WO2014057564A1 - 凍結乾燥法を用いたナノ粒子乾燥体の製造方法 - Google Patents

凍結乾燥法を用いたナノ粒子乾燥体の製造方法 Download PDF

Info

Publication number
WO2014057564A1
WO2014057564A1 PCT/JP2012/076365 JP2012076365W WO2014057564A1 WO 2014057564 A1 WO2014057564 A1 WO 2014057564A1 JP 2012076365 W JP2012076365 W JP 2012076365W WO 2014057564 A1 WO2014057564 A1 WO 2014057564A1
Authority
WO
WIPO (PCT)
Prior art keywords
drying
slurry
freeze
organic solvent
producing
Prior art date
Application number
PCT/JP2012/076365
Other languages
English (en)
French (fr)
Inventor
治樹 奥村
Original Assignee
岩谷産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 岩谷産業株式会社 filed Critical 岩谷産業株式会社
Priority to PCT/JP2012/076365 priority Critical patent/WO2014057564A1/ja
Priority to JP2014540694A priority patent/JPWO2014057564A1/ja
Publication of WO2014057564A1 publication Critical patent/WO2014057564A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/026Spray drying of solutions or suspensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/052Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2202/00Treatment under specific physical conditions
    • B22F2202/11Use of irradiation

Definitions

  • the present invention relates to a method for producing a dried nanoparticle using a freeze-drying method.
  • drying of a dispersion in which powder is dispersed in a solvent has been performed by methods such as air drying, heat drying, and vacuum drying in a room temperature air atmosphere.
  • air drying in a normal temperature air atmosphere is the simplest method, and the slurry is usually left in the air atmosphere, or the solvent is evaporated by applying a moderately strong wind to the slurry.
  • a dry powder can be obtained.
  • the heat drying method is used as a method for promoting the transpiration of the solvent by increasing the temperature and realizing a higher degree of drying faster.
  • the vacuum drying method is used as a method of accelerating the transpiration of the solvent by placing the slurry under vacuum to realize a higher degree of drying faster.
  • the heating at the time of air drying or vacuum drying it is used suitably according to the objective, a sample, etc.
  • the dried particles obtained using these methods are strongly agglomerated, making it difficult to obtain the characteristics of the original particles. Therefore, it is necessary to perform distributed processing again at the time of use.
  • a method of crushing by applying an external force such as a mill or a roll is used.
  • the particles are affected by destruction or deformation by the applied force.
  • sufficient dispersibility cannot often be achieved even when such a force as to be affected is applied.
  • the particles may be affected by the structure and the like, and the required characteristics may not be obtained.
  • the method of obtaining fine particles using the freeze-drying method is easy to implement and handle fine particles as a product, and is expected to be further applied in the future.
  • the methods described in Patent Documents 2 and 3 use water and a dispersant in the process, and it has been found that the use of these may affect the performance of the dried nanoparticle as a product. .
  • An object of the present invention is to provide a method for producing a dried nanoparticle using a freeze-drying method that solves the problems of the prior art.
  • the present invention provides a method for producing a dried nanoparticle comprising: a step of producing a dispersion in which nanoparticles are dispersed in an organic solvent; and a freeze-drying step of lyophilizing the dispersion to remove the organic solvent.
  • an organic solvent having a melting point of ⁇ 30 ° C. to 30 ° C. is selected.
  • the organic solvent is t-butanol, cyclohexane, acetic acid, acetophenone, acetylacetone, 2-aminoethanol, aniline, benzaldehyde, benzyl alcohol, benzylbenzoate, cyclohexanol, diethylene glycol, diethylene glycol monoethyl ether acetate, dimethylacetamide, dimethylsulfoxide.
  • 1,4-dioxane ethylene glycol, formamide, formic acid, glycerol, 2-methyl-2-butanol, nitrobenzene, 1-octanol, 3-pentanol, tetrachloroethylene, trifluoroacetic acid, xylene, or A mixture of two or more types.
  • the organic solvent may contain water.
  • the nanoparticles are metals such as nickel, cobalt, silver, gold, platinum, copper, and aluminum.
  • the carbon material used as metal substitutes such as a carbon nanotube, may be sufficient.
  • the dry nanoparticle produced by the method for producing a dry nanoparticle described above is also included in the present invention.
  • the present invention is a method for producing a dried nanoparticle using a freeze-drying method, and it can be dried while removing the solvent in a state where the dispersion structure (state) is fixed by freezing, thereby suppressing particle aggregation during the drying process. can do.
  • the graph which shows the particle size distribution obtained by the light-scattering method of the slurry 3 (before freeze-drying) of Example 1 The graph which shows the particle size distribution obtained by the light-scattering method of the slurry 5 (after freeze-drying) of Example 1
  • Graph showing the particle size distribution obtained by the light scattering method of slurry B of Comparative Example 2 (after lyophilization with water) It is the surface photograph of a coating film, (a) is a microscope picture of the coating film A by the slurry A of the comparative example 1, (b) is a microscope picture of the coating film 1 by the slurry 5 of Example 1. It is the surface photograph of a coating film, (a) is a microscope picture of the coating film
  • the present invention provides a method for producing a dried nanoparticle comprising: a step of producing a dispersion in which nanoparticles are dispersed in an organic solvent; and a freeze-drying step of lyophilizing the dispersion to remove the organic solvent. To do.
  • a dispersion in which nanoparticles having an average particle size of 1 ⁇ m or less are dispersed in an organic solvent is exposed to a freeze-drying step, and the organic solvent is removed.
  • the freeze-drying method in the freeze-drying step is a drying method in which the solvent is removed in a state where the structure of the object to be dried and the arrangement of the components are fixed, and has been mainly used for food applications.
  • the scope of coverage is also expanding.
  • the Applicant has also continued his research focusing on these unique characteristics of the freeze-drying method.
  • Nanoparticles are generally very cohesive and it is difficult to achieve a dispersed state. Moreover, even if the dispersion state is once realized in the solvent, it reaggregates with the passage of time, and it is difficult to maintain the dispersion state as in the case of the dispersion.
  • the slurry structure (state) is fixed while the nanoparticles are in a dispersed state, and only the solvent (organic solvent) is removed while being fixed, thereby suppressing the above-described problem. .
  • water is usually used as a solvent.
  • a material having a high surface activity such as a metal
  • the surface of the material may be modified such as corrosion or oxidation. is there. Since changes in the composition and chemical state of the material surface greatly affect the properties of the material itself as well as the dispersibility, it is desirable to use an organic solvent rather than a highly active solvent such as water.
  • an organic solvent is used as a dispersion solvent for dispersing nanoparticles.
  • many organic solvents generally have a high vapor pressure, so that there is an advantage that drying becomes easy.
  • an additive such as a dispersing agent
  • these additives are usually organic substances mainly composed of carbon, they act on materials and processes in the same way as organic contamination, resulting in deterioration of electrical properties and thermal processes. There is a problem that degassing occurs.
  • no dispersant is used at the time of slurry preparation due to the effect of freeze-drying, or the amount can be reduced more than usual.
  • the use of a dispersant is not denied in the range that does not adversely affect the type of nanoparticles.
  • the additive such as a dispersant is a compound added to obtain the dispersibility and stability of the nanoparticles in the slurry, and generally an amphiphilic substance such as a surfactant. Is given as an example.
  • the organic solvent when using an organic solvent, attention should be paid to its melting point. Many organic solvents have a melting point lower than that of water. However, if the melting point is too low, the freezing process may be hindered, for example, because it takes too long to freeze. In addition, since a solvent having a high melting point has a high boiling point, a solvent having an excessively high melting point may interfere with the drying process due to the fact that it takes too much time for sublimation. In addition, when the melting point is near or above room temperature, it becomes difficult to adjust slurry because it becomes solid at room temperature. In view of these, the organic solvent preferably has a melting point in the range of ⁇ 30 to 30 ° C., more preferably in the range of ⁇ 20 ° C. to 20 ° C., and still more preferably in the range of ⁇ 10 ° C. to 10 ° C. It is in the range of ° C.
  • organic solvents used while satisfying the above requirements are t-butanol (tertiary butyl alcohol), cyclohexane, acetic acid, acetophenone, acetylacetone, 2-aminoethanol, aniline, benzaldehyde, benzyl alcohol, benzylbenzoate, cyclohexanol, diethylene glycol , Diethylene glycol monoethyl ether acetate, dimethylacetamide, dimethyl sulfoxide, 1,4-dioxane, ethylene glycol, formamide, formic acid, glycerol, 2-methyl-2-butanol, nitrobenzene, 1-octanol, 3-pentanol, tetrachloroethylene, There are trifluoroacetic acid, xylene, and the like, and these are composed of one kind or a mixture of two or more kinds.
  • the nanoparticles of the present invention are made of metal, for example. Since many metals are resistant to organic solvents, there is a greater degree of freedom in selecting a solvent that is more suitable for lyophilization. For example, among metals, nickel, cobalt, silver, gold, platinum, copper, aluminum and the like are used.
  • the temperature in the freeze-drying process is controlled to be equal to or lower than the melting point of the organic solvent to be used. This is because if the slurry temperature is equal to or higher than the melting point of the organic solvent at the stage where freeze-drying is not completed, vacuum drying occurs and aggregation is induced.
  • the processing container used in the freeze-drying process is pre-cooled to the melting point of the organic solvent used in advance before the freeze-drying process.
  • the time required for freezing is closely related to the effect of the invention, and it is desirable that the time required for freezing is short from the knowledge of the food field and the like that has been performed conventionally. This is because if the time required for freezing becomes longer, the nanoparticles settle and reagglomerate.
  • freezing is realized by cooling the slurry through the processing container by a cooler. In many cases, since the slurry is charged outside the cooled apparatus, a time from slurry charging to cooling is required. Therefore, it is expected to shorten the freezing time by pre-cooling the processing container.
  • the freeze-drying step includes a step of bringing the slurry into contact with a gas or liquid cooled to a solvent melting point or lower.
  • a gas or liquid cooled to a solvent melting point or lower since the slurry is cooled from the contact surface with the processing container, freezing of the non-contact surface is delayed.
  • cooling is performed also from the non-contact surface of the processing container, and freezing can proceed more rapidly.
  • a contact method, spraying, dripping, etc. are selected, However It does not specifically limit.
  • the time required for freezing is closely related to the effect of the invention, and it is desirable that the time be shorter. Therefore, it is desirable that the time required for freezing is shorter than the reaggregation time of the particles in the slurry.
  • the dry nanoparticle produced by the method for producing a dry nanoparticle of the present invention is also included in the present invention.
  • the dried nanoparticle of the present invention has good handleability and can be applied to various fields.
  • multi-layer ceramic capacitors (MLCC) are electronic devices that are expected to expand further in the future, but there is a strong demand for miniaturization and micronization of Ni nanoparticles as materials as they become smaller. ing.
  • the present invention can reliably meet such demands. Further, it can be applied to particles for inkjet ink, particles for battery electrodes, particles for transparent conductive films, dielectric particles, and the like.
  • the present invention is a method for producing a dried nanoparticle using a freeze-drying method, and it can be dried while removing the solvent in a state where the dispersion structure (state) is fixed by freezing, thereby suppressing particle aggregation during the drying process. can do.
  • the present invention it is possible to obtain a dry powder in a dispersed state, so that it is easy to re-disperse in a solvent, and even if it is in an associated state of a plurality of particles, it is dried while the solvent is interposed.
  • the binding force is extremely weak, and a redispersion state can be easily realized by stirring or ultrasonic irradiation.
  • the particle characteristics can be maintained after drying.
  • freeze-drying means a drying method in which a target sample is frozen below the melting point of the solvent, and then the pressure is reduced while the sample temperature is kept below the melting point to sublimate the solvent. This is so-called freeze-drying, which utilizes the property of lowering the boiling point of the solvent under reduced pressure, and is also called “vacuum freeze-drying” because of the method of drying under reduced pressure (vacuum) conditions.
  • nanoparticles used in the production method according to the present invention various particles can be selected, but those mainly made of a metal material are used.
  • metal nanoparticles such as nickel, cobalt, silver, gold, platinum, copper, and aluminum are used.
  • the shape of the nanoparticles is not particularly limited, and various shapes of nanoparticles can be appropriately selected depending on the application to be used. Further, surface treatment such as surface modification may be applied depending on the purpose of use.
  • the production of the nanoparticle dry body will be described in four parts: a slurrying process, a freezing process, a drying process, and a removing process.
  • This slurrying step corresponds to a step of producing a dispersion by dispersing the target nanoparticles in an organic solvent.
  • Various distributed processes may be additionally performed, and a known distributed process may be used. It should be noted that the transition from the slurrying process to the below-described freezing process is preferably performed in as short a time as possible from the viewpoint of suppressing aggregation during storage.
  • a method of introducing nanoparticles into an organic solvent stirred by a known stirring device such as a stirring blade or a magnetic stirrer can be used.
  • a stirring device such as a stirring blade or a magnetic stirrer.
  • concentration in a slurry it is possible to select suitably according to a use or the objective.
  • the dispersant is usually an organic substance mainly composed of carbon, it acts in the same manner as organic contamination in terms of materials and processes. In other words, there are problems such as deterioration of electrical characteristics and generation of degassing in the thermal process.
  • the dispersant is not used in the slurrying process in the present invention, or the physical properties of the nanoparticles are adversely affected.
  • the amount can be reduced more than usual within a range that does not appear (for example, in the case of Ni nanoparticles for MLCC, the dispersant remaining after drying is 2 wt% or less).
  • This freezing step is a step of freezing the slurry produced in the above-described slurrying step, and corresponds to a part of the freeze-drying step. Any known cooling and freezing method can be used as long as it can cool to the melting point or lower of the organic solvent to be used.
  • a processing container is installed on a cooling shelf, which is performed by ordinary freeze-drying.
  • the treatment shelf is precooled, and the precooling temperature is more desirably lower than the melting point of the organic solvent to be used.
  • the pre-cooling temperature is more preferably lower than the melting point of the organic solvent to be used.
  • a freezing method by directly adding slurry into liquefied gas or the like may be used. In selecting the method, it is preferable to select a method that shortens the time required for freezing.
  • This drying process corresponds to a part of the freeze-drying process.
  • a vacuum drying method can be used in which the slurry temperature is controlled so as not to exceed the melting point of the organic solvent used.
  • the slurry temperature is controlled so as not to exceed the melting point of the organic solvent used.
  • the slurry temperature since the heat of evaporation is taken away with the evaporation of the organic solvent, the slurry temperature usually decreases. Therefore, it is desirable to perform the heating while taking care that the sample temperature does not exceed the melting point.
  • the pressure in the treatment tank is returned to normal pressure, and a removal step of taking out the dried nanoparticle that remains after slurry drying is performed.
  • a removal step of taking out the dried nanoparticle that remains after slurry drying is performed.
  • the gas used for returning the pressure to the normal pressure other gases such as nitrogen and a rare gas can be used as appropriate in addition to the atmosphere, depending on the material and application.
  • Example 1 Lyophilization of Ni nanoparticles (t-butanol)> Under a nitrogen flow, 20.0 g of nickel acetate tetrahydrate and 226.0 g of oleylamine were mixed and then heated at 120 ° C. for 20 minutes with stirring to obtain a blue reaction solution 1. Next, the reaction solution 1 was irradiated with microwaves and heated at 250 ° C. for 5 minutes to obtain a nickel (Ni) nanoparticle slurry 1.
  • Ni nanoparticle slurry 1 was allowed to stand and separated, and the supernatant liquid was removed, followed by washing three times with a mixed solvent having a volume ratio of methanol and toluene of 1: 4, and further using isopropyl alcohol (IPA) as a solvent. Substitution was performed and slurry 2 was obtained.
  • IPA isopropyl alcohol
  • FIG. 1 shows the particle size distribution of the slurry 3 obtained by the light scattering method. As shown in the figure, the slurry 3 showed a good dispersion state.
  • Slurry 3 was prepared as slurry 4 using t-butanol as a solvent by solvent substitution, poured into a pre-cooled metal vat, and rapidly cooled to ⁇ 40 ° C. in a lyophilizer to solidify. After the slurry was solidified, evacuation was started and lyophilization was performed. During freeze-drying, temperature was controlled by applying heat while controlling the slurry temperature to be equal to or lower than the melting point of the solvent used in order to efficiently dry and compensate for the heat of evaporation.
  • FIG. 2 shows the particle size distribution of the slurry 5 by the light scattering method. As shown in the figure, it was understood that although the slurry 5 was once dried, it was in a good dispersed state as much as before drying.
  • the coating film 1 has a metallic luster, suggesting that it has a smooth surface.
  • Ra 0.06 ⁇ m, which was confirmed to be extremely smooth (see FIG. 6B).
  • freeze-dried powder 1 has good redispersibility comparable to the state before drying.
  • Example 2 Lyophilization of Ni nanoparticles (cyclohexane)>
  • a lyophilized powder 2 was obtained in the same manner as in Example 1 except that cyclohexane was used as the solvent used for lyophilization.
  • FIG. 3 shows the particle size distribution of the slurry 6 obtained by treating the slurry 6 by the same treatment as that of the slurry 5 by the light scattering method. As shown in the figure, it can be seen that the dispersion is as good as before drying.
  • Example 3 Freeze drying of Ni nanoparticles (nitrobenzene)> The same treatment as in Example 2 was performed to obtain freeze-dried powder 2.
  • FIG. 4 shows the particle size distribution of the slurry 7 obtained by the same treatment as that of the slurry 5 except that nitrobenzene is used as a dispersion solvent. As shown in the figure, it is understood that when lyophilization is performed using an organic solvent, re-dispersion is hardly affected by the dispersion conditions (dispersion solvent).
  • Example 1 Ni nanoparticles at room temperature>
  • the slurry 3 obtained in Example 1 was air-dried in an air atmosphere to obtain a normal (normal temperature) dry powder 1.
  • the obtained dry powder 1 was put into IPA to obtain slurry A.
  • the mechanical dispersion treatment as in the case of obtaining the slurry 3 is not performed.
  • Slurry A has extremely poor dispersibility due to very strong agglomeration during drying, and there are many coarse particle masses that can be visually confirmed. I could't even do it.
  • the supernatant of slurry A which is considered to have relatively little aggregation, was applied onto a smooth glass to obtain a dried coating film A.
  • the coating film A does not have a metallic luster like the coating film 1 despite the use of a supernatant with relatively little aggregation, and is black, so it has a rough surface with poor smoothness. It is suggested.
  • Ra 1.14 ⁇ m, which was confirmed to be extremely rough as compared to the coating film 1 (see FIG. 6A). .
  • Example 2 Lyophilization of Ni nanoparticles with water solvent>
  • a lyophilized powder 3 was obtained by performing the same treatment except that water was used as the solvent used for lyophilization.
  • the particle size distribution by the light-scattering method of the slurry B obtained by the same process as the slurry 5 is shown in FIG. Since two peaks occur and each peak is not sharp, it can be seen that sufficient redispersion cannot be achieved when lyophilization is performed using water as a solvent.
  • Table 1 shows the results of surface composition analysis of freeze-dried 3 by X-ray photoelectron spectroscopy (XPS). In the table, the result of freeze-dried powder 3 is also shown. From the comparison between the two companies, a significant increase in the amount of oxygen is observed when water is used. That is, it can be seen that when water or the like is used in the case of a material having a high surface activity such as metal, modification such as oxidation occurs. Since the surface composition and chemical state greatly affect not only the dispersibility but also the characteristics of the material itself, it can be seen that it is desirable to use an organic solvent such as cyclohexane instead of using highly active water as a solvent.
  • an organic solvent such as cyclohexane
  • the present invention it is possible to dry while removing the solvent while the dispersion structure (state) is fixed by freezing, so that aggregation of particles during the drying process can be suppressed. Therefore, the nanoparticle dry body which has good handleability and can be applied to various fields is provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

 ナノ粒子乾燥体の製造方法は、有機溶媒にナノ粒子を分散させた分散液を製造する工程と、分散液を凍結乾燥させて有機溶媒を除去する凍結乾燥工程と、を含む。

Description

凍結乾燥法を用いたナノ粒子乾燥体の製造方法
 本発明は、凍結乾燥法を用いたナノ粒子乾燥体の製造方法に関する。
 従来、粉体を溶媒中に分散させた分散液(以下、スラリーという)の乾燥は、常温大気雰囲気下での風乾、加熱乾燥、真空乾燥等の方法により行われてきた。これらの方法の中で、常温大気雰囲気下での風乾は最も簡便な方法であり、スラリーを通常大気雰囲気に放置、または、これに適度な強さの風を当てることで溶媒を蒸散させることにより、乾燥粉体を得ることができる。また、加熱乾燥法は、温度上昇によって溶媒の蒸散を促進して、より早く、より高い乾燥度を実現する方法として用いられている。
 真空乾燥法は、スラリーを真空下に置くことによって溶媒の蒸散を促進して、より早く、より高い乾燥度を実現する方法として用いられている。なお、風乾や真空乾燥時の加熱については、目的や試料等に応じて適宜使用されている。
 常温大気雰囲気下での風乾、加熱乾燥、真空乾燥などの方法を用いた場合も、粒子の乾燥体を得ることができる。しかしながら、これらの乾燥方法を用いた場合、粒子は溶媒の減少と共に濃度が上昇して近接距離が小さくなり、最終的には接触することになる。通常、粒子は濃度上昇と共に粒子間の相互作用で凝集を起こす。そして、この現象は粒子径が小さくなるほど、特に、粒径1μm以下のナノ粒子になるとより強く発現する。
 したがって、これらの方法を用いて得た粒子乾燥体は強く凝集しており、本来の粒子としての特性を得ることが困難な状態となっている。そのため、使用時に改めて分散処理をする必要が生じる。この時、一般的にはミルやロールなどの外的な力を加えることで解砕する方法が用いられるが、加えられた力によって粒子が破壊や変形などの影響を受けるという問題がある。また、そのような影響を受けるほどの力を加えた場合でも十分な分散性を実現できないことが多い。
 また、加熱を伴う乾燥法の場合、粒子がその構造等に影響を受けてしまい、必要とする特性を得られないことがある。
 また、凍結乾燥法によりナノサイズの超微粒子が溶解した溶液から溶媒を除去する方法等も用いられている(特許文献2、3参照)。
日本国特許第3005683号 日本国特表2008-538552号 日本国特開2009-138030号
 凍結乾燥法を用いて微粒子を得る方法は、その実施および製造物たる微粒子の取扱いが簡便であり、今後さらなる応用が期待される。一方、特許文献2、3の記載の方法は、水や分散剤を工程において使用するものであり、これらの使用が、製造物たるナノ粒子乾燥体の性能に影響を与える可能性が分かってきた。
 本発明は、従来技術の問題点を解決した凍結乾燥法を用いたナノ粒子乾燥体の製造方法を提供することを目的とする。
 本発明は、有機溶媒にナノ粒子を分散させた分散液を製造する工程と、前記分散液を凍結乾燥させて前記有機溶媒を除去する凍結乾燥工程と、を含むナノ粒子乾燥体の製造方法を提供する。
 例えば、前記有機溶媒の融点が-30℃~30℃である有機溶媒が選択される。
 例えば、前記有機溶媒はt-ブタノール、シクロヘキサン、酢酸、アセトフェノン、アセチルアセトン、2-アミノエタノール、アニリン、ベンズアルデヒド、ベンジルアルコール、ベンジルベンゾエート、シクロヘキサノール、ジエチレングリコール、ジエチレングリコールモノエチルエーテルアセテート、ジメチルアセトアミド、ジメチルサルホキシド、1,4-ジオキサン、エチレングリコール、ホルムアミド、ギ酸、グリセロール、2-メチル-2-ブタノール、ニトロベンゼン、1-オクタノール、3-ペンタノール、テトラクロロエチレン、トリフルオロ酢酸、キシレンのうちいずれか一種類、または、二種類以上組み合わせた混合物である。
 前記有機溶媒が水を含んでも構わない。
 例えば、前記ナノ粒子はニッケル、コバルト、銀、金、プラチナ、銅、アルミニウム等の金属である。また、カーボンナノチューブなどの金属代替として使用されるカーボン材料でも良い。
 上述したナノ粒子乾燥体の製造方法によって製造されたナノ粒子乾燥体も本発明に含まれる。
 本発明は、凍結乾燥法を用いてナノ粒子乾燥体を製造する方法であり、凍結によって分散構造(状態)を固定した状態で溶媒を除去しつつ乾燥できるため、乾燥過程における粒子の凝集を抑制することができる。
実施例1のスラリー3(凍結乾燥前)の光散乱法により得られた粒度分布を示すグラフ 実施例1のスラリー5(凍結乾燥後)の光散乱法により得られた粒度分布を示すグラフ 実施例2のスラリー6(凍結乾燥後)の光散乱法により得られた粒度分布を示すグラフ 実施例3のスラリー7(凍結乾燥後)の光散乱法により得られた粒度分布を示すグラフ 比較例2のスラリーB(水による凍結乾燥後)の光散乱法により得られた粒度分布を示すグラフ 塗布膜の表面写真であり、(a)は比較例1のスラリーAによる塗布膜Aの顕微鏡写真であり、(b)は実施例1のスラリー5による塗布膜1の顕微鏡写真 塗布膜の表面写真であり、(a)は実施例2のスラリー6による塗布膜の顕微鏡写真であり、(b)は比較例2のスラリーBによる塗布膜の顕微鏡写真
 以下、本発明の実施形態について、詳細に説明する。
 本発明は、有機溶媒にナノ粒子を分散させた分散液を製造する工程と、当該分散液を凍結乾燥させて有機溶媒を除去する凍結乾燥工程と、を含むナノ粒子乾燥体の製造方法を提供する。
 すなわち、ナノ粒子乾燥体の製造方法によれば、有機溶媒に主として平均粒径が1μm以下のナノ粒子を分散させた分散液が、凍結乾燥工程にさらされ、有機溶媒が除去される。
 上記凍結乾燥工程における凍結乾燥法は、乾燥対象の構造や構成物の配置を固定した状態で溶媒を除去する乾燥法であり、主に食品用途に用いられてきたが、特許文献2、3に記載されているように、対象範囲も拡大しつつある。本件出願人も、凍結乾燥法のこのような特異な特性に注目して研究を続けてきた。
 ナノ粒子は、一般的に極めて凝集性が高く、分散状態を実現することは困難を伴う。また、仮に一旦溶媒中で分散状態を実現したとしても、時間の経過と共に再凝集してしまい、分散状態を維持することは分散の実現と同様に困難である。
 さらにナノ粒子は、その用途に応じた様々な分散用の溶媒の使用が望まれることから、当初のスラリー状態のままでは多くの場合、さらに溶媒置換などの手間やコストのかかる工程を実施する必要がある。そのため、用途に応じて自由な組成のスラリーを得るために、乾燥粉体の状態での供給が、多くの場面で適している。しかし、乾燥時においては、溶媒の減少によってスラリー濃度が増して粒子間距離が縮まり、より凝集しやすい状態を経て乾燥されるために、ほとんどの場合に凝集が発生する。このような乾燥粉体はきわめて強い力で凝集していることから、溶媒に再分散することが困難な状態になっているため、取り扱いが難しいという問題が発生する。
 一方、凍結乾燥法によれば、ナノ粒子が分散状態のままでスラリー構造(状態)が固定され、固定されたまま溶媒(有機溶媒)のみが除去されることにより、上述した問題が抑制される。
 凍結乾燥法においては、通常、水を溶媒として用いるが、特に金属のような表面活性が高い材料の場合に水などを溶媒として用いると、材料表面が腐食や酸化等などの変性を起こすことがある。そして材料表面の組成や化学状態の変化は、分散性はもちろん、材料自体の特性に大きな影響を与える為、水のように活性の高い溶媒ではなく、有機溶媒を用いることが望ましい。
 その為、本発明によれば、ナノ粒子を分散する分散溶媒として有機溶媒を用いる。また、多くの有機溶媒は一般的に蒸気圧が高いことから乾燥が容易になるという利点がある。
 また、従来は分散剤等の添加剤をスラリー調整時に用いる方法などが検討されている。しかし、これらの分散剤等の添加剤は通常炭素を主成分とする有機物であるため、材料やプロセスに対しては有機汚染と同じように作用することになり、電気特性の低下や熱プロセスにおける脱ガス発生などが生じる問題点がある。これに対して、本発明では凍結乾燥の効果によって原則としてスラリー調整時に分散剤を使用しない、または、通常よりも減量することができる。ただし、ナノ粒子の種類により、悪影響が出ない範囲において分散剤の使用を否定するものではない。
 なお、ここでいう分散剤等の添加剤とは、ナノ粒子のスラリー中での分散性や、安定性を得るために加える化合物であり、一般的には界面活性剤等の両親媒性物質などがその例として上げられる。
 また、有機溶媒を用いる場合は、その融点に着目すべきである。有機溶媒の多くは融点が水よりも低温である。しかし、融点が低すぎると、凍結に時間がかかりすぎる等の理由により、凍結プロセスに支障が出ることがある。また、融点が高いものは沸点も高いことから、融点が高すぎる溶媒は、昇華に時間がかかりすぎる等の理由により、乾燥プロセスに支障が出ることがある。加えて、融点が室温近辺またはそれ以上になると、常温で固体となることからスラリー調整が困難となる。これらを鑑みて、有機溶媒は、その融点が-30~30℃の範囲にあるものが好ましく、より好ましいものは-20℃~20℃の範囲にあるもの、さらに好ましいものは-10℃~10℃の範囲にあるものである。
 上記要件を満たしつつ、用いられる有機溶媒の例としてt-ブタノール(ターシャリーブチルアルコール)、シクロヘキサン、酢酸、アセトフェノン、アセチルアセトン、2-アミノエタノール、アニリン、ベンズアルデヒド、ベンジルアルコール、ベンジルベンゾエート、シクロヘキサノール、ジエチレングリコール、ジエチレングリコールモノエチルエーテルアセテート、ジメチルアセトアミド、ジメチルサルホキシド、1,4-ジオキサン、エチレングリコール、ホルムアミド、ギ酸、グリセロール、2-メチル-2-ブタノール、ニトロベンゼン、1-オクタノール、3-ペンタノール、テトラクロロエチレン、トリフルオロ酢酸、キシレン等があり、これらの一種類、または、二種類以上の組み合わせた混合物からなる。
 本発明のナノ粒子は、例えば金属からなる。多くの金属は有機溶媒に対して耐性があるため、より凍結乾燥に適した溶媒を選択する自由度が高くなる。例えば、金属の中でも、ニッケル、コバルト、銀、金、プラチナ、銅、アルミニウム等が使用される。
 また、凍結乾燥工程における温度は、用いる有機溶媒の融点以下に制御されていることが望ましい。凍結乾燥が終了していない段階で、スラリー温度が有機溶媒の融点以上になると、真空乾燥が起きて凝集を誘発することとなってしまうためである。
 また、凍結乾燥工程において使用される処理容器は、凍結乾燥工程以前に、予め用いる有機溶媒の融点以下まで予冷されていることが望ましい。凍結に要する時間は、発明の効果と密接に関係しており、凍結に要する時間は従来行われている食品分野等の知見から短いことが望ましい。凍結に要する時間が長くなると、ナノ粒子の沈降や再凝集が起きるためである。また、凍結段階においては、冷却機によって処理容器を介してスラリーが冷却されることで凍結が実現される。そして、多くの場合、スラリー投入は冷却された装置外で行われることから、スラリー投入から冷却までの時間が必要となる。したがって、処理容器を予冷しておくことで、凍結時間を短くすることが期待される。
 また、凍結乾燥工程においては、スラリーを溶媒融点以下に冷却された気体、または、液体と接触させる工程を含むことが望ましい。通常、スラリーは処理容器との接触面より冷却されるため、非接触面は凍結が遅れることになる。しかし、冷却気体や液化ガスと接触させることにより、処理容器非接触面からも冷却が行われ、凍結をより迅速進行させることができる。なお、接触方法については、噴霧や滴下などが選択されるが特に限定はされない。
 凍結に要する時間が発明の効果と密接に関係しており、その時間はより短いことが望ましいことは前述のとおりである。したがって、スラリー中の粒子の再凝集時間よりも凍結に要する時間が短いことが望ましい。
 本発明のナノ粒子乾燥体の製造方法によって製造されたナノ粒子乾燥体も、本発明に含まれる。本発明のナノ粒子乾燥体は取扱い性がよく、種々の分野に応用が可能である。例えば、積層セラミックコンデンサ(MLCC;Multi-Layer Ceramic Capacitor)は、今後さらなる市場の拡大が見込まれる電子デバイスであるが、その小型化とともに材料となるNiナノ粒子の微細化、微粒子化が強く要求されている。本発明はそのような要求にも確実に応えられるものである。また、インクジェットインク用の粒子、電池電極用の粒子、透明導電膜用粒子、誘電体粒子などへの応用が可能である。
 本発明は、凍結乾燥法を用いてナノ粒子乾燥体を製造する方法であり、凍結によって分散構造(状態)を固定した状態で溶媒を除去しつつ乾燥できるため、乾燥過程における粒子の凝集を抑制することができる。
 本発明によれば分散状態のままの乾燥粉体を得られため、溶媒への再分散も容易であり、仮に複数粒子の会合状態にあったとしても、溶媒が介在したまま乾燥されたためにその結合力はきわめて弱く、攪拌や超音波照射などで簡単に再分散状態を実現できる。
 また、加熱等粒子に影響を及ぼす懸念がある処理を伴わないことから、乾燥後も粒子特性を維持することができる。
 次に、本発明の実施工程の一形態について説明する。本発明に係るナノ粒子の乾燥体製造技術には、上記凍結乾燥方法が含まれている。ここで「凍結乾燥」とは、対象試料をその溶媒の融点以下に凍結した後、試料温度をその融点以下に保持したままで、減圧し、溶媒を昇華させて除去する乾燥方法を意味する。いわゆるフリーズドライ(freeze drying)といわれるものであり、減圧下では溶媒の沸点が下がる性質を利用したもので、減圧(真空)条件下で乾燥を行う方法のため、「真空凍結乾燥」とも呼ばれる。
 本発明に係る製造方法で用いるナノ粒子としては種々のものを選択できるが、主として金属材料からなるものが用いられる。例えば、ニッケルやコバルト、銀、金、プラチナ、銅、アルミニウムなどの金属ナノ粒子が用いられる。
 また、ナノ粒子の形状は特に限定はされず、使用する用途に応じて種々の形状のナノ粒子を適宜選択することができる。また、使用目的に応じて、表面修飾等の表面処理が施されていても良い。
 次に、ナノ粒子乾燥体の製造にあたって、スラリー化工程、凍結工程、乾燥工程、取り出し工程、の四つに分けて説明する。
<スラリー化工程>
 このスラリー化工程は、対象ナノ粒子を有機溶媒中に分散させて分散液を製造する工程に相当する。また、各種の分散処理を追加的に行っても良く、用いる分散処理は既知のものを用いればよい。なお、スラリー化工程から後述の凍結工程への移行は、保管中の凝集抑制などの観点から、できるだけ短い時間で行われることが望ましい。
 具体的には、攪拌翼やマグネチックスターラーなどの既知の攪拌器材によって攪拌された有機溶媒中にナノ粒子を投入する方法などを用いることができる。スラリー中のナノ粒子濃度については、用途や目的に応じて適宜選択することが可能である。
 また、従来は分散剤等の添加剤を用いる方法などが検討されているが、分散剤は通常炭素を主成分とする有機物であるため、材料やプロセス的には有機汚染と同じように作用することになり、電気特性の低下や熱プロセスにおける脱ガス発生などの問題点がある。本発明においてはその効果により、分散剤自体がナノ粒子の使用に際して悪影響を与える可能性を考慮し、本発明におけるスラリー化工程では原則として分散剤を使用しない、または、ナノ粒子の物性に悪影響が出ない範囲で通常よりも減量(例えば、MLCC用Niナノ粒子の場合、乾燥後に残留する分散剤が2wt%以下)することができる。
<凍結工程>
 この凍結工程は、前述のスラリー化工程で製造されたスラリーを凍結させる工程であり、凍結乾燥工程の一部に相当する。用いる有機溶媒の融点以下に冷却できる方法であれば、既知の冷却、凍結方法を用いることができる。
 具体的には、通常の凍結乾燥で行われるような冷却棚に処理容器を設置する方法により行うことが可能である。ただし、凍結速度を早くするため、処理棚は予冷されていることが望ましく、予冷温度は用いる有機溶媒の融点よりも低いことがより望ましい。また、冷却棚だけでなく、処理容器も予冷されていることが好ましく、予冷温度は用いる有機溶媒の融点よりも低いことがより望ましい。
 さらには、冷却棚や処理容器との接触冷却による凍結だけでなく、冷却された気体や液体窒素、液化炭酸ガス等の液化ガスによる冷却を併用してもよい。これら以外にも、コストや材料、用途から定まる条件を満たすのであれば、液化ガス等へのスラリーの直接投入による凍結方法を用いても良い。方法の選択においては、より凍結に要する時間が短くなるものを選択することが好ましい。
<乾燥工程>
 この乾燥工程は、凍結乾燥工程の一部に相当する。本工程においては、スラリー温度が用いた有機溶媒の融点以上にならないよう制御された真空乾燥法を用いることができる。ただし、乾燥工程中に必要以上に冷却を行うと乾燥に要する時間が長くなるという問題が生じるので、スラリー温度が融点を超えない範囲でできるだけ高い温度に制御されることが好ましい。また、乾燥工程においては、有機溶媒の蒸発に伴って蒸発熱が奪われるため、通常スラリー温度は低下するので、試料温度が融点を超えないように注意しながら過熱を行うことが望ましい。
 なお、乾燥については十分な時間を供する必要があるが、上記蒸発熱の存在から、乾燥中のスラリー温度の変化や、過冷却防止のために必要な投入エネルギー(熱量)などが参考指標となる。
<取り出し工程>
 上記乾燥工程が終了した後、処理槽内の圧力を常圧に戻し、スラリー乾燥後に残ったナノ粒子乾燥体を取り出す取り出し工程が行われる。ただし、ナノ粒子乾燥体への結露を防止するため、ナノ粒子乾燥体が冷却された状態で取り出しを行うのではなく、ナノ粒子乾燥体の温度を室温に戻してから行うことが望ましい。なお、圧力を常圧に戻すために用いる気体は、大気の他に、材料や用途などに応じて窒素や希ガスなどの他の気体を適宜用いることができる。
 以下、本発明の実施例および比較例を説明する。
<実施例1:Niナノ粒子の凍結乾燥(t-ブタノール)>
 窒素フロー下で、20.0gの酢酸ニッケル四水和物、及び226.0gのオレイルアミンを混合した後、撹拌しながら、120℃で20分間加熱することによって、青色の反応液1を得た。次いで、反応液1にマイクロ波を照射して250℃で5分間加熱することによって、ニッケル(Ni)ナノ粒子スラリー1を得た。
 得られたNiナノ粒子スラリー1を静置分離し、上澄み液を取り除いた後、メタノールとトルエンの体積比率が1:4の混合溶媒を用いて3回洗浄し、さらにイソプロピルアルコール(IPA)で溶媒置換を行い、スラリー2を得た。
 得られたこのスラリー2に対し機械的分散処理を行い、スラリー3を得た。図1にスラリー3の光散乱法によって得られた粒度分布を示す。図に示される通り、スラリー3は良好な分散状態を示した。
 スラリー3を溶媒置換によってt-ブタノールを溶媒とするスラリー4に調製した後、予冷した金属バットに流し入れて、凍結乾燥装置内で速やかに-40℃まで冷却して凝固させた。スラリーが凝固とした後、真空引きを開始して凍結乾燥を行った。なお、凍結乾燥中は、蒸発熱を補って効率的に乾燥を行うために、スラリー温度が用いた溶媒の融点以下となるように制御しながら熱を加えて温度制御を行った。
 温度制御に必要な熱量や経過時間、スラリーの状態などから溶媒が除去されたことを確認した後、真空引きを維持した状態で冷却を停止して、徐々に温度を室温付近まで上昇させた。これは、冷却状態での大気暴露による結露を防止するためである。温度が室温付近に到達したところで、大気開放して凍結乾燥粉1を得た。
 得られた凍結乾燥粉1を再度IPAに投入して、スラリー5を得た。なお、スラリー5を得る過程においては、スラリー3を得た時のような機械的分散処理を施していない。図2にスラリー5の光散乱法によって粒度分布を示す。図に示される通り、スラリー5は一旦乾燥されているにもかかわらず、乾燥前と同程度の良好な分散状態であることが理解された。
 また、スラリー5を平滑なガラス上に塗布して乾燥した塗布膜1を得た。塗布膜1は、金属光沢を有していることから、平滑な表面となっていることが示唆される。この塗布膜1の表面粗さをレーザー顕微鏡により測定したところ、Ra=0.06μmとなり、極めて平滑な状態になっていることが確認できた(図6(b)参照)。
 したがって、凍結乾燥粉1は乾燥の前状態に匹敵する良好な再分散性を有することが確認された。
<実施例2:Niナノ粒子の凍結乾燥(シクロヘキサン)>
 実施例1において、凍結乾燥時に用いる溶媒をシクロヘキサンとした以外は同様の処理を行って凍結乾燥粉2を得た。これをスラリー5と同様の処理によってスラリーとしたスラリー6の光散乱法による粒度分布を図3に示す。図に示されるとおり、乾燥前と同程度の良好な分散状態であることがわかる。
 また、このスラリー6をターピネオール等の一般的なマトリクスを用いてペースト化して塗布、乾燥した塗布膜の表面粗さを計測すると、Ra=0.0073μmと極めて平滑な表面が得られることが分かった(図7(a)参照)。
<実施例3:Niナノ粒子の凍結乾燥(ニトロベンゼン)>
 実施例2と同様の処理を行って凍結乾燥粉2を得た。これを分散溶媒としてニトロベンゼンを用いる以外はスラリー5と同様の処理によって得られたスラリー7の光散乱法による粒度分布を図4に示す。図に示されるとおり、有機溶媒を用いて凍結乾燥を行った場合、再分散において分散条件(分散溶媒)による影響を受けにくいことがわかる。
<比較例1:Niナノ粒子の常温乾燥>
 実施例1で得たスラリー3を大気雰囲気で風乾して、通常(常温)乾燥粉1を得た。得られた乾燥粉1をIPAに投入して、スラリーAを得た。なお、スラリーAを得る過程においては、スラリー3を得た時のような機械的分散処理は施していない。スラリーAは乾燥時の非常に強固な凝集のために分散性が極めて悪く、目視でも確認できるほどの粗大粒子塊が多数存在しており、凍結乾燥粉と同様の処理では粒度分布を計測することすらできなかった。
 また、比較的凝集の少ないと考えられるスラリーAの上澄みを平滑なガラス上に塗布して乾燥した塗布膜Aを得た。塗布膜Aは、比較的凝集の少ない上澄みを用いたにもかかわらず塗布膜1のような金属光沢は有しておらず、黒色であることから、平滑性に乏しく荒れた表面となっていることが示唆される。この塗布膜Aの表面粗さをレーザー顕微鏡により測定したところ、Ra=1.14μmとなり、塗布膜1に比べて極めて荒れた状態になっていることが確認できた(図6(a)参照)。
 したがって、凍結乾燥を用いることで特異的に再分散性の高い乾燥粉が得られることが確認された。
<比較例2:Niナノ粒子の水溶媒による凍結乾燥> 
 実施例1において、凍結乾燥時に用いる溶媒を水とした以外は同様の処理を行って凍結乾燥粉3を得た。この凍結乾燥粉3について、これをスラリー5と同様の処理によって得たスラリーBの光散乱法による粒度分布を図5に示す。ピークが二つ発生するとともに、各ピークはシャープではないことから、水を溶媒として凍結乾燥を行った場合、十分な再分散ができないことが分かる。
 また、スラリーBをターピネオール等の一般的なマトリクスを用いてペースト化して塗布、乾燥した塗布膜の表面粗さを計測すると、Ra=0.022μmと凍結乾燥に有機溶媒を用いた場合に比べて、平滑性の低い表面となっていることが分かった(図7(b)参照)。この結果からも、水を溶媒として凍結乾燥を行った場合、十分な再分散ができないことが分かる。
 凍結乾燥3について、X線光電子分光法(XPS)により表面組成分析を行った結果を表1に示す。なお、表中には、凍結乾燥粉3の結果も併記した。両社の比較より、水を用いた場合には酸素量の有意な増加が認められる。すなわち、金属のような表面活性が高い材料の場合に水などを用いると、酸化などの変性を起こすことが分かる。表面組成や化学状態は、分散性はもちろん、材料自体の特性に大きな影響を与えることから、活性の高い水を溶媒とするのではなく、シクロヘキサンなどの有機溶媒を用いることが望ましいことが分かる。
Figure JPOXMLDOC01-appb-T000001
 尚、本発明は、上述した実施形態に限定されるものではなく、適宜、変形、改良、等が可能である。その他、上述した実施形態における各構成要素の材質、形状、寸法、数値、形態、数、配置箇所、等は本発明を達成できるものであれば任意であり、限定されない。
 本発明によれば、凍結によって分散構造(状態)を固定した状態で溶媒を除去しつつ乾燥できるため、乾燥過程における粒子の凝集を抑制することができる。したがって、取扱い性がよく、種々の分野に応用が可能なナノ粒子乾燥体が提供される。

Claims (7)

  1.  有機溶媒にナノ粒子を分散させた分散液を製造する工程と、前記分散液を凍結乾燥させて前記有機溶媒を除去する凍結乾燥工程と、を含むナノ粒子乾燥体の製造方法。
  2.  前記有機溶媒の融点が-30℃~30℃である、請求項1に記載のナノ粒子乾燥体の製造方法。
  3.  前記有機溶媒がt-ブタノール、シクロヘキサン、酢酸、アセトフェノン、アセチルアセトン、2-アミノエタノール、アニリン、ベンズアルデヒド、ベンジルアルコール、ベンジルベンゾエート、シクロヘキサノール、ジエチレングリコール、ジエチレングリコールモノエチルエーテルアセテート、ジメチルアセトアミド、ジメチルサルホキシド、1,4-ジオキサン、エチレングリコール、ホルムアミド、ギ酸、グリセロール、2-メチル-2-ブタノール、ニトロベンゼン、1-オクタノール、3-ペンタノール、テトラクロロエチレン、トリフルオロ酢酸、キシレンのうちいずれか一種類、または、二種類以上を組み合わせた混合物である、請求項1または2に記載のナノ粒子乾燥体の製造方法。
  4.  前記有機溶媒が水を含まない、請求項1から3のいずれか1項に記載のナノ粒子乾燥体の製造方法。
  5.  前記ナノ粒子が金属である、請求項1から4のいずれか1項に記載のナノ粒子乾燥体の製造方法。
  6.  前記金属がニッケル、コバルト、銀、金、プラチナ、銅、アルミニウムのうち少なくともいずれか一つである請求項5に記載のナノ粒子乾燥体の製造方法。
  7.  請求項1から6のいずれか1項に記載のナノ粒子乾燥体の製造方法によって製造されたナノ粒子乾燥体。
PCT/JP2012/076365 2012-10-11 2012-10-11 凍結乾燥法を用いたナノ粒子乾燥体の製造方法 WO2014057564A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2012/076365 WO2014057564A1 (ja) 2012-10-11 2012-10-11 凍結乾燥法を用いたナノ粒子乾燥体の製造方法
JP2014540694A JPWO2014057564A1 (ja) 2012-10-11 2012-10-11 凍結乾燥法を用いた塗布物の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/076365 WO2014057564A1 (ja) 2012-10-11 2012-10-11 凍結乾燥法を用いたナノ粒子乾燥体の製造方法

Publications (1)

Publication Number Publication Date
WO2014057564A1 true WO2014057564A1 (ja) 2014-04-17

Family

ID=50477052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/076365 WO2014057564A1 (ja) 2012-10-11 2012-10-11 凍結乾燥法を用いたナノ粒子乾燥体の製造方法

Country Status (2)

Country Link
JP (1) JPWO2014057564A1 (ja)
WO (1) WO2014057564A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017022052A1 (ja) * 2015-08-03 2017-02-09 北越紀州製紙株式会社 エアフィルタ用濾材の製造方法
WO2017095925A1 (en) * 2015-11-30 2017-06-08 The Regents Of The University Of California Low-density interconnected metal foams and methods of manufacture
WO2018020877A1 (ja) * 2016-07-29 2018-02-01 国立研究開発法人産業技術総合研究所 微細粒子の分散固定方法
CN109570522A (zh) * 2017-09-29 2019-04-05 东北农业大学 一种纳米银冻干粉的制备新方法
CN112226740A (zh) * 2020-10-15 2021-01-15 有研工程技术研究院有限公司 一种碱金属源的制备方法
CN112573547A (zh) * 2020-12-15 2021-03-30 衡阳师范学院 一种纳米碳酸锂的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002167603A (ja) * 2000-11-30 2002-06-11 Dainippon Ink & Chem Inc 焼結体形成用金属粉の表面処理方法。
JP2011089147A (ja) * 2009-10-20 2011-05-06 Mitsubishi Materials Corp 銀微粒子とその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63190133A (ja) * 1987-01-31 1988-08-05 Ibiden Co Ltd 窒化アルミニウム焼結体およびその製造方法
ATE100006T1 (de) * 1987-04-09 1994-01-15 Ceramics Process Systems Herstellung von komplexen keramischen und metallischen hochleistungsformkoerpern.
FR2785559B1 (fr) * 1998-11-10 2001-03-02 Metals Process Systems Procede de fabrication par metallurgie des poudres de pieces de forme autobrasantes
JP2002080749A (ja) * 2000-06-29 2002-03-19 Nittetsu Mining Co Ltd 膜被覆粉体、塗料組成物および塗布物
JP2002018080A (ja) * 2000-07-12 2002-01-22 Funai Electric Co Ltd 遊戯機及びこの遊戯機に用いられる通信システム
JP2002134367A (ja) * 2000-10-24 2002-05-10 Dainippon Ink & Chem Inc タンタル金属粉の多孔質成形体、タンタル電解コンデンサ用陽極素子及びこれを用いたタンタル電解コンデンサ、並びにタンタル電解コンデンサ用陽極素子の製造方法。
JP4604946B2 (ja) * 2004-09-30 2011-01-05 Dic株式会社 多孔質金属焼結体の製造方法
JP4633561B2 (ja) * 2005-07-05 2011-02-16 株式会社ブイ・テクノロジー 電子回路基板の配線補修用積層材および電子回路基板の配線補修方法並びに配線補修装置
JP4507126B2 (ja) * 2007-10-29 2010-07-21 ソニー株式会社 偏光板の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002167603A (ja) * 2000-11-30 2002-06-11 Dainippon Ink & Chem Inc 焼結体形成用金属粉の表面処理方法。
JP2011089147A (ja) * 2009-10-20 2011-05-06 Mitsubishi Materials Corp 銀微粒子とその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JUNCHENG LIU ET AL.: "More Benign Synthesis of Palladium Nanoparticles in Dimethyl Sulfoxide and Their Extraction into an Organic Phase", INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, vol. 49, no. ISSUE, 1 September 2010 (2010-09-01), pages 8174 - 8179 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017022052A1 (ja) * 2015-08-03 2017-02-09 北越紀州製紙株式会社 エアフィルタ用濾材の製造方法
CN107847834A (zh) * 2015-08-03 2018-03-27 北越纪州制纸株式会社 空气过滤器用过滤材料的制造方法
JPWO2017022052A1 (ja) * 2015-08-03 2018-05-24 北越紀州製紙株式会社 エアフィルタ用濾材の製造方法
US10556197B2 (en) 2015-08-03 2020-02-11 Hokuetsu Corporation Method for manufacturing filter medium for air filter
WO2017095925A1 (en) * 2015-11-30 2017-06-08 The Regents Of The University Of California Low-density interconnected metal foams and methods of manufacture
WO2018020877A1 (ja) * 2016-07-29 2018-02-01 国立研究開発法人産業技術総合研究所 微細粒子の分散固定方法
CN109570522A (zh) * 2017-09-29 2019-04-05 东北农业大学 一种纳米银冻干粉的制备新方法
CN112226740A (zh) * 2020-10-15 2021-01-15 有研工程技术研究院有限公司 一种碱金属源的制备方法
CN112573547A (zh) * 2020-12-15 2021-03-30 衡阳师范学院 一种纳米碳酸锂的制备方法
CN112573547B (zh) * 2020-12-15 2024-02-23 衡阳师范学院 一种纳米碳酸锂的制备方法

Also Published As

Publication number Publication date
JPWO2014057564A1 (ja) 2016-08-25

Similar Documents

Publication Publication Date Title
WO2014057564A1 (ja) 凍結乾燥法を用いたナノ粒子乾燥体の製造方法
JP6297135B2 (ja) 銅ナノ粒子及びその製造方法、銅ナノ粒子分散液、銅ナノインク、銅ナノ粒子の保存方法及び銅ナノ粒子の焼結方法
JP6976597B2 (ja) 銅粒子混合物及びその製造方法、銅粒子混合物分散液、銅粒子混合物含有インク、銅粒子混合物の保存方法及び銅粒子混合物の焼結方法
JP5364588B2 (ja) ナノダイヤモンド有機溶媒分散体およびその製造法
WO2009090748A1 (ja) 複合銀ナノ粒子、その製法及び製造装置
WO2014080662A1 (ja) 銅粉及びその製造方法
TWI778997B (zh) 銅粉、該銅粉的製造方法、使用該銅粉之導電性糊、及使用該導電性糊之導電性膜的製造方法
WO2018159610A1 (ja) 高透磁率及び高耐候性を有する軟磁性扁平粉末及びこれを含有する軟磁性樹脂組成物
JP2009184881A (ja) 焼結体およびその製造方法
WO2015087943A1 (ja) 銀微粒子分散液
Yang et al. Microstructure and electrical property of copper films on a flexible substrate formed by an organic ink with 9.6% of Cu content
CN107414070A (zh) 一种均匀球形石墨烯/单晶铜复合粉末及其制备方法
KR20100077371A (ko) 텅스텐-구리 복합 분말의 제조방법 및 이를 이용한 텅스텐-구리 복합체의 제조방법
KR20100073704A (ko) 복합산화물 나노 입자의 제조방법 및 그로부터 제조된 복합산화물 나노입자
CN107614160A (zh) 银微粒分散液
JP3977226B2 (ja) 焼結体形成用金属粉の表面処理方法及び該焼結体形成用金属粉
KR101096059B1 (ko) 구리 나노분말의 제조방법
JP2012077316A (ja) 磁性金属粒子の製造方法および複合磁性材料の製造方法
US11801556B2 (en) Metal particle aggregates, method for producing same, paste-like metal particle aggregate composition, and method for producing bonded body using said paste-like metal particle aggregate composition
JP2023107750A (ja) グラフェン分散液およびグラフェン樹脂複合膜
JP5993765B2 (ja) 複合ニッケル粒子
Sopoušek et al. Temperature stability of AgCu nanoparticles
US11090722B2 (en) Method for preparing nickel nanopowders and method for making nickel nanopowders into paste
JP2002167603A (ja) 焼結体形成用金属粉の表面処理方法。
CN115376822B (zh) 一种纳米颗粒有机复合薄膜及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12886227

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014540694

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12886227

Country of ref document: EP

Kind code of ref document: A1