/s、特に好ましくは30~35mm2/sである。鉱油系潤滑油基油(B2)の100℃での動粘度が30mm2/s未満の場合は、スラッジの溶解性が低下する。
 本発明の潤滑油組成物が上記(B)成分として鉱油系潤滑油基油(B2)を含む場合、該鉱油系潤滑油基油(B2)の配合量は、基油全量基準で20質量%以上であり、好ましくは25質量%以上であり、より好ましくは30質量%以上であり、また、好ましくは50質量%以下であり、より好ましくは45質量%以下である。
 本発明のトランクピストン型ディーゼル機関用潤滑油組成物における基油は、上記(B)成分として、上述のエキストラクト(B1)を基油全量基準で5質量%以上含む場合、更に、(C)ポリブテン系合成油又はその水素化物を含むことが好ましい。ここで、該ポリブテン系合成油又はその水素化物としては、ポリブテンが特に好ましく、該ポリブテンは、炭素数4のオレフィンであるブテンの重合体である。
 上記(C)成分としてのポリブテン系合成油又はその水素化物とは、通常、ナフサの分解でエチレン、プロピレンを生産する際に生成するC4留分からブタジエンを抽出した残りの留分、即ち、ブタン-ブテン留分を、例えば塩化アルミニウムなどの触媒を用いてカチオン重合することにより得られる共重合物質又はこの共重合物質が有する二重結合を水素化して飽和化したものをいう。ここで、ブタン-ブテン留分とは、イソブタン、n-ブタン、イソブチレン、1-ブテン、trans-2-ブテン、cis-2-ブテンなどを含むものである。
 また、上記ポリブテン系合成油又はその水素化物の100℃での動粘度は、60mm2/s以上が好ましく、100mm2/s以上が更に好ましく、また、350mm2/s以下が好ましく、250mm2/s以下が更に好ましい。ポリブテン系合成油又はその水素化物の100℃での動粘度が60mm2/s以上の場合、基油の粘度が十分に上昇し、エンジンの潤滑性が充分となり、また、250mm2/s以下の場合、ピストン清浄性が良好となり、また、排気系のカーボン堆積量の増加を抑制できる。
 上記ポリブテン系合成油又はその水素化物としては、数平均分子量が500以上1500未満のものが好ましいが、数平均分子量500~1000のものがより好ましく、数平均分子量500~900のものが更に好ましい。ポリブテン系合成油又はその水素化物の数平均分子量が500以上の場合、基油の粘度が十分に上昇し、エンジンの潤滑性が充分となり、また、数平均分子量が1500未満の場合、ピストン清浄性が良好となり、また、排気系のカーボン堆積量の増加を抑制できる。
 本発明の潤滑油組成物が上記(C)成分のポリブテン系合成油又はその水素化物を含む場合、その配合量は、基油全量基準で5~60質量%の範囲が好ましく、より好ましくは50質量%以下、より一層好ましくは40質量%以下、最も好ましくは30質量%以下である。上記(C)成分の配合量が5質量%以上であれば、潤滑油としての粘度を十分に確保することができ、また、60質量%以下であれば、粘度の高過ぎによる潤滑不良を防止できる。
 また、本発明の潤滑油組成物の基油には、上記(C)成分に該当する以外の合成油系基油を混合させることも可能である。かかる合成油系基油としては、具体的には、イソブテンのオリゴマー、あるいは1-オクテン、1-デセン、1-ドデセンのホモオリゴマー及び/又はコオリゴマー等に代表される炭素数8~14のα-オレフィンのオリゴマーであるポリα-オレフィン又はその水素化物;ジトリデシルグルタレート、ジ-2-エチルヘキシルアジペート、ジイソデシルアジペート、ジトリデシルアジペート、ジ-2-エチルヘキシルセバケート等のジエステル;トリメチロールプロパンカプリレート、トリメチロールプロパンペラルゴネート、ペンタエリスリトール-2-エチルヘキサノエート、ペンタエリスリトールペラルゴネート等のポリオールエステル;マレイン酸ジブチル等のジカルボン酸類と炭素数2~30のα-オレフィンとの共重合体;アルキルナフタレン、アルキルベンゼン、芳香族エステル等の芳香族系合成油又はこれらの混合物等が例示できる。これらの中でも、好ましい合成油系基油は、ポリα-オレフィン(PAO)と呼ばれる炭素数8~14のα-オレフィンのオリゴマーである。
 本発明の潤滑油組成物の基油は、100℃での動粘度が5~16mm2/sの範囲であり、好ましくは6mm2/s以上、より一層好ましくは7mm2/s以上、また、好ましくは15mm2/s以下、より一層好ましくは14mm2/s以下である。基油の100℃での動粘度が5mm2/s未満では、潤滑箇所での油膜形成が不十分であるため潤滑性に劣り、また基油の蒸発損失が大きくなる恐れがある。また、基油の100℃での動粘度が12mm2/sを超えると、低温時の流動性に問題が発生することが懸念される。
 本発明の潤滑油組成物の基油は、粘度指数が85以上であることが好ましく、90以上であることが更に好ましい。基油の粘度指数が85以上であると、高温での油膜保持性、および低温での粘性抵抗抑制が良好となる。
 また、本発明の潤滑油組成物において、基油に含まれるアルミナシリカクロマト分析による2環以上の芳香族分は2質量%以上であることが好ましく、3~20質量%の範囲が更に好ましい。基油に含まれる2環以上の芳香族分が2質量%以上の場合、潤滑油組成物の高温清浄性が特に良好となる。
 本発明の潤滑油組成物の基油の蒸発損失量としては、NOACK蒸発量で、20質量%以下であることが好ましく、16質量%以下であることが更に好ましく、10質量%以下であることが特に好ましい。基油のNOACK蒸発量が20質量%を超える場合、潤滑油組成物の蒸発損失が大きく、粘度増加等の原因となるため好ましくない。なお、ここでいうNOACK蒸発量とは、ASTM D5800に準拠して測定される基油の蒸発量を測定したものである。
 本発明のトランクピストン型ディーゼル機関用潤滑油組成物は、必須成分として、(D)金属系清浄剤(以下(D)成分ということがある)を含有する。
 上記(D)成分の金属系清浄剤としては、潤滑油用に通常用いられる任意の化合物が使用可能であり、例えば、スルホネート系清浄剤、フェネート系清浄剤、サリチレート系清浄剤、ナフテネート系清浄剤が挙げられる。使用に際しては、これら金属系清浄剤を単独あるいは2種以上組み合わせて用いることができる。
 上記スルホネート系清浄剤としては、例えば、重量平均分子量400~1500、好ましくは700~1300のアルキル芳香族化合物をスルフォン化することによって得られるアルキル芳香族スルフォン酸の、アルカリ金属塩、アルカリ土類金属塩又はその(過)塩基性塩を用いることができる。アルカリ金属又はアルカリ土類金属としては、例えば、ナトリウム、カリウム、マグネシウム、バリウム、カルシウムが挙げられ、マグネシウム又はカルシウムが好ましく、カルシウムが特に好ましい。アルキル芳香族スルフォン酸としては、例えば、いわゆる石油スルフォン酸や合成スルフォン酸が挙げられる。ここでいう石油スルフォン酸としては、一般に鉱油の潤滑油留分のアルキル芳香族化合物をスルフォン化したものやホワイトオイル製造時に副生する、いわゆるマホガニー酸等が挙げられる。また、合成スルフォン酸としては、例えば、洗剤の原料となるアルキルベンゼン製造プラントから副生したり、ポリオレフィンをベンゼンにアルキル化することにより得られる、直鎖状や分枝状のアルキル基を有するアルキルベンゼンをスルフォン化したもの、あるいはジノニルナフタレン等のアルキルナフタレンをスルフォン化したものが用いられる。また、これらアルキル芳香族化合物をスルフォン化する際のスルフォン化剤としては特に制限はないが、通常、発煙硫酸や無水硫酸が用いられる。
 上記フェネート系清浄剤としては、下記式(1)に示される構造を有する、アルキルフェノールサルファイドのアルカリ金属塩、アルカリ土類金属塩又はその(過)塩基性塩を用いることができる。アルカリ金属又はアルカリ土類金属としては、例えば、ナトリウム、カリウム、マグネシウム、バリウム、カルシウムが挙げられ、マグネシウム又はカルシウムが好ましく、カルシウムが特に好ましい。
Figure JPOXMLDOC01-appb-C000001
 式(1)中、R1は炭素数6~21の直鎖または分枝、飽和または不飽和のアルキル基又はアルケニル基を示し、mは重合度であって1~10の整数、Sは硫黄元素、xは1~3の整数を示す。
 式(1)におけるアルキル基及びアルケニル基の炭素数は、好ましくは9~18、より好ましくは9~15である。炭素数が6未満では基油に対する溶解性に劣るおそれがあり、一方、炭素数が21を超える場合は製造が困難で、また耐熱性に劣るおそれがある。
 フェネート系金属清浄剤の中では、式(1)に示される重合度mが4以上、特にはmが4~5のアルキルフェノールサルファイド金属塩を含有するものが、耐熱性が優れるため好ましい。
 上記サリチレート系清浄剤としては、例えば、炭素数1~19の炭化水素基を1つ有するアルカリ金属、アルカリ土類金属サリチレート又はその(過)塩基性塩、炭素数20~40の炭化水素基を1つ有するアルカリ金属、アルカリ土類金属サリチレート又はその(過)塩基性塩、炭素数1~40の炭化水素基を2つ又はそれ以上有するアルカリ金属、アルカリ土類金属サリチレート又はその(過)塩基性塩が挙げられる。これら炭化水素基は同一でも異なっていても良い。これらの中では、低温流動性に優れる点で、炭素数8~19の炭化水素基を1つ有するアルカリ金属、アルカリ土類金属サリチレート又はその(過)塩基性塩を用いることが望ましい。また、アルカリ金属又はアルカリ土類金属としては、例えば、ナトリウム、カリウム、マグネシウム、バリウム、カルシウムが挙げられ、マグネシウム及び/又はカルシウムが好ましく、カルシウムが特に好ましく用いられる。
 上記(D)成分の塩基価は、50~500mgKOH/gの範囲が好ましく、100~450mgKOH/gの範囲がより好ましく、120~400mgKOH/gの範囲が更に好ましい。塩基価が50mgKOH/g未満の場合は、腐食摩耗が増大するおそれがあり、一方、500mgKOH/gを超える場合は、溶解性に問題を生ずるおそれがある。
 上記(D)成分の金属比は特に制限はないが、下限が好ましくは1以上、より好ましくは2以上、特に好ましくは2.5以上、上限が好ましくは20以下、より好ましくは19以下、特に好ましくは18以下のものを使用することが望ましい。なお、ここでいう金属比とは、(D)成分における金属元素の価数×金属元素含有量(モル%)/せっけん基含有量(モル%)で表される。また、金属元素とは、カルシウム、マグネシウム等、せっけん基とはスルホン酸基、フェノール基、サリチル酸基等を意味する。
 本発明の潤滑油組成物において、上記(D)成分は単独で用いることもできるが、2種以上を併用することが好ましい。併用する場合、特に、(1)過塩基性Caフェネート/過塩基性Caスルホネート、(2)過塩基性Caフェネート/過塩基性Caサリシレート、(3)過塩基性Caフェネート/過塩基性Caスルホネート/過塩基性Caサリシレート、のいずれかの組み合わせが好ましい。
 (1)過塩基性Caフェネート/過塩基性Caスルホネートあるいは(2)過塩基性Caフェネート/過塩基性Caサリシレートの好ましい比率は、添加剤配合の重量比率で0.1以上であり、0.2以上がさらに好ましく、0.3以上が最も好ましい。該比率が0.1未満では耐熱性が劣るためである。また、該比率は、9以下が好ましく、7以下がさらに好ましく、5以下が最も好ましい。該比率が9を超えるとTGA焼成試験における高さが十分でなく、ピストントップランドの堆積物が十分に減少しないためである。
 (3)過塩基性Caフェネート/過塩基性Caスルホネート/過塩基性Caサリシレートの場合は、過塩基性Caフェネートに対する過塩基性Caスルホネートと過塩基性Caサリシレートとの合計が上記比率であることが好ましい。この場合、過塩基性Caスルホネート/過塩基性Caサリシレートの配合量の重量比率に制限はないが、0.1以上が好ましく、0.2以上がさらに好ましく、0.3以上が最も好ましい。該重量比率が0.1未満では300℃をはるかに超える状態ではデポジットが逆に増える可能性があるためである。また、該重量比率は、9以下が好ましく、7以下がさらに好ましく、5以下が最も好ましい。該重量比率が9を超えると清浄性が低下する。
 本発明の潤滑油組成物において、上記(D)成分の含有割合は、組成物全量基準で、好ましくは3~30質量%、より好ましくは6~25質量%、特に好ましくは8~20質量%である。(D)成分の含有割合が3質量%未満の場合は、必要とする清浄性および酸中和性が得られないおそれがあり、一方、30質量%を超える場合は、過剰な金属成分がピストンに堆積するおそれがある。
 本発明の潤滑油組成物において、上記(D)成分に基づく金属分の含有割合は、組成物全量基準で、好ましくは0.35~3.6質量%、より好ましくは1.0~2.9質量%、特に好ましくは1.4~2.7質量%である。(D)成分に基づく金属分の含有割合が0.7質量%未満の場合は、必要とする清浄性および酸中和性が得られないおそれがあり、一方、3.6質量%を超える場合は、ピストントップランドに過剰の灰分が堆積してライナーのボアポリッシングやスカッフィングが発生するおそれがある。
 また、本発明のトランクピストン型ディーゼル機関用潤滑油組成物は、必須成分として(E)無灰分散剤(以下(E)成分ということがある)を含有する。
 上記(E)成分としては、潤滑油に用いられる任意の無灰分散剤が使用でき、例えば、炭素数40~400、好ましくは60~350の直鎖若しくは分枝状のアルキル基又はアルケニル基を分子中に少なくとも1個有する含窒素化合物又はその誘導体、マンニッヒ系分散剤、あるいはアルケニルコハク酸イミドの変性品が挙げられる。使用に際してはこれらの中から任意に選ばれる1種類あるいは2種類以上を配合することができる。
 前記含窒素化合物又はその誘導体のアルキル基又はアルケニル基の炭素数が40未満の場合、潤滑油基油に対する溶解性が低下するおそれがあり、一方、400を超える場合は、本発明の潤滑油組成物の低温流動性が悪化するおそれがある。このアルキル基又はアルケニル基は、直鎖状でも分枝状でもよく、好ましくは、例えば、プロピレン、1-ブテン、イソブチレン等のオレフィンのオリゴマーや、エチレンとプロピレンとのコオリゴマーから誘導される分枝状アルキル基や分枝状アルケニル基が挙げられる。
 上記(E)成分としては、例えば、以下の(E-1)成分~(E-3)成分から選択される1種又は2種以上の化合物が挙げられる。
 (E-1)炭素数40~400のアルキル基又はアルケニル基を分子中に少なくとも1個有するコハク酸イミド、あるいはその誘導体、
 (E-2)炭素数40~400のアルキル基又はアルケニル基を分子中に少なくとも1個有するベンジルアミン、あるいはその誘導体、
 (E-3)炭素数40~400のアルキル基又はアルケニル基を分子中に少なくとも1個有するポリアミン、あるいはその誘導体。
 上記(E-1)成分としては、下記式(2)又は(3)で示される化合物が例示できる。
Figure JPOXMLDOC01-appb-C000002
 式(2)中、R2は炭素数40~400、好ましくは60~350のアルキル基又はアルケニル基を示し、hは1~5、好ましくは2~4の整数を示す。
 一方、式(3)中、R3及びR4は、それぞれ個別に炭素数40~400、好ましくは60~350のアルキル基又はアルケニル基を示し、特に好ましくはポリブテニル基である。また、iは0~4、好ましくは1~3の整数を示す。
 上記(E-1)成分には、ポリアミンの一端に無水コハク酸が付加した式(2)で表される、いわゆるモノタイプのコハク酸イミドと、ポリアミンの両端に無水コハク酸が付加した式(3)で表される、いわゆるビスタイプのコハク酸イミドとが含まれるが、本発明の組成物には、それらのいずれも、あるいはこれらの混合物が含まれていてもよい。
 上記(E-1)成分であるコハク酸イミドの製法は特に制限はなく、例えば、炭素数40~400のアルキル基又はアルケニル基を有する化合物を、無水マレイン酸と100~200℃で反応させて得たアルキルコハク酸又はアルケニルコハク酸をポリアミンと反応させることにより得られる。ここで、ポリアミンとしては、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミンが例示できる。
 上記(E-2)成分としては、下記式(4)で表される化合物が例示できる。
Figure JPOXMLDOC01-appb-C000003
 式(4)中、R5は炭素数40~400、好ましくは60~350のアルキル基又はアルケニル基を示し、jは1~5、好ましくは2~4の整数を示す。
 上記(E-2)成分であるベンジルアミンの製法は特に制限はなく、例えば、プロピレンオリゴマー、ポリブテン、又はエチレン-α-オレフィン共重合体等のポリオレフィンを、フェノールと反応させてアルキルフェノールとした後、これにホルムアルデヒドと、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、又はペンタエチレンヘキサミン等のポリアミンとをマンニッヒ反応により反応させる方法が挙げられる。
 上記(E-3)成分としては、下記式(5)で表される化合物が例示できる。
   R6-NH-(CH2CH2NH)k-H ・・・(5)
 式(5)中、R6は炭素数40~400、好ましくは60~350のアルキル基又はアルケニル基を示し、kは1~5、好ましくは2~4の整数を示す。
 上記(E-3)成分であるポリアミンの製法は特に制限はなく、例えば、プロピレンオリゴマー、ポリブテン、又はエチレン-α-オレフィン共重合体等のポリオレフィンを塩素化した後、これにアンモニアやエチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、又はペンタエチレンヘキサミン等のポリアミンを反応させる方法が挙げられる。
 (E)成分として例示した含窒素化合物の誘導体としては、例えば、前述の含窒素化合物に炭素数1~30の、脂肪酸等のモノカルボン酸や、シュウ酸、フタル酸、トリメリット酸、ピロメリット酸等の炭素数2~30のポリカルボン酸若しくはこれらの無水物、又はエステル化合物、炭素数2~6のアルキレンオキサイド、ヒドロキシ(ポリ)オキシアルキレンカーボネートを作用させて、残存するアミノ基及び/又はイミノ基の一部又は全部を中和したり、アミド化した、いわゆる含酸素有機化合物による変性化合物;前述の含窒素化合物にホウ酸を作用させて、残存するアミノ基及び/又はイミノ基の一部又は全部を中和したり、アミド化した、いわゆるホウ素変性化合物;前述の含窒素化合物にリン酸を作用させて、残存するアミノ基及び/又はイミノ基の一部又は全部を中和したり、アミド化した、いわゆるリン酸変性化合物;前述の含窒素化合物に硫黄化合物を作用させた硫黄変性化合物;及び前述の含窒素化合物に含酸素有機化合物による変性、ホウ素変性、リン酸変性、硫黄変性から選ばれた2種以上の変性を組み合わせた変性化合物が挙げられる。これらの誘導体の中でもアルケニルコハク酸イミドのホウ酸変性化合物、特にビスタイプのアルケニルコハク酸イミドのホウ酸変性化合物は、上述の(A)成分と併用することで耐熱性を更に向上させることができる。
 本発明の潤滑油組成物において、上記(E)成分の含有割合は、組成物全量基準で、好ましくは0.1~3.0質量%、より好ましくは0.2~2.5質量%、特に好ましくは0.3~2.0質量%である。また、該(E)成分の含有割合は、組成物全量基準で、窒素量として、通常0.005~0.4質量%、好ましくは0.01~0.2質量%、さらに好ましくは0.01~0.1質量%、特に好ましくは0.02~0.05質量%である。また、(E)成分として、ホウ素含有無灰分散剤を使用する場合、そのホウ素含有量と窒素含有量との質量比(B/N比)は特に制限はないが、好ましくは0.5~1、より好ましくは0.7~0.9である。B/N比が高いほど摩耗防止性、耐焼付き性を向上させ易いが、1を超える場合は、安定性に懸念がある。また、ホウ素含有無灰分散剤を使用する場合、その含有割合は特に制限はないが、組成物全量基準で、ホウ素量として、好ましくは0.001~0.1質量%、より好ましくは0.005~0.05質量%、特に好ましくは0.01~0.04質量%である。
 本発明の潤滑油組成物において(E)成分は、ホウ素含有量が好ましくは0.5質量%以上、より好ましくは1.0質量%以上、さらに好ましくは1.5質量%以上、特に好ましくは1.8質量%のホウ素含有無灰分散剤、特には、ビスタイプのホウ素含有コハク酸イミド系無灰分散剤を含有させることが最も望ましい。なお、ここでいうホウ素含有量が0.5質量%以上のホウ素含有無灰分散剤は、10~90質量%、好ましくは30~70質量%の、例えば、鉱油、合成油等の希釈油を含んでいてもよく、そのホウ素含有量は、通常、希釈油を含んだ状態でのホウ素含有量を意味する。
 本発明の潤滑油組成物における(E)成分の無灰分散剤の数平均分子量(Mn)は、2500以上であることが好ましく、より好ましくは3000以上、さらに好ましくは4000以上、最も好ましくは5000以上であるが、10000以下であることが好ましい。無灰分散剤の数平均分子量が2500未満では、分散性が十分でない可能性がある。逆に、無灰分散剤の数平均分子量が10000を超えると、粘度が高すぎ、流動性が不十分となり、デポジット増加の原因となる。
 なお、本発明において、(E)成分の無灰分散剤の配合量及び有効濃度は、無灰分散剤の数平均分子量(Mn)と配合量と有効濃度の積が9000以上となることが好ましく、(E)成分の無灰分散剤の有効濃度(最初に試料として採取したサンプル量に対するゴム膜内に残った質量の比)は、0.30~0.70の範囲が好ましく、(E)成分の無灰分散剤の組成物中の濃度(配合量と有効濃度の積)は、潤滑油組成物全量基準で0.9~14質量%の範囲が好ましい。
 本発明の潤滑油組成物は、その他の成分として硫黄系極圧剤を含有することが好ましい。該硫黄系極圧剤としては、例えば、ジヒドロカルビルポリサルファイド、硫化脂肪酸、硫化オレフィン、硫化エステル、硫化油脂、硫化鉱油、チアゾール化合物、チアジアゾール化合物、アルキルチオカーバメート化合物が好ましく挙げられる。
 また、本発明の潤滑油組成物は、有機モリブデン化合物を含有することが好ましい。該有機モリブデン化合物としては、例えば、モリブデンジチオホスフェート、モリブデンジチオカーバメート(MoDTC)等の硫黄を含有する有機モリブデン化合物;モリブデン化合物(例えば、二酸化モリブデン、三酸化モリブデン等の酸化モリブデン;オルトモリブデン酸、パラモリブデン酸、(ポリ)硫化モリブデン酸等のモリブデン酸;これらモリブデン酸の金属塩、アンモニウム塩等のモリブデン酸塩;二硫化モリブデン、三硫化モリブデン、五硫化モリブデン、ポリ硫化モリブデン等の硫化モリブデン;硫化モリブデン酸、硫化モリブデン酸の金属塩またはアミン塩、塩化モリブデン等のハロゲン化モリブデン)と、硫黄含有有機化合物[例えば、アルキル(チオ)キサンテート、チアジアゾール、メルカプトチアジアゾール、チオカーボネート、テトラハイドロカルビルチウラムジスルフィド、ビス(ジ(チオ)ハイドロカルビルジチオホスホネート)ジスルフィド、有機(ポリ)サルファイド、硫化エステル]あるいはその他の有機化合物との錯体;あるいは、上記硫化モリブデン、硫化モリブデン酸等の硫黄含有モリブデン化合物と、アルケニルコハク酸イミドとの錯体を挙げることができる。
 さらに、本発明の潤滑油組成物は、摩耗防止剤として、ジチオリン酸亜鉛(ZnDTP)を含有することが好ましい。該ジチオリン酸亜鉛としては、例えば、ジプロピルジチオリン酸亜鉛、ジブチルジチオリン酸亜鉛、ジペンチルジチオリン酸亜鉛、ジヘキシルジチオリン酸亜鉛、ジヘプチルジチオリン酸亜鉛、又はジオクチルジチオリン酸亜鉛等の炭素数3~18、好ましくは炭素数3~10の直鎖状若しくは分枝状(第1級、第2級又は第3級、好ましくは第1級又は第2級)アルキル基を有するジアルキルジチオリン酸亜鉛;ジフェニルジチオリン酸亜鉛、又はジトリルジチオリン酸亜鉛等の炭素数6~18、好ましくは炭素数6~10のアリール基若しくはアルキルアリール基を有するジ((アルキル)アリール)ジチオリン酸亜鉛、又はこれら2種以上の混合物が挙げられる。
 本発明の潤滑油組成物は、上記構成成分に加え、その性能を更に向上させるため又は他に要求される性能を付加するために、その目的に応じて潤滑油に一般的に使用されている任意の添加剤をさらに含有させることができる。このような添加剤としては、例えば、酸化防止剤、無灰摩擦調整剤、腐食防止剤、防錆剤、抗乳化剤、金属不活性化剤、消泡剤、又は着色剤が挙げられる。
 上記酸化防止剤としては、例えば、フェノール系、アミン系等の無灰酸化防止剤;亜鉛系、銅系、モリブデン系等の金属系酸化防止剤が挙げられる。これらを含有させる場合の割合は、組成物全量基準で、通常0.1~5質量%である。
 上記無灰摩擦調整剤としては、例えば、脂肪酸エステル系、脂肪族アミン系、脂肪酸アミド系が挙げられる。これらを含有させる場合の割合は、組成物全量基準で、通常0.1~5質量%である。
 上記腐食防止剤としては、例えば、ベンゾトリアゾール系、トリルトリアゾール系、チアジアゾール系、又はイミダゾール系化合物が挙げられる。
 上記防錆剤としては、例えば、石油スルホネート、アルキルベンゼンスルホネート、ジノニルナフタレンスルホネート、アルケニルコハク酸エステル、又は多価アルコールエステルが挙げられる。
 上記抗乳化剤としては、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、又はポリオキシエチレンアルキルナフチルエーテル等のポリアルキレングリコール系非イオン系界面活性剤が挙げられる。
 上記金属不活性化剤としては、例えば、イミダゾリン、ピリミジン誘導体、アルキルチアジアゾール、メルカプトベンゾチアゾール、ベンゾトリアゾール又はその誘導体、1,3,4-チアジアゾールポリスルフィド、1,3,4-チアジアゾリル-2,5-ビスジアルキルジチオカーバメート、2-(アルキルジチオ)ベンゾイミダゾール、又はβ-(o-カルボキシベンジルチオ)プロピオンニトリルが挙げられる。
 上記消泡剤としては、例えば、25℃における動粘度が0.1~100mm2/s未満のシリコーンオイル、アルケニルコハク酸誘導体等が挙げられる。
 これらの添加剤を本発明の潤滑油組成物に含有させる場合には、その含有量は組成物全量基準で、通常0.005~5質量%、消泡剤では通常0.0005~1質量%の範囲から選ばれる。
 本発明のトランクピストン型ディーゼル機関用潤滑油組成物は、100℃での動粘度が5.6~16.3mm2/sであることが好ましく、7~15mm2/sであることが更に好ましい。潤滑油組成物の100℃での動粘度が5.6mm2/s以上であれば、油膜形成能が十分で、スカッフィングの発生や過大な摩耗の発生を抑制でき、また、16.3mm2/s以下であれば、ピストンライナー間での拡がり性が良好で充分な潤滑性能を保持できる。
 本発明のトランクピストン型ディーゼル機関用潤滑油組成物は、塩基価が9~55mgKOH/g(過塩素酸法)であることが好ましく、更に好ましくは10~50mgKOH/g、より一層好ましくは11~45mgKOH/gである。潤滑油組成物の塩基価が9mgKOH/g未満では、酸中和性が不足し、ピストン清浄性が不足する。また、潤滑油組成物の塩基価が55mgKOH/gを超えると、過剰の塩基価、すなわち金属炭酸塩がデポジットを形成し摩耗やピストンリング膠着を引き起こすこととなる。なお、本発明において、塩基価は、JIS K2501「石油製品及び潤滑油-中和価試験法」の7.に準拠して測定される過塩素酸法による塩基価を意味する。
 以下、本発明の内容を実施例及び比較例によってさらに具体的に説明するが、本発明はこれらに何ら限定されるものではない。
(実施例1~10、比較例1~4)
 表1に示す配合処方の潤滑油組成物を調製し、JPI-5S-55-99に準拠して、ホットチューブ試験を実施した。結果を表1に示す。なお、表1中、基油の量は、基油全量基準での含有量であり、一方、添加剤の量は、組成物全量基準での含有量である。
<ホットチューブ試験>
 各試験油90質量%とC重油10質量%との混合油を用いて、JPI-5S-55-99に準拠して、300℃でホットチューブ試験を実施し、試験後のテストチューブ変色部の色相の濃さの評点[0点(黒色)から10点(透明=最良)の間]で評価した。評点が高いほど、高温清浄性に優れることを示す。
Figure JPOXMLDOC01-appb-T000001
 鉱油系基油1:グループII基油、40℃での動粘度=31.0mm2/s、100℃での動粘度=5.6mm2/s、粘度指数=119、%C=0、%C=27.1、%C=72.9、窒素分=3ppm未満、硫黄分=0.01質量%、飽和炭化水素=98.8質量%
 鉱油系基油2:グループII基油、40℃での動粘度=93.9mm2/s、100℃での動粘度=10.7mm2/s、粘度指数=97、%C=0、%C=33.9、%C=66.1、窒素分=3ppm未満、硫黄分=0.01質量%、飽和炭化水素=98.9質量%
 鉱油系基油3:グループII基油、40℃での動粘度=387.3mm2/s、100℃での動粘度=29.4mm2/s、粘度指数=105、%C=0、%C=28.8、%C=71.2、窒素分=100ppm未満、硫黄分=4質量ppm、飽和炭化水素=99.1質量%
 鉱油系基油4:グループI基油、40℃での動粘度=476.1mm2/s、100℃での動粘度=31.4mm2/s、粘度指数=96、%C=8、%C=23.3、%C=68.6、窒素分=54ppm、硫黄分=0.44質量%、飽和炭化水素=47.1質量%
 ポリブテン、40℃での動粘度=3,450mm2/s、100℃での動粘度=110mm2/s、粘度指数=98、数平均分子量=800
 エキストラクト1:TDAE、40℃での動粘度=1,185mm2/s、100℃での動粘度=34.1mm2/s、粘度指数=14、%C=29.5、%C=16.3、%C=54.2、窒素分=870ppm、硫黄分=3.8質量%、DMSO抽出PCA量=2.8質量%
 エキストラクト2:RAE、40℃での動粘度=3,739mm2/s、100℃での動粘度=70.5mm2/s、粘度指数=36、%C=33.8、%C=7.2、%C=59.0、窒素分=1,500ppm、硫黄分=3.7質量%、ベンゾ[a]ピレン含有量=0.5mg/kg未満、PAH8種{*(1)ベンゾ[a]アントラセン、(2)ベンゾ[b]フルオランテン、(3)ベンゾ[j]フルオランテン、(4)ベンゾ[k]フルオランテン、(5)ベンゾ[a]ピレン、(6)ジベンゾ[a,h]アントラセン、(7)トリフェニレン、(8)クリセン}=1.6mg/kg未満、MI値=0.4未満
 Caサリシレート:230mgKOH/g
 Caフェネート:250mgKOH/g
 分散剤:ホウ素化アルケニルコハク酸イミド、ホウ素含有量=0.5質量%
 酸化防止剤:亜鉛系酸化防止剤
 実施例1~4と比較例1の結果から、グループIIタイプの鉱油系基油からなる試験油(比較例1)に対し、さらにエキストラクトを組み合わせて芳香族分を添加した試験油(実施例1~4)は、優れた高温清浄性を示すこと分かる。
 実施例5~6と比較例2の結果から、グループIIタイプの鉱油系基油に、グループIタイプの鉱油系基油を基油全量基準で20質量%以上配合することで、優れた高温清浄性が発現すること分かる。
 また、実施例7~10の結果から、グループIIタイプの鉱油系基油にエキストラクトを組み合わせ、更にポリブテンを組み合わせることで、組成物の高温清浄性が向上することが分かる。
 以上の結果から、グループII及び/又はグループIIIタイプの鉱油系基油にエキストラクト又はグループIタイプの鉱油系基油を組み合わせることにより、適切な粘度を確保しつつ、適度な芳香族成分含有量をもたせ、優れた高温清浄性を有するトランクピストン型ディーゼル機関用潤滑油を提供できることが分かる。

Claims (6)

  1.  (A)飽和炭化水素が90質量%以上で、硫黄分が元素量で0.03質量%以下で、粘度指数が80以上で、100℃での動粘度が3~35mm2/sである鉱油系潤滑油基油と、
     (B)鉱油系潤滑油基油製造過程において、溶剤精製する際に副生するASTM D2140に規定される組成分析法による芳香族炭化水素化合物(%C)を15%以上含有するエキストラクト(B1)を基油全量基準で5質量%以上、又は、飽和炭化水素が90質量%より少なく、硫黄分が元素量で0.03質量%を超え、100℃での動粘度が30mm2/s以上の鉱油系潤滑油基油(B2)を基油全量基準で20質量%以上と
     を含み、100℃での動粘度が5~16mm2/sである基油に、
     (D)金属系清浄剤と、
     (E)無灰分散剤と
     を配合してなるトランクピストン型ディーゼル機関用潤滑油組成物。
  2.  (A)飽和炭化水素が90質量%以上で、硫黄分が元素量で0.03質量%以下で、粘度指数が80以上で、100℃での動粘度が3~35mm2/sである鉱油系潤滑油基油と、
     (B)鉱油系潤滑油基油製造過程において、溶剤精製する際に副生するASTM D2140に規定される組成分析法による芳香族炭化水素化合物(%C)を15%以上含有するエキストラクト(B1)を基油全量基準で5質量%以上と、
     (C)ポリブテン系合成油又はその水素化物と
     を含み、100℃での動粘度が5~16mm2/sである基油に、
     (D)金属系清浄剤と、
     (E)無灰分散剤と
     を配合してなる請求項1に記載のトランクピストン型ディーゼル機関用潤滑油組成物。
  3.  前記(B)成分は、PCAの含有量が3質量%未満であるエキストラクトであることを特徴とする請求項1又は2に記載のトランクピストン型ディーゼル機関用潤滑油組成物。
  4.  前記(B)成分は、MI値が1.0未満で、ベンゾ[a]ピレンの含有量が1mg/kg以下で、特定芳香族化合物(PAH)の含有量が10mg/kg以下であるエキストラクトであることを特徴とする請求項1~3のいずれか一項に記載のトランクピストン型ディーゼル機関用潤滑油組成物。
  5.  前記基油に含まれる2環以上の芳香族分が2質量%以上であることを特徴とする請求項1~4のいずれか一項に記載のトランクピストン型ディーゼル機関用潤滑油組成物。
  6.  100℃での動粘度が5.6~16.3mm2/sで、塩基価が9~55mgKOH/g(過塩素酸法)であることを特徴とする請求項1~5のいずれか一項に記載のトランクピストン型ディーゼル機関用潤滑油組成物。
PCT/JP2013/005933 2012-10-10 2013-10-04 トランクピストン型ディーゼル機関用潤滑油組成物 WO2014057640A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014540732A JP6155275B2 (ja) 2012-10-10 2013-10-04 トランクピストン型ディーゼル機関用潤滑油組成物
CN201380064364.XA CN104837970B (zh) 2012-10-10 2013-10-04 筒状活塞型柴油机用润滑油组合物
KR1020157011490A KR102092021B1 (ko) 2012-10-10 2013-10-04 트렁크 피스톤형 디젤 기관용 윤활유 조성물
SG11201502836TA SG11201502836TA (en) 2012-10-10 2013-10-04 Lubricating oil composition for trunk-piston-type diesel engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-225438 2012-10-10
JP2012225438 2012-10-10

Publications (1)

Publication Number Publication Date
WO2014057640A1 true WO2014057640A1 (ja) 2014-04-17

Family

ID=50477123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/005933 WO2014057640A1 (ja) 2012-10-10 2013-10-04 トランクピストン型ディーゼル機関用潤滑油組成物

Country Status (5)

Country Link
JP (1) JP6155275B2 (ja)
KR (1) KR102092021B1 (ja)
CN (1) CN104837970B (ja)
SG (1) SG11201502836TA (ja)
WO (1) WO2014057640A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017164404A1 (ja) * 2016-03-25 2017-09-28 Jxエネルギー株式会社 トランクピストン型ディーゼル機関用潤滑油組成物
WO2023223965A1 (ja) * 2022-05-16 2023-11-23 出光興産株式会社 潤滑油組成物

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08503215A (ja) * 1992-11-06 1996-04-09 モービル・オイル・コーポレイション アルキル化により多核芳香族物質の突然変異原性を減らす方法
JP2002047498A (ja) * 2000-08-01 2002-02-12 Nippon Mitsubishi Oil Corp 高硫黄エンジン油組成物
JP2007084675A (ja) * 2005-09-21 2007-04-05 Idemitsu Kosan Co Ltd プロセスオイル、脱れき油の製造方法、エキストラクトの製造方法、及びプロセスオイルの製造方法
JP2010519376A (ja) * 2007-02-21 2010-06-03 ビーピー ピー・エル・シー・ 潤滑油基油、潤滑組成物、及びそれらの製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2804271B2 (ja) * 1988-09-30 1998-09-24 出光興産株式会社 2サイクルエンジン用潤滑油組成物
US5488193A (en) * 1992-11-06 1996-01-30 Mobil Oil Corporation Process for reducing polynuclear aromatic mutagenicity by alkylation
JP3341021B2 (ja) * 1994-11-28 2002-11-05 新日本石油株式会社 2ストロークサイクルディーゼルエンジン用潤滑油組成物
GB9709006D0 (en) 1997-05-02 1997-06-25 Exxon Chemical Patents Inc Lubricating oil compositions
JP3804248B2 (ja) * 1998-01-19 2006-08-02 新日本理化株式会社 2サイクルエンジン油基油
US7374658B2 (en) * 2005-04-29 2008-05-20 Chevron Corporation Medium speed diesel engine oil
WO2010066860A1 (en) * 2008-12-12 2010-06-17 Shell Internationale Research Maatschappij B.V. Lubricating compositions
CN102086420B (zh) * 2009-12-03 2013-04-24 中国石油天然气股份有限公司 船用中速筒状柴油机润滑油组合物
JP5483329B2 (ja) * 2009-12-24 2014-05-07 Jx日鉱日石エネルギー株式会社 クロスヘッド型ディーゼル機関用シリンダー潤滑油組成物
CN102268315B (zh) * 2010-06-01 2013-07-10 中国石油化工股份有限公司 船用油组合物及其用途

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08503215A (ja) * 1992-11-06 1996-04-09 モービル・オイル・コーポレイション アルキル化により多核芳香族物質の突然変異原性を減らす方法
JP2002047498A (ja) * 2000-08-01 2002-02-12 Nippon Mitsubishi Oil Corp 高硫黄エンジン油組成物
JP2007084675A (ja) * 2005-09-21 2007-04-05 Idemitsu Kosan Co Ltd プロセスオイル、脱れき油の製造方法、エキストラクトの製造方法、及びプロセスオイルの製造方法
JP2010519376A (ja) * 2007-02-21 2010-06-03 ビーピー ピー・エル・シー・ 潤滑油基油、潤滑組成物、及びそれらの製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017164404A1 (ja) * 2016-03-25 2017-09-28 Jxエネルギー株式会社 トランクピストン型ディーゼル機関用潤滑油組成物
JPWO2017164404A1 (ja) * 2016-03-25 2019-01-31 Jxtgエネルギー株式会社 トランクピストン型ディーゼル機関用潤滑油組成物
JP7085469B2 (ja) 2016-03-25 2022-06-16 Eneos株式会社 トランクピストン型ディーゼル機関用潤滑油組成物
WO2023223965A1 (ja) * 2022-05-16 2023-11-23 出光興産株式会社 潤滑油組成物

Also Published As

Publication number Publication date
JP6155275B2 (ja) 2017-06-28
KR102092021B1 (ko) 2020-03-23
JPWO2014057640A1 (ja) 2016-08-25
SG11201502836TA (en) 2015-05-28
KR20150064179A (ko) 2015-06-10
CN104837970B (zh) 2018-01-09
CN104837970A (zh) 2015-08-12

Similar Documents

Publication Publication Date Title
CN107541317B (zh) 内燃机用润滑油组合物
CN102666819B (zh) 十字头型柴油机用气缸润滑油组合物
KR102074883B1 (ko) 크로스헤드형 디젤 기관용 시스템 윤활유 조성물
EP2518135B2 (en) System lubricant oil composition for crosshead-type diesel engine
JP6046156B2 (ja) クロスヘッド型ディーゼル機関用システム潤滑油組成物
JP7320935B2 (ja) 潤滑油組成物
WO2014057683A1 (ja) クロスヘッド型ディーゼル機関用シリンダー潤滑油組成物
JP5414513B2 (ja) クロスヘッド型ディーゼル機関用システム潤滑油組成物
JP6155275B2 (ja) トランクピストン型ディーゼル機関用潤滑油組成物
JP5952184B2 (ja) クロスヘッド型ディーゼル機関用システム潤滑油組成物
JP5913338B2 (ja) クロスヘッド型ディーゼル機関用シリンダー潤滑油組成物
JP5483330B2 (ja) クロスヘッド型ディーゼル機関用システム潤滑油組成物
JP5294933B2 (ja) 舶用シリンダー潤滑油組成物
JP7085469B2 (ja) トランクピストン型ディーゼル機関用潤滑油組成物
JP5952183B2 (ja) クロスヘッド型ディーゼル機関用システム潤滑油組成物
JP2023004315A (ja) 内燃機関用潤滑油組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13845180

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014540732

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157011490

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13845180

Country of ref document: EP

Kind code of ref document: A1