WO2014054817A1 - 銀反射膜、光反射部材、および光反射部材の製造方法 - Google Patents

銀反射膜、光反射部材、および光反射部材の製造方法 Download PDF

Info

Publication number
WO2014054817A1
WO2014054817A1 PCT/JP2013/077221 JP2013077221W WO2014054817A1 WO 2014054817 A1 WO2014054817 A1 WO 2014054817A1 JP 2013077221 W JP2013077221 W JP 2013077221W WO 2014054817 A1 WO2014054817 A1 WO 2014054817A1
Authority
WO
WIPO (PCT)
Prior art keywords
silver
film
alloy
reflecting
plating
Prior art date
Application number
PCT/JP2013/077221
Other languages
English (en)
French (fr)
Inventor
達也 中津川
良聡 小林
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to KR1020157010161A priority Critical patent/KR102088267B1/ko
Priority to CN201380051747.3A priority patent/CN104685108B/zh
Priority to JP2014512206A priority patent/JP5684431B2/ja
Publication of WO2014054817A1 publication Critical patent/WO2014054817A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/08Mirrors; Reflectors
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/10Agitating of electrolytes; Moving of racks
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/46Electroplating: Baths therefor from solutions of silver
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/04Electroplating with moving electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • C25D5/611Smooth layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/615Microstructure of the layers, e.g. mixed structure
    • C25D5/617Crystalline layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/627Electroplating characterised by the visual appearance of the layers, e.g. colour, brightness or mat appearance
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0816Multilayer mirrors, i.e. having two or more reflecting layers
    • G02B5/085Multilayer mirrors, i.e. having two or more reflecting layers at least one of the reflecting layers comprising metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/647Heat extraction or cooling elements the elements conducting electric current to or from the semiconductor body

Definitions

  • the present invention relates to a silver reflection film made of silver or a silver alloy, a light reflection member such as a lead frame using the silver reflection film, and a method for manufacturing the light reflection member.
  • the silver reflecting film Since the silver reflecting film has a high reflectance in the visible light region, it is widely used for light reflecting members (hereinafter also referred to as reflecting members) such as LED lead frames.
  • a silver reflective film used for a lead frame or the like is often formed by plating or sputtering on a base material.
  • a silver alloy reflective film is formed by sputtering.
  • Sputtering has an advantage that a film having high uniformity can be formed, but manufacturing cost is high and productivity is low.
  • This Patent Document 1 describes a technique related to a silver alloy reflective film for a reflector that is excellent in surface smoothness even under a heating environment and exhibits high reflectivity.
  • Patent Document 2 describes a technique relating to a visible light reflecting member having a high reflectance on the visible light low wavelength side and excellent durability.
  • This is a reflective member comprising a silver thin film formed on a substrate and a silicon nitride protective film formed on the silver thin film, and the silver thin film has a (111) plane or a (200) plane as a main plane orientation.
  • the outermost crystal grain size is in the range of 0.5 ⁇ m or more and 30 ⁇ m or less
  • the silver plating layer has a film thickness of 1 ⁇ m or more
  • the base material is formed of copper
  • the surface roughness of the base material is Describes a technique relating to a silver reflective film having a thickness of 0.5 ⁇ m or more and a reflectance of 90% or more for light having a wavelength of 400 nm.
  • the silver reflective film exhibits high reflectance, but has a drawback that the reflectance changes due to heat.
  • a light reflecting member such as a lead frame is exposed to a heating environment such as soldering or wire bonding when a silver reflecting film is used for an LED substrate. Therefore, heat resistance is one of the important physical properties.
  • the relationship between the thermal history and the reflectance of the silver reflective film is complicated, and a clear mechanism has not yet been elucidated. In general, the reflectance tends to decrease due to heating. Therefore, it is desired to develop a silver reflective film that exhibits a good reflectance before and after heating.
  • an object of the present invention is to provide a silver reflective film that has high reflectivity, is difficult to change before and after heating, and is difficult to soften at room temperature. And it makes it a subject to provide the light reflection member which used this silver reflection film as a film. It is another object of the present invention to provide such a silver reflective film and a light reflective member at low cost and high productivity. Furthermore, this invention makes it a subject to provide the light reflection member which has a plating silver reflective film with favorable heat resistance, and an electroconductive base material by the plating method, and its manufacturing method.
  • the inventors of the present invention have a (100) orientation as the main orientation direction of the silver crystals in the silver reflecting film, and a region having (221) orientation exists in the plane. It has been found that the heat resistance is improved by the treatment. Furthermore, it has been found that these problems can be solved by plating rather than sputtering. The present invention has been completed based on these findings.
  • the surface of the silver reflecting film has a region in which the (221) plane of the crystal of the silver reflecting film is oriented in a direction normal to the reflecting surface of the silver reflecting film.
  • the length per unit area of the corresponding grain boundary ⁇ 3 in contact with the (100) orientation of the crystal of the silver reflecting film in the normal direction of the reflecting surface of the silver reflecting film is 0.4 ⁇ m.
  • ⁇ 4> A light reflecting member, wherein the conductive substrate is coated with the silver reflecting film according to any one of ⁇ 1> to ⁇ 3>.
  • ⁇ 5> The light reflecting member according to ⁇ 4>, wherein the conductive substrate has a surface roughness Ry of 0.5 ⁇ m or less.
  • the silver reflective film of the present invention exhibits good reflectivity in the wavelength band of 300 to 800 nm, and particularly has a reflectivity of 90% or more in the band of 450 to 600 nm. Furthermore, the silver reflective film of the present invention can maintain a reflectance of 90% or more in the 450 to 600 nm band even after heating at 200 ° C. for 2 hours, and is excellent in heat resistance. This silver reflective film can be provided with high productivity at a relatively low cost by electroplating. And this invention can provide the light reflection member and board
  • the silver reflective film of the present invention provides a light reflecting member which is formed as a plating layer made of silver or a silver alloy on the outermost surface of the conductive substrate and has a reflective layer with an increased reflectance.
  • the silver or silver alloy used for the reflective layer in the silver reflective film and light reflecting member of the present invention is silver, silver-tin alloy, silver-indium alloy, silver-rhodium alloy, silver-ruthenium alloy, silver-gold alloy, silver A material selected from the group consisting of a palladium alloy, a silver-nickel alloy, a silver-selenium alloy, a silver-antimony alloy, and a silver-platinum alloy.
  • silver, silver-tin alloy, silver-indium alloy, silver-palladium alloy, silver-selenium alloy, or silver-antimony alloy are more preferable from the viewpoint of improving the reflectance.
  • the thickness of the reflecting layer made of silver or a silver alloy is not particularly limited.
  • the thickness of the reflective layer is not particularly limited.
  • the reflectance can be stably increased.
  • the thickness of the reflective layer is used, when a lead frame for a semiconductor device is used, deterioration due to heating in a subsequent process such as wire bonding or sealing with resin or glass can be suppressed. If the thickness of the reflective layer is too thin (for example, 0.1 ⁇ m), the conductive base material that is discolored by heating tends to be exposed.
  • the thickness of the reflective layer is preferably 0.5 ⁇ m or more, more preferably 1.0 ⁇ m or more.
  • the upper limit value of the thickness of the reflective layer is preferably 30 ⁇ m or less, more preferably 10 ⁇ m or less, and even more preferably 5 ⁇ m or less, from the viewpoints of reducing silver, which is a noble metal, and suppressing plating costs.
  • the surface roughness Ry on the surface of the conductive substrate is preferably 0.3 ⁇ m or less.
  • the surface roughness Ry means the maximum height defined in JIS B0601: 1994, which corresponds to the height Zt of the contour curve element defined in JIS B0601: 2013 in the current standard. It is.
  • the brightener usual brighteners used in the plating treatment, for example, Se brighteners such as selenious acid and potassium selenocyanate, stabilizers, surfactants and the like can be used.
  • the addition amount of the brightener is preferably 10 to 30 ml / L. Details of the plating conditions will be described later.
  • the wavelength of 340 to 400 nm in the near ultraviolet region is set to a value close to the physical theoretical value of the reflectance of silver. I can do it.
  • the reflective layer (silver reflective film) made of silver or a silver alloy in the light reflecting member of the present invention has at least a portion that contributes to light reflection (that is, in a lead frame or an optical semiconductor device, for example, at least an optical semiconductor element is It suffices if it is formed on the outermost surface of the region that reflects the emitted light. In other portions, a reflective layer may or may not be provided, and even if a layer other than the reflective layer is formed, there is no particular problem in terms of reflectivity.
  • the material of the conductive base material of the light reflecting member of the present invention is not particularly limited.
  • copper or copper alloy, iron or iron alloy, or aluminum or aluminum alloy can be used.
  • a light reflecting member that is, an LED substrate
  • lead frames using these metals or alloys as conductive base materials have excellent heat dissipation characteristics, and the heat energy generated when the light emitter emits light can be smoothly discharged to the outside through the lead frame.
  • the lifetime of the light emitting element and the stabilization of reflectance characteristics over a long period are expected. This depends on the electrical conductivity of the conductive base material, preferably at least 10% in IACS (International Annealed Copper Standard), more preferably 50% or more.
  • nickel, nickel alloy, cobalt, cobalt alloy is provided between the conductive base material and the reflecting layer made of silver or silver alloy.
  • At least one intermediate layer made of a metal or alloy selected from the group consisting of copper, and copper alloys may be provided.
  • the intermediate layer is suitably formed by plating, for example.
  • the thermal conductivity of the material is relatively low, so providing a copper or copper alloy layer as an intermediate layer improves heat dissipation without impairing the reflectivity. Can do.
  • the plating layer which is a copper or copper alloy layer as the intermediate layer, also contributes to the improvement of the plating adhesion, so that it is possible to prevent the deterioration of the adhesion due to heat generation when the light emitting element emits light.
  • nickel, nickel alloy or cobalt is used as an intermediate layer in order to suppress diffusion of the conductive substrate component to the reflective layer due to heat generated when the light emitting element emits light.
  • the thickness of these intermediate layers is not particularly limited in the present invention, but is preferably in the range of 0.025 to 2.0 ⁇ m, more preferably 0.2 to 1.0 ⁇ m.
  • copper or a copper alloy as a material constituting the intermediate layer.
  • a two-layer intermediate layer may be used as the base of the reflective layer, for example, by performing nickel (Ni) plating after copper (Cu) plating. The application of the above intermediate layer is the same for the LED substrate.
  • the EBSD method is used for analyzing the crystal orientation of the reflective layer (silver reflective film) in the present invention.
  • EBSD is an abbreviation for Electron BackScatter Diffraction (Electron Backscatter Diffraction), and uses reflected electron Kikuchi line diffraction (Kikuchi pattern) generated when a sample is irradiated with an electron beam in a Scanning Electron Microscope (SEM). It is a crystal orientation analysis technique.
  • a sample area of 80 ⁇ m ⁇ 200 ⁇ m containing 200 or more crystal grains is scanned in a 0.2 ⁇ m step and the orientation is analyzed.
  • the electron beam is generated from thermionic electrons from the W filament of the scanning electron microscope.
  • OIM5.0 trade name manufactured by TSL Solutions Co., Ltd. is used.
  • the surface of the silver reflecting film has 50% or more of a region in which the (100) plane of the crystal of the silver reflecting film is oriented in the normal direction of the reflecting surface of the silver reflecting film.
  • a region in which the (221) plane of the crystal of the silver reflective film is oriented in the normal direction of the reflective surface of the silver reflective film exists on the surface of the silver reflective film.
  • the region where the (100) plane is oriented is 50% or more, preferably 60% or more. This value is preferably 90% or less.
  • the “region in which the (100) plane of the crystal of the silver reflecting film is oriented in the normal direction of the reflecting surface of the silver reflecting film” means silver or a silver alloy mother on the reflecting surface of the silver reflecting film.
  • the ⁇ 100> direction of the phase crystal indicates a region facing the normal direction of the reflecting surface. That is, it refers to a region where the (100) plane of silver or a silver alloy faces the reflective film surface. Note that a deviation within ⁇ 15 ° (the intersection angle between the normal direction of the reflecting surface and the ⁇ 100> direction is within 15 °) is allowed. Such a region is present at a constant rate on the entire reflecting surface of the silver reflecting film.
  • a measurement area by the EBSD method is simply evaluated as this “area” for convenience. As described above, 80 ⁇ m ⁇ 200 ⁇ m is calculated as the minimum unit area.
  • the surface of the silver reflecting film has 10% or more of a region in which the (221) plane of the crystal of the silver reflecting film is oriented in the normal direction of the reflecting surface of the silver reflecting film. More preferably, it is 20% or more. The upper limit of this value is not limited, but it is 30% or less.
  • crystallization of the said silver reflective film orientated in the normal line direction of the reflective surface of a silver reflective film has 50% or more, and the normal line of the reflective surface of the said silver reflective film In the direction, there is a region in which the (221) plane of the crystal of the silver reflecting film is oriented.
  • the crystal having the (221) plane oriented in the normal direction of the reflecting surface of the silver reflecting film prevents recrystallization or coarsening of the crystal grains with the (100) plane oriented. , Heat resistance is improved. This is considered to have an effect of preventing softening of the silver reflecting film due to normal temperature aging.
  • the reflective layer (silver reflective film) in the present invention is a unit of the corresponding grain boundary ⁇ 3 in contact with the (100) orientation of the crystal of the silver reflective film in the normal direction of the reflective surface of the silver reflective film on the surface of the silver reflective film.
  • the length per area is preferably 0.4 ⁇ m / ⁇ m 2 or more, and more preferably 0.5 ⁇ m / ⁇ m 2 or more.
  • the corresponding grain boundary is a special grain boundary having high geometric matching, and the smaller the ⁇ value defined as the reciprocal of the corresponding lattice point density, the higher the matching.
  • the corresponding grain boundary ⁇ 3 is known to have a small disorder of regularity at the grain boundary and a low grain boundary energy. In particular, heat resistance is superior because there are few defects that promote stress relaxation in the structure. Note that the corresponding grain boundary ⁇ 3 is also known as a twin.
  • Corresponding grain boundary ⁇ 3 corresponds to a grain boundary between a crystal having (100) oriented in the normal direction of the reflecting surface and a crystal having (221) face oriented in the normal direction of the reflecting surface. That is, the presence of a certain amount of the corresponding grain boundary ⁇ 3 means that there is a certain amount of a region where the (100) -oriented crystal grains are in contact with the (221) -oriented crystal grains. As described above, in the present invention, the presence of the (221) plane orientation prevents recrystallization and / or coarsening of the (100) plane orientation crystal grains. Is preferred. In order to capture this quantitatively, the total amount of the length per unit area of the corresponding grain boundary ⁇ 3 is an index.
  • the analysis of the corresponding grain boundary ⁇ 3 is performed by CSL (Coincidence Site Lattice boundary) analysis using software “Orientation Imaging Microscope v5” (trade name) manufactured by EDAX TSL.
  • the corresponding grain boundary ⁇ 3 is, for example, a grain boundary in which adjacent grains have a 60 ° rotation angle relationship based on the ⁇ 111> rotation axis. Therefore, the grain boundary corresponding to the corresponding grain boundary ⁇ 3 is analyzed from the orientation relation between adjacent grain boundaries using the software.
  • the total grain boundary length of the rolling surface and the corresponding grain boundary ⁇ 3 in the measurement range are measured, and (the length of the corresponding grain boundary ⁇ 3) / (total grain boundary length) ⁇ 100 (%) is the ratio of the corresponding grain boundary ⁇ 3 ( %).
  • a case where adjacent pixels have an inclination (displacement) of 15 ° or more is determined as a crystal grain boundary.
  • the hardness of the silver reflecting film of the light reflecting member of the present invention is preferably 100 Hk or more in Knoop hardness (Hk). More preferably, it is 105 Hk or more, More preferably, it is 110 Hk or more.
  • the change rate of hardness after 30 days (30 days ⁇ 24 hours) is preferably 15% or less in terms of change rate of Knoop hardness. More preferably, it is 10% or less, More preferably, it is 8% or less.
  • the change rate of the Knoop hardness is represented by [ ⁇ initial Knoop hardness (Hk) ⁇ knoop hardness after 30 days (Hk) ⁇ / initial Knoop hardness (Hk)] ⁇ 100 (%).
  • the manufacturing method of the light reflection member of this invention is demonstrated.
  • the light reflecting member of the present invention can be manufactured by forming a silver reflecting film (reflective layer) made of silver or a silver alloy as a film by plating the conductive substrate.
  • the rocking condition it is preferable to rock the conductive substrate or the plating solution itself with an amplitude of 1 to 10 mm and a vibration period of 10 to 100 Hz. More preferably, the swinging condition is that the conductive substrate is swung with an amplitude of 2 to 8 mm and a vibration period of 20 to 80 Hz.
  • the brightener is preferably added to the silver or silver alloy plating bath.
  • the light reflecting member of the present invention is selected from the group consisting of nickel, nickel alloy, cobalt, cobalt alloy, copper, and copper alloy by plating the conductive substrate as one embodiment.
  • An intermediate layer of at least one layer made of a metal or an alloy is provided on the substrate, and the silver reflective film made of silver or a silver alloy is formed on the intermediate layer by subjecting the intermediate layer to a silver or silver alloy plating treatment. You may manufacture by providing as a film.
  • the crystal orientation is controlled by swinging the substrate or the like during plating.
  • the present inventors appropriately perform the crystal orientation of the reflective layer (silver reflective film) by performing silver or silver alloy plating while oscillating the substrate or the plating solution with an amplitude of 1 to 10 mm and a vibration period of 10 to 100 Hz. I found it easy to control. Although it is also a balance with the amplitude, if the vibration period is too high, the substrate and the electrode are too close to each other, resulting in non-uniform plating thickness and a decrease in the (100) plane orientation ratio, leading to a decrease in reflectivity. Further, since there is a risk of scattering of the plating solution, it is desirable to operate the swing within the above range. If the oscillation period of oscillation is too low, handling of the (100) plane and (221) plane orientation is difficult, and sufficient control may not be possible.
  • the reflectance is excellent or the high reflectance is a spectrophotometer (for example, V660 (trade name, manufactured by JASCO Corporation)) when the barium sulfate standard plate is 100%.
  • V660 trade name, manufactured by JASCO Corporation
  • the reflectance at the wavelength 400 nm at the short wavelength end of the visible light region (long wavelength end of the near ultraviolet region) is 85% or more
  • the reflectance at a wavelength of 450 nm in the visible light region is 90% or more and 90% or more at a wavelength of 600 nm.
  • a metal substrate having a surface roughness Ry of 0.5 ⁇ m or less was prepared, and the Ag plating solution was plated using a selenium brightener.
  • Cu plating, Ni plating, or the like may be performed as a base plating in order to improve adhesion and heat resistance.
  • a silver reflection film can be obtained by cut
  • Example 1 In Example 1, a copper alloy C18045 having a surface roughness Ry of 0.2 ⁇ m was used as the conductive base material, and Ni plating was formed on the conductive base material with a film thickness of 1.0 ⁇ m as an intermediate layer.
  • electric power is 70 seconds under the conditions of silver concentration 60g / L, brightener (manufactured by Umicore Japan) concentration 22ml / L, temperature 30 ° C, current density 4A / dm 2 , stirring speed 1000rpm, amplitude 2mm, vibration period 20Hz.
  • a silver reflective film having a layer thickness of 3 ⁇ m was formed on the intermediate layer, and the light reflecting member of Example 1 was obtained.
  • Example 2 In Example 2, a copper alloy C18045 having a surface roughness Ry of 0.3 ⁇ m was used as the conductive base material, and Ni plating was formed as an intermediate layer on the conductive base material with a thickness of 1.0 ⁇ m.
  • electroplating treatment was performed for 50 seconds under the conditions of a silver concentration of 60 g / L, a brightener (made by Metallo) concentration of 20 ml / L, a temperature of 25 ° C., a current density of 6 A / dm 2 , a stirring speed of 1000 rpm, an amplitude of 5 mm, and a vibration period of 60 Hz.
  • a silver reflective film having a layer thickness of 3 ⁇ m was formed on the intermediate layer, and the light reflecting member of Example 2 was obtained.
  • Example 3 In Example 3, a copper alloy C18045 having a surface roughness Ry of 0.2 ⁇ m was used as the conductive substrate, and Ni plating was formed on the conductive substrate as an intermediate layer with a thickness of 1.0 ⁇ m.
  • electroplating is performed for 50 seconds under the conditions of a silver concentration of 60 g / L, a brightener (made by Metallo) concentration of 20 ml / L, a temperature of 25 ° C., a current density of 6 A / dm 2 , a stirring speed of 1000 rpm, an amplitude of 3 mm, and a vibration period of 60 Hz.
  • a silver reflective film having a layer thickness of 3 ⁇ m was formed on the intermediate layer, and the reflective member of Example 3 was obtained.
  • Example 4 In Example 4, a copper alloy C14410 having a surface roughness Ry of 0.5 ⁇ m was used as the conductive base material, and Ni plating was formed as an intermediate layer on the conductive base material with a thickness of 1.0 ⁇ m.
  • electroplating treatment was performed for 50 seconds under the conditions of a silver concentration of 60 g / L, a brightener (made by Metallo) concentration of 20 ml / L, a temperature of 25 ° C., a current density of 6 A / dm 2 , a stirring speed of 1000 rpm, an amplitude of 5 mm, and a vibration period of 40 Hz.
  • a silver reflective film having a layer thickness of 3 ⁇ m was formed on the intermediate layer, and the reflective member of Example 4 was obtained.
  • Example 5 In Example 5, a copper alloy C14410 having a surface roughness Ry of 0.3 ⁇ m was used as the conductive base material, and Ni plating was formed on the conductive base material with a film thickness of 1.0 ⁇ m as an intermediate layer.
  • electroplating treatment was performed for 50 seconds under the conditions of a silver concentration of 60 g / L, a brightener (made by Metallo) concentration of 20 ml / L, a temperature of 25 ° C., a current density of 6 A / dm 2 , a stirring speed of 1000 rpm, an amplitude of 5 mm, and a vibration period of 40 Hz.
  • a silver reflective film having a layer thickness of 3 ⁇ m was formed on the intermediate layer, and the reflective member of Example 5 was obtained.
  • Example 6 a copper alloy C18045 having a surface roughness Ry of 0.2 ⁇ m was used as the conductive base material, and Ni plating was formed on the conductive base material with a film thickness of 0.025 ⁇ m as an intermediate layer.
  • electroplating treatment was performed for 50 seconds under the conditions of a silver concentration of 60 g / L, a brightener (made by Metallo) concentration of 20 ml / L, a temperature of 25 ° C., a current density of 6 A / dm 2 , a stirring speed of 1000 rpm, an amplitude of 5 mm, and a vibration period of 60 Hz.
  • a silver reflective film having a layer thickness of 3 ⁇ m was formed on the intermediate layer, and the reflective member of Example 6 was obtained.
  • Example 7 In Example 7, a copper alloy C18045 having a surface roughness Ry of 0.2 ⁇ m was used as the conductive base material, and Ni plating was formed on the conductive base material with a film thickness of 0.2 ⁇ m as an intermediate layer.
  • silver plating electroplating for 9 seconds under the conditions of a silver concentration of 60 g / L, a brightener (made by Metallo) concentration of 20 ml / L, a temperature of 25 ° C., a current density of 6 A / dm 2 , a stirring speed of 1000 rpm, an amplitude of 5 mm, and a vibration period of 60 Hz.
  • a silver reflective film having a layer thickness of 0.5 ⁇ m was formed on the intermediate layer, and the reflective member of Example 7 was obtained.
  • Example 8 In Example 8, a copper alloy C18045 having a surface roughness Ry of 0.2 ⁇ m was used as the conductive substrate, and Ni plating was formed as an intermediate layer on the conductive substrate with a film thickness of 0.2 ⁇ m.
  • electroplating is performed for 17 seconds under conditions of a silver concentration of 60 g / L, a brightener (made by Metallo) concentration of 20 ml / L, a temperature of 25 ° C., a current density of 6 A / dm 2 , a stirring speed of 1000 rpm, an amplitude of 5 mm, and a vibration period of 60 Hz.
  • a silver reflective film having a layer thickness of 1 ⁇ m was formed on the intermediate layer, and the reflective member of Example 8 was obtained.
  • Example 9 In Example 9, a copper alloy C18045 having a surface roughness Ry of 0.2 ⁇ m was used as the conductive base material, and Ni plating was formed as an intermediate layer on the conductive base material with a thickness of 1.0 ⁇ m.
  • electroplating is performed for 17 seconds under conditions of a silver concentration of 60 g / L, a brightener (made by Metallo) concentration of 20 ml / L, a temperature of 25 ° C., a current density of 6 A / dm 2 , a stirring speed of 1000 rpm, an amplitude of 5 mm, and a vibration period of 60 Hz.
  • a silver reflective film with a layer thickness of 1 ⁇ m was formed on the intermediate layer, and the reflective member of Example 9 was obtained.
  • Example 10 a copper alloy C14410 having a surface roughness Ry of 0.3 ⁇ m was used as the conductive base material, and Ni plating was formed as an intermediate layer on the conductive base material with a thickness of 0.2 ⁇ m.
  • silver plating electroplating for 25 seconds under the conditions of silver concentration 60 g / L, brightener (made by Metallo) concentration 20 ml / L, temperature 25 ° C., current density 6 A / dm 2 , stirring number 1000 rpm, amplitude 5 mm, vibration period 60 Hz
  • a silver reflective film having a layer thickness of 2 ⁇ m was formed on the intermediate layer, and the reflective member of Example 10 was obtained.
  • Example 11 In Example 11, a copper alloy C18045 having a surface roughness Ry of 0.2 ⁇ m was used as the conductive substrate. As silver plating, electroplating treatment was performed for 50 seconds under the conditions of a silver concentration of 60 g / L, a brightener (made by Metallo) concentration of 20 ml / L, a temperature of 25 ° C., a current density of 6 A / dm 2 , a stirring speed of 1000 rpm, an amplitude of 5 mm, and a vibration period of 60 Hz. As a result, a silver reflective film having a layer thickness of 3 ⁇ m was formed on the conductive substrate, and the reflective member of Example 11 was obtained.
  • a silver concentration of 60 g / L a brightener (made by Metallo) concentration of 20 ml / L, a temperature of 25 ° C., a current density of 6 A / dm 2 , a stirring speed of 1000 rpm, an amplitude of 5
  • Comparative Example 1 In Comparative Example 1, a copper alloy C19210 having a surface roughness Ry of 0.6 ⁇ m was used as the conductive substrate, and Ni plating was formed as an intermediate layer on the conductive substrate with a film thickness of 1.0 ⁇ m. As silver plating, electroplating is performed for 50 seconds under the conditions of a silver concentration of 60 g / L, a brightener (product of Metallo) concentration of 20 ml / L, a temperature of 25 ° C., a current density of 6 A / dm 2 , and a stirring speed of 500 rpm. A 3 [mu] m silver reflective film was formed on the intermediate layer to obtain a light reflecting member of Comparative Example 1.
  • Comparative Example 2 In Comparative Example 2, a copper alloy C19400 having a surface roughness Ry of 0.7 ⁇ m was used as the conductive base material, and Ni plating was formed on the conductive base material with a film thickness of 1.0 ⁇ m as an intermediate layer. As silver plating, electroplating for 50 seconds under the conditions of silver concentration 60 g / L, brightener concentration 0 ml / L (not used), temperature 25 ° C., current density 6 A / dm 2 , stirring speed 500 rpm, amplitude 5 mm, vibration period 60 Hz. By performing the treatment, a silver reflective film having a layer thickness of 3 ⁇ m was formed on the intermediate layer, and the light reflecting member of Comparative Example 2 was obtained.
  • the electroplating treatment is performed for 306 seconds under the conditions of a silver concentration of 32 g / L, a brightener (manufactured by EEJA) concentration of 10 ml / L, a temperature of 25 ° C., a current density of 1 A / dm 2 , and a stirring speed of 200 rpm, and the layer thickness A 3 [mu] m silver reflective film was formed on the intermediate layer to obtain the light reflecting member of Conventional Example 1.
  • the reflectances at 400 nm in Comparative Examples 1 and 2 and Conventional Examples 1 and 2 are both less than 85%, and the reflectances at 450 nm are both 84 to 87%, which are lower values than the respective examples. showed that.
  • the (100) orientation is mainly in the normal direction of the reflecting member surface, that is, the proportion of crystals in which the normal direction of the reflecting surface and the ⁇ 100> direction are substantially parallel is a specific field of view. It was 50% or more.
  • there are many (221) orientations in the (100) orientation that is, the ratio of the corresponding grain boundary ⁇ 3 length to the measured area (the length per unit area of the corresponding grain boundary ⁇ 3) is 0. It was 4 ⁇ m / ⁇ m 2 or more.
  • Table 1 shows the ratio of the (100) orientation obtained from the EBSD pattern and the corresponding grain boundary ⁇ 3 density in contact with the (100) orientation before and after the heating of the reflecting member. From Table 1, the higher the corresponding grain boundary ⁇ 3 density, the higher the heat resistance. From this, it can be considered that the presence of the corresponding grain boundary ⁇ 3 in the (100) orientation suppresses recrystallization of the (100) orientation due to heating, and has a high reflectance even after heating.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Led Device Packages (AREA)

Abstract

【課題】反射率が高く、加熱前後においても反射率が変化しづらく、かつ軟化しにくい銀反射膜とそれを用いた光反射部材を、低コストで、生産性良く提供すること;さらに、めっき法によって、耐熱性の良い、めっき銀反射膜と導電性基材とを有する光反射部材を提供すること。 【解決手段】銀または銀合金からなる銀反射膜であって、前記銀反射膜の表面に、前記銀反射膜の反射面の法線方向に前記銀反射膜の結晶の(100)面が配向した領域が50%以上あり、且つ前記銀反射膜の反射面の法線方向に前記銀反射膜の結晶の(221)面が配向した領域が存在する銀反射膜;および、この銀反射膜と導電性基材とからなる光反射部材とその製造方法。

Description

銀反射膜、光反射部材、および光反射部材の製造方法
 本発明は、銀または銀合金からなる銀反射膜と、それを被膜とするリードフレーム等の光反射部材、およびこの光反射部材の製造方法に関する。
 銀反射膜は可視光域における反射率が高い特性を有するため、LED用のリードフレームなどの光反射部材(以下、反射部材ともいう。)に広く使用されている。リードフレームなどに使用される銀反射膜は、基材にめっきやスパッタリングを行い形成されていることが多い。
 例えば特許文献1に記載の技術ではスパッタリングにより銀合金反射膜を形成している。スパッタリングは高い均一性を有する膜を形成できるメリットはあるが、製造コストが高く、生産性は低い。この特許文献1には加熱環境下においても表面平滑性に優れ、高い反射率を示すリフレクター用銀合金反射膜に関する技術が記載されている。この方法において、成膜方法はスパッタリングであり、表面粗さはRa=2.0nm以下である。
 特許文献2には可視光低波長側での反射率が高く、かつ耐久性に優れた可視光反射部材に関する技術が記載されている。このものは基板に成形した銀薄膜と前記銀薄膜上に形成した窒化珪素保護膜からなる反射部材であり、銀薄膜は(111)面、或いは(200)面を主要な面方位とする。
 特許文献3には最表面の結晶粒径が0.5μm以上30μm以下の範囲内にあり、銀めっき層が1μm以上の膜厚を有し、下地材料が銅により形成され、下地材料の表面粗さが0.5μm以上であり、波長400nmの光に対する反射率が90%以上である銀反射膜に関する技術が記載されている。
 ところで、銀反射膜をリードフレーム等の光反射部材に用いる際の重要な問題点の一つとして銀反射膜の耐熱性の問題が挙げられる。銀反射膜は高い反射率を示すが、熱により反射率が変化してしまうという難点がある。例えば、リードフレーム等の光反射部材において、LED用基板に銀反射膜を使用する際には半田付けやワイヤーボンディングなどの加熱環境にさらされる。そのため耐熱性は重要な物性の一つであるといえる。しかし、銀反射膜の熱履歴と反射率の関係は複雑であり、未だに明確な機構は解明されていない上、一般的には加熱により反射率が下がる傾向が見られている。したがって、加熱前後においても良好な反射率を示す銀反射膜の開発が望まれている。さらに近年では、銀反射膜は常温時効によって軟化してしまうことも課題として挙がっている。従って、銀反射膜の硬さが経時変化しにくいことも要求されている。
特開2005-029849号公報 特開2007-058194号公報 特許第4367457号明細書
 そこで、本発明は、反射率が高く、加熱前後においても反射率が変化しづらく、また常温で軟化しにくい銀反射膜を提供することを課題とする。そして、この銀反射膜を被膜として用いた光反射部材を提供することを課題とする。また、このような銀反射膜および光反射部材を低コストで、生産性良く提供することを課題とする。さらに、本発明は、めっき法によって、耐熱性の良いめっき銀反射膜と導電性基材とを有する光反射部材、およびその製造方法を提供することを課題とする。
 本発明者らは、上記背景技術の問題に鑑み鋭意検討を進めた結果、銀反射膜の銀結晶の配向方向を(100)配向を主とし、面内に(221)配向を示す領域を存在させることにより耐熱性が向上すること等を見出した。さらにこれらの課題の解決を、スパッタリングではなくめっき法で行うことができることを見出した。
 本発明は、これらの知見に基づき完成するに至ったものである。
 すなわち、本発明によれば、以下の手段が提供される。
<1>銀または銀合金からなる銀反射膜であって、前記銀反射膜の表面に、前記銀反射膜の反射面の法線方向に前記銀反射膜の結晶の(100)面が配向した領域が50%以上あり、且つ前記銀反射膜の反射面の法線方向に前記銀反射膜の結晶の(221)面が配向した領域が存在することを特徴とする銀反射膜。
<2>前記銀反射膜表面に、前記銀反射膜の反射面の法線方向に前記銀反射膜の結晶の(221)面が配向した領域が10%以上あることを特徴とする<1>に記載の銀反射膜。
<3>前記銀反射膜表面に、前記銀反射膜の反射面の法線方向に前記銀反射膜の結晶の(100)配向に接する対応粒界Σ3の単位面積当たりの長さが0.4μm/μm以上であることを特徴とする<1>又は<2>に記載の銀反射膜。
<4>導電性基材に<1>~<3>のいずれか1項に記載の銀反射膜を被膜としたことを特徴とする光反射部材。
<5>前記導電性基材の表面粗度Ryが0.5μm以下であることを特徴とする<4>に記載の光反射部材。
<6>前記導電性基材と前記銀反射膜の間に、ニッケル、ニッケル合金、コバルト、コバルト合金、銅、および銅合金からなる群から選ばれた金属または合金からなる少なくとも1層の中間層が設けられたことを特徴とする<4>又は<5>に記載の光反射部材。
<7>導電性基材にめっき処理を施すことにより、銀または銀合金からなる銀反射膜を皮膜とする光反射部材の製造方法であって、前記めっき処理中に前記基材を揺動させることを特徴とする、光反射部材の製造方法。
<8>前記導電性基材にめっき処理を施すことにより、ニッケル、ニッケル合金、コバルト、コバルト合金、銅、および銅合金からなる群から選ばれた金属または合金からなる少なくとも1層の中間層を設け、前記中間層にめっき処理を施すことにより、銀または銀合金からなる銀反射膜を皮膜する、<7>に記載の光反射部材の製造方法。
<9>振幅1~10mm、振動周期10~100Hzで揺動させることを特徴とする、<7>又は<8>に記載の光反射部材の製造方法。
 本発明の銀反射膜は、300~800nmの波長帯で良好な反射率を示し、特に450~600nmの帯域では90%以上の反射率を有する。さらに本発明の銀反射膜は、200℃で2時間の加熱後においても同様に、450~600nmの帯域で90%以上の反射率を維持することができ耐熱性に優れる。この銀反射膜は、電気めっきによって、比較的低コストで生産性良く提供することができる。そして、本発明は、めっき法によって、耐熱性の良いめっき銀反射膜と導電性基材とを有する光反射部材およびLED用基板を提供することができる。
 本発明の上記及び他の特徴及び利点は、下記の記載からより明らかになるであろう。
 本発明の銀反射膜は、導電性基材上の最表面に、銀または銀合金からなるめっき層として形成された、かつ、反射率が高められた反射層を有する光反射部材を与える。
(銀反射膜および光反射部材)
 本発明の銀反射膜および光反射部材における反射層に用いられる銀または銀合金は、銀、銀-錫合金、銀-インジウム合金、銀-ロジウム合金、銀-ルテニウム合金、銀-金合金、銀-パラジウム合金、銀-ニッケル合金、銀-セレン合金、銀-アンチモン合金、及び銀-白金合金からなる群から選ばれた材料からなる。上述した中でも特に、銀、銀-錫合金、銀-インジウム合金、銀-パラジウム合金、銀-セレン合金、または銀-アンチモン合金が反射率向上の観点から、より好ましい。このような銀または銀合金を銀反射膜に用いることにより、反射率が良好で生産性の良い銀反射膜と、この銀反射膜を有してなるリードフレームおよびLED用基板などの光反射部材とが得られる。
 また、本発明の光反射部材においては、銀または銀合金からなる反射層の厚さ(銀反射膜の厚さ)に関して特に限定されるものではない。この反射層の厚さは、例えば下限値は0.5μm以上とすることにより、反射率を安定して高めることができる。また、この反射層厚とすることで、半導体装置用リードフレームとする場合、後工程であるワイヤーボンドや樹脂またはガラスでの封止などでの加熱による劣化を抑えることができる。もし、反射層の厚さが薄すぎる場合(例えば、0.1μm)には、加熱による変色が発生する導電性基材が露出しやすくなる。このため、加熱や加工による変色をより安定して防止するには、反射層の厚さは好ましくは0.5μm以上、より好ましくは1.0μm以上である。一方、該反射層の厚さの上限値は、貴金属である銀の削減やめっき加工費の抑制などの観点から、好ましくは30μm以下、より好ましくは10μm以下、さらに好ましくは5μm以下である。
 この光反射部材において、銀または銀合金めっきで可視光域において高反射率を示す銀反射膜を達成するためには、平滑な基材と光沢剤を使用し、めっき条件を適正に制御することで、反射層の表面の集合組織の配向性に規則性を持たせることによって、より高反射率化することができる。
 平滑な基材とは、表面粗度でRy=0.5μm以下の特性を有するものをいう。導電性基材表面の表面粗度Ryは、好ましくは0.3μm以下である。導電性基材表面の表面粗度Ryの下限値には、特に制限はないが、通常0.05μm以上である。
 ここで、表面粗度Ryとは、JIS B0601:1994で規定されていた最大高さをいい、これは、現在の規格ではJIS B0601:2013で規定する輪郭曲線要素の高さZtに相当するものである。
 光沢剤としては、めっき処理で用いられる通常の光沢剤、例えば亜セレン酸、セレノシアン酸カリウムなどのSe系の光沢剤や安定剤、界面活性剤などを用いることができる。光沢剤の添加量は、好ましくは10~30ml/Lである。
 めっき条件の詳細については後述する。
 さらに本発明の光反射部材によれば、近紫外域である波長340~400nmだけでなく、可視光域である波長400~800nmにおいても、銀の反射率の物理的理論値に近い値にすることが出来る。
 また、本発明の光反射部材における銀または銀合金からなる反射層(銀反射膜)は、少なくとも光の反射に寄与する部分(つまり、例えばリードフレームや光半導体装置においては、少なくとも光半導体素子が発する光を反射する領域)の最表面に形成されていればよい。他の部分においては、反射層を設けても設けなくてもよく、また反射層以外の層が形成されていても、反射率の点からは特に問題はない。
 また、本発明の光反射部材の、導電性基材の材料について特に制限するものではないが、例えば銅もしくは銅合金、鉄もしくは鉄合金、またはアルミニウムもしくはアルミニウム合金を用いることができる。導電性基材としてこれらの材料とすることで、反射率特性がよくかつ反射層や中間層の皮膜を形成するのが容易であり、コストダウンにも寄与できる光反射部材(つまり、LED用基板、さらにはリードフレーム)が提供できる。また、これらの金属または合金を導電性基材とするリードフレームは放熱特性に優れており、発光体が発光する際に発生する熱エネルギーを、リードフレームを介してスムーズに外部に放出することができ、発光素子の長寿命化及び長期にわたる反射率特性の安定化が見込まれる。これは、導電性基材の導電率に依存するものであり、少なくともIACS(International Annealed Copper Standard)で10%以上あるものが好ましく、50%以上であるものがさらに好ましい。
 また、本発明の光反射部材を用いた光反射部材(例えば、リードフレーム)には、導電性基材と銀または銀合金からなる反射層との間に、ニッケル、ニッケル合金、コバルト、コバルト合金、銅、および銅合金からなる群から選ばれた金属または合金からなる少なくとも1層の中間層を設けてもよい。中間層は、例えばめっきにより好適に形成される。
 例えば、鉄系の導電性基材を用いた場合は材料の熱伝導度が比較的低いため、中間層として銅または銅合金層を設けることにより、反射率を損なうことなく放熱性を向上させることができる。さらに、前記中間層としての銅または銅合金層であるめっき層は、めっき密着性の向上にも寄与するため発光素子が発光する際の発熱による密着性の劣化を防止できる。
 銅または銅合金を導電性基材として用いた場合は、発光素子が発光する際の発熱による導電性基材成分の反射層への拡散を抑制するために、中間層としてニッケル、ニッケル合金、コバルト、またはコバルト合金の中間層を設けることが有効である。
 これらの中間層の厚さは、本発明においては特に限定されるものではないが、好ましくは0.025~2.0μm、さらに好ましくは0.2~1.0μmの範囲が好ましい。
 また、リードフレームにおいて導電性基材と反射層の密着性を高めるためには、中間層を構成する材質として銅または銅合金を用いることが好ましい。さらには、銅(Cu)めっき後にニッケル(Ni)めっきを施す等して、2層からなる中間層を反射層の下地としても良い。
 上記の中間層の適用については、LED用基板の場合も同様である。
(結晶方位解析)
 本発明における反射層(銀反射膜)の結晶方位の解析には、EBSD法を用いる。EBSDとは、Electron BackScatter Diffraction(電子後方散乱回折)の略で、走査電子顕微鏡(Scanning Electron Microscope:SEM)内で試料に電子線を照射したときに生じる反射電子菊池線回折(菊池パターン)を利用した結晶方位解析技術のことである。本発明においては、結晶粒を200個以上含む、80μm×200μmの試料面積に対し、0.2μmのステップでスキャンし、方位を解析する。なお、電子線は走査電子顕微鏡のWフィラメントからの熱電子を発生源とする。EBSD法の測定装置としては、(株)TSLソリューションズ製 OIM5.0(商品名)を用いる。
 本発明では、銀反射膜の表面に、銀反射膜の反射面の法線方向に前記銀反射膜の結晶の(100)面が配向した領域が50%以上存在する。且つ、銀反射膜の表面に、前記銀反射膜の反射面の法線方向に前記銀反射膜の結晶の(221)面が配向した領域が存在する。(100)面が配向した領域は、50%以上であり、好ましくは60%以上である。この値は90%以下が好ましい。
 本明細書において、「銀反射膜の反射面の法線方向に前記銀反射膜の結晶の(100)面が配向した領域」とは、銀反射膜の反射面表面において、銀または銀合金母相の結晶の<100>方向が、反射面の法線方向を向いている領域を指す。すなわち、反射膜表面に銀または銀合金の(100)面が向いている領域を指す。なお、±15°以内のずれ(反射面表面の法線方向と<100>方向との交差角度が15°以内)は許容する。このような領域が、銀反射膜の反射面表面全体に一定割合で存在する。なお、領域の割合の計算は、便宜的にEBSD法による測定領域を簡易的にこの「領域」として評価する。先述の通り、80μm×200μmを最小の単位領域として計算する。
 本発明において、このように反射膜の結晶配向を制御すると、反射率が高い銀膜が得られることを見出した。これは銀膜の(100)配向が50%以上あることで表面の平滑性が従来よりも高められているためだと考えられる。
 また、本発明では、銀反射膜の表面に、銀反射膜の反射面の法線方向に前記銀反射膜の結晶の(221)面が配向した領域が10%以上存在することが好ましい。更に好ましくは20%以上である。この値の上限は制限されるものではないが、30%以下である。
 そして、本発明においては、銀反射膜の反射面の法線方向に前記銀反射膜の結晶の(100)面が配向した領域が50%以上あり、且つ前記銀反射膜の反射面の法線方向に前記銀反射膜の結晶の(221)面が配向した領域が存在することを特徴とする。これによって、加熱がなされた場合でも、銀反射膜の反射面の法線方向に(221)面が配向した結晶が、(100)面が配向した結晶粒の再結晶や粗大化を防ぐことにより、耐熱性が向上する。これは、銀反射膜の常温時効による軟化を防止する効果もあると考えられる。
(対応粒界Σ3)
 さらに、本発明における反射層(銀反射膜)は、銀反射膜表面に、銀反射膜の反射面の法線方向に前記銀反射膜の結晶の(100)配向に接する対応粒界Σ3の単位面積当たりの長さが、0.4μm/μm以上であることが好ましく、0.5μm/μm以上であることがさらに好ましい。この値の上限値には、特に制限はないが、通常2.0μm/μm以下である。
 ここで対応粒界とは、幾何学的に整合性の高い特殊な粒界であり、対応格子点密度の逆数として定義されるΣ値が小さい程、この整合性がより高いことを意味する。この内、対応粒界Σ3は、粒界での規則性の乱れが小さく粒界エネルギーが低いことで知られる。特に、組織内に応力緩和を促進する欠陥が少ないために、耐熱性により優れている。なお、対応粒界Σ3は双晶としても知られている。
 対応粒界Σ3は、反射面の法線方向に(100)が配向した結晶と、反射面の法線方向に(221)面が配向した結晶との粒界に相当する。すなわち、対応粒界Σ3が一定量存在するということは、(100)面配向の結晶粒と(221)面配向の結晶粒とが接している領域が一定量存在することを意味している。先に説明した通り、本発明においては、(221)面配向の存在が(100)面配向の結晶粒の再結晶及び/または粗大化の防止をするため、これらの結晶粒が接しているのが好ましい。これを定量的に捉えるため、対応粒界Σ3の単位面積当たりの長さの総量が一つの指標となる。
 対応粒界Σ3の解析には、EDAX TSL社製のソフト「Orientation Imaging Microscopy v5」(商品名)を用い、CSL(Coincidence Site Lattice boundary)解析によって行う。対応粒界Σ3は、例えば、隣り合う粒が<111>の回転軸をもとに60°の回転角の関係を有する粒界である。従って、該ソフトを用いて、隣接する粒界の方位関係から対応粒界Σ3に該当する粒界を解析する。そして、測定範囲における圧延面の全粒界長と対応粒界Σ3を測定し、(対応粒界Σ3の長さ)/(全粒界長)×100(%)を対応粒界Σ3の割合(百分率)と定義する。なお、該ソフトを用いた測定において、隣り合うピクセルが15°以上の傾き(ずれ)を有する場合を結晶粒界として判断している。
(硬さ)
 本発明の光反射部材の銀反射膜中には、(100)面配向の結晶粒と(221)面配向の結晶粒とが接している領域が一定量存在するため、銀反射膜の銀あるいは銀合金が常温時効によって軟化しにくい。これは(100)面配向の結晶粒の再結晶及び/または粗大化の防止に基づくものと考えられる。本発明の光反射部材の銀反射膜の硬さは、ヌープ硬さ(Hk)で100Hk以上が好ましい。より好ましくは105Hk以上であり、さらに好ましくは110Hk以上である。また、常温時効による軟化がしにくいことの目安として、30日(30日×24時間)経過後の硬さの変化率が、ヌープ硬さの変化率で15%以下が好ましい。より好ましくは10%以下であり、さらに好ましくは8%以下である。
 ここで、ヌープ硬さの変化率は、[{初期ヌープ硬さ(Hk)-30日経過後ヌープ硬さ(Hk)}/初期ヌープ硬さ(Hk)]×100(%)で表わされる。
(製造方法)
 本発明の光反射部材の製造方法を説明する。
 本発明の光反射部材は、導電性基材にめっき処理を施すことにより、銀または銀合金からなる銀反射膜(反射層)を皮膜として形成することで製造することができる。ここで、前記めっき処理中に前記基材を揺動させると良い。揺動の条件は、振幅1~10mm、振動周期10~100Hzで導電性基材あるいはめっき液自体を揺動させることが好ましい。揺動の条件は、振幅2~8mm、振動周期20~80Hzで導電性基材を揺動させることがさらに好ましい。銀または銀合金めっき浴には、前記光沢剤を添加することが好ましい。
 さらに、本発明の光反射部材は、その一実施態様として、前記導電性基材にめっき処理を施すことにより、ニッケル、ニッケル合金、コバルト、コバルト合金、銅、および銅合金からなる群から選ばれた金属または合金からなる少なくとも1層の中間層を前記基材上に設け、前記中間層に銀または銀合金めっき処理を施すことによって、前記銀または銀合金からなる銀反射膜を中間層上の皮膜として設けることで製造してもよい。
 本発明において、結晶方位の制御は、めっき中に基材等を揺動することで行う。本発明者らは、基材あるいはめっき液を振幅1~10mm、振動周期10~100Hzで揺動させながら銀または銀合金めっきを行うことで、反射層(銀反射膜)の結晶方位を適正に制御し易いことを見出した。振幅とのバランスでもあるが、振動周期が高すぎると基材と電極間が近づきすぎることでめっき厚が不均一になると共に(100)面配向の割合も減少して反射率低下につながる。また、めっき液の飛散などの危険性もあるため、揺動は上記の範囲内で操業することが望ましい。揺動の振動周期が低すぎると、(100)面および(221)面配向のハンドリングが難しく、充分な制御ができないことがある。
 なお、本発明において反射率に優れる、あるいは、高反射率とは、分光光度計(例えば、V660(商品名、日本分光(株)製))において、硫酸バリウム標準板を100%とした時の全反射率を紫外域から可視光域の波長300nm~800nmにかけて連続測定した場合に、可視光域の短波長端(近紫外域の長波長端)の波長400nmでの反射率が85%以上、可視光域の波長450nmでの反射率が90%以上、波長600nmにおいては90%以上であることをいう。反射率の上限値には、特に制限はないが、通常100%以下である。
 以下に、実施例に基づき本発明をさらに詳細に説明するが、本発明はこれに限定されるものではない。
 導電性基材としては表面粗さRyが0.5μm以下の金属基板を用意し、Agめっき液にはセレン系の光沢剤を使用してめっきを行った。前記導電性基材上には密着性や耐熱性を向上させるために下地めっきとして、CuめっきやNiめっきなどを行っても良い。また、以下の実施例は光反射部材を得るものであるが、基材から適切な方法で銀膜部位を切り離すことで、銀反射膜を得ることができる。
[実施例1]
 実施例1では、導電性基材として表面粗さRyが0.2μmの銅合金C18045を使用し、導電性基材上に中間層としてNiめっきを1.0μmの膜厚で形成した。
 銀めっきとして、銀濃度60g/L、光沢剤(ユミコアジャパン製)濃度22ml/L、温度30℃、電流密度4A/dm、攪拌数1000rpm、振幅2mm、振動周期20Hzの条件で70秒間電気めっき処理を施すことで、層厚3μmの銀反射膜を中間層上に形成し、実施例1の光反射部材を得た。
[実施例2]
 実施例2では、導電性基材として表面粗さRyが0.3μmの銅合金C18045を使用し、導電性基材上に中間層としてNiめっきを1.0μmの膜厚で形成した。
 銀めっきとして、銀濃度60g/L、光沢剤(メタロー製)濃度20ml/L、温度25℃、電流密度6A/dm、攪拌数1000rpm、振幅5mm、振動周期60Hzの条件で50秒間電気めっき処理を施すことで、層厚3μmの銀反射膜を中間層上に形成し、実施例2の光反射部材を得た。
[実施例3]
 実施例3では、導電性基材として表面粗さRyが0.2μmの銅合金C18045を使用し、導電性基材上に中間層としてNiめっきを1.0μmの膜厚で形成した。
 銀めっきとして、銀濃度60g/L、光沢剤(メタロー製)濃度20ml/L、温度25℃、電流密度6A/dm、攪拌数1000rpm、振幅3mm、振動周期60Hzの条件で50秒間電気めっき処理を施すことで、層厚3μmの銀反射膜を中間層上に形成し、実施例3の反射部材を得た。
[実施例4]
 実施例4では、導電性基材として表面粗さRyが0.5μmの銅合金C14410を使用し、導電性基材上に中間層としてNiめっきを1.0μmの膜厚で形成した。
 銀めっきとして、銀濃度60g/L、光沢剤(メタロー製)濃度20ml/L、温度25℃、電流密度6A/dm、攪拌数1000rpm、振幅5mm、振動周期40Hzの条件で50秒間電気めっき処理を施すことで、層厚3μmの銀反射膜を中間層上に形成し、実施例4の反射部材を得た。
[実施例5]
 実施例5では、導電性基材として表面粗さRyが0.3μmの銅合金C14410を使用し、導電性基材上に中間層としてNiめっきを1.0μmの膜厚で形成した。
 銀めっきとして、銀濃度60g/L、光沢剤(メタロー製)濃度20ml/L、温度25℃、電流密度6A/dm、攪拌数1000rpm、振幅5mm、振動周期40Hzの条件で50秒間電気めっき処理を施すことで、層厚3μmの銀反射膜を中間層上に形成し、実施例5の反射部材を得た。
[実施例6]
 実施例6では、導電性基材として表面粗さRyが0.2μmの銅合金C18045を使用し、導電性基材上に中間層としてNiめっきを0.025μmの膜厚で形成した。
 銀めっきとして、銀濃度60g/L、光沢剤(メタロー製)濃度20ml/L、温度25℃、電流密度6A/dm、攪拌数1000rpm、振幅5mm、振動周期60Hzの条件で50秒間電気めっき処理を施すことで、層厚3μmの銀反射膜を中間層上に形成し、実施例6の反射部材を得た。
[実施例7]
 実施例7では、導電性基材として表面粗さRyが0.2μmの銅合金C18045を使用し、導電性基材上に中間層としてNiめっきを0.2μmの膜厚で形成した。
 銀めっきとして、銀濃度60g/L、光沢剤(メタロー製)濃度20ml/L、温度25℃、電流密度6A/dm、攪拌数1000rpm、振幅5mm、振動周期60Hzの条件で9秒間電気めっき処理を施すことで、層厚0.5μmの銀反射膜を中間層上に形成し、実施例7の反射部材を得た。
[実施例8]
 実施例8では、導電性基材として表面粗さRyが0.2μmの銅合金C18045を使用し、導電性基材上に中間層としてNiめっきを0.2μmの膜厚で形成した。
 銀めっきとして、銀濃度60g/L、光沢剤(メタロー製)濃度20ml/L、温度25℃、電流密度6A/dm、攪拌数1000rpm、振幅5mm、振動周期60Hzの条件で17秒間電気めっき処理を施すことで、層厚1μmの銀反射膜を中間層上に形成し、実施例8の反射部材を得た。
[実施例9]
 実施例9では、導電性基材として表面粗さRyが0.2μmの銅合金C18045を使用し、導電性基材上に中間層としてNiめっきを1.0μmの膜厚で形成した。
 銀めっきとして、銀濃度60g/L、光沢剤(メタロー製)濃度20ml/L、温度25℃、電流密度6A/dm、攪拌数1000rpm、振幅5mm、振動周期60Hzの条件で17秒間電気めっき処理を施すことで、層厚1μmの銀反射膜を中間層上に形成し、実施例9の反射部材を得た。
[実施例10]
 実施例10では、導電性基材として表面粗さRyが0.3μmの銅合金C14410を使用し、導電性基材上に中間層としてNiめっきを0.2μmの膜厚で形成した。
 銀めっきとして、銀濃度60g/L、光沢剤(メタロー製)濃度20ml/L、温度25℃、電流密度6A/dm、攪拌数1000rpm、振幅5mm、振動周期60Hzの条件で25秒間電気めっき処理を施すことで、層厚2μmの銀反射膜を中間層上に形成し、実施例10の反射部材を得た。
[実施例11]
 実施例11では、導電性基材として表面粗さRyが0.2μmの銅合金C18045を使用した。
 銀めっきとして、銀濃度60g/L、光沢剤(メタロー製)濃度20ml/L、温度25℃、電流密度6A/dm、攪拌数1000rpm、振幅5mm、振動周期60Hzの条件で50秒間電気めっき処理を施すことで、層厚3μmの銀反射膜を導電性基材上に形成し、実施例11の反射部材を得た。
[比較例1]
 比較例1では、導電性基材として表面粗さRyが0.6μmの銅合金C19210を使用し、導電性基材上に中間層としてNiめっきを1.0μmの膜厚で形成した。
 銀めっきとして、銀濃度60g/L、光沢剤(メタロー製)濃度20ml/L、温度25℃、電流密度6A/dm、攪拌数500rpmの条件で50秒間電気めっき処理を施すことで、層厚3μmの銀反射膜を中間層上に形成し、比較例1の光反射部材を得た。
[比較例2]
 比較例2では、導電性基材として表面粗さRyが0.7μmの銅合金C19400を使用し、導電性基材上に中間層としてNiめっきを1.0μmの膜厚で形成した。
 銀めっきとして、銀濃度60g/L、光沢剤濃度0ml/L(使用せず)、温度25℃、電流密度6A/dm、攪拌数500rpm、振幅5mm、振動周期60Hzの条件で50秒間電気めっき処理を施すことで、層厚3μmの銀反射膜を中間層上に形成し、比較例2の光反射部材を得た。
[従来例1]
 従来例1では、導電性基材として表面粗さRyが0.7μmの銅合金C19400を使用し、導電性基材上に中間層としてNiめっきを1.0μmの膜厚で形成した。
 銀めっきとして、銀濃度32g/L、光沢剤(EEJA製)濃度10ml/L、温度25℃、電流密度1A/dm、攪拌数200rpmの条件で306秒間電気めっき処理を施すことで、層厚3μmの銀反射膜を中間層上に形成し、従来例1の光反射部材を得た。
[従来例2]
 従来例2では、導電性基材として表面粗さRyが0.7μmの銅合金C19400を使用し、導電性基材上に中間層としてNiめっきを1.0μmの膜厚で形成した。
 銀めっきとして、銀濃度36g/L、光沢剤(メルテックス製)濃度15ml/L、温度25℃、電流密度2A/dm、攪拌数200rpmの条件で180秒間電気めっき処理を施すことで、層厚3μmの銀反射膜を中間層上に形成し、従来例2の光反射部材を得た。
[評価]
 各測定の結果は表1の状態「AS」欄に示した。
 前記のように作製された反射部材において、分光光度計(日本分光製、V-660(商品名))を使用して全反射率の連続測定を300nm~800nmまで行った。各反射部材における反射率の値を表1に示した。実施例1~11では可視光域において高い反射率を有しており、400nmではいずれも85%以上、450nmと600nmではいずれも90%以上であった。特に実施例1~3における450nmと600nmでの反射率はいずれも95%以上を示していた。一方、比較例1~2、従来例1~2における400nmでの反射率はいずれも85%未満、450nmでの反射率はいずれも84~87%程度であり、各実施例と比べて低い値を示した。
 また、前記反射部材について電子線後方散乱回折(EBSD)を行い、表面(つまり銀反射膜の表面)の銀反射膜における結晶方位を観察した。実施例1~11では、反射部材表面の法線方向において(100)配向を主としており、つまり、反射面の法線方向と<100>方向とが略平行となった結晶の割合が特定の視野で50%以上であった。且つ(100)配向内に双晶である(221)配向が多数存在しており、つまり、対応粒界Σ3長さの測定面積に対する比(対応粒界Σ3の単位面積当たりの長さ)が0.4μm/μm以上であった。一方、例えば、比較例1では、(100)配向が多いが、その領域の割合は50%未満であり、かつ、(100)配向内の双晶は実施例1~11に比べて少なかった。また、従来例1では特定の配向依存性は観察されず、結晶粒は小さかった。
 前記反射部材において、EBSDパターンより得られた(100)配向の割合、また(100)面の双晶である(221)面の割合を表1に示した。(100)配向の割合は、例えば、実施例1では82%、実施例2では53%、比較例1では47%、従来例1では18%を示しており、波長450nmにおける反射率が大きいほど(100)配向の割合が多い傾向が見られた。
[加熱処理と加熱処理後の評価]
 実施例1~11、比較例1および2ならびに従来例1および2の各反射部材を恒温槽により200℃で2時間大気加熱し、反射率とEBSD測定を上記と同様に行った。各測定の結果は表1の状態「200℃_2hr」欄に併せて示した。
 実施例1~11ではいずれも加熱前と比較してほぼ同等の高い反射率を示していた。これに対して、比較例1~2、従来例1~2では、いずれも加熱前の反射率よりも低下した。例えば、比較例1では加熱前と比較して反射率が低下し、400nmでの加熱後の反射率は80%未満と加熱前より5%程低い値を示していた。また、従来例1における400nmでの加熱後の反射率は74%程度と低い値を示した。
 EBSD測定より、実施例1~11では、加熱前と同様に(100)配向を主としており、且つ(100)配向内の双晶の割合は加熱前より若干小さくなっていたか、あるいは、むしろ大きくなっていたものもあった。比較例1では、(100)配向が加熱前に多かったが、加熱後は特定の配向依存性は観察されなかった。従来例1では結晶粒の粗大化が顕著に見られたものの、特定の配向依存性は観察されなかった。
 また、前記反射部材の加熱前後において、EBSDパターンより得られた(100)配向の割合と(100)配向と接する対応粒界Σ3密度を表1に示した。表1より、対応粒界Σ3密度が大きいほど耐熱性が高い傾向を示した。このことから、(100)配向に対応粒界Σ3が存在することで加熱による(100)配向の再結晶が抑制され、加熱後も高い反射率を有していると考えられる。
[硬さの評価]
 実施例1~11、比較例1および2ならびに従来例1および2の各光反射部材の銀反射膜の硬さをヌープ硬さ(Hk)によって評価した。評価は、JIS Z 2251に準じて、荷重10gfで荷重保持時間15秒の条件で測定した。硬さは、初期状態の硬さと30日後(30日×24時間後)の硬さを評価し、表1の状態「AS」欄に示した。また、実施例1~11、比較例1および2ならびに従来例1および2の各光反射部材を恒温槽により200℃で2時間大気加熱し、冷却した後の状態(初期状態)の硬さとその状態から30日後の硬さを同様に試験、評価して、表1の状態「200℃_2hr」欄に併せて示した。
 実施例1~11では、いずれもほぼ初期硬さと同等の硬さを示していた。これに対して、比較例1~2、従来例1~2では、硬さが低下した。なお、加熱試験(200℃、2hr)を施したものについては、大きな変化は見られなかった。
Figure JPOXMLDOC01-appb-T000001
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
 本願は、2012年10月5日に日本国で特許出願された特願2012-223425に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。

Claims (9)

  1.  銀または銀合金からなる銀反射膜であって、
     前記銀反射膜の表面に、
     前記銀反射膜の反射面の法線方向に前記銀反射膜の結晶の(100)面が配向した領域が50%以上あり、
     且つ前記銀反射膜の反射面の法線方向に前記銀反射膜の結晶の(221)面が配向した領域が存在することを特徴とする銀反射膜。
  2.  前記銀反射膜表面に、前記銀反射膜の反射面の法線方向に前記銀反射膜の結晶の(221)面が配向した領域が10%以上あることを特徴とする請求項1に記載の銀反射膜。
  3.  前記銀反射膜表面に、前記銀反射膜の反射面の法線方向に前記銀反射膜の結晶の(100)配向に接する対応粒界Σ3の単位面積当たりの長さが0.4μm/μm以上であることを特徴とする請求項1又は2に記載の銀反射膜。
  4.  導電性基材に請求項1~3のいずれか1項に記載の銀反射膜を被膜としたことを特徴とする光反射部材。
  5.  前記導電性基材の表面粗度Ryが0.5μm以下であることを特徴とする請求項4に記載の光反射部材。
  6.  前記導電性基材と前記銀反射膜の間に、ニッケル、ニッケル合金、コバルト、コバルト合金、銅、および銅合金からなる群から選ばれた金属または合金からなる少なくとも1層の中間層が設けられたことを特徴とする請求項4又は5に記載の光反射部材。
  7.  導電性基材にめっき処理を施すことにより、銀または銀合金からなる銀反射膜を皮膜とする光反射部材の製造方法であって、
     前記めっき処理中に前記基材を揺動させることを特徴とする、光反射部材の製造方法。
  8.  前記導電性基材にめっき処理を施すことにより、ニッケル、ニッケル合金、コバルト、コバルト合金、銅、および銅合金からなる群から選ばれた金属または合金からなる少なくとも1層の中間層を設け、
     前記中間層にめっき処理を施すことにより、銀または銀合金からなる銀反射膜を皮膜する、請求項7に記載の光反射部材の製造方法。
  9.  振幅1~10mm、振動周期10~100Hzで揺動させることを特徴とする、請求項7又は8に記載の光反射部材の製造方法。
PCT/JP2013/077221 2012-10-05 2013-10-07 銀反射膜、光反射部材、および光反射部材の製造方法 WO2014054817A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020157010161A KR102088267B1 (ko) 2012-10-05 2013-10-07 은 반사막, 광반사 부재, 및 광반사 부재의 제조방법
CN201380051747.3A CN104685108B (zh) 2012-10-05 2013-10-07 银反射膜、光反射构件及光反射构件的制造方法
JP2014512206A JP5684431B2 (ja) 2012-10-05 2013-10-07 銀反射膜、光反射部材、および光反射部材の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012223425 2012-10-05
JP2012-223425 2012-10-05

Publications (1)

Publication Number Publication Date
WO2014054817A1 true WO2014054817A1 (ja) 2014-04-10

Family

ID=50435134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077221 WO2014054817A1 (ja) 2012-10-05 2013-10-07 銀反射膜、光反射部材、および光反射部材の製造方法

Country Status (5)

Country Link
JP (1) JP5684431B2 (ja)
KR (1) KR102088267B1 (ja)
CN (1) CN104685108B (ja)
TW (1) TWI605274B (ja)
WO (1) WO2014054817A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016166396A (ja) * 2015-03-10 2016-09-15 三菱マテリアル株式会社 銀めっき付き銅端子材及び端子
JP2017197802A (ja) * 2016-04-27 2017-11-02 矢崎総業株式会社 メッキ材および、このメッキ材を用いた端子
JP2019002056A (ja) * 2017-06-19 2019-01-10 古河電気工業株式会社 金属材料

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017077903A1 (ja) * 2015-11-05 2017-05-11 古河電気工業株式会社 リードフレーム材およびその製造方法
CN107747116A (zh) * 2017-10-26 2018-03-02 防城港市奥氏蓝科技有限公司 一种电镀银反光隔热胶膜的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11189880A (ja) * 1997-10-21 1999-07-13 Nippon Techno Kk めっき方法
JP2007058194A (ja) * 2005-07-26 2007-03-08 Tohoku Univ 高反射率可視光反射部材及びそれを用いた液晶ディスプレイバックライトユニット並びに高反射率可視光反射部材の製造方法
JP2007142352A (ja) * 2005-10-20 2007-06-07 Kyocera Corp 発光素子収納用パッケージおよび発光装置
JP2011040396A (ja) * 2010-08-25 2011-02-24 Sumitomo Electric Ind Ltd 膜形成用配向基板および超電導線材ならびに膜形成用配向基板の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09249991A (ja) * 1996-03-13 1997-09-22 Nikko Kinzoku Kk 銀めっき材の表面処理方法
US6261435B1 (en) * 1997-10-21 2001-07-17 Nihon Techno Kabushiki Kaisha Plating method
JP2005029849A (ja) 2003-07-07 2005-02-03 Kobe Steel Ltd リフレクター用Ag合金反射膜、及び、このAg合金反射膜を用いたリフレクター、並びに、このAg合金反射膜の形成用のAg合金スパッタリングターゲット
JP4367457B2 (ja) 2006-07-06 2009-11-18 パナソニック電工株式会社 銀膜、銀膜の製造方法、led実装用基板、及びled実装用基板の製造方法
KR101267718B1 (ko) * 2008-12-19 2013-05-24 후루카와 덴키 고교 가부시키가이샤 광반도체 장치용 리드 프레임 및 그 제조방법
JP4897981B2 (ja) * 2008-12-26 2012-03-14 古河電気工業株式会社 光半導体装置用リードフレーム、その製造方法および光半導体装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11189880A (ja) * 1997-10-21 1999-07-13 Nippon Techno Kk めっき方法
JP2007058194A (ja) * 2005-07-26 2007-03-08 Tohoku Univ 高反射率可視光反射部材及びそれを用いた液晶ディスプレイバックライトユニット並びに高反射率可視光反射部材の製造方法
JP2007142352A (ja) * 2005-10-20 2007-06-07 Kyocera Corp 発光素子収納用パッケージおよび発光装置
JP2011040396A (ja) * 2010-08-25 2011-02-24 Sumitomo Electric Ind Ltd 膜形成用配向基板および超電導線材ならびに膜形成用配向基板の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016166396A (ja) * 2015-03-10 2016-09-15 三菱マテリアル株式会社 銀めっき付き銅端子材及び端子
JP2017197802A (ja) * 2016-04-27 2017-11-02 矢崎総業株式会社 メッキ材および、このメッキ材を用いた端子
JP2019002056A (ja) * 2017-06-19 2019-01-10 古河電気工業株式会社 金属材料

Also Published As

Publication number Publication date
KR20150064096A (ko) 2015-06-10
CN104685108B (zh) 2017-09-29
TWI605274B (zh) 2017-11-11
CN104685108A (zh) 2015-06-03
JPWO2014054817A1 (ja) 2016-08-25
JP5684431B2 (ja) 2015-03-11
KR102088267B1 (ko) 2020-03-12
TW201418791A (zh) 2014-05-16

Similar Documents

Publication Publication Date Title
JP5684431B2 (ja) 銀反射膜、光反射部材、および光反射部材の製造方法
TWI536616B (zh) A lead frame for an optical semiconductor device, a manufacturing method of a lead frame for an optical semiconductor device, and an optical semiconductor device
JP4763094B2 (ja) 光半導体装置用リードフレーム及びその製造方法
JP5546495B2 (ja) 光半導体装置用リードフレーム、その製造方法および光半導体装置
JP4885309B2 (ja) 光半導体装置用リードフレーム、光半導体装置用リードフレームの製造方法および光半導体装置
JP5089795B2 (ja) 光半導体装置用リードフレーム、光半導体装置用リードフレームの製造方法、および光半導体装置
WO2010150824A1 (ja) 光半導体装置用リードフレーム、光半導体装置用リードフレームの製造方法、および光半導体装置
JP5578960B2 (ja) 光半導体装置用リードフレーム及びその製造方法
JP5950563B2 (ja) 光半導体装置用リードフレーム、光半導体装置用リードフレームの製造方法、および光半導体装置
TW201830627A (zh) 導線架材料及其製造方法以及半導體封裝體
KR101894160B1 (ko) 광반도체장치용 리드 프레임용 기체와 그 제조방법, 이것을 이용한 광반도체장치용 리드 프레임과 그 제조방법, 및 광반도체장치
JP2018022817A (ja) リードフレーム、樹脂付きリードフレーム、光半導体装置、及びリードフレームの製造方法
JP6034233B2 (ja) 光半導体装置用リードフレームとその製造方法、および光半導体装置
JP2015079841A (ja) 光半導体装置用リードフレーム基体、光半導体装置用リードフレーム、および光半導体装置用リードフレームの製造方法
JP2011222680A (ja) 光半導体装置用リードフレームおよび光半導体装置用リードフレームの製造方法
JP5995641B2 (ja) 光半導体装置用リードフレーム、光半導体装置用リードフレームの製造方法、および光半導体装置
JP2012151289A (ja) 光半導体実装用基板、その製造方法、及び光半導体装置
JP2017005224A (ja) 光学素子用リードフレームおよびその製造方法
JP2013026427A (ja) 光半導体装置用リードフレーム及びその製造方法
JP2012033919A (ja) 光半導体装置用リードフレーム、光半導体装置用リードフレームの製造方法、および光半導体装置
CN110767790A (zh) 引线框、附树脂的引线框及光半导体装置以及引线框的制造方法
JP2014072247A (ja) 長期信頼性を有する高反射率光半導体装置用リードフレーム用基体、それを用いた光半導体装置用リードフレームとその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014512206

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13844395

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157010161

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13844395

Country of ref document: EP

Kind code of ref document: A1