WO2014054750A1 - 四三酸化マンガン及びその製造方法 - Google Patents

四三酸化マンガン及びその製造方法 Download PDF

Info

Publication number
WO2014054750A1
WO2014054750A1 PCT/JP2013/076975 JP2013076975W WO2014054750A1 WO 2014054750 A1 WO2014054750 A1 WO 2014054750A1 JP 2013076975 W JP2013076975 W JP 2013076975W WO 2014054750 A1 WO2014054750 A1 WO 2014054750A1
Authority
WO
WIPO (PCT)
Prior art keywords
trimanganese tetraoxide
manganese
lithium
trimanganese
slurry
Prior art date
Application number
PCT/JP2013/076975
Other languages
English (en)
French (fr)
Inventor
鈴木 直人
敬浩 松永
Original Assignee
東ソー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東ソー株式会社 filed Critical 東ソー株式会社
Priority to US14/432,042 priority Critical patent/US9440860B2/en
Priority to CN201380052160.4A priority patent/CN104755428B/zh
Priority to EP13844451.8A priority patent/EP2905261B1/en
Priority to ES13844451T priority patent/ES2707895T3/es
Priority to KR1020157007878A priority patent/KR102104690B1/ko
Publication of WO2014054750A1 publication Critical patent/WO2014054750A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1242Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [Mn2O4]-, e.g. LiMn2O4, Li[MxMn2-x]O4
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/32Three-dimensional structures spinel-type (AB2O4)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to trimanganese tetroxide used as a raw material for a lithium manganese composite oxide. More specifically, the present invention relates to trimanganese tetroxide from which a lithium-manganese composite oxide with little fusion of particles by firing is obtained.
  • Trimanganese tetraoxide is mixed with a lithium raw material and other metal raw materials and fired to form a lithium manganese composite oxide.
  • a lithium raw material for example, orthorhombic LiMnO 2 obtained by pulverizing and mixing trimanganese tetraoxide and lithium hydroxide and then firing is reported (Patent Document 1).
  • lithium nickel manganese cobalt composite oxide obtained by slurrying trimanganese tetroxide, lithium carbonate, cobalt oxyhydroxide, nickel hydroxide, etc., wet-grinding it, and firing it has been reported. (Patent Document 2).
  • lithium manganese composite oxides using trimanganese tetraoxide
  • a phenomenon in which lithium manganese composite oxide particles are fused to each other during firing that is, a so-called necking phenomenon easily occurs. Due to the necking phenomenon, the lithium manganese composite oxide obtained by these production methods has non-uniform particle sizes, particle shapes, and the like.
  • the fired lithium manganese composite oxide In order to make the heterogeneous lithium manganese composite oxide uniform, the fired lithium manganese composite oxide must be pulverized or crushed (Patent Documents 1 and 2).
  • Fine particles can be removed by adjusting the particle size such as classification.
  • classification is performed after pulverization, not only the yield of the obtained lithium manganese composite oxide is lowered, but also a manufacturing process is added, which further increases the manufacturing cost.
  • trimanganese tetroxide that provides a lithium-manganese composite oxide with less particle fusion by firing, that is, less necking.
  • the present inventors have intensively studied. As a result, the inventors have found that the pore volume of trimanganese tetraoxide affects the fusion behavior of lithium manganese composite oxide particles by firing. Furthermore, the present inventors have found that the necking phenomenon can be suppressed by controlling pores having a pore diameter within a certain range of trimanganese tetraoxide.
  • the gist of the present invention is as follows. (1) Trimanganese tetraoxide characterized in that the pore volume of pores having a pore diameter of 0.3 to 2 ⁇ m is 0.1 mL / g or more. (2) The manganese trioxide according to the above (1), wherein the pore volume of pores having a pore diameter of 0.5 to 1 ⁇ m is 0.03 mL / g or more. (3) The trimanganese tetraoxide according to the above (1) or (2), wherein the mode pore diameter is 2 to 4.5 ⁇ m.
  • a slurry was obtained by mixing the solution to crystallize manganese trioxide, the solid content concentration of manganese trioxide in the slurry exceeded 2% by weight, and the average residence time of manganese trioxide in the slurry was 6.
  • the method for producing trimanganese tetraoxide according to any one of (1) to (5) above, wherein crystallization is performed for 10 hours or less.
  • trimanganese tetroxide and a method for producing the same, which can provide a lithium-manganese composite oxide in which particles are not fused by firing.
  • trimanganese tetraoxide of the present invention a lithium manganese composite oxide that does not require a pulverization step or a pulverization step after firing, and a method for producing the same, and further, a lithium manganese composite oxide with a lower production cost than the conventional one And a manufacturing method thereof.
  • the trimanganese tetraoxide of the present invention makes it easy to control the particle size of the lithium manganese composite oxide obtained using this as a raw material.
  • trimanganese tetraoxide of the present invention will be described.
  • the trimanganese tetraoxide of the present invention has a pore volume of pores having a pore diameter of 0.3 to 2 ⁇ m of 0.1 mL / g or more, preferably 0.2 mL / g or more, preferably 0.21 mL / g. g or more is more preferable, and 0.24 mL / g or more is still more preferable.
  • fusion particles of lithium manganese composite oxide obtained using this as a raw material (hereinafter simply referred to as “fusion”) Also called).
  • fusion occurs, not only the particle shape of the obtained lithium manganese composite oxide becomes uneven, but also the average particle size tends to increase.
  • Such a lithium manganese composite oxide requires a pulverization step or a pulverization step after firing.
  • the pore volume of pores having a pore diameter of 0.3 to 2 ⁇ m is 0.5 mL / g or less, and further 0.4 mL / g or less. Furthermore, it may be 0.3 mL / g or less.
  • the pore volume can be measured by a general mercury intrusion method.
  • the pore diameter is the diameter of the pore when the pore is considered to be cylindrical in the mercury intrusion method.
  • pores having a pore diameter of less than 0.3 ⁇ m may exist.
  • the pore volume of pores having a pore diameter of less than 0.3 ⁇ m include 0.001 mL / g or more and 0.02 mL / g or less, and further 0.003 mL / g or more and 0.015 mL / g or less. it can.
  • the pore volume of pores having a pore diameter of 2 ⁇ m or less need not be higher than necessary. Therefore, the pore volume of pores having a pore diameter of 2 ⁇ m or less may be, for example, 0.52 mL / g or less, further 0.4 mL / g or less, and further 0.3 mL / g or less.
  • the pore volume of pores having a pore diameter of 0.5 to 1 ⁇ m is preferably 0.03 mL / g or more, more preferably 0.04 mL / g or more.
  • it is more preferably 0.05 mL / g or more, still more preferably 0.06 mL / g or more, and particularly preferably 0.08 mL / g or more.
  • the pore volume of pores having a pore diameter of 0.5 to 1 ⁇ m is 0.2 mL / g. Or less, more preferably 0.16 mL / g or less, and still more preferably 0.12 mL / g or less.
  • the mode pore diameter of the trimanganese tetraoxide of the present invention is 1.5 ⁇ m or more, and further 2 ⁇ m or more.
  • the pore volume of a pore having a large pore diameter for example, a pore having a pore diameter of 5 ⁇ m or more is increased, the filling property of trimanganese tetraoxide tends to be lowered.
  • the mode pore diameter of the trimanganese tetraoxide of the present invention is preferably 5 ⁇ m or less, more preferably 4.5 ⁇ m or less, and further preferably 4 ⁇ m or less.
  • the mode pore diameter of the trimanganese tetraoxide of the present invention is particularly preferably 2 to 4.5 ⁇ m.
  • the trimanganese tetraoxide of the present invention preferably has a total pore volume of 1.5 mL / g or less, more preferably 1.1 mL / g or less, and 0.9 mL / g or less. Is more preferable.
  • the specific surface area of the trimanganese tetraoxide of the present invention is preferably 2m 2 / g or more, more preferably 2.5 m 2 / g or more, further preferably 3m 2 / g or more, 3. 5 m 2 / g is still more preferable, and 4 m 2 / g or more is particularly preferable. If the specific surface area is 2.5 m 2 / g or more, fusion is less likely to occur. In addition, when the specific surface area is 10 m 2 / g or less, and further 9 m 2 / g or less, the filling properties of trimanganese tetraoxide and a lithium manganese composite oxide using this as a raw material are unlikely to decrease.
  • the specific surface area of the trimanganese tetraoxide of the present invention is particularly preferably 2.5 to 9 m 2 / g.
  • the specific surface area can be measured by a nitrogen adsorption method such as a BET specific surface area measurement method.
  • the average particle diameter is preferably 1 ⁇ m or more, more preferably 3 ⁇ m or more, still more preferably 5 ⁇ m or more, still more preferably 8 ⁇ m or more, and preferably 10 ⁇ m or more.
  • the upper limit of the average particle diameter is preferably 50 ⁇ m or less, and more preferably 20 ⁇ m or less.
  • the average particle diameter of the trimanganese tetraoxide of the present invention is particularly preferably 8 to 20 ⁇ m.
  • the crystal structure of trimanganese tetraoxide is a spinel structure. This crystal structure is the same as that of the JCPDS pattern No. This structure shows an X-ray diffraction pattern equivalent to that of 24-734.
  • the manufacturing method of trimanganese tetraoxide of this invention is demonstrated. If the trimanganese tetraoxide of this invention has said pore, the manufacturing method is arbitrary.
  • the trimanganese tetraoxide of the present invention is a method for producing trimanganese tetraoxide having a crystallization step of crystallizing trimanganese tetraoxide from an aqueous manganese salt solution without passing through manganese hydroxide, In the precipitation process, a manganese salt aqueous solution and an alkali solution were mixed to obtain a slurry in which trimanganese tetroxide was crystallized, and the solid content concentration of trimanganese tetraoxide in the slurry exceeded 2% by weight. It can be obtained by a production method (hereinafter referred to as “high concentration method”) in which crystallization is performed with an average residence time of manganese trioxide being 10 hours or less.
  • the trimanganese tetraoxide of the present invention is a method for producing trimanganese tetraoxide having a crystallization step of crystallizing trimanganese tetraoxide from an aqueous manganese salt solution without going through manganese hydroxide,
  • a manganese salt aqueous solution and an alkali solution are mixed to obtain a slurry obtained by crystallizing trimanganese tetraoxide, and the solid content concentration of trimanganese tetraoxide in the slurry is crystallized with a solid content concentration of 2% by weight or less ( (Hereinafter referred to as “low concentration method”).
  • manganese trioxide is crystallized from the manganese salt aqueous solution without passing through the manganese hydroxide.
  • a mode in which the crystal phase of manganese hydroxide is not formed at all, and microcrystals of manganese hydroxide precipitate in a short time is also included in an embodiment where it is added to trimanganese tetraoxide.
  • the method for producing trimanganese tetraoxide of the present invention is characterized in that hexagonal plate-like manganese hydroxide crystals are not produced in the crystallization step. Whether or not a hexagonal plate-like manganese hydroxide crystal has occurred can be determined by observing the particle shape of the resulting manganese trioxide.
  • the crystallization step does not include a step of depositing manganese hydroxide crystals in an alkaline region from an aqueous manganese salt solution and oxidizing the manganese hydroxide with an oxidizing agent (hereinafter referred to as an oxidation step). That is, in the crystallization step, trimanganese tetraoxide is crystallized from an aqueous manganese salt solution without precipitating manganese hydroxide crystals in an alkaline region. Therefore, in the crystallization step in the method for producing trimanganese tetraoxide of the present invention, trimanganese tetraoxide can be produced without passing through the oxidation step.
  • trimanganese tetraoxide can be obtained without changing the reaction atmosphere in the crystallization step. Therefore, in the crystallization step, trimanganese tetraoxide can be continuously produced by mixing a manganese salt aqueous solution and an alkali aqueous solution.
  • the manganese salt aqueous solution is at least one selected from the group consisting of manganese sulfate, manganese chloride, manganese nitrate, and manganese acetate, or various acid aqueous solutions such as sulfuric acid, hydrochloric acid, nitric acid, and acetic acid. What melt
  • dissolved can also be used.
  • the manganese ion concentration of the aqueous manganese salt solution include 1 mol / L or more.
  • the aqueous alkali solution is an aqueous solution showing alkalinity, and is preferably an aqueous solution showing alkalinity and having no complexing ability.
  • the alkaline aqueous solution include aqueous solutions of sodium hydroxide, potassium hydroxide, and the like.
  • concentration of alkaline aqueous solution 0.1 mol / L or more can be mentioned, for example.
  • the mixing method of the manganese aqueous solution and the alkaline aqueous solution can choose any method.
  • the mixing method include a method in which an alkaline aqueous solution is added to a manganese salt aqueous solution and mixing, a method in which a manganese salt aqueous solution and an alkaline aqueous solution are added to a solvent such as pure water and slurry, and the like.
  • the mixing method is preferably a method in which the manganese salt aqueous solution and the alkaline aqueous solution are added to the solvent and mixed.
  • a slurry in which an aqueous manganese salt solution and an alkali solution are mixed to crystallize manganese trioxide is obtained, and the solid content concentration of trimanganese tetraoxide in the slurry (hereinafter simply referred to as “solid”
  • the partial concentration ”) is preferably 2% by weight or less, and more preferably 1% by weight or less.
  • the condition range which can crystallize trimanganese tetraoxide becomes wider.
  • the solid content concentration of trimanganese tetraoxide in the slurry is preferably 0.1% by weight or more.
  • the solid content concentration of manganese trioxide in the slurry exceeds 2% by weight. It is preferably 3% by weight or more, more preferably 5% by weight or more.
  • the solid content concentration of trimanganese tetraoxide in the slurry is preferably 30% by weight or less.
  • solid content concentration can be calculated
  • the average time that the crystallized manganese trioxide stays in the reaction slurry (hereinafter referred to as “average stay time”) is 1 hour or more.
  • average stay time is 1 hour or more.
  • the average residence time is 10 hours or less, preferably 8 hours or less, more preferably 6 hours or less, and further preferably 4 hours or less. More preferably, it is 2.5 hours or less.
  • the average residence time in the crystallization process by the low concentration method is preferably 10 hours or less, more preferably 8 hours or less, and particularly preferably 2.5 hours or less.
  • the average residence time is the average time during which manganese trioxide crystallized from the manganese salt aqueous solution stays in the reaction slurry.
  • the solid residence concentration of the reaction slurry is set as a target concentration, and the solid content
  • the average residence time may be defined as the time for crystallization of trimanganese tetraoxide at a concentration.
  • the pH of the manganese salt aqueous solution when crystallizing trimanganese tetraoxide is preferably a pH at which manganese hydroxide is difficult to be generated, more preferably pH 6 or more and pH 9 or less, and pH 6 More preferably, it is 5 or more and pH 8 or less.
  • the pH of the manganese salt aqueous solution when crystallizing trimanganese tetraoxide is within these ranges, and it is more preferable to maintain the pH constant.
  • To keep the pH constant is to set the pH to ⁇ 0.5, preferably to set the pH to ⁇ 0.3, and more preferably to set the pH to ⁇ 0.1.
  • a single phase of trimanganese tetraoxide is easily obtained by increasing the redox potential when the trimanganese tetraoxide crystallizes. Therefore, if the oxidation-reduction potential in the crystallization step is 300 mV or less, and further 200 mV or less, single-phase manganese trioxide is more easily obtained.
  • the redox potential is preferably 100 mV or more, and more preferably 140 mV or more. By setting the redox potential within this range, the trimanganese tetraoxide of the present invention can be obtained.
  • the oxidation-reduction potential is particularly preferably 100 to 300 mV.
  • trimanganese tetraoxide having the pore volume of the present invention can be obtained even when the oxidation-reduction potential is low.
  • the oxidation-reduction potential is ⁇ 100 mV or more, further ⁇ 50 mV or more, and further 0 mV or more, the trimanganese tetraoxide of the present invention can be obtained.
  • the oxidation-reduction potential is particularly preferably ⁇ 100 to 200 mV.
  • the oxidation-reduction potential of the manganese salt aqueous solution is within these ranges, and it is more preferable to keep it constant.
  • To keep the redox potential constant is to maintain the redox potential in a range of ⁇ 50 mV, preferably to maintain the redox potential in a range of ⁇ 30 mV, and more preferably, the redox potential is ⁇ . It is to maintain in the range of 20 mV.
  • the crystallization step it is preferable to crystallize trimanganese tetraoxide at 40 ° C. or higher, further 50 ° C. or higher, and further 60 ° C. or higher. Further, it is preferably 95 ° C. or lower, more preferably 90 ° C. or lower.
  • the temperature of the aqueous manganese salt solution for crystallization within this range, not only the crystallization of trimanganese tetroxide is promoted but also the trimanganese tetroxide tends to become particles having a uniform particle size.
  • the crystallization step it is preferable to perform crystallization using an oxidizing agent.
  • the oxidant include gas oxidizers such as oxygen-containing gas such as air, and liquid oxidizers such as hydrogen peroxide. From an industrial viewpoint, it is preferable to use a gaseous oxidant as the oxidant, and it is more preferable to use air.
  • a complexing agent refers to what has the complexing ability similar to these other than ammonia, ammonium salt, hydrazine, and EDTA. These complexing agents affect the crystallization behavior of trimanganese tetraoxide. Therefore, it tends to have pore characteristics different from those of manganese trioxide obtained in the presence of the complexing agent and manganese trioxide obtained by the production method of the present invention.
  • trimanganese tetraoxide of the present invention can be used as a manganese raw material for a lithium manganese composite oxide.
  • the method for producing a lithium manganese composite oxide using the trimanganese tetraoxide of the present invention as a manganese raw material includes a mixing step of mixing the above-described trimanganese tetraoxide and at least one of lithium and a lithium compound, and a heating step of heat-treating the mixing step.
  • any mixing method can be selected, but dry mixing is preferable. Thereby, it becomes easier to suppress fusion.
  • the dry mixing method include a mixing method by a grinding force using a mortar, a lycais machine or the like, and a mixing method by a shearing force using a vertical granulator or the like.
  • a different metal compound may be added in order to improve the characteristics of the lithium secondary battery positive electrode material of the lithium manganese composite oxide.
  • the different metal compound has a metal element different from manganese and lithium as a constituent element.
  • it is a compound containing at least one selected from the group consisting of Al, Mg, Ni, Co, Cr, Ti and Zr as a constituent element.
  • any heat treatment method can be selected.
  • the heat treatment method include baking at 500 ° C. or higher and 900 ° C. or lower for 5 hours or longer in an oxidizing atmosphere such as oxygen gas or air.
  • the lithium manganese composite oxide using the trimanganese tetraoxide of the present invention as a manganese raw material hardly causes fusion. Therefore, the average particle size of the trimanganese tetraoxide of the present invention and the lithium manganese composite oxide obtained using the same is the same.
  • the average particle size (hereinafter referred to as “particle size ratio”) of the lithium manganese composite oxide obtained using this as a raw material is 1.5 or less. 1.2 or less, more preferably 1.15 or less, and even more preferably 1.1 or less.
  • trimanganese tetraoxide may shrink, but the particle size ratio is 0.9 or more, and further 0.95 or more.
  • a pulverization step or a pulverization step is not essential.
  • the lithium manganese composite oxide after the heating step may be in a state where the particles are in physical contact, that is, in a so-called slow aggregation state.
  • the slow aggregation easily breaks down. Therefore, it may be in a state of slow aggregation, but if necessary, for example, it may have a step of loosening the slow aggregation such as sieving after the heating step.
  • the crystal structure of the lithium manganese composite oxide is preferably spinel.
  • the lithium manganese composite oxide is represented by the following chemical formula (1). Li 1 + x M y Mn 2 -x-y O 4 (1)
  • M represents at least one metal element selected from the group consisting of elements other than Li, Mn, and O
  • x and y satisfy the following formulas (2) and (3), respectively. 0 ⁇ x ⁇ 0.33 (2) 0 ⁇ y ⁇ 1.0 (3)
  • any lithium compound may be used.
  • the lithium compound include lithium hydroxide, lithium oxide, lithium carbonate, lithium iodide, lithium nitrate, lithium oxalate, and alkyl lithium.
  • preferable lithium compounds include at least one selected from the group consisting of lithium hydroxide, lithium oxide, and lithium carbonate.
  • the lithium manganese composite oxide obtained using the trimanganese tetraoxide of the present invention as a raw material can be used as a positive electrode active material of a lithium ion secondary battery.
  • Pore volume A commercially available mercury porosimeter (trade name: AUTO PORE IV, manufactured by MICRO MERITICS) was used for the measurement of the pore volume.
  • the pore volume of the sample was measured with the pressure range from atmospheric pressure to 414 MPa.
  • the range of the pore diameter that can be measured in the pressure range is 0.003 ⁇ m or more and 400 ⁇ m or less.
  • Average particle size For measurement of the average particle size, a commercially available particle size measuring device (trade name: MICROTRAC HRA 9320-X100, manufactured by Nikkiso Co., Ltd.) was used. A sample solution was dispersed in pure water, and ammonia water was added thereto to adjust pH to 8.5 to prepare a measurement solution. The measurement solution was subjected to ultrasonic dispersion for 3 minutes, and then the average particle size was measured.
  • BET specific surface area The BET specific surface area was measured using a commercially available specific surface area measuring device (trade name: FlOW SORB III, manufactured by MICRO MERITICS) by nitrogen adsorption according to the BET one-point method. Prior to the measurement of the BET specific surface area, the sample was deaerated by heating at 150 ° C. for 40 minutes under air flow.
  • Tap density The density was measured according to JIS R1628, and this was defined as the tap density.
  • press density A mold having a diameter of 13 mm was filled with 1 g of a sample and pressed at 1 t / cm 2 to obtain a molded body. The density obtained by dividing the weight of the obtained molding by its volume was defined as the press density.
  • the crystal phase of the sample was measured by X-ray diffraction.
  • the measurement was performed with a general X-ray diffractometer.
  • JCPDS pattern No. No. 24734 the X-ray diffraction pattern of spinel structure manganese trioxide
  • the X-ray diffraction pattern of 35-782 was used as the X-ray diffraction pattern of lithium manganate, and the crystal phase of the sample was identified by comparing these X-ray diffraction pattern with the X-ray diffraction pattern of the sample.
  • Example 1 Manufacture of trimanganese tetraoxide
  • the pure water was set to 80 ° C., and stirring was performed while blowing air so that the oxidation-reduction potential was 200 mV.
  • 2 mol / L manganese sulfate aqueous solution and 2.8 mol / L sodium hydroxide aqueous solution were continuously added thereto to crystallize manganese oxide, and a reaction slurry having a solid content concentration of 5.4 wt% was obtained. Obtained.
  • the sodium hydroxide aqueous solution was appropriately added to the reaction slurry such that the pH of the reaction slurry was 7.
  • Example 2 Manufacture of trimanganese tetraoxide
  • the oxidation-reduction potential was 0 mV
  • the pH of the reaction slurry was 8
  • the concentration of the sodium hydroxide aqueous solution was 0.25 mol / L
  • the solid content concentration of the reaction slurry was 0.9 wt%
  • the manganese oxide was obtained by the method similar to Example 1 except having made the average residence time of the manganese oxide in a slurry into 2.25 hours.
  • the crystal phase of the obtained manganese oxide had a spinel structure.
  • a lithium manganese composite oxide was obtained in the same manner as in Example 1 except that the obtained trimanganese tetraoxide was used.
  • the crystal phase of the obtained lithium manganese composite oxide was a lithium manganate single phase, and its lattice constant was 8.220%.
  • the evaluation results of trimanganese tetraoxide in this example are shown in Table 1, and the evaluation results of lithium manganate are shown in Table 2.
  • Example 3 Manufacture of trimanganese tetraoxide
  • Manganese oxide was obtained in the same manner as in Example 1 except that the average residence time of manganese oxide in the slurry was 8 hours.
  • the crystal phase of the obtained manganese oxide had a spinel structure.
  • the tap density of the trimanganese tetraoxide of this example was 1.4 g / cm 3 .
  • a lithium manganese composite oxide was obtained in the same manner as in Example 1 except that the obtained trimanganese tetraoxide was used.
  • the crystal phase of the obtained lithium manganese composite oxide was a lithium manganate single phase, and its lattice constant was 8.218 ⁇ .
  • the evaluation results of trimanganese tetraoxide in this example are shown in Table 1, and the evaluation results of lithium manganate are shown in Table 2.
  • Example 4 Manufacture of trimanganese tetraoxide
  • the oxidation-reduction potential was 100 mV
  • the concentration of the sodium hydroxide aqueous solution was 0.25 mol / L
  • the solid content concentration of the slurry was 0.9% by weight
  • Manganese oxide was obtained in the same manner as in Example 1 except that the residence time was 2.25 hours.
  • the crystal phase of the obtained manganese oxide had a spinel structure.
  • a lithium manganese composite oxide was obtained in the same manner as in Example 1 except that the obtained trimanganese tetraoxide was used.
  • the crystal phase of the obtained lithium manganese composite oxide was a lithium manganate single phase, and its lattice constant was 8.218 ⁇ .
  • the evaluation results of trimanganese tetraoxide in this example are shown in Table 1, and the evaluation results of lithium manganate are shown in Table 2.
  • Example 5 Manufacture of trimanganese tetraoxide
  • the oxidation-reduction potential was ⁇ 50 mV
  • the pH of the reaction slurry was 8.5
  • the concentration of the sodium hydroxide aqueous solution was 0.25 mol / L
  • the solid content concentration of the slurry was 0.9% by weight.
  • a manganese oxide was obtained in the same manner as in Example 1 except that the average residence time of the manganese oxide in the slurry was 2.25 hours.
  • the crystal phase of the obtained manganese oxide had a spinel structure.
  • a lithium manganese composite oxide was obtained in the same manner as in Example 1 except that the obtained trimanganese tetraoxide was used.
  • the crystal phase of the obtained lithium manganese composite oxide was a single phase of lithium manganate, and its lattice constant was 8.217 ⁇ .
  • the evaluation results of trimanganese tetraoxide in this example are shown in Table 1, and the evaluation results of lithium manganate are shown in Table 2.
  • Example 6 Manufacture of trimanganese tetraoxide
  • the oxidation-reduction potential was 140 mV
  • the pH of the reaction slurry was 7.4
  • the concentration of the sodium hydroxide aqueous solution was 0.13 mol / L
  • the solid content concentration of the slurry was 3.4% by weight.
  • a manganese oxide was obtained in the same manner as in Example 1 except that the average residence time of the manganese oxide in the slurry was 4 hours.
  • the crystal phase of the obtained manganese oxide had a spinel structure.
  • a lithium manganese composite oxide was obtained in the same manner as in Example 1 except that the obtained trimanganese tetraoxide was used.
  • the crystal phase of the obtained lithium manganese composite oxide was a lithium manganate single phase, and its lattice constant was 8.215 ⁇ .
  • the evaluation results of trimanganese tetraoxide in this example are shown in Table 1, and the evaluation results of lithium manganate are shown in Table 2.
  • Example 7 Manufacture of trimanganese tetraoxide
  • the pure water was set to 90 ° C. and stirred while blowing air so that the oxidation-reduction potential was 200 mV.
  • 2 mol / L manganese sulfate aqueous solution and 2.5 mol / L sodium hydroxide aqueous solution are continuously added thereto to crystallize manganese oxide, and a reaction slurry having a solid content concentration of 2.2% by weight is obtained. Obtained.
  • the addition of the manganese sulfate aqueous solution and the sodium hydroxide aqueous solution was stopped to maintain the solid content concentration.
  • the stirring was continued for 6 hours, and the average residence time of the manganese oxide in the reaction slurry was set to 6 hours. Thereafter, the reaction slurry was filtered, washed and dried to obtain a manganese oxide.
  • the crystal phase of the obtained manganese oxide had a spinel structure.
  • a lithium manganese composite oxide was obtained in the same manner as in Example 1 except that the obtained trimanganese tetraoxide was used.
  • the crystal phase of the obtained lithium manganese composite oxide was a lithium manganate single phase, and its lattice constant was 8.216 ⁇ .
  • the evaluation results of trimanganese tetraoxide in this example are shown in Table 1, and the evaluation results of lithium manganate are shown in Table 2.
  • Example 8 Manufacture of trimanganese tetraoxide
  • Manganese oxide was obtained in the same manner as in Example 7 except that pure water was set at 80 ° C. and the oxidation-reduction potential was set at 150 mV.
  • the crystal phase of the obtained manganese oxide had a spinel structure.
  • a lithium manganese composite oxide was obtained in the same manner as in Example 1 except that the obtained trimanganese tetraoxide was used.
  • the crystal phase of the obtained lithium manganese composite oxide was a lithium manganate single phase, and the lattice constant thereof was 8.219%.
  • the evaluation results of trimanganese tetraoxide in this example are shown in Table 1, and the evaluation results of lithium manganate are shown in Table 2.
  • Example 9 Manufacture of trimanganese tetraoxide
  • Manganese oxide was obtained in the same manner as in Example 7 except that the oxidation-reduction potential was 200 mV.
  • the crystal phase of the obtained manganese oxide had a spinel structure.
  • a lithium manganese composite oxide was obtained in the same manner as in Example 1 except that the obtained trimanganese tetraoxide was used.
  • the crystal phase of the obtained lithium manganese composite oxide was a lithium manganate single phase, and its lattice constant was 8.216 ⁇ .
  • the evaluation results of trimanganese tetraoxide in this example are shown in Table 1, and the evaluation results of lithium manganate are shown in Table 2.
  • Comparative Example 1 Manufacture of trimanganese tetraoxide
  • Manganese oxide was obtained in the same manner as in Example 1, except that the oxidation-reduction potential was 100 mV, and the average residence time of the manganese oxide in the slurry was 18 hours.
  • the crystal phase of the obtained manganese oxide had a spinel structure.
  • the tap density of the trimanganese tetraoxide of this comparative example was 1.77 g / cm 3 .
  • a lithium manganese composite oxide was obtained in the same manner as in Example 1 except that the obtained trimanganese tetraoxide was used.
  • the crystal phase of the obtained lithium manganese composite oxide was a lithium manganate single phase, and its lattice constant was 8.216 ⁇ .
  • Table 1 shows the evaluation results of trimanganese tetraoxide of this comparative example, and Table 2 shows the evaluation results of lithium manganate.
  • Comparative Example 2 Manufacture of trimanganese tetraoxide
  • Manganese oxide was obtained in the same manner as in Example 1, except that the oxidation-reduction potential was 180 mV, and the average residence time of the manganese oxide in the slurry was 18 hours.
  • the crystal phase of the obtained manganese oxide had a spinel structure.
  • the tap density of the trimanganese tetraoxide of this comparative example was 1.77 g / cm 3 .
  • a lithium manganese composite oxide was obtained in the same manner as in Example 1 except that the obtained trimanganese tetraoxide was used.
  • the crystal phase of the obtained lithium manganese composite oxide was a lithium manganate single phase, and its lattice constant was 8.216 ⁇ .
  • Table 1 shows the evaluation results of trimanganese tetraoxide of this comparative example, and Table 2 shows the evaluation results of lithium manganate.
  • the trimanganese tetraoxide of the present invention had a large pore volume of 0.1 mL / g or more, more preferably 0.2 mL / g or more, of pores having a pore diameter of 0.3 to 2 ⁇ m. Furthermore, the trimanganese tetraoxide of the present invention had a large pore volume at any particle diameter of 9 ⁇ m or more, 10 ⁇ m or more, and even 15 ⁇ m or more.
  • the trimanganese tetroxide of the present invention had a tap density of 1.4 g / cm 3 or less and had a tendency to be low in filling property. Further, in the low concentration method, it was confirmed that a single phase of trimanganese tetraoxide was obtained even when crystallization was performed at a low redox potential of ⁇ 50 mV or higher for the slurry.
  • the lithium manganate obtained from the trimanganese tetraoxide of the present invention had a tap density of 1.3 g / cm 3 or more.
  • the press density was as high as 2.4 g / cm 3 or more and 2.8 g / cm 3 or less, indicating a filling property equivalent to that of the comparative manganese trioxide excellent in filling property.
  • Table 3 summarizes the particle size ratios of Examples and Comparative Examples.
  • the particle size ratio of the trimanganese tetraoxide of the present invention was 1.5 or less, and further 1.2 or less, and it was confirmed that no fusion occurred during firing.
  • the particle size ratio is 1.4 or more, and further 1.7 or more.
  • the particle size of lithium manganate is The particle size was nearly twice that of manganese oxide.
  • trimanganese tetraoxide of the present invention can be used for the production of a lithium manganese composite oxide having a low production cost. It should be noted that the entire content of the specification, claims, drawings and abstract of Japanese Patent Application No. 2012-221628 filed on October 3, 2012 is cited herein as the disclosure of the specification of the present invention. Incorporated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)

Abstract

 焼成による粒子同士の融着、すなわちネッキング現象が少ないリチウムマンガン系複合酸化物を与える四三酸化マンガンを提供する。 細孔直径0.3~2μmの細孔の細孔容積が0.1mL/g以上である四三酸化マンガン。細孔直径0.5~1μmの細孔の細孔容積が0.03mL/g以上であることが好ましい。

Description

四三酸化マンガン及びその製造方法
 本発明は、リチウムマンガン系複合酸化物の原料等として使用される四三酸化マンガンに関する。より詳細には、焼成による粒子同士の融着が少ないリチウムマンガン系複合酸化物が得られる四三酸化マンガンに関する。
 四三酸化マンガンは、リチウム原料及び他の金属原料と混合、焼成されることでリチウムマンガン系複合酸化物となる。例えば、四三酸化マンガンと水酸化リチウムを粉砕混合した後、焼成することで得られた斜方晶LiMnOが報告されている(特許文献1)。これ以外にも、四三酸化マンガン、炭酸リチウム、オキシ水酸化コバルト及び水酸化ニッケル等をスラリーとし、これを湿式粉砕した後、焼成することで得られたリチウムニッケルマンガンコバルト複合酸化物が報告されている(特許文献2)。
 四三酸化マンガンを用いたこれらのリチウムマンガン系複合酸化物の製造方法では、焼成中にリチウムマンガン系複合酸化物の粒子同士が融着する現象、いわゆるネッキング現象が生じやすかった。ネッキング現象のため、これらの製造方法で得られるリチウムマンガン系複合酸化物はその粒子径や粒子形状などが不均一になる。
 不均一なリチウムマンガン系複合酸化物を均一にするため、焼成後のリチウムマンガン系複合酸化物は、これを粉砕または解砕することが必要であった(特許文献1、2)。
 しかしながら、焼成後に粉砕や解砕を行う場合、リチウムマンガン系複合酸化物の製造コストが高くなるだけでなく、粉砕媒体の摩耗粉がこれに混入するなどの問題が指摘されている(例えば、特許文献3)。
日本特開2003-086180号公報 日本特開2012-023015号公報 日本特開2000-007341号公報
 特許文献1及び2で開示された、リチウムマンガン系複合酸化物を焼成後に粉砕や解砕するリチウムマンガン系複合酸化物の製造方法では、コスト増加や摩耗粉の混入が生じるだけではなく、リチウムマンガン系複合酸化物の微粒子が発生する。微粒子が存在すると、リチウムマンガン系複合酸化物をリチウムイオン電池の正極活物質として用いた場合に、マンガンの溶出が起きやすくなる。
 微粒子は分級等の粒度調整により除去できる。しかしながら、粉砕後に分級を行うと、得られるリチウムマンガン系複合酸化物の収率が低下するだけでなく、製造工程の更なる追加になり、更なる製造コストの増加となる。
 従来の四三酸化マンガンを原料とした製造方法では、ネッキング現象に由来するこの様な諸問題があり、製造規模が大きくなるほどこれらの問題は顕著であった。
 本発明では、これらの課題を解決し、焼成による粒子同士の融着、すなわちネッキング現象が少ないリチウムマンガン系複合酸化物を与える四三酸化マンガンを提供することを目的とする。
 上記の課題に鑑み、本発明者らは鋭意検討した。その結果、四三酸化マンガンの細孔の容積が、焼成によるリチウムマンガン系複合酸化物粒子の融着挙動に影響を及ぼすことを見出した。さらに、四三酸化マンガンの一定の範囲の細孔直径の細孔を制御することで、ネッキング現象が抑制できることを本発明者らは見出した。
 本発明は以下の構成を要旨とするものである。
 (1)細孔直径0.3~2μmの細孔の細孔容積が0.1mL/g以上であることを特徴とする四三酸化マンガン。
 (2)細孔直径0.5~1μmの細孔の細孔容積が0.03mL/g以上である上記(1)に記載の四三酸化マンガン。
 (3)最頻細孔径が2~4.5μmである上記(1)又は(2)に記載の四三酸化マンガン。
 (4)比表面積が2.5~9m/gである上記(1)~(3)のいずれか1項に記載の四三酸化マンガン。
 (5)平均粒子径が8~20μmである上記(1)~(4)のいずれか1項に記載の四三酸化マンガン。
 (6)マンガン塩水溶液からマンガン水酸化物を経由せずに四三酸化マンガンを晶析させる晶析工程を有する四三酸化マンガンの製造方法であって、該晶析工程においてマンガン塩水溶液とアルカリ溶液を混合して四三酸化マンガンを晶析させたスラリーを得、該スラリー中の四三酸化マンガンの固形分濃度が2重量%を超え、該スラリー中の四三酸化マンガンの平均滞在時間を10時間以下として晶析させる上記(1)~(5)のいずれか1項に記載の四三酸化マンガンの製造方法。
 (7)晶析工程における酸化還元電位が100~300mVである上記(6)に記載の四三酸化マンガンの製造方法。
 (8)マンガン塩水溶液からマンガン水酸化物を経由せずに四三酸化マンガンを晶析させる晶析工程を有する四三酸化マンガンの製造方法であって、該晶析工程においてマンガン塩水溶液とアルカリ溶液を混合して四三酸化マンガンを晶析させたスラリーを得、該スラリー中の四三酸化マンガンの固形分濃度を2重量%以下として晶析させる上記(1)~(5)のいずれか1項に記載の四三酸化マンガンの製造方法。
 (9)前記スラリー中の四三酸化マンガンの平均滞在時間を10時間以下として晶析させる上記(8)に記載の四三酸化マンガンの製造方法。
 (10)晶析工程における酸化還元電位が-100~200mVである上記(8)又は(9)に記載の四三酸化マンガンの製造方法。
 (11)上記(1)~(5)のいずれか1項に記載の四三酸化マンガンと、リチウム及びリチウム化合物の少なくとも一方とを混合する混合工程と、これを熱処理する加熱工程と、を有するリチウムマンガン系複合酸化物の製造方法。
 本発明により、焼成による粒子同士の融着が少ないリチウムマンガン系複合酸化物を与える四三酸化マンガン及びその製造方法を提供することができる。
 本発明の四三酸化マンガンにより、焼成後、粉砕工程や解砕工程を必要としないリチウムマンガン系複合酸化物及びその製造方法、さらには、これによる従来よりも製造コストが低いリチウムマンガン系複合酸化物及びその製造方法を提供することができる。
 本発明の四三酸化マンガンにより、これを原料として得られるリチウムマンガン系複合酸化物の粒子径の制御が容易である。
実施例2の四三酸化マンガン及びマンガン酸リチウムの粒子径分布(実線:四三酸化マンガン、破線:マンガン酸リチウム) 比較例2の四三酸化マンガン及びマンガン酸リチウムの粒子径分布(実線:四三酸化マンガン、破線:マンガン酸リチウム)
 以下、本発明の四三酸化マンガンについて説明する。
 本発明の四三酸化マンガンは、細孔直径0.3~2μmの細孔の細孔容積が0.1mL/g以上であり、0.2mL/g以上であることが好ましく、0.21mL/g以上であることがより好ましく、0.24mL/g以上であることが更に好ましい。直径0.3~2μmの細孔の細孔容積が0.1mL/g未満であると、これを原料として得られるリチウムマンガン系複合酸化物の粒子同士の融着(以下、単に「融着」ともいう)が起こりやすくなる。融着が生じると、得られるリチウムマンガン系複合酸化物の粒子形状が不均一になるだけでなく、その平均粒子径が大きくなりやすい。このようなリチウムマンガン系複合酸化物は、焼成後の後に粉砕工程又は解砕工程が必要となる。
 細孔直径0.3~2μmの細孔の細孔容積が多いほど、融着が抑制されやすくなる。その一方、当該細孔の細孔容積の上限には任意であるが、細孔直径0.3~2μmの細孔の細孔容積は0.5mL/g以下、更には0.4mL/g以下、また更には0.3mL/g以下であればよい。
 ここで、細孔容積は、一般的な水銀圧入法により測定することができる。また、細孔直径は水銀圧入法において、細孔が円筒状であるとみなした場合の細孔の直径である。
 細孔直径0.3μm未満の細孔の細孔容積が融着に与える影響が少ない。これに加え、細孔直径0.3μm未満の細孔の細孔容積は、四三酸化マンガンの充填性に与える影響が小さい。そのため、本発明の四三酸化マンガンにおいては、細孔直径0.3μm未満の細孔は存在してもよい。細孔直径0.3μm未満の細孔の細孔容積として、0.001mL/g以上、0.02mL/g以下、更には0.003mL/g以上、0.015mL/g以下を例示することができる。
 細孔直径0.3~2μmの細孔の細孔容積、及び、細孔直径0.3μm未満の細孔の細孔容積の合計容積、すなわち、細孔直径2μm以下の細孔の細孔容積が多くなっても、四三酸化マンガンを原料として得られるリチウムマンガン系複合酸化物の充填性に与える影響は小さい。したがって、本発明の四三酸化マンガンは、細孔直径2μm以下の細孔の細孔容積が0.1mL/gを超え、更には0.2mL/g以上であることが例示できる。一方、細孔直径2μm以下の細孔の細孔容積は必要以上に高くなくてよい。そのため、細孔直径2μm以下の細孔の細孔容積は、例えば、0.52mL/g以下、更には0.4mL/g以下、また更には0.3mL/g以下であればよい。
 細孔直径0.5~1μmの細孔の細孔容積が多いほど、融着がより抑制される傾向がある。そのため、本発明の四三酸化マンガンは、細孔直径0.5~1μmの細孔の細孔容積が0.03mL/g以上であることが好ましく、0.04mL/g以上であることがより好ましく、0.05mL/g以上であることが更に好ましく、0.06mL/g以上であることが更により好ましく、0.08mL/g以上であることが特に好ましい。一方、四三酸化マンガン及びこれを原料とするリチウムマンガン系複合酸化物の充填性の低下を防止する観点から、細孔直径0.5~1μmの細孔の細孔容積は0.2mL/g以下であることが好ましく、0.16mL/g以下であることがより好ましく、0.12mL/g以下であることが更に好ましい。
 本発明の四三酸化マンガンにおいては、細孔直径が2μmを超える細孔が存在してもよい。この場合、本発明の四三酸化マンガンの最頻細孔径は1.5μm以上、更には2μm以上となる。一方で、細孔直径が大きい細孔、例えば、細孔直径5μm以上の細孔、の細孔容積が増加すると、四三酸化マンガンの充填性が低くなりやすい。そのため、本発明の四三酸化マンガンの最頻細孔径は5μm以下であることが好ましく、4.5μm以下であることがより好ましく、4μm以下であることが更に好ましい。本発明の四三酸化マンガンの最頻細孔径は、2~4.5μmであるのが特に好ましい。
 更に、四三酸化マンガン中の細孔容積が多くなるほど、四三酸化マンガン及びこれを原料として得られるリチウムマンガン系複合酸化物の充填性が低くなる傾向にある。したがって、本発明の四三酸化マンガンは、全細孔容積が1.5mL/g以下であることが好ましく、1.1mL/g以下であることがより好ましく、0.9mL/g以下であることが更に好ましい。
 本発明の四三酸化マンガンの比表面積は2m/g以上であることが好ましく、2.5m/g以上であることがより好ましく、3m/g以上であることが更に好ましく、3.5m/gであることが更により好ましく、4m/g以上であることが特に好ましい。比表面積が2.5m/g以上であれば、融着がより生じにくくなる。また、比表面積が10m/g以下、更には9m/g以下であることで、四三酸化マンガン及びこれを原料とするリチウムマンガン系複合酸化物の充填性が低下しにくくなる。本発明の四三酸化マンガンの比表面積は、2.5~9m/gであるのが特に好ましい。
 なお、比表面積は、例えば、BET比表面積測定法などの窒素吸着法により測定することができる。
 本発明の四三酸化マンガンをリチウムマンガン系複合酸化物の原料として使用したリチウムマンガン系複合酸化物の電池特性、特に充放電サイクル特性及び出力特性を高くする観点から、本発明の四三酸化マンガンの平均粒子径は1μm以上であることが好ましく、3μm以上であることがより好ましく、5μm以上であることが更に好ましく、8μm以上であることが更により好ましく、また、10μm以上であることが好ましい。一方、平均粒子径の上限としては、50μm以下であることが好ましく、20μm以下であることがより好ましい。本発明の四三酸化マンガンの平均粒子径は、8~20μmであるのが特に好ましい。
 四三酸化マンガンは、その結晶構造がスピネル構造である。この結晶構造は、JCPDSパターンのNo.24-734のX線回折パターンと同等のX線回折パターンを示す構造である。
 四三酸化マンガンは、化学式でMnと表わされる。そのため、四三酸化マンガン中のマンガンに対する酸素の割合(酸素(O)/マンガン(Mn);以下、「x」とする。)は、x=1.33~1.34となり、これは化学式でMnO1.33~1.34と表される。しかしながら、上記の結晶構造、すなわち、スピネル構造を有していれば、本発明の四三酸化マンガンにおけるxは、x=1.2~1.4(すなわち、化学式でMnO1.2~1.4)であってもよく、さらにx=1.25~1.4(すなわち、化学式でMnO1.25~1.4)であってもよく、また更には1.3~1.4(すなわち、化学式でMnO1.3~1.4)であってもよい。
 次に、本発明の四三酸化マンガンの製造方法について説明する。
 本発明の四三酸化マンガンは上記の細孔を有していれば、その製造方法は任意である。例えば、本発明の四三酸化マンガンは、マンガン塩水溶液からマンガン水酸化物を経由せずに四三酸化マンガンを晶析させる晶析工程を有する四三酸化マンガンの製造方法であって、該晶析工程においてマンガン塩水溶液とアルカリ溶液を混合して四三酸化マンガンを晶析させたスラリーを得、該スラリー中の四三酸化マンガンの固形分濃度が2重量%を超え、該スラリー中の四三酸化マンガンの平均滞在時間を10時間以下として晶析させる製造方法(以下、「高濃度法」とする)により得ることができる。
 若しくは、本発明の四三酸化マンガンは、マンガン塩水溶液からマンガン水酸化物を経由せずに四三酸化マンガンを晶析させる晶析工程を有する四三酸化マンガンの製造方法であって、該晶析工程においてマンガン塩水溶液とアルカリ溶液を混合して四三酸化マンガンを晶析させたスラリーを得、該スラリー中の四三酸化マンガンの固形分濃度を2重量%以下として晶析させる製造方法(以下、「低濃度法」とする)により得ることができる。
 晶析工程では、マンガン塩水溶液からマンガン水酸化物を経由せずに四三酸化マンガンを晶析させる。マンガン塩水溶液からマンガン水酸化物を経由せずに四三酸化マンガンを晶析させるには、マンガン水酸化物の結晶相が全く生成しない態様、及び、マンガン水酸化物の微結晶が短時間析出した後、それが六角板状の結晶に成長する前に四三酸化マンガンに添加する態様も含まれる。すなわち、本発明の四三酸化マンガンの製造方法は晶析工程において、六角板状のマンガン水酸化物の結晶が生じないことを特徴とする。六角板状のマンガン水酸化物の結晶が生じたか否かは、得られた四三酸化マンガンの粒子形状を観察することによって判断できる。
 晶析工程では、マンガン塩水溶液からアルカリ性領域でマンガン水酸化物結晶を析出させ、該マンガン水酸化物を酸化剤によって酸化する工程(以下、酸化工程)を有しない。すなわち、晶析工程では、マンガン塩水溶液からアルカリ性領域でマンガン水酸化物結晶を析出させずに四三酸化マンガンを晶析させる。そのため、本発明の四三酸化マンガンの製造方法における晶析工程では、酸化工程を経ることなく四三酸化マンガンを製造することができる。
 晶析工程では、マンガン塩水溶液とアルカリ水溶液を混合して、四三酸化マンガンを晶析させたスラリーを得る。これにより晶析工程において反応雰囲気を変更せずに四三酸化マンガンを得ることができる。そのため、晶析工程では、マンガン塩水溶液とアルカリ水溶液を混合することで連続的に四三酸化マンガンを製造することができる。
 マンガン塩水溶液は、硫酸マンガン、塩化マンガン、硝酸マンガン、及び酢酸マンガンからなる群から選ばれる少なくとも1種、又は、硫酸、塩酸、硝酸及び酢酸などの各種の酸水溶液に金属マンガン又はマンガン酸化物等を溶解したものも使用できる。
 マンガン塩水溶液のマンガンイオン濃度は、例えば、1mol/L以上を挙げることができる。
 アルカリ水溶液は、アルカリ性を示す水溶液であり、アルカリ性を示し、なおかつ、錯化能を有さない水溶液であることが好ましい。アルカリ水溶液として、例えば、水酸化ナトリウム、水酸化カリウムなどの水溶液を挙げることができる。
 アルカリ水溶液の濃度として、例えば、0.1mol/L以上を挙げることができる。
 晶析工程においては、四三酸化マンガンを晶析させたスラリーの固形分濃度が本発明の範囲となるようにマンガン水溶液とアルカリ水溶液とが混合されれば、マンガン水溶液とアルカリ水溶液との混合方法は任意の方法を選択することができる。
 混合方法としては、マンガン塩水溶液にアルカリ水溶液を添加して混合する方法、マンガン塩水溶液とアルカリ水溶液を純水やスラリーなどの溶媒中に添加して混合する方法等が例示できる。マンガン塩水溶液とアルカリ水溶液を十分かつ均一に反応させるため、混合方法はマンガン塩水溶液とアルカリ水溶液を溶媒中に添加して混合する方法が好ましい。
 低濃度法による晶析工程では、マンガン塩水溶液とアルカリ溶液を混合して四三酸化マンガンを晶析させたスラリーを得、該スラリー中の四三酸化マンガンの固形分濃度(以下、単に「固形分濃度」ともいう)が2重量%以下であることが好ましく、1重量%以下であることがより好ましい。これにより、標準水素電極に対する酸化還元電位(以下、単に「酸化還元電位」とする)及び平均滞在時間の影響をほとんど受けることなく、本発明の四三酸化マンガンを得ることができる。これにより、四三酸化マンガンが晶析できる条件範囲がより広くなる。また、低濃度法による晶析工程では、スラリー中の四三酸化マンガンの固形分濃度は、0.1重量%以上であるのが好ましい。
 高濃度法による晶析工程では、マンガン塩水溶液とアルカリ溶液を混合して四三酸化マンガンを晶析させたスラリーを得、該スラリー中の四三酸化マンガンの固形分濃度が2重量%を超えることが好ましく、3重量%以上であることがより好ましく、5重量%以上であることが更に好ましい。当該固形分濃度、及び、以下の平均滞在時間を兼ね備えることにより、本発明の四三酸化マンガンがより効率よく得られる。また、高濃度法による晶析工程では、スラリー中の四三酸化マンガンの固形分濃度は、30重量%以下であるのが好ましい。
 ここで、固形分濃度は、マンガン塩水溶液とアルカリ溶液を混合して得られる四三酸化マンガンが晶析したスラリーの重量に対する、該スラリーに含まれる四三酸化マンガンの重量により求めることができる。例えば、以下の様な方法により固形分濃度を測定することを挙げることができる。晶析反応中に、四三酸化マンガンを含む反応スラリーの一部を採取し、採取した反応スラリーその重量を測定する。その後、これをろ過、水洗し、その後、乾燥して四三酸化マンガンの乾燥粉を得る。得られた乾燥粉の重量を測定し、以下の式から固形分濃度を求めることができる。
   固形分濃度(重量%)=(乾燥粉重量(g)/反応スラリー重量(g))×100
 晶析工程では、晶析した四三酸化マンガンが、反応スラリー中に滞在する平均時間(以下、「平均滞在時間」とする)が1時間以上であることが好ましい。平均滞在時間をこの範囲とすることで、本発明の四三酸化マンガンが得られやすくなる。
 高濃度法において、平均滞在時間が長くなると、得られる四三酸化マンガンの細孔容積が少なくなりやすい。そのため、高濃度法による晶析工程においては、平均滞在時間が10時間以下であり、8時間以下であることが好ましく、6時間以下であることがより好ましく、4時間以下であることが更に好ましく、2.5時間以下であることが更により好ましい。
 一方、低濃度法において、平均滞在時間が短いほど単位時間及び単位体積当たりの四三酸化マンガンの収量が多くなる。そのため、低濃度法による晶析工程における平均滞在時間としては、10時間以下が好ましく、8時間以下が更に好ましく、2.5時間以下が特に好ましい。
 平均滞在時間はマンガン塩水溶液から晶析した四三酸化マンガンが、反応スラリー中に滞在する平均時間であるが、これは、例えば、反応スラリーの固形分濃度を目的とする濃度とし、当該固形分濃度で四三酸化マンガンを晶析させた時間をもって平均滞在時間とすることが挙げられる。
 晶析工程において、四三酸化マンガンを晶析させる際のマンガン塩水溶液のpHは、マンガン水酸化物の生成し難いpHであることが好ましく、pH6以上、pH9以下であることがより好ましく、pH6.5以上、pH8以下であることが更に好ましい。マンガン塩水溶液のpHをこの範囲とすることで、水酸化マンガンがより生成しにくくなる。
 晶析工程において、四三酸化マンガンを晶析させる際のマンガン塩水溶液のpHはこれらの範囲であり、なおかつ、pHを一定に維持することが更に好ましい。pHを一定に維持するとは、pHを±0.5とすることであり、好ましくはpHを±0.3とすることであり、更に好ましくはpHを±0.1とすることである。
 晶析工程において、四三酸化マンガンが晶析する際の酸化還元電位が高くなることで四三酸化マンガンの単一相が得られやすくなる。そのため、晶析工程における酸化還元電位は、300mV以下、さらには200mV以下であれば、単一相の四三酸化マンガンが一層得られやすくなる。
 高濃度法による晶析工程においては、酸化還元電位が100mV以上であることが好ましく、140mV以上であることがより好ましい。酸化還元電位をこの範囲とすることで、本発明の四三酸化マンガンを得ることができる。
 高濃度法による晶析工程においては、酸化還元電位が100~300mVであるのが特に好ましい。
 一方、低濃度法による晶析工程においては、酸化還元電位が低い場合であっても、本発明の細孔容積を有する四三酸化マンガンが得られる。そのため、低濃度法による晶析工程においては、例えば、酸化還元電位が-100mV以上、更には-50mV以上、また更には0mV以上であれば、本発明の四三酸化マンガンを得ることができる。低濃度法による晶析工程においては、酸化還元電位が-100~200mVであるのが特に好ましい。
 マンガン塩水溶液の酸化還元電位はこれらの範囲であり、なおかつそれを一定に維持することが更に好ましい。酸化還元電位を一定に維持するとは、酸化還元電位を±50mVの範囲で維持することであり、好ましくは酸化還元電位を±30mVの範囲で維持することであり、更に好ましくは酸化還元電位を±20mVの範囲で維持することである。
 晶析工程では、40℃以上、更には50℃以上、また更には60℃以上として四三酸化マンガンを晶析することが好ましい。また、95℃以下、更には90℃以下とすることが好ましい。晶析をする際のマンガン塩水溶液の温度をこの範囲とすることで、四三酸化マンガンの晶析が促進されるだけではなく、四三酸化マンガンが粒子径の均一な粒子になりやすくなる。
 晶析工程では、酸化剤を使用して晶析を行なうことが好ましい。酸化剤の種類は空気等の酸素含有ガスなどの気体酸化剤や、過酸化水素などの液体酸化剤が例示できる。工業的な観点から、酸化剤として気体酸化剤を使用することが好ましく、空気を使用することがより好ましい。
 晶析工程では、錯化剤を共存させずに晶析することが好ましい。錯化剤とは、アンモニア、アンモニウム塩、ヒドラジン、及びEDTAの他、これらと同様の錯化能を有するものを指す。
 これらの錯化剤は、四三酸化マンガンの晶析挙動に影響を及ぼす。そのため、錯化剤の存在下で得られた四三酸化マンガン、本発明の製造方法で得られる四三酸化マンガンとは異なる細孔特性を有しやすい。
 本発明の四三酸化マンガンは、リチウムマンガン系複合酸化物のマンガン原料として使用することができる。
 以下、本発明の四三酸化マンガンをマンガン原料として使用した、リチウムマンガン系複合酸化物の製造方法について説明する。
 本発明のリチウムマンガン系複合酸化物の製造方法は、上述の四三酸化マンガンと、リチウム及びリチウム化合物の少なくとも一方とを混合する混合工程と、これを熱処理する加熱工程と、を有する。
 混合工程において、混合方法は任意の方法を選択できるが、乾式混合であることが好ましい。これにより、融着がより抑制されやすくなる。乾式混合の方法は、例えば、乳鉢や、ライカイ機などを使用した磨砕力による混合方法や、バーチカルグラニュレーターなどを使用したせん断力による混合方法を挙げることができる。
 混合工程において、四三酸化マンガンをリチウム化合物と混合する際に、リチウムマンガン系複合酸化物のリチウム二次電池正極材料の特性を改善するために、異種金属化合物を添加してもよい。異種金属化合物は、構成元素としてマンガン及びリチウムとは異なる金属元素を有する。例えば、構成元素としてAl、Mg、Ni、Co、Cr、Ti及びZrからなる群から選ばれる少なくとも1種を含む化合物である。
 加熱工程において、熱処理方法は任意の方法を選択できる。熱処理方法として、酸素ガス、空気等の酸化雰囲気中、500℃以上、900℃以下で、5時間以上焼成することを例示できる。
 本発明の四三酸化マンガンをマンガン原料として使用したリチウムマンガン系複合酸化物は、融着がほとんど生じない。そのため、本発明の四三酸化マンガンと、これを原料として得られたリチウムマンガン系複合酸化物とは、その平均粒径が同程度になる。例えば、本発明の四三酸化マンガンの平均粒子径に対する、これを原料として得られるリチウムマンガン系複合酸化物の平均粒子径(以下、「粒子径比」とする)は、1.5以下であり、1.2以下であることが好ましく、1.15以下であることがより好ましく、1.1以下であることが更に好ましい。一方、加熱工程において、四三酸化マンガンが収縮する場合があるが、粒子径比は0.9以上、更には0.95以上となる。
 加熱工程後のリチウムマンガン系複合酸化物は融着、いわゆるネッキングがほとんど生じない。そのため、本発明のリチウムマンガン系複合酸化物の製造方法においては、粉砕工程又は解砕工程が必須ではない。
 一方、加熱工程後のリチウムマンガン系複合酸化物は、その粒子が物理的に接触している状態、いわゆる緩慢凝集状態である場合がある。二次電池正極材としてリチウムマンガン系複合酸化物を使用する際に、当該緩慢凝集は簡単に崩れる。そのため、緩慢凝集をした状態でもよいが、必要に応じて、例えば、加熱工程の後に、篩分けなどの緩慢凝集をほぐす工程を有していてもよい。
 リチウムマンガン系複合酸化物は結晶構造がスピネル型であることが好ましい。リチウムマンガン系複合酸化物は下記化学式(1)で表される。
   Li1+xMn2-x-y      (1)
 上記式(1)中、MはLi,Mn,O以外の元素からなる群から選ばれる少なくとも1種類以上の金属元素を示し、x,yはそれぞれ下記式(2),(3)を満たす。
   0≦x≦0.33          (2)
   0≦y≦1.0           (3)
 リチウム化合物は、如何なるものを用いてもよい。リチウム化合物として、水酸化リチウム、酸化リチウム、炭酸リチウム、ヨウ化リチウム、硝酸リチウム、シュウ酸リチウム、及びアルキルリチウム等が例示される。好ましいリチウム化合物としては、水酸化リチウム、酸化リチウム、及び炭酸リチウムからなる群から選ばれる少なくとも1種が例示できる。
 本発明の四三酸化マンガンを原料として得られたリチウムマンガン系複合酸化物は、リチウムイオン二次電池の正極活物質として使用することができる。
 次に、本発明を具体的な実施例で説明する。しかしながら、本発明はこれらの実施例に限定されるものではない。
 (細孔容積)
 細孔容積の測定には、市販の水銀ポロシメータ(商品名:AUTO PORE IV、MICRO MERITICS社製)を用いた。圧力範囲を大気圧から414MPaとして試料の細孔容積を測定した。当該圧力範囲で測定できる細孔直径の範囲は0.003μm以上、400μm以下である。
 (平均粒子径)
 平均粒子径の測定には、市販の粒度測定装置(商品名:MICROTRAC HRA 9320-X100,日機装社製)を用いた。試料を純水に分散させ、そこにアンモニア水を添加してpH=8.5とすることで測定溶液を調製した。測定溶液は、これを3分間超音波分散した後、平均粒子径を測定した。
 (BET比表面積)
 BET比表面積の測定には、市販の比表面積測定装置(商品名:FlOW SORB III、MICRO MERITICS社製)を用いて、BET1点法の窒素吸着により測定した。BET比表面積の測定に先立ち、空気流通下、150℃で40分間加熱して試料の脱気処理を行った。
 (タップ密度)
 JIS R1628に準じて密度を測定し、これをタップ密度とした。
 (プレス密度)
 直径13mmの金型に試料1gを充填し、これを1t/cmでプレスすることにより成型体を得た。得られた成型体の重量をその体積で除して得られた密度をプレス密度とした。
 (X線回折測定)
 試料の結晶相をX線回折によって測定した。測定は一般的なX線回折装置で測定した。線源にはCuKα線(λ=1.5405Å)を用い、測定モードはステップスキャン、スキャン条件は毎秒0.04°、計測時間は3秒、および測定範囲は2θとして5°から80°の範囲で測定した。
 JCPDSパターンのNo.24734のX線回折パターンをスピネル構造の四三酸化マンガンのX線回折パターン、及び、JCPDSパターンのNo.35-782のX線回折パターンをマンガン酸リチウムのX線回折パターンとし、これらのX線回折パターンと試料のX線回折パターンとを対比することにより、試料の結晶相の同定を行った。
 (固形分濃度の測定)
 固形分濃度は、晶析反応中に以下のように測定した。晶析反応中に、マンガン酸化物を含む反応スラリーの一部を採取した。採取した反応スラリーその重量を測定した後、これをろ過、水洗し、その後、110℃で乾燥してマンガン酸化物の乾燥粉を得た。得られた乾燥粉の重量を測定し、以下の式から固形分濃度を求めた。
   固形分濃度(重量%)=(乾燥粉重量(g)/反応スラリー重量(g))×100
 実施例1
 (四三酸化マンガンの製造)
 純水を80℃とし、その酸化還元電位が200mVとなるように空気を吹き込みながら攪拌した。2mol/Lの硫酸マンガン水溶液と、2.8mol/Lの水酸化ナトリウム水溶液をこれに連続的に添加することでマンガン酸化物を晶析させ、固形分濃度が5.4重量%の反応スラリーを得た。
 水酸化ナトリウム水溶液の添加は、反応スラリーのpHが7となるようにして、反応スラリーに適宜添加した。
 反応スラリーに硫酸マンガン水溶液及び水酸化ナトリウム水溶液を添加すると同時に、固形分濃度を維持しながら、これと同量の反応スラリーを抜き出しながら4時間晶析させた。これにより、スラリー中のマンガン酸化物の平均滞在時間を4時間として晶析を行った。その後、反応スラリーをろ過、洗浄、乾燥してマンガン酸化物を得た。
 得られたマンガン酸化物の結晶相はスピネル構造であった。また、当該マンガン酸化物のマンガンの酸化度はx=1.33(MnO1.33)であった。これらの結果から、得られたマンガン酸化物は四三酸化マンガン単一相であることを確認した。
 (マンガン酸リチウムの製造)
 得られた四三酸化マンガンと炭酸リチウムとを、モル比で、2Li/Mn=1.16となるように乳鉢で乾式混合して、混合物を得た。得られた混合物を850℃で6時間焼成し、リチウムマンガン系複合酸化物を得た。
 得られたリチウムマンガン系複合酸化物の結晶相はマンガン酸リチウム単相であり、その格子定数は8.215Åであった。
 本実施例の四三酸化マンガンの評価結果を表1に、マンガン酸リチウムの評価結果を表2に示す。
 実施例2
 (四三酸化マンガンの製造)
 酸化還元電位を0mVとしたこと、反応スラリーのpHを8としたこと、水酸化ナトリウム水溶液の濃度を0.25mol/Lとしたこと、反応スラリーの固形分濃度を0.9重量%としたこと、及び、スラリー中のマンガン酸化物の平均滞在時間を2.25時間としたこと以外は、実施例1と同様の方法でマンガン酸化物を得た。
 得られたマンガン酸化物の結晶相はスピネル構造であった。また、当該マンガン酸化物のマンガンの酸化度はx=1.33(MnO1.33)であった。これらの結果から、得られたマンガン酸化物は四三酸化マンガン単一相であることを確認した。
 (マンガン酸リチウムの製造)
 得られた四三酸化マンガンを使用したこと以外は実施例1と同様な方法によってリチウムマンガン系複合酸化物を得た。
 得られたリチウムマンガン系複合酸化物の結晶相はマンガン酸リチウム単相であり、その格子定数は8.220Åであった。
 本実施例の四三酸化マンガンの評価結果を表1に、マンガン酸リチウムの評価結果を表2に示す。
 実施例3
 (四三酸化マンガンの製造)
 スラリー中のマンガン酸化物の平均滞在時間を8時間としたこと以外は、実施例1と同様の方法でマンガン酸化物を得た。
 得られたマンガン酸化物の結晶相はスピネル構造であった。また、当該マンガン酸化物のマンガンの酸化度はx=1.33(MnO1.33)であった。これらの結果から、得られたマンガン酸化物は四三酸化マンガン単一相であることを確認した。本実施例の四三酸化マンガンのタップ密度は1.4g/cmであった。
 (マンガン酸リチウムの製造)
 得られた四三酸化マンガンを使用したこと以外は実施例1と同様な方法によってリチウムマンガン系複合酸化物を得た。
 得られたリチウムマンガン系複合酸化物の結晶相はマンガン酸リチウム単相であり、その格子定数は8.218Åであった。
 本実施例の四三酸化マンガンの評価結果を表1に、マンガン酸リチウムの評価結果を表2に示す。
 実施例4
 (四三酸化マンガンの製造)
 酸化還元電位を100mVとしたこと、水酸化ナトリウム水溶液の濃度を0.25mol/Lとしたこと、スラリーの固形分濃度を0.9重量%としたこと、及び、スラリー中のマンガン酸化物の平均滞在時間を2.25時間としたこと以外は、実施例1と同様の方法でマンガン酸化物を得た。
 得られたマンガン酸化物の結晶相はスピネル構造であった。また、当該マンガン酸化物のマンガンの酸化度はx=1.33(MnO1.33)であった。これらの結果から、得られたマンガン酸化物は四三酸化マンガン単一相であることを確認した。
 (マンガン酸リチウムの製造)
 得られた四三酸化マンガンを使用したこと以外は実施例1と同様な方法によってリチウムマンガン系複合酸化物を得た。
 得られたリチウムマンガン系複合酸化物の結晶相はマンガン酸リチウム単相であり、その格子定数は8.218Åであった。
 本実施例の四三酸化マンガンの評価結果を表1に、マンガン酸リチウムの評価結果を表2に示す。
 実施例5
 (四三酸化マンガンの製造)
 酸化還元電位を-50mVとしたこと、反応スラリーのpHを8.5としたこと、水酸化ナトリウム水溶液の濃度を0.25mol/Lとしたこと、スラリーの固形分濃度を0.9重量%としたこと、及び、スラリー中のマンガン酸化物の平均滞在時間を2.25時間としたこと以外は、実施例1と同様の方法でマンガン酸化物を得た。
 得られたマンガン酸化物の結晶相はスピネル構造であった。また、当該マンガン酸化物のマンガンの酸化度はx=1.33(MnO1.33)であった。これらの結果から、得られたマンガン酸化物は四三酸化マンガン単一相であることを確認した。
 (マンガン酸リチウムの製造)
 得られた四三酸化マンガンを使用したこと以外は実施例1と同様な方法によってリチウムマンガン系複合酸化物を得た。
 得られたリチウムマンガン系複合酸化物の結晶相はマンガン酸リチウム単相であり、その格子定数は8.217Åであった。
 本実施例の四三酸化マンガンの評価結果を表1に、マンガン酸リチウムの評価結果を表2に示す。
 実施例6
 (四三酸化マンガンの製造)
 酸化還元電位を140mVとしたこと、反応スラリーのpHを7.4としたこと、水酸化ナトリウム水溶液の濃度を0.13mol/Lとしたこと、スラリーの固形分濃度を3.4重量%としたこと、及び、スラリー中のマンガン酸化物の平均滞在時間を4時間としたこと以外は、実施例1と同様の方法でマンガン酸化物を得た。
 得られたマンガン酸化物の結晶相はスピネル構造であった。また、当該マンガン酸化物のマンガンの酸化度はx=1.33(MnO1.33)であった。これらの結果から、得られたマンガン酸化物は四三酸化マンガン単一相であることを確認した。
 (マンガン酸リチウムの製造)
 得られた四三酸化マンガンを使用したこと以外は実施例1と同様な方法によってリチウムマンガン系複合酸化物を得た。
 得られたリチウムマンガン系複合酸化物の結晶相はマンガン酸リチウム単相であり、その格子定数は8.215Åであった。
 本実施例の四三酸化マンガンの評価結果を表1に、マンガン酸リチウムの評価結果を表2に示す。
 実施例7
 (四三酸化マンガンの製造)
 純水を90℃とし、その酸化還元電位が200mVとなるように空気を吹き込みながら攪拌した。2mol/Lの硫酸マンガン水溶液と、2.5mol/Lの水酸化ナトリウム水溶液をこれに連続的に添加することでマンガン酸化物を晶析させ、固形分濃度が2.2重量%の反応スラリーを得た。
 固形分濃度が2.2重量%となった時点で硫酸マンガン水溶液及び水酸化ナトリウム水溶液の添加を止め、固形分濃度を維持した。このまま6時間攪拌して、反応スラリー中のマンガン酸化物の平均滞在時間を6時間とした。その後、反応スラリーをろ過、洗浄、乾燥してマンガン酸化物を得た。
 得られたマンガン酸化物の結晶相はスピネル構造であった。また、当該マンガン酸化物のマンガンの酸化度はx=1.33(MnO1.33)であった。これらの結果から、得られたマンガン酸化物は四三酸化マンガン単一相であることを確認した。
 (マンガン酸リチウムの製造)
 得られた四三酸化マンガンを使用したこと以外は実施例1と同様な方法によってリチウムマンガン系複合酸化物を得た。
 得られたリチウムマンガン系複合酸化物の結晶相はマンガン酸リチウム単相であり、その格子定数は8.216Åであった。
 本実施例の四三酸化マンガンの評価結果を表1に、マンガン酸リチウムの評価結果を表2に示す。
 実施例8
 (四三酸化マンガンの製造)
 純水を80℃としたこと、及び、酸化還元電位を150mVとしたこと以外は、実施例7と同様の方法でマンガン酸化物を得た。
 得られたマンガン酸化物の結晶相はスピネル構造であった。また、当該マンガン酸化物のマンガンの酸化度はx=1.33(MnO1.33)であった。これらの結果から、得られたマンガン酸化物は四三酸化マンガン単一相であることを確認した。
 (マンガン酸リチウムの製造)
 得られた四三酸化マンガンを使用したこと以外は実施例1と同様な方法によってリチウムマンガン系複合酸化物を得た。
 得られたリチウムマンガン系複合酸化物の結晶相はマンガン酸リチウム単相であり、その格子定数は8.219Åであった。
 本実施例の四三酸化マンガンの評価結果を表1に、マンガン酸リチウムの評価結果を表2に示す。
 実施例9
 (四三酸化マンガンの製造)
 酸化還元電位を200mVとしたこと以外は、実施例7と同様の方法でマンガン酸化物を得た。
 得られたマンガン酸化物の結晶相はスピネル構造であった。また、当該マンガン酸化物のマンガンの酸化度はx=1.33(MnO1.33)であった。これらの結果から、得られたマンガン酸化物は四三酸化マンガン単一相であることを確認した。
 (マンガン酸リチウムの製造)
 得られた四三酸化マンガンを使用したこと以外は実施例1と同様な方法によってリチウムマンガン系複合酸化物を得た。
 得られたリチウムマンガン系複合酸化物の結晶相はマンガン酸リチウム単相であり、その格子定数は8.216Åであった。
 本実施例の四三酸化マンガンの評価結果を表1に、マンガン酸リチウムの評価結果を表2に示す。
 比較例1
 (四三酸化マンガンの製造)
 酸化還元電位を100mV、及び、スラリー中のマンガン酸化物の平均滞在時間を18時間としたこと以外は、実施例1と同様の方法でマンガン酸化物を得た。
 得られたマンガン酸化物の結晶相はスピネル構造であった。また、当該マンガン酸化物のマンガンの酸化度はx=1.33(MnO1.33)であった。これらの結果から、得られたマンガン酸化物は四三酸化マンガン単一相であることを確認した。本比較例の四三酸化マンガンのタップ密度は1.77g/cmであった。
 (マンガン酸リチウムの製造)
 得られた四三酸化マンガンを使用したこと以外は実施例1と同様な方法によってリチウムマンガン系複合酸化物を得た。
 得られたリチウムマンガン系複合酸化物の結晶相はマンガン酸リチウム単相であり、その格子定数は8.216Åであった。
 本比較例の四三酸化マンガンの評価結果を表1に、マンガン酸リチウムの評価結果を表2に示す。
 比較例2
 (四三酸化マンガンの製造)
 酸化還元電位を180mV、及び、スラリー中のマンガン酸化物の平均滞在時間を18時間としたこと以外は、実施例1と同様の方法でマンガン酸化物を得た。
 得られたマンガン酸化物の結晶相はスピネル構造であった。また、当該マンガン酸化物のマンガンの酸化度はx=1.33(MnO1.33)であった。これらの結果から、得られたマンガン酸化物は四三酸化マンガン単一相であることを確認した。本比較例の四三酸化マンガンのタップ密度は1.77g/cmであった。
 (マンガン酸リチウムの製造)
 得られた四三酸化マンガンを使用したこと以外は実施例1と同様な方法によってリチウムマンガン系複合酸化物を得た。
 得られたリチウムマンガン系複合酸化物の結晶相はマンガン酸リチウム単相であり、その格子定数は8.216Åであった。
 本比較例の四三酸化マンガンの評価結果を表1に、マンガン酸リチウムの評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
 これらの実施例より、本発明の四三酸化マンガンは細孔直径が0.3~2μmの細孔の細孔容積が0.1mL/g以上、さらには0.2mL/g以上と多かった。さらに、本発明の四三酸化マンガンは、その平均粒子径が9μm以上、10μm以上、さらには15μm以上のいずれの粒子径においても当該細孔直径の細孔容積が多かった。一方、比較例の四三酸化マンガンと比べ、本発明の四三酸化マンガンは、タップ密度が1.4g/cm以下と、充填性が低い傾向にあった。
 また、低濃度法においては、スラリーの酸化還元電位が-50mV以上と、低い酸化還元電位による晶析であっても、四三酸化マンガンの単一相が得られることが確認できた。
Figure JPOXMLDOC01-appb-T000002
 本発明の四三酸化マンガンから得られたマンガン酸リチウムは、そのタップ密度が1.3g/cm以上であった。しかしながら、そのプレス密度は2.4g/cm以上、2.8g/cm以下と高く、充填性に優れる比較例の四三酸化マンガンと同等の充填性を示した。
 実施例及び比較例の粒子径比を表3にまとめた。
Figure JPOXMLDOC01-appb-T000003
 表3より、本発明の四三酸化マンガンはその粒子径比が1.5以下、更には1.2以下であり、焼成時に融着が生じていないことが確認できた。一方、充填性に優れる比較例の四三酸化マンガンは焼成時に融着が生じ、その粒子径比は1.4以上、さらには1.7以上であり、マンガン酸リチウムの粒子径は、四三酸化マンガンの2倍近くの粒子径であった。
 本発明の四三酸化マンガンは、製造コストが低いリチウムマンガン系複合酸化物の製造に利用できる。
 なお、2012年10月3日に出願された日本特許出願2012-221628号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (11)

  1.  細孔直径0.3~2μmの細孔の細孔容積が0.1mL/g以上であることを特徴とする四三酸化マンガン。
  2.  細孔直径0.5~1μmの細孔の細孔容積が0.03mL/g以上である請求項1に記載の四三酸化マンガン。
  3.  最頻細孔径が2~4.5μmである請求項1又は2に記載の四三酸化マンガン。
  4.  比表面積が2.5~9m/gである請求項1~3のいずれか1項に記載の四三酸化マンガン。
  5.  平均粒子径が8~20μmである請求項1~4のいずれか1項に記載の四三酸化マンガン。
  6.  マンガン塩水溶液からマンガン水酸化物を経由せずに四三酸化マンガンを晶析させる晶析工程を有する四三酸化マンガンの製造方法であって、該晶析工程においてマンガン塩水溶液とアルカリ溶液を混合して四三酸化マンガンを晶析させたスラリーを得、該スラリー中の四三酸化マンガンの固形分濃度が2重量%を超え、該スラリー中の四三酸化マンガンの平均滞在時間を10時間以下として晶析させる請求項1~5のいずれか1項に記載の四三酸化マンガンの製造方法。
  7.  晶析工程における酸化還元電位が100~300mVである請求項6に記載の四三酸化マンガンの製造方法。
  8.  マンガン塩水溶液からマンガン水酸化物を経由せずに四三酸化マンガンを晶析させる晶析工程を有する四三酸化マンガンの製造方法であって、該晶析工程においてマンガン塩水溶液とアルカリ溶液を混合して四三酸化マンガンを晶析させたスラリーを得、該スラリー中の四三酸化マンガンの固形分濃度を2重量%以下として晶析させる請求項1~5のいずれか1項に記載の四三酸化マンガンの製造方法。
  9.  前記スラリー中の四三酸化マンガンの平均滞在時間を10時間以下として晶析させる請求項8に記載の四三酸化マンガンの製造方法。
  10.  晶析工程における酸化還元電位が-100~200mVである請求項8又は9に記載の四三酸化マンガンの製造方法。
  11.  請求項1~5のいずれか1項に記載の四三酸化マンガンと、リチウム及びリチウム化合物の少なくとも一方とを混合する混合工程と、これを熱処理する加熱工程と、を有するリチウムマンガン系複合酸化物の製造方法。
PCT/JP2013/076975 2012-10-03 2013-10-03 四三酸化マンガン及びその製造方法 WO2014054750A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/432,042 US9440860B2 (en) 2012-10-03 2013-10-03 Trimanganese tetraoxide and its production process
CN201380052160.4A CN104755428B (zh) 2012-10-03 2013-10-03 四氧化三锰及其制造方法
EP13844451.8A EP2905261B1 (en) 2012-10-03 2013-10-03 Trimanganese tetraoxide and method for producing same
ES13844451T ES2707895T3 (es) 2012-10-03 2013-10-03 Tetraóxido de trimanganeso y método para producirlo
KR1020157007878A KR102104690B1 (ko) 2012-10-03 2013-10-03 사삼산화망간 및 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012221628A JP6015320B2 (ja) 2012-10-03 2012-10-03 四三酸化マンガン及びその製造方法
JP2012-221628 2012-10-03

Publications (1)

Publication Number Publication Date
WO2014054750A1 true WO2014054750A1 (ja) 2014-04-10

Family

ID=50435069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/076975 WO2014054750A1 (ja) 2012-10-03 2013-10-03 四三酸化マンガン及びその製造方法

Country Status (8)

Country Link
US (1) US9440860B2 (ja)
EP (1) EP2905261B1 (ja)
JP (1) JP6015320B2 (ja)
KR (1) KR102104690B1 (ja)
CN (1) CN104755428B (ja)
ES (1) ES2707895T3 (ja)
TW (1) TWI598302B (ja)
WO (1) WO2014054750A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2915724T3 (es) * 2012-04-05 2022-06-24 Tosoh Corp Partículas combinadas de tetraóxido de trimanganeso que contiene un metal y su proceso de producción
CN107055621A (zh) * 2017-03-06 2017-08-18 符策煌 常温合成的粒径可控的四氧化三锰纳米颗粒材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000007341A (ja) 1998-06-22 2000-01-11 Toda Kogyo Corp リチウムマンガンスピネル酸化物粒子粉末の製造方法
JP2001261343A (ja) * 2000-03-17 2001-09-26 Unitika Ltd 四三酸化マンガン超微粒子およびその製造方法
JP2003086180A (ja) 2001-09-11 2003-03-20 Masayuki Yoshio 非水溶液系二次電池正極活物質およびこれを用いる二次電池
JP2011251862A (ja) * 2010-06-01 2011-12-15 Tosoh Corp マンガン酸化物及びその製造方法
JP2012023015A (ja) 2010-01-08 2012-02-02 Mitsubishi Chemicals Corp リチウム二次電池用正極材料用粉体及びその製造方法、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池
WO2012046735A1 (ja) * 2010-10-06 2012-04-12 東ソー株式会社 マンガン酸化物及びその製造方法、並びにそれを用いたリチウムマンガン系複合酸化物の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6267943B1 (en) 1998-10-15 2001-07-31 Fmc Corporation Lithium manganese oxide spinel compound and method of preparing same
CN1365949A (zh) 2001-01-19 2002-08-28 中国石油化工股份有限公司巴陵分公司 一种四氧化三锰的制造方法
CN1644513A (zh) 2004-12-28 2005-07-27 北京科技大学 一种直接用锰矿石生产电子级高纯四氧化三锰的方法
CN100366542C (zh) 2006-03-03 2008-02-06 郝鹏飞 用硫酸锰溶液在氨性介质中制备高纯四氧化三锰的方法
CN100448784C (zh) 2006-10-19 2009-01-07 北京科技大学 一种直接氧化游离二价锰离子制备四氧化三锰的方法
ES2915724T3 (es) 2012-04-05 2022-06-24 Tosoh Corp Partículas combinadas de tetraóxido de trimanganeso que contiene un metal y su proceso de producción
JP6194618B2 (ja) * 2012-04-20 2017-09-13 東ソー株式会社 四三酸化マンガン及びその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000007341A (ja) 1998-06-22 2000-01-11 Toda Kogyo Corp リチウムマンガンスピネル酸化物粒子粉末の製造方法
JP2001261343A (ja) * 2000-03-17 2001-09-26 Unitika Ltd 四三酸化マンガン超微粒子およびその製造方法
JP2003086180A (ja) 2001-09-11 2003-03-20 Masayuki Yoshio 非水溶液系二次電池正極活物質およびこれを用いる二次電池
JP2012023015A (ja) 2010-01-08 2012-02-02 Mitsubishi Chemicals Corp リチウム二次電池用正極材料用粉体及びその製造方法、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池
JP2011251862A (ja) * 2010-06-01 2011-12-15 Tosoh Corp マンガン酸化物及びその製造方法
WO2012046735A1 (ja) * 2010-10-06 2012-04-12 東ソー株式会社 マンガン酸化物及びその製造方法、並びにそれを用いたリチウムマンガン系複合酸化物の製造方法

Also Published As

Publication number Publication date
EP2905261A4 (en) 2016-06-08
KR102104690B1 (ko) 2020-04-24
US9440860B2 (en) 2016-09-13
US20150266748A1 (en) 2015-09-24
KR20150063399A (ko) 2015-06-09
EP2905261A1 (en) 2015-08-12
EP2905261B1 (en) 2018-12-12
JP6015320B2 (ja) 2016-10-26
TWI598302B (zh) 2017-09-11
TW201427903A (zh) 2014-07-16
CN104755428A (zh) 2015-07-01
JP2014073927A (ja) 2014-04-24
CN104755428B (zh) 2017-08-08
ES2707895T3 (es) 2019-04-05

Similar Documents

Publication Publication Date Title
TWI568678B (zh) 鋰鎳錳鈷氧化物陰極材料之碳酸鹽前驅物及其製造方法
TWI526398B (zh) A manganese oxide, a method for producing the same, and a method for producing the lithium manganese composite oxide using the same
WO2013150987A1 (ja) 金属含有四三酸化マンガン複合化粒子及びその製造方法
JPH1069910A (ja) リチウムニッケル複合酸化物、その製造方法および二次電池用正極活物質
JP6194618B2 (ja) 四三酸化マンガン及びその製造方法
JP6015320B2 (ja) 四三酸化マンガン及びその製造方法
TW201519498A (zh) 鎳-錳系複合氧化物及其製造方法、鋰-鎳-錳系複合氧化物以及鋰二次電池
JP6123391B2 (ja) 四三酸化マンガン及びその製造方法
EP3636597A1 (en) Lithium transition metal composite oxide and method of production
JP6186814B2 (ja) 金属置換四三酸化マンガン及びその製造方法、並びにそれを用いたリチウムマンガン系複合酸化物の製造方法
JP6221309B2 (ja) 金属化合物組成物及びその製造方法
JP6221310B2 (ja) 四三酸化マンガン組成物及びその製造方法並びにその用途
JP2013230967A (ja) 四三酸化マンガン組成物及びその製造法、並びにそれを用いたリチウムマンガン系複合酸化物の製造方法
JP6578682B2 (ja) 四三酸化マンガン及びその製造方法
JP2017057115A (ja) マンガン酸化物及びその製造方法
JP2014139128A (ja) リチウムマンガン系複合酸化物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13844451

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157007878

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14432042

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013844451

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE