WO2014054560A1 - 燃料電池システム及び制御方法 - Google Patents

燃料電池システム及び制御方法 Download PDF

Info

Publication number
WO2014054560A1
WO2014054560A1 PCT/JP2013/076492 JP2013076492W WO2014054560A1 WO 2014054560 A1 WO2014054560 A1 WO 2014054560A1 JP 2013076492 W JP2013076492 W JP 2013076492W WO 2014054560 A1 WO2014054560 A1 WO 2014054560A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
temperature
cell stack
power
predetermined
Prior art date
Application number
PCT/JP2013/076492
Other languages
English (en)
French (fr)
Inventor
聖 星
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to JP2014539719A priority Critical patent/JP5928603B2/ja
Priority to EP13843653.0A priority patent/EP2905834B1/en
Priority to US14/432,676 priority patent/US9634342B2/en
Priority to CA2886965A priority patent/CA2886965C/en
Priority to CN201380051479.5A priority patent/CN104704666B/zh
Publication of WO2014054560A1 publication Critical patent/WO2014054560A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04895Current
    • H01M8/0491Current of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • B60L1/04Supplying electric power to auxiliary equipment of vehicles to electric heating circuits fed by the power supply line
    • B60L1/06Supplying electric power to auxiliary equipment of vehicles to electric heating circuits fed by the power supply line using only one supply
    • B60L1/08Methods and devices for control or regulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/70Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by fuel cells
    • B60L50/72Constructional details of fuel cells specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • B60L58/31Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for starting of fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • B60L58/32Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load
    • B60L58/33Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • B60L58/32Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load
    • B60L58/34Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load by heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/40Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for controlling a combination of batteries and fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04253Means for solving freezing problems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04268Heating of fuel cells during the start-up of the fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04358Temperature; Ambient temperature of the coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04559Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04604Power, energy, capacity or load
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04604Power, energy, capacity or load
    • H01M8/04619Power, energy, capacity or load of fuel cell stacks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/66Ambient conditions
    • B60L2240/662Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/44Control modes by parameter estimation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04925Power, energy, capacity or load
    • H01M8/04947Power, energy, capacity or load of auxiliary devices, e.g. batteries, capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present invention relates to a fuel cell system and a control method.
  • the IV characteristic indicating the power generation characteristic of the fuel cell changes depending on the temperature of the fuel cell. Therefore, the IV characteristic of the fuel cell can be known by measuring the temperature of the fuel cell. However, since the temperature of the fuel cell changes depending on the measurement position and the wet state, it is difficult to accurately know the IV characteristics of the fuel cell only by the measured temperature.
  • JP2000-357526A discloses a method for detecting current and voltage of a fuel cell and estimating IV characteristics based on the detected values.
  • JP2000-357526A a load supplied with power from a fuel cell is controlled to change a current taken out from the fuel cell, and an IV characteristic is estimated from a relationship between the voltage of the fuel cell at this time and the current taken out.
  • IV characteristics are extremely poor in extremely low temperature environments. For this reason, when a current is taken out from the fuel cell in order to estimate the IV characteristic in an extremely low temperature environment, there is a risk that a so-called voltage drop occurs in which the voltage of the fuel cell becomes lower than the minimum voltage.
  • the present invention was invented to solve such a problem, and an object thereof is to suppress a voltage drop in an extremely low temperature environment.
  • a fuel cell system includes a fuel cell, an external load to which power generated by the fuel cell is supplied, an auxiliary device to which power generated by the fuel cell is supplied, and the power generation characteristics of the fuel cell.
  • a first permission unit that permits power supply from the fuel cell to the external load when the predetermined characteristics are obtained, and before the permission is lowered by the first permission unit, the power supply from the fuel cell to the auxiliary device causes the fuel cell to
  • the warm-up control unit that performs the warm-up operation and the load of the auxiliary machine are changed to change the extraction current from the fuel cell within a predetermined range, and the power generation characteristics are estimated based on the power generation voltage of the fuel cell accompanying the change
  • An estimation unit that detects the temperature of the fuel cell, and a prohibition unit that limits or prohibits the estimation of power generation characteristics by the estimation unit when the temperature of the fuel cell is equal to or lower than a first predetermined temperature.
  • FIG. 1 is a schematic configuration diagram of a fuel cell system.
  • FIG. 2 is a map showing IV characteristics of the fuel cell stack.
  • FIG. 3 is a flowchart for explaining the activation control.
  • FIG. 1 is a schematic configuration diagram of a fuel cell system 100.
  • the fuel cell system 100 includes a fuel cell stack 1, a cathode gas supply / discharge device 2, an anode gas supply / discharge device 3, a stack cooling device 4, a power system 5, and a controller 6.
  • the fuel cell stack 1 is formed by stacking several hundred fuel cells, and receives the supply of anode gas and cathode gas to generate electric power necessary for driving the vehicle.
  • the fuel cell stack 1 includes an anode electrode side output terminal 11 and a cathode electrode side output terminal 12 as terminals for taking out electric power.
  • the cathode gas supply / discharge device 2 is a device that supplies cathode gas to the fuel cell stack 1 and discharges cathode off-gas discharged from the fuel cell stack 1 to the outside air.
  • the cathode gas supply / discharge device 2 includes a cathode gas supply passage 21, a filter 22, a cathode compressor 23, a cathode gas discharge passage 24, and a cathode gas pressure adjustment valve 25.
  • the cathode gas supply passage 21 is a passage through which the cathode gas supplied to the fuel cell stack 1 flows.
  • the cathode gas supply passage 21 has one end connected to the filter 22 and the other end connected to the cathode gas inlet hole of the fuel cell stack 1.
  • the filter 22 removes foreign matters in the cathode gas taken into the cathode gas supply passage 21.
  • the cathode compressor 23 is provided in the cathode gas supply passage 21.
  • the cathode compressor 23 takes in air (outside air) as cathode gas through the filter 22 into the cathode gas supply passage 21 and supplies it to the fuel cell stack 1.
  • the cathode gas discharge passage 24 is a passage through which the cathode off gas discharged from the fuel cell stack 1 flows.
  • One end of the cathode gas discharge passage 24 is connected to the cathode gas outlet hole of the fuel cell stack 1, passes through the cathode gas pressure regulating valve 25, and the other end is an open end.
  • a humidifier may be provided in the cathode gas supply passage 21 in order to humidify the fuel cell stack 1.
  • the anode gas supply / discharge device 3 is a device that supplies anode gas to the fuel cell stack 1 and discharges anode off-gas discharged from the fuel cell stack 1 to the cathode gas discharge passage 24.
  • the anode gas supply / discharge device 3 includes a high-pressure tank 31, an anode gas supply passage 32, a pressure regulating valve 33, an anode gas discharge passage 34, and a purge valve 35.
  • the high pressure tank 31 stores the anode gas supplied to the fuel cell stack 1 in a high pressure state.
  • the anode gas supply passage 32 is a passage for supplying anode gas from the high-pressure tank 31 to the fuel cell stack 1.
  • the anode gas supply passage 32 has one end connected to the high pressure tank 31 and the other end connected to the anode gas inlet hole of the fuel cell stack 1.
  • the pressure regulating valve 33 is provided in the anode gas supply passage 32.
  • the pressure regulating valve 33 is controlled to be opened and closed by the controller 6 and adjusts the pressure of the anode gas flowing out from the high-pressure tank 31 to the anode gas supply passage 32 to a desired pressure.
  • the anode gas discharge passage 34 is a passage through which the anode off gas discharged from the fuel cell stack 1 flows.
  • the anode gas discharge passage 34 has one end connected to the anode gas outlet hole of the fuel cell stack 1 and the other end connected to the cathode gas discharge passage 24.
  • the purge valve 35 is provided in the anode gas discharge passage 34.
  • the purge valve 35 is controlled to be opened and closed by the controller 6 and controls the flow rate of the anode off gas discharged from the anode gas discharge passage 34 to the cathode gas discharge passage 24.
  • the stack cooling device 4 is a device that cools the fuel cell stack 1 and maintains the fuel cell stack 1 at a temperature suitable for power generation.
  • the stack cooling device 4 includes a cooling water circulation passage 41, a radiator 42, a bypass passage 43, a three-way valve 44, a circulation pump 45, a PTC heater 46, a first water temperature sensor 47, and a second water temperature sensor 48. Prepare.
  • the cooling water circulation passage 41 is a passage through which cooling water for cooling the fuel cell stack 1 circulates.
  • the radiator 42 is provided in the cooling water circulation passage 41.
  • the radiator 42 cools the cooling water discharged from the fuel cell stack 1.
  • the bypass passage 43 has one end connected to the cooling water circulation passage 41 and the other end connected to the three-way valve 44 so that the cooling water can be circulated by bypassing the radiator 42.
  • the three-way valve 44 is provided in the cooling water circulation passage 41 on the downstream side of the radiator 42.
  • the three-way valve 44 switches the cooling water circulation path according to the temperature of the cooling water. Specifically, when the temperature of the cooling water is relatively high, the cooling water circulation path is such that the cooling water discharged from the fuel cell stack 1 is supplied again to the fuel cell stack 1 via the radiator 42. Switch. On the contrary, when the temperature of the cooling water is relatively low, the cooling water discharged from the fuel cell stack 1 flows through the bypass passage 43 without passing through the radiator 42 and is supplied to the fuel cell stack 1 again. Switch the cooling water circulation path.
  • the circulation pump 45 is provided in the cooling water circulation passage 41 on the downstream side of the three-way valve 44 and circulates the cooling water.
  • the PTC heater 46 is provided in the bypass passage 43.
  • the PTC heater 46 is energized when the fuel cell stack 1 is warmed up to raise the temperature of the cooling water.
  • the first water temperature sensor 47 is provided in the cooling water circulation passage 41 on the upstream side of the radiator 42.
  • the first water temperature sensor 47 detects the temperature of the cooling water discharged from the fuel cell stack 1.
  • the second water temperature sensor 48 is provided in the cooling water circulation passage 41 between the circulation pump 45 and the fuel cell stack 1.
  • the second water temperature sensor 48 detects the temperature of the cooling water supplied to the fuel cell stack 1.
  • the power system 5 includes a current sensor 51, a voltage sensor 52, a drive motor 53, an inverter 54, a battery 55, a DC / DC converter 56, and auxiliary machinery 57.
  • the current sensor 51 detects a current (hereinafter referred to as “output current”) extracted from the fuel cell stack 1.
  • the voltage sensor 52 detects an inter-terminal voltage (hereinafter referred to as “output voltage”) between the anode electrode side output terminal 11 and the cathode electrode side output terminal 12.
  • the drive motor 53 is a three-phase AC synchronous motor in which a permanent magnet is embedded in a rotor and a stator coil is wound around a stator.
  • the drive motor 53 functions as an electric motor that is driven to rotate by receiving electric power supplied from the fuel cell stack 1 and the battery 55, and power generation that generates electromotive force at both ends of the stator coil during deceleration of the vehicle in which the rotor is rotated by external force. Function as a machine.
  • the inverter 54 includes a plurality of semiconductor switches such as IGBT (Insulated Gate Bipolar Transistor).
  • the semiconductor switch of the inverter 54 is controlled to be opened / closed by the controller 6, whereby DC power is converted into AC power or AC power is converted into DC power.
  • the drive motor 53 functions as an electric motor
  • the inverter 54 converts the combined DC power of the generated power of the fuel cell stack 1 and the output power of the battery 55 into three-phase AC power and supplies the three-phase AC power to the drive motor 53.
  • the drive motor 53 functions as a generator, the regenerative power (three-phase AC power) of the drive motor 53 is converted into DC power and supplied to the battery 55.
  • the battery 55 charges the regenerative power of the drive motor 53.
  • the electric power charged in the battery 55 is supplied to the auxiliary machinery 57 and the drive motor 53 as necessary.
  • the DC / DC converter 56 is a bidirectional voltage converter that raises and lowers the output voltage of the fuel cell stack 1. By controlling the output voltage of the fuel cell stack 1 by the DC / DC converter 56, the output current of the fuel cell stack 1, and thus the generated power (output current ⁇ output voltage) is controlled.
  • the auxiliary machinery 57 includes the cathode compressor 23, the circulation pump 45, the PTC heater 46, and the like, and is driven by power supplied from the battery 55 or the fuel cell stack 1.
  • the controller 6 includes a microcomputer having a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM), and an input / output interface (I / O interface).
  • the controller 6 includes an outside air temperature sensor 61 that detects the outside air temperature, and the start key on / off state.
  • Signals from various sensors necessary for controlling the fuel cell system 100 such as a state (of charge) sensor 64 and a battery temperature sensor 65 for detecting the temperature of the battery 55 are input.
  • the controller 6 controls the fuel cell system 100 based on these input signals.
  • the IV characteristic indicating the power generation characteristic of the fuel cell stack 1 changes according to the temperature of the fuel cell stack 1.
  • the IV characteristic decreases with respect to the reference IV as shown in FIG. 2, and the generated power of the fuel cell stack 1 decreases. Therefore, in the fuel cell system 100, when the temperature of the fuel cell stack 1 is low, the fuel cell stack 1 does not operate until the power generated by the fuel cell stack 1 exceeds the minimum driving power (predetermined characteristics) that can drive the vehicle. Power supply from the battery stack 1 to the drive motor 53 is prohibited, and vehicle travel is prohibited.
  • the output current when the generated power of the fuel cell stack 1 is the minimum drive power is the current A
  • the output voltage when the output current A is extracted is the voltage V1.
  • the output voltage of the fuel cell stack 1 when the output current A is taken out from the fuel cell stack 1 becomes the voltage V1. Since the minimum drive power can be supplied to the drive motor 53, the power supply from the fuel cell stack 1 to the drive motor 53 is permitted, and the vehicle is allowed to travel.
  • the power generated by the fuel cell stack 1 has reached the minimum drive power. If the temperature of the fuel cell stack 1 can be accurately detected, The generated power of the fuel cell stack 1 can be accurately detected from the IV characteristics based on the above.
  • a first water temperature sensor 47 and a second water temperature sensor 48 are provided in the cooling water circulation passage 41. Since the temperature of the fuel cell stack 1 is detected based on the signal from the first water temperature sensor 47 and the signal from the second water temperature sensor 48, the actual temperature of the fuel cell stack 1 and the first water temperature sensor 47 and the temperature detected by the second water temperature sensor 48 may deviate, and the IV characteristics of the fuel cell stack 1 are accurately estimated based on the temperatures detected by the first water temperature sensor 47 and the second water temperature sensor 48. I can't.
  • IV estimation for estimating the IV characteristics of the fuel cell stack 1 is performed.
  • the relationship between the output current I and the difference ⁇ V between the reference voltage based on the reference IV and the actual output voltage is a linear function as shown in Equation (1) under the condition that the influence of the concentration overvoltage is small. It is known that it can be approximated.
  • IV estimation is performed so that the drive motor 53 is driven from the fuel cell stack 1. It is possible to accurately determine whether or not electric power can be supplied.
  • the IV characteristics become extremely poor at extremely low temperatures, and when the output current of the fuel cell stack 1 is changed within a predetermined range to perform IV estimation, the power generation of the fuel cell stack 1 becomes unstable, and the fuel cell stack A voltage drop occurs in which the output voltage of 1 becomes lower than the minimum guaranteed voltage.
  • the minimum guaranteed voltage is the minimum pressure of the output voltage at which the fuel cell stack 1 can operate without abnormal performance degradation.
  • the voltage of each cell of the fuel cell stack 1 must not be lower than a predetermined voltage. Therefore, when the output voltage of the fuel cell stack 1 is lower than the minimum guaranteed voltage, the fuel cell The system 100 is stopped. Therefore, in the present embodiment, start-up control of the fuel cell system 100 is performed as described below.
  • step S100 the controller 6 detects the temperature of the cooling water discharged from the fuel cell stack 1 by the first water temperature sensor 47, and detects the temperature of the cooling water supplied to the fuel cell stack 1 by the second water temperature sensor 48. To do. Then, the controller 6 sets the lower temperature as the stack cooling water temperature T.
  • step S101 the controller 6 compares the stack cooling water temperature T with the immediate startup temperature (third predetermined temperature) T1.
  • the immediate startup temperature T1 is a temperature at which the temperature of the fuel cell stack 1 is sufficiently high and the generated power of the fuel cell stack 1 can be determined to be always equal to or higher than the minimum driving power.
  • the immediate startup temperature T1 is 50 ° C., for example.
  • the process proceeds to step S111 when the stack cooling water temperature T is equal to or higher than the immediate activation temperature T1, and proceeds to step S102 when the stack cooling water temperature T is lower than the immediate activation temperature T1.
  • step S102 the controller 6 compares the stack cooling water temperature T with the immediate startup temperature T1 and the IV estimation prohibition temperature T2.
  • the IV estimation prohibition temperature (first predetermined temperature) T2 is such that when the output current of the fuel cell stack 1 is changed within a predetermined range in order to perform IV estimation, the voltage of the fuel cell stack 1 becomes lower than the minimum guaranteed voltage. Temperature. For example, the IV estimation prohibition temperature T2 is ⁇ 35 ° C.
  • the process proceeds to step S103 when the stack cooling water temperature T is lower than the immediate start temperature T1 and higher than the IV estimated prohibition temperature T2, and proceeds to step S103 when the stack cooling water temperature T is equal to or lower than the IV estimated prohibition temperature T2. Proceed to
  • step S103 the controller 6 performs IV estimation. Specifically, the controller 6 controls the power consumed by the auxiliary devices 57 and the charge / discharge power of the battery 55 to change the output current of the fuel cell stack 1 by a predetermined width, and outputs it by the current sensor 51. The current is detected, the output voltage is detected by the voltage sensor 52, and IV estimation is performed based on the detected output current and the detected output voltage.
  • step S104 the controller 6 performs a warm-up operation. Specifically, the controller 6 performs the warm-up operation by increasing the generated power of the fuel cell stack 1 above the maximum efficiency operating point of the fuel cell system 100 during normal operation and increasing the amount of self-heating generated by power generation. The power generated by the fuel cell stack 1 is consumed by the auxiliary devices 57, and the energy balance of the fuel cell system 100 is adjusted by adjusting the power consumption of the PTC heater 46 and the cathode compressor 23 and the charging power to the battery 55. keep.
  • the PTC heater 46 which is an auxiliary machinery 57, not only consumes the electric power generated by the fuel cell stack 1, but also warms the cooling water by self-heating, and circulates the warmed cooling water to the fuel cell stack 1 to thereby circulate the fuel cell stack. 1 warm-up can be further promoted.
  • the fuel cell stack 1 is also warmed up by heat generated by power generation.
  • step S105 the controller 6 calculates the output voltage when the output current corresponding to the minimum driving power is taken out from the fuel cell stack 1 from the IV characteristics estimated by the IV estimation, and from these values, the current power that can be generated. Is calculated.
  • step S106 the controller 6 compares the power that can be generated and the minimum drive power. The process proceeds to step S111 when the power that can be generated is equal to or greater than the minimum drive power, and proceeds to step S107 when the power that can be generated is lower than the minimum drive power.
  • step S107 the controller 6 compares the stack cooling water temperature T with the warm-up end temperature (second predetermined temperature) T3.
  • the warm-up end temperature T3 is a temperature lower than the immediate start temperature T1 and higher than 0 ° C., for example, 10 ° C.
  • the warm-up end temperature T3 is a temperature at which it can be determined that the warm-up of the fuel cell stack 1 proceeds and the power that can be generated by the fuel cell stack 1 is equal to or higher than the minimum drive power.
  • the controller 6 determines that the warm-up of the fuel cell stack 1 has ended when the stack cooling water temperature T becomes equal to or higher than the warm-up end temperature T3 even when IV estimation cannot be performed accurately due to, for example, a malfunction of the voltage sensor 52. To do.
  • the process proceeds to step S111 when the stack cooling water temperature T is equal to or higher than the warm-up end temperature T3, and proceeds to step S110 when the stack cooling water temperature T is lower than the warm-up end temperature T3.
  • step S102 If it is determined in step S102 that the stack cooling water temperature T is lower than the IV estimation prohibition temperature T2, the controller 6 prohibits IV estimation in step S108.
  • the controller 6 prohibits IV estimation in step S108.
  • step S109 the controller 6 performs a warm-up operation. Specifically, the controller 6 warms up the fuel cell stack 1 in the same manner as in step S104, but here supplies the fuel cell stack 1 to the auxiliary devices 57 within a range where the output voltage of the fuel cell stack 1 does not become lower than the minimum guaranteed voltage. Set the power to be high.
  • step S110 the controller 6 detects the temperature of the cooling water discharged from the fuel cell stack 1 by the first water temperature sensor 47, and detects the temperature of the cooling water flowing into the fuel cell stack 1 by the second water temperature sensor 48. . Then, the controller 6 updates the lower temperature as the stack cooling water temperature T. Thereafter, the process returns to step S102. In the subsequent processes, the stack cooling water temperature T updated in step S110 is used.
  • step S111 the READY lamp is turned on to permit power supply from the fuel cell stack 1 to the drive motor 53.
  • the power consumed by the auxiliary machinery 57 is changed to change the output current of the fuel cell stack 1 by a predetermined width, and based on the output current and the output voltage.
  • the IV estimation is prohibited, so that the output current is changed by a predetermined width, thereby generating the power of the fuel cell stack 1. It becomes possible to prevent the voltage of the fuel cell stack 1 from becoming lower than the minimum guaranteed voltage and to prevent the voltage drop from occurring.
  • the IV characteristic is so low that the generated current of the fuel cell stack 1 is increased by the IV estimation request so as to decrease to the minimum guaranteed voltage. Since it is clear that power supply cannot be permitted, IV estimation is prohibited, but the predetermined width for changing the output current of the fuel cell stack 1 is reduced, or the output current of the fuel cell stack 1 is decreased, A predetermined width for changing the output current may be secured. In this way, IV estimation may be limited.
  • the output current of the fuel cell stack 1 is lowered without changing the operating point of the auxiliary machinery 57, the shortage of electric power is discharged from the battery 55, so that the discharge capacity of the battery 55 is taken into consideration. There is a need. Also by this, it can suppress that the voltage of the fuel cell stack 1 becomes lower than the minimum guarantee voltage, and can suppress that a voltage drop generate
  • the stack cooling water temperature T becomes equal to or higher than the warm-up end temperature T3
  • the power supply from the fuel cell stack 1 to the drive motor 53 is permitted, but the first water temperature sensor 47 and the second water temperature sensor 48 in the initial stage of startup In the internal temperature of the fuel cell stack 1, a temperature difference is generated due to a difference in heat capacity and heat dissipation characteristics, and the internal temperature of the fuel cell stack 1 may not be accurately detected by the first water temperature sensor 47 and the second water temperature sensor 48. is there. Therefore, in order to determine that the internal cooling water of the fuel cell stack 1 has reached the first water temperature sensor 47 and the internal temperature of the fuel cell stack 1 can be detected by the first water temperature sensor 47, start control is started.
  • the power supply from the fuel cell stack 1 to the drive motor 53 can be permitted more accurately.
  • the predetermined amount is a preset amount, and specifically is a cooling water volume from the fuel cell stack 1 to the first water temperature sensor 47.
  • the second permission unit may be enabled when the elapsed time since the start of the circulation pump 45 has reached a predetermined time or more.
  • the predetermined time is a preset time, and specifically, a time when the integrated value of the flow rate of the cooling water passing through the first water temperature sensor 47 becomes equal to or larger than the cooling water volume from the fuel cell stack 1 to the first water temperature sensor 47. It is. Even in these cases, even when IV estimation cannot be performed accurately, electric power can be supplied from the fuel cell stack 1 to the drive motor 53.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Fuel Cell (AREA)

Abstract

 燃料電池から外部負荷への電力供給を許可する前に、燃料電池の発電特性を推定し、燃料電池の温度が第1所定温度以下である場合には、燃料電池の発電特性の推定を制限、若しくは禁止する燃料電池システム。

Description

燃料電池システム及び制御方法
 本発明は燃料電池システム及び制御方法に関するものである。
 燃料電池の発電特性を示すIV特性は、燃料電池の温度によって変化することが知られている。そのため、燃料電池の温度を計測することで燃料電池のIV特性を知ることができる。しかし、燃料電池の温度は、計測位置や湿潤状態によって変化するので、計測した温度だけで燃料電池のIV特性を正確に知ることは困難である。
 JP2000-357526Aには、燃料電池の電流、電圧を検出し、検出した値に基づいてIV特性を推定する方法が開示されている。
 JP2000-357526Aでは、燃料電池から電力が供給される負荷を制御し、燃料電池から取り出す電流を変化させ、このときの燃料電池の電圧と、取り出す電流との関係からIV特性を推定している。
 しかし、極低温度環境ではIV特性は極めて悪くなる。そのため、極低温度環境でIV特性を推定するために燃料電池から電流を取り出すと、燃料電池の電圧が最小電圧よりも低くなる、いわゆる電圧落ちが生じるおそれがある。
 本発明はこのような問題点を解決するために発明されたもので、極低温度環境で電圧落ちが生じることを抑制することを目的とする。
 本発明のある態様に係る燃料電池システムは燃料電池と、燃料電池によって発電した電力が供給される外部負荷と、燃料電池によって発電した電力が供給される補機と、燃料電池の発電特性が、所定特性となった場合に、燃料電池から外部負荷への電力供給を許可する第1許可部と、第1許可部によって許可が下りる前に、燃料電池から補機への電力供給により燃料電池の暖機運転を行う暖機時制御部と、補機の負荷を変化させて燃料電池からの取り出し電流を所定幅で変化させるとともに、変化に伴う燃料電池の発電電圧に基づいて前記発電特性を推定する推定部と、燃料電池の温度を検出する温度検出部と、燃料電池の温度が、第1所定温度以下では、推定部による発電特性の推定を制限、若しくは禁止する禁止部と、を備える。
図1は燃料電池システムの概略構成図である。 図2は燃料電池スタックのIV特性を示すマップである。 図3は起動制御を説明するフローチャートである。
 以下、添付図面を参照しながら本発明の実施形態について説明する。
 本発明の実施形態について図1を用いて説明する。図1は燃料電池システム100の概略構成図である。
 燃料電池システム100は、燃料電池スタック1と、カソードガス給排装置2と、アノードガス給排装置3と、スタック冷却装置4と、電力系5と、コントローラ6と、を備える。
 燃料電池スタック1は、数百枚の燃料電池を積層したものであり、アノードガス及びカソードガスの供給を受けて、車両の駆動に必要な電力を発電する。燃料電池スタック1は、電力を取り出す端子として、アノード電極側出力端子11と、カソード電極側出力端子12と、を備える。
 カソードガス給排装置2は、燃料電池スタック1にカソードガスを供給するとともに、燃料電池スタック1から排出されるカソードオフガスを外気に排出する装置である。カソードガス給排装置2は、カソードガス供給通路21と、フィルタ22と、カソードコンプレッサ23と、カソードガス排出通路24と、カソードガス圧力調整弁25とを備える。
 カソードガス供給通路21は、燃料電池スタック1に供給するカソードガスが流れる通路である。カソードガス供給通路21は、一端がフィルタ22に接続され、他端が燃料電池スタック1のカソードガス入口孔に接続される。
 フィルタ22は、カソードガス供給通路21に取り込むカソードガス中の異物を取り除く。
 カソードコンプレッサ23は、カソードガス供給通路21に設けられる。カソードコンプレッサ23は、フィルタ22を介してカソードガスとしての空気(外気)をカソードガス供給通路21に取り込み、燃料電池スタック1に供給する。
 カソードガス排出通路24は、燃料電池スタック1から排出されるカソードオフガスが流れる通路である。カソードガス排出通路24は、一端が燃料電池スタック1のカソードガス出口孔に接続され、カソードガス圧力調整弁25を通過して、他端が開口端となっている。
 ここでは図示しないが、燃料電池スタック1の加湿をするために、カソードガス供給通路21に加湿装置を設けてもよい。
 アノードガス給排装置3は、燃料電池スタック1にアノードガスを供給するとともに、燃料電池スタック1から排出されるアノードオフガスを、カソードガス排出通路24に排出する装置である。アノードガス給排装置3は、高圧タンク31と、アノードガス供給通路32と、調圧弁33と、アノードガス排出通路34と、パージ弁35と、を備える。
 高圧タンク31は、燃料電池スタック1に供給するアノードガスを高圧状態に保って貯蔵する。
 アノードガス供給通路32は、高圧タンク31からアノードガスを燃料電池スタック1に供給するための通路である。アノードガス供給通路32は、一端が高圧タンク31に接続され、他端が燃料電池スタック1のアノードガス入口孔に接続される。
 調圧弁33は、アノードガス供給通路32に設けられる。調圧弁33は、コントローラ6によって開閉制御されて、高圧タンク31からアノードガス供給通路32に流れ出したアノードガスの圧力を所望の圧力に調節する。
 アノードガス排出通路34は、燃料電池スタック1から排出されるアノードオフガスが流れる通路である。アノードガス排出通路34は、一端が燃料電池スタック1のアノードガス出口孔に接続され、他端がカソードガス排出通路24に接続される。
 パージ弁35は、アノードガス排出通路34に設けられる。パージ弁35は、コントローラ6によって開閉制御され、アノードガス排出通路34からカソードガス排出通路24に排出するアノードオフガスの流量を制御する。
 スタック冷却装置4は、燃料電池スタック1を冷却し、燃料電池スタック1を発電に適した温度に保つ装置である。スタック冷却装置4は、冷却水循環通路41と、ラジエータ42と、バイパス通路43と、三方弁44と、循環ポンプ45と、PTCヒータ46と、第1水温センサ47と、第2水温センサ48とを備える。
 冷却水循環通路41は、燃料電池スタック1を冷却するための冷却水が循環する通路である。
 ラジエータ42は、冷却水循環通路41に設けられる。ラジエータ42は、燃料電池スタック1から排出された冷却水を冷却する。
 バイパス通路43は、ラジエータ42をバイパスさせて冷却水を循環させることができるように、一端が冷却水循環通路41に接続され、他端が三方弁44に接続される。
 三方弁44は、ラジエータ42よりも下流側の冷却水循環通路41に設けられる。三方弁44は、冷却水の温度に応じて冷却水の循環経路を切り替える。具体的には、冷却水の温度が相対的に高いときは、燃料電池スタック1から排出された冷却水が、ラジエータ42を介して再び燃料電池スタック1に供給されるように冷却水の循環経路を切り替える。逆に、冷却水の温度が相対的に低いときは、燃料電池スタック1から排出された冷却水が、ラジエータ42を介さずにバイパス通路43を流れて再び燃料電池スタック1に供給されるように冷却水の循環経路を切り替える。
 循環ポンプ45は、三方弁44よりも下流側の冷却水循環通路41に設けられて、冷却水を循環させる。
 PTCヒータ46は、バイパス通路43に設けられる。PTCヒータ46は、燃料電池スタック1の暖機時に通電されて、冷却水の温度を上昇させる。
 第1水温センサ47は、ラジエータ42よりも上流側の冷却水循環通路41に設けられる。第1水温センサ47は、燃料電池スタック1から排出された冷却水の温度を検出する。
 第2水温センサ48は、循環ポンプ45と燃料電池スタック1との間の冷却水循環通路41に設けられる。第2水温センサ48は、燃料電池スタック1に供給される冷却水の温度を検出する。
 電力系5は、電流センサ51と、電圧センサ52と、駆動モータ53と、インバータ54と、バッテリ55と、DC/DCコンバータ56と、補機類57とを備える。
 電流センサ51は、燃料電池スタック1から取り出される電流(以下「出力電流」という。)を検出する。
 電圧センサ52は、アノード電極側出力端子11とカソード電極側出力端子12の間の端子間電圧(以下「出力電圧」という。)を検出する。
 駆動モータ53は、ロータに永久磁石を埋設し、ステータにステータコイルを巻き付けた三相交流同期モータである。駆動モータ53は、燃料電池スタック1及びバッテリ55から電力の供給を受けて回転駆動する電動機としての機能と、ロータが外力によって回転させられる車両の減速時にステータコイルの両端に起電力を生じさせる発電機としての機能と、を有する。
 インバータ54は、例えばIGBT(Insulated Gate Bipolar Transistor)などの複数の半導体スイッチから構成される。インバータ54の半導体スイッチは、コントローラ6によって開閉制御され、これにより直流電力が交流電力に、または、交流電力が直流電力に変換される。インバータ54は、駆動モータ53を電動機として機能させるときは、燃料電池スタック1の発電電力とバッテリ55の出力電力との合成直流電力を三相交流電力に変換して駆動モータ53に供給する。一方で、駆動モータ53を発電機として機能させるときは、駆動モータ53の回生電力(三相交流電力)を直流電力に変換してバッテリ55に供給する。
 バッテリ55は、駆動モータ53の回生電力を充電する。バッテリ55に充電された電力は、必要に応じて補機類57及び駆動モータ53に供給される。
 DC/DCコンバータ56は、燃料電池スタック1の出力電圧を昇降圧させる双方向性の電圧変換機である。DC/DCコンバータ56によって燃料電池スタック1の出力電圧を制御することで、燃料電池スタック1の出力電流、ひいては発電電力(出力電流×出力電圧)が制御される。
 補機類57は、カソードコンプレッサ23、循環ポンプ45、PTCヒータ46などによって構成され、バッテリ55、または燃料電池スタック1から電力が供給されて駆動する。
 コントローラ6は、中央演算装置(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)及び入出力インタフェース(I/Oインタフェース)を備えたマイクロコンピュータで構成される。コントローラ6には、前述した第1水温センサ47、第2水温センサ48、電流センサ51及び電圧センサ52の他にも、外気温を検出する外気温センサ61や、始動キーのオン・オフに基づいて燃料電池システム100の始動要求及び停止要求を検出するキーセンサ62、アクセルペダルの踏み込み量を検出するアクセルストロークセンサ63、バッテリ55の充電率(以下「バッテリ充電率」という。)を検出するSOC(State Of Charge)センサ64、バッテリ55の温度を検出するバッテリ温度センサ65などの燃料電池システム100を制御するために必要な各種センサからの信号が入力される。
 コントローラ6は、これらの入力信号に基づいて、燃料電池システム100を制御する。
 ここで、燃料電池スタック1のIV推定について説明する。
 燃料電池スタック1は、燃料電池スタック1の温度に応じて発電特性を示すIV特性が変化することが知られている。燃料電池スタック1の温度が低くなると、図2に示すように基準IVに対してIV特性が低下し、燃料電池スタック1の発電電力が低くなる。そのため、燃料電池システム100では、燃料電池スタック1の温度が低い場合には、燃料電池スタック1の発電電力が車両を駆動させることが可能な最小駆動電力(所定特性)以上となるまでは、燃料電池スタック1から駆動モータ53への電力供給を禁止し、車両の走行を禁止している。
 図2において、燃料電池スタック1の発電電力が最小駆動電力となっているときの出力電流を電流Aとし、出力電流Aを取り出したときの出力電圧を電圧V1とする。
 図2において破線で示すように燃料電池スタック1の温度が高い場合には、燃料電池スタック1から出力電流Aを取り出したときの燃料電池スタック1の出力電圧は電圧V1となり、燃料電池スタック1から最小駆動電力を駆動モータ53に供給することができるので、燃料電池スタック1から駆動モータ53への電力供給を許可し、車両の走行を許可する。
 一方、図2において一点鎖線で示すように燃料電池スタック1の温度が低い場合には、燃料電池スタック1から出力電流Aを取り出したときの出力電圧は電圧V2となり、燃料電池スタック1の発電電力は最小駆動電力よりも小さくなり、燃料電池スタック1から最小駆動電力を駆動モータ53に供給することができないので、燃料電池スタック1から駆動モータ53への電力供給を禁止し、車両の走行を禁止する。
 車両の走行を素早く許可するには、燃料電池スタック1の発電電力が最小駆動電力となったことを正確に判定する必要があり、燃料電池スタック1の温度を正確に検出することができれば、温度に基づくIV特性から燃料電池スタック1の発電電力を正確に検出することができる。
 しかし、燃料電池スタック1と温度センサとを絶縁させる必要があるので、燃料電池スタック1に直接、温度センサを取り付けて燃料電池スタック1の温度を検出することが困難であり、本実施形態では、冷却水循環通路41に第1水温センサ47、第2水温センサ48を設けている。そして、第1水温センサ47からの信号、及び第2水温センサ48からの信号に基づいて燃料電池スタック1の温度を検出しているため、実際の燃料電池スタック1の温度と、第1水温センサ47、及び第2水温センサ48によって検出した温度とが乖離することがあり、第1水温センサ47、第2水温センサ48によって検出した温度に基づいて燃料電池スタック1のIV特性を正確に推定することができない。
 そのため、燃料電池スタック1のIV特性を推定するIV推定を行っている。燃料電池スタック1では出力電流Iと、基準IVに基づく基準電圧と実際の出力電圧との差ΔVとの関係は、濃度過電圧の影響が小さい条件において、式(1)に示すように一次関数で近似することができることが知られている。
 ΔV=aI+b・・・(1)
 燃料電池スタック1の温度が低く、駆動モータ53への電力供給を禁止されている場合には、燃料電池スタック1から、消費電力が駆動モータ53よりも低い補機類57に発電電力を供給し、出力電流を所定幅で変化させて出力電圧(発電電圧)を複数計測して、出力電流と出力電圧とから式(1)の「a」、「b」を算出する。そして、算出した「a」、「b」を用いて、燃料電池スタック1のIV特性を推定する。「a」、「b」が算出されると、燃料電池スタック1から駆動モータ53に最小駆動電力を供給する場合の出力電流Aに対する出力電圧がわかるので、出力電圧が電圧V1以上となると、燃料電池スタック1が最小駆動電力を駆動モータ53に供給可能であることがわかる。なお、所定幅は、「a」、「b」を正確に算出するために広い範囲に設定することが望ましい。
 このように、燃料電池スタック1の温度が低く、燃料電池スタック1から駆動モータ53への電力供給が禁止されている場合であっても、IV推定を行うことで燃料電池スタック1から駆動モータ53へ電力を供給可能かどうか正確に判定することができる。
 しかし、極低温時にはIV特性が極めて悪くなり、IV推定を行うために燃料電池スタック1の出力電流を所定幅で変化させた場合に、燃料電池スタック1の発電が不安定になり、燃料電池スタック1の出力電圧が最低保障電圧よりも低くなる電圧落ちが生じる。ここで最低保障電圧とは、燃料電池スタック1が異常な性能低下なく作動可能な出力電圧の最低圧である。燃料電池システム100では燃料電池スタック1の各セルの電圧が所定の電圧よりも低くならないようにしなければならないため、燃料電池スタック1の出力電圧が最低保障電圧よりも低くなる場合には、燃料電池システム100を停止するようになっている。そのため、本実施形態では、以下で説明するように燃料電池システム100の起動制御を行う。
 次に本実施形態の起動制御について図3のフローチャートを用いて説明する。
 ステップS100では、コントローラ6は、第1水温センサ47によって燃料電池スタック1から排出された冷却水の温度を検出し、第2水温センサ48によって燃料電池スタック1に供給される冷却水の温度を検出する。そして、コントローラ6は、低い方の温度をスタック冷却水温Tとして設定する。
 ステップS101では、コントローラ6は、スタック冷却水温Tと即起動温度(第3所定温度)T1とを比較する。即起動温度T1は、燃料電池スタック1の温度が十分に高く、燃料電池スタック1の発電電力が必ず最小駆動電力以上と判断できる温度である。即起動温度T1は、例えば50℃である。処理は、スタック冷却水温Tが即起動温度T1以上の場合にはステップS111へ進み、スタック冷却水温Tが即起動温度T1よりも低い場合にはステップS102へ進む。
 ステップS102では、コントローラ6は、スタック冷却水温Tと、即起動温度T1、及びIV推定禁止温度T2とを比較する。IV推定禁止温度(第1所定温度)T2は、IV推定を行うために燃料電池スタック1の出力電流を所定幅で変化させた場合に、燃料電池スタック1の電圧が最低保障電圧よりも低くなる温度である。例えばIV推定禁止温度T2は-35℃である。処理は、スタック冷却水温Tが即起動温度T1よりも低く、かつIV推定禁止温度T2よりも高い場合にはステップS103へ進み、スタック冷却水温TがIV推定禁止温度T2以下の場合にはステップS108へ進む。
 ステップS103では、コントローラ6は、IV推定を行う。具体的には、コントローラ6は、補機類57で消費される電力及びバッテリ55の充放電電力を制御することで燃料電池スタック1の出力電流を所定幅で変化させて、電流センサ51によって出力電流を検出し、電圧センサ52によって出力電圧を検出し、検出した出力電流、及び検出した出力電圧に基づいてIV推定を行う。
 ステップS104では、コントローラ6は、暖機運転を行う。具体的には、コントローラ6は、燃料電池スタック1の発電電力を通常時の燃料電池システム100の最大効率の運転点よりも上げ、発電に伴う自己発熱量を増やすことで暖機運転を行う。燃料電池スタック1で発電された電力は、補機類57で消費され、PTCヒータ46やカソードコンプレッサ23の消費電力及びバッテリ55への充電電力を調整することで、燃料電池システム100のエネルギーバランスを保つ。補機類57であるPTCヒータ46は燃料電池スタック1で発電した電力を消費するだけではなく、自己発熱によって冷却水を暖め、暖まった冷却水を燃料電池スタック1に循環させることで燃料電池スタック1の暖機を更に促進することができる。なお、燃料電池スタック1は、発電によって生じる熱によっても暖機される。
 ステップS105では、コントローラ6は、最小駆動電力に対応する出力電流を燃料電池スタック1から取り出した場合の出力電圧を、IV推定によって推定したIV特性から算出し、これらの値から現在の発電可能電力を算出する。
 ステップS106では、コントローラ6は、発電可能電力と最小駆動電力とを比較する。処理は、発電可能電力が最小駆動電力以上の場合にはステップS111に進み、発電可能電力が最小駆動電力よりも低い場合にはステップS107に進む。
 ステップS107では、コントローラ6は、スタック冷却水温Tと暖機終了温度(第2所定温度)T3とを比較する。暖機終了温度T3は、即起動温度T1よりも低く、かつ0℃よりも高い温度であり、例えば10℃である。暖機終了温度T3は、燃料電池スタック1の暖機が進み、燃料電池スタック1の発電可能電力が最小駆動電力以上となると判断可能な温度である。コントローラ6は、例えば電圧センサ52の不具合などによりIV推定を正確に行うことができない場合でも、スタック冷却水温Tが暖機終了温度T3以上となると、燃料電池スタック1の暖機が終了したと判定する。処理は、スタック冷却水温Tが暖機終了温度T3以上の場合にはステップS111へ進み、スタック冷却水温Tが暖機終了温度T3よりも低い場合にはステップS110へ進む。
 ステップS102によってスタック冷却水温TがIV推定禁止温度T2よりも低いと判定された場合には、ステップS108によってコントローラ6は、IV推定を禁止する。このように燃料電池スタック1の温度が極低温である場合には、IV推定を禁止し、燃料電池スタック1の出力電圧が最低保障電圧よりも低くなることを抑制し、電圧落ちを抑制し、燃料電池システム100が停止することを抑制する。
 ステップS109では、コントローラ6は、暖機運転を行う。具体的には、コントローラ6は、ステップS104と同様に燃料電池スタック1を暖機するが、ここでは燃料電池スタック1の出力電圧が最低保障電圧よりも低くならない範囲で、補機類57に供給する電力を高く設定する。
 ステップS110では、コントローラ6は、第1水温センサ47によって燃料電池スタック1から排出された冷却水の温度を検出し、第2水温センサ48によって燃料電池スタック1に流入する冷却水の温度を検出する。そして、コントローラ6は、低い方の温度をスタック冷却水温Tとして更新する。その後処理はステップS102に戻るが、以降の処理では、ステップS110によって更新されたスタック冷却水温Tが用いられる。
 ステップS111では、READYランプを点灯させて、燃料電池スタック1から駆動モータ53への電力供給を許可する。
 本発明の実施形態の効果について説明する。
 駆動モータ53への電力供給を許可する前に補機類57で消費される電力を変化させて燃料電池スタック1の出力電流を所定幅で変化させて、出力電流と、出力電圧とに基づいてIV推定を行う燃料電池システム100において、スタック冷却水温TがIV推定禁止温度T2以下の場合にはIV推定を禁止することで、出力電流を所定幅で変化させることによって燃料電池スタック1の発電が不安定になり、燃料電池スタック1の電圧が最低保障電圧よりも低くなることを抑制し、電圧落ちが発生することを抑制することができる。
 スタック冷却水温Tが暖機終了温度T3以上の場合には、燃料電池スタック1から駆動モータ53への電力供給を許可する。これにより、IV推定を正確に行うことができない場合であっても、燃料電池スタック1から駆動モータ53へ電力を供給することができる。
 スタック冷却水温Tが即起動温度T1以上の場合に、燃料電池スタック1から駆動モータ53への電力供給を許可する。これにより、燃料電池スタック1の温度が十分に高い場合には、IV推定、暖機運転を行わず、燃料電池スタック1から駆動モータ53へ電力を素早く供給可能とすることができる。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 上記実施形態では、IV推定要求により燃料電池スタック1の発電電流を上げた場合に最低保障電圧まで低下するほどIV特性が低い状態を想定しており、IV推定ができたとしても、駆動モータ53へ電力供給を許可できない状態であることが明らかなため、IV推定を禁止したが、燃料電池スタック1の出力電流を変化させる所定幅を小さくする、または燃料電池スタック1の出力電流を下げて、出力電流を変化させる所定幅を確保してもよい。このように、IV推定を制限してもよい。ここで、補機類57の運転点を変えないで燃料電池スタック1の出力電流を下げる場合は、不足分の電力がバッテリ55から放電されるため、バッテリ55の放電能力を考慮して実施する必要がある。これによっても、燃料電池スタック1の電圧が最低保障電圧よりも低くなることを抑制し、電圧落ちが発生することを抑制することができる。
 上記実施形態では、スタック冷却水温Tが暖機終了温度T3以上になると燃料電池スタック1から駆動モータ53への電力供給を許可したが、起動初期の第1水温センサ47及び第2水温センサ48と燃料電池スタック1の内部温度では、熱容量及び放熱特性の差から温度差が生じ、燃料電池スタック1の内部温度を精度良く第1水温センサ47及び第2水温センサ48で検知することができない場合がある。そこで、燃料電池スタック1の内部冷却水が第1水温センサ47に到達し、燃料電池スタック1の内部温度を第1水温センサ47で検知できる状態にあることを判断するために、起動制御を開始してから循環ポンプ45によって燃料電池スタック1を循環させる冷却水の流量の積算値が所定量以上になったことを判断し、第2許可部を有効とする第3許可部を設定すれば、より正確に燃料電池スタック1から駆動モータ53への電力供給を許可することができる。所定量は、予め設定される量であり、具体的には燃料電池スタック1から第1水温センサ47までの冷却水容積である。また、循環ポンプ45の起動を開始してからの経過時間が所定時間以上になった場合に、第2許可部を有効としてもよい。所定時間は、予め設定される時間であり、具体的には第1水温センサ47を通過する冷却水流量の積算値が燃料電池スタック1から第1水温センサ47までの冷却水容積以上になる時間である。これらによっても、IV推定を正確に行うことができない場合であっても、燃料電池スタック1から駆動モータ53へ電力を供給することができる。
 本願は2012年10月1日に日本国特許庁に出願された特願2012-219534に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。
 

Claims (8)

  1.  燃料電池と、
     前記燃料電池によって発電した電力が供給される外部負荷と、
     前記燃料電池によって発電した電力が供給される補機と、
     前記燃料電池の発電特性が、所定特性となった場合に、前記燃料電池から前記外部負荷への電力供給を許可する第1許可手段と、
     前記第1許可手段によって前記許可が下りる前に、前記燃料電池から前記補機への電力供給により前記燃料電池の暖機運転を行う暖機時制御手段と、
     前記補機の負荷を変化させて前記燃料電池からの取り出し電流を所定幅で変化させるとともに、変化に伴う前記燃料電池の発電電圧に基づいて前記発電特性を推定する推定手段と、
     前記燃料電池の温度を検出する温度検出手段と、
     前記燃料電池の温度が、第1所定温度以下では、前記推定手段による前記発電特性の推定を制限、若しくは禁止する禁止手段と、を備える燃料電池システム。
  2.  請求項1に記載の燃料電池システムであって、
     前記第1所定温度は、前記補機の負荷を変化させて前記燃料電池からの取り出し電流を前記所定幅で変化させると前記燃料電池の電圧が前記燃料電池の最低保障電圧よりも低くなる温度である燃料電池システム。
  3.  請求項1または2に記載の燃料電池システムであって、
     前記温度検出手段は、前記燃料電池の冷却水の温度を検出する水温センサである燃料電池システム。
  4.  請求項1乃至3のいずれかに記載の燃料電池システムであって、
     前記第1許可手段とは別に、前記燃料電池の温度が0℃以上の第2所定温度以上の場合には、前記燃料電池から前記外部負荷への電力供給を許可する第2許可手段を備える燃料電池システム。
  5.  請求項1乃至4のいずれかに記載の燃料電池システムであって、
     冷却水を前記燃料電池に循環させるポンプを備え、
     前記第1許可手段、第2許可手段とは別に、ポンプ流量の積算値が所定量以上の場合に、前記燃料電池から前記外部負荷への電力供給を許可する第3許可手段を備える燃料電池システム。
  6.  請求項1乃至4のいずれかに記載の燃料電池システムであって、
     冷却水を前記燃料電池に循環させるポンプを備え、
     前記第1許可手段、第2許可手段とは別に、前記ポンプを起動してから所定時間以上の場合に、前記燃料電池から前記外部負荷への電力供給を許可する第3許可手段を備える燃料電池システム。
  7.  請求項2乃至6のいずれかに記載の燃料電池システムであって、
     前記第1許可手段は、前記燃料電池で発電を開始した時の前記燃料電池の温度が前記第1所定温度よりも高い第3所定温度以上の場合に、前記燃料電池から前記外部負荷への電力供給を許可する燃料電池システム。
  8.  燃料電池と、
     前記燃料電池によって発電した電力が供給される外部負荷と、
     前記燃料電池によって発電した電力が供給される補機とを備えた燃料電池システムを制御する制御方法であって、
     前記燃料電池の発電特性が、所定特性となった場合に、前記燃料電池から前記外部負荷への電力供給を許可し、
     前記許可が下りる前に、前記燃料電池から前記補機への電力供給により前記燃料電池の暖機運転を行い、
     前記補機の負荷を変化させて前記燃料電池からの取り出し電流を所定幅で変化させるとともに、変化に伴う前記燃料電池の発電電圧に基づいて前記発電特性を推定し、
     前記燃料電池の温度を検出し、
     前記燃料電池の温度が、第1所定温度以下では、前記発電特性の推定を制限、若しくは禁止する制御方法。
PCT/JP2013/076492 2012-10-01 2013-09-30 燃料電池システム及び制御方法 WO2014054560A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014539719A JP5928603B2 (ja) 2012-10-01 2013-09-30 燃料電池システム及び制御方法
EP13843653.0A EP2905834B1 (en) 2012-10-01 2013-09-30 Fuel cell system and control method
US14/432,676 US9634342B2 (en) 2012-10-01 2013-09-30 Fuel cell system and control method
CA2886965A CA2886965C (en) 2012-10-01 2013-09-30 Fuel cell system and control method
CN201380051479.5A CN104704666B (zh) 2012-10-01 2013-09-30 燃料电池系统以及控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-219534 2012-10-01
JP2012219534 2012-10-01

Publications (1)

Publication Number Publication Date
WO2014054560A1 true WO2014054560A1 (ja) 2014-04-10

Family

ID=50434887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/076492 WO2014054560A1 (ja) 2012-10-01 2013-09-30 燃料電池システム及び制御方法

Country Status (6)

Country Link
US (1) US9634342B2 (ja)
EP (1) EP2905834B1 (ja)
JP (1) JP5928603B2 (ja)
CN (1) CN104704666B (ja)
CA (1) CA2886965C (ja)
WO (1) WO2014054560A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015053034A1 (ja) * 2013-10-08 2015-04-16 日産自動車株式会社 燃料電池システム及び燃料電池システムの制御方法
CN105609809A (zh) * 2014-11-14 2016-05-25 丰田自动车株式会社 燃料电池系统及燃料电池系统的控制方法
EP3109930A4 (en) * 2014-02-17 2017-01-04 Nissan Motor Co., Ltd Fuel cell system and control method for fuel cell system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6341221B2 (ja) * 2016-03-15 2018-06-13 トヨタ自動車株式会社 燃料電池車両および燃料電池車両に対する動力モジュールの搭載方法
JP2021061104A (ja) * 2019-10-03 2021-04-15 本田技研工業株式会社 システム、システムの制御方法、およびプログラム
CN113497261B (zh) * 2020-04-07 2023-02-28 广州汽车集团股份有限公司 一种燃料电池的输出功率的确定方法及装置
WO2023110073A1 (en) * 2021-12-15 2023-06-22 Volvo Truck Corporation A method for operating a fuel cell

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09231991A (ja) * 1996-02-23 1997-09-05 Toyota Motor Corp 燃料電池システム
JP2000357526A (ja) 1999-06-15 2000-12-26 Nippon Telegr & Teleph Corp <Ntt> 燃料電池発電装置およびそのセルスタックの劣化診断方法
JP2005353532A (ja) * 2004-06-14 2005-12-22 Honda Motor Co Ltd 加熱システム
JP2006351325A (ja) * 2005-06-15 2006-12-28 Denso Corp 燃料電池システム
JP2008300299A (ja) * 2007-06-01 2008-12-11 Honda Motor Co Ltd 燃料電池システム
JP2010020923A (ja) * 2008-07-08 2010-01-28 Toyota Motor Corp 燃料電池システム
JP2010186599A (ja) * 2009-02-10 2010-08-26 Toyota Motor Corp 燃料電池システムおよび該システムにおける始動時制御方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004031127A (ja) * 2002-06-26 2004-01-29 Nissan Motor Co Ltd 燃料電池システム
DE102004033169B4 (de) * 2003-07-09 2009-01-08 Honda Motor Co., Ltd. Hochfahrbetriebsverfahren einer Brennstoffzelle bei niedriger Temperatur
US20060280977A1 (en) 2005-06-09 2006-12-14 Denso Corporation Fuel cell system
JP5185504B2 (ja) * 2006-03-03 2013-04-17 本田技研工業株式会社 燃料電池システムおよびその運転方法
JP2007194223A (ja) * 2007-03-26 2007-08-02 Toyota Motor Corp 電源システム
WO2008118962A1 (en) * 2007-03-27 2008-10-02 Bdf Ip Holdings Ltd. Method of starting up fuel cell stacks from freezing temperatures

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09231991A (ja) * 1996-02-23 1997-09-05 Toyota Motor Corp 燃料電池システム
JP2000357526A (ja) 1999-06-15 2000-12-26 Nippon Telegr & Teleph Corp <Ntt> 燃料電池発電装置およびそのセルスタックの劣化診断方法
JP2005353532A (ja) * 2004-06-14 2005-12-22 Honda Motor Co Ltd 加熱システム
JP2006351325A (ja) * 2005-06-15 2006-12-28 Denso Corp 燃料電池システム
JP2008300299A (ja) * 2007-06-01 2008-12-11 Honda Motor Co Ltd 燃料電池システム
JP2010020923A (ja) * 2008-07-08 2010-01-28 Toyota Motor Corp 燃料電池システム
JP2010186599A (ja) * 2009-02-10 2010-08-26 Toyota Motor Corp 燃料電池システムおよび該システムにおける始動時制御方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015053034A1 (ja) * 2013-10-08 2015-04-16 日産自動車株式会社 燃料電池システム及び燃料電池システムの制御方法
JPWO2015053034A1 (ja) * 2013-10-08 2017-03-09 日産自動車株式会社 燃料電池システム及び燃料電池システムの制御方法
EP3109930A4 (en) * 2014-02-17 2017-01-04 Nissan Motor Co., Ltd Fuel cell system and control method for fuel cell system
US10854900B2 (en) 2014-02-17 2020-12-01 Nissan Motor Co., Ltd. Fuel cell system and control method for fuel cell system
CN105609809A (zh) * 2014-11-14 2016-05-25 丰田自动车株式会社 燃料电池系统及燃料电池系统的控制方法
JP2016096070A (ja) * 2014-11-14 2016-05-26 トヨタ自動車株式会社 燃料電池システムの制御方法
US10680257B2 (en) 2014-11-14 2020-06-09 Toyota Jidosha Kabushiki Kaisha Fuel cell system and control method for fuel cell system

Also Published As

Publication number Publication date
CN104704666B (zh) 2018-01-02
JPWO2014054560A1 (ja) 2016-08-25
US9634342B2 (en) 2017-04-25
EP2905834A4 (en) 2015-11-18
CN104704666A (zh) 2015-06-10
JP5928603B2 (ja) 2016-06-01
CA2886965C (en) 2018-07-24
EP2905834A1 (en) 2015-08-12
US20150280262A1 (en) 2015-10-01
CA2886965A1 (en) 2014-04-10
EP2905834B1 (en) 2017-11-22

Similar Documents

Publication Publication Date Title
JP5928603B2 (ja) 燃料電池システム及び制御方法
CA2926903C (en) Fuel cell system and method for controlling fuel cell system
US10854900B2 (en) Fuel cell system and control method for fuel cell system
JP5776406B2 (ja) 燃料電池システム
JP5971408B2 (ja) 燃料電池システム及び燃料電池システムの制御方法
JP5804205B2 (ja) 燃料電池システム
JP6160313B2 (ja) 燃料電池システム
JP6179672B2 (ja) 燃料電池システム及び燃料電池システムの制御方法
JP2017091682A (ja) 燃料電池システム制御方法及び燃料電池システム
US9843056B2 (en) Fuel cell system and method for controlling fuel cell system
JP6090052B2 (ja) 燃料電池システム
JP6191133B2 (ja) 燃料電池システム
JP5803445B2 (ja) 燃料電池システム
JP6237067B2 (ja) 燃料電池システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13843653

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014539719

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14432676

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2886965

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013843653

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013843653

Country of ref document: EP