WO2014051182A1 - 광 활성층, 이를 포함한 유기 태양 전지 및 이의 제조 방법 - Google Patents

광 활성층, 이를 포함한 유기 태양 전지 및 이의 제조 방법 Download PDF

Info

Publication number
WO2014051182A1
WO2014051182A1 PCT/KR2012/007932 KR2012007932W WO2014051182A1 WO 2014051182 A1 WO2014051182 A1 WO 2014051182A1 KR 2012007932 W KR2012007932 W KR 2012007932W WO 2014051182 A1 WO2014051182 A1 WO 2014051182A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
unsubstituted
solvent
solar cell
Prior art date
Application number
PCT/KR2012/007932
Other languages
English (en)
French (fr)
Inventor
이행근
전지혜
이재철
왕동환
박종혁
박오옥
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to PCT/KR2012/007932 priority Critical patent/WO2014051182A1/ko
Priority to CN201380050453.9A priority patent/CN104718635B/zh
Priority to IN704KON2015 priority patent/IN2015KN00704A/en
Priority to PCT/KR2013/008716 priority patent/WO2014051397A1/ko
Priority to US14/039,638 priority patent/US9299937B2/en
Priority to EP13838078.7A priority patent/EP2905819B1/en
Publication of WO2014051182A1 publication Critical patent/WO2014051182A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/87Light-trapping means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L2031/0344Organic materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present specification relates to a photoactive layer, an organic solar cell using the same, and a method of manufacturing the same.
  • Electron-hole pairs or excitons are formed by absorbing light in the photoactive layer composed of organic polymers.
  • the electron-hole pair moves to the interface between the copolymer and the C60 fullerene derivative or the C70 fullerene derivative and is separated into electrons and holes, and then electrons are moved to the metal electrode and holes are moved to the transparent electrode to generate electrons.
  • the present specification is to provide an organic solar cell having an improved efficiency and a method of manufacturing the same, and a photoactive layer used in the organic solar cell.
  • An organic material layer provided between the first electrode and the second electrode and including a photoactive layer
  • the photoactive layer includes an electron acceptor and an electron donor
  • the electron acceptor and electron donor provide an organic solar cell that is swollen with a non-solvent.
  • the present specification is a first electrode
  • An organic material layer provided between the first electrode and the second electrode and including a photoactive layer
  • the photoactive layer includes an electron acceptor and an electron donor
  • the present specification is a first electrode
  • An organic material layer provided between the first electrode and the second electrode and including a photoactive layer
  • the photoactive layer includes an electron acceptor and an electron donor
  • the electron acceptor and electron donor are swollen with a non-solvent
  • an organic solar cell in which the efficiency of the organic solar cell is increased by 110 to 200% compared with the case of including an electron accepting material and an electron donor before swelling with a non-solvent.
  • the present specification provides a photoactive layer comprising an electron acceptor and an electron donor, wherein the electron acceptor and the electron donor are swelled with a non-solvent.
  • the present specification comprises the steps of preparing a substrate
  • It provides a method of manufacturing an organic solar cell comprising the step of forming a second electrode on the organic material layer.
  • the photoactive layer according to one embodiment of the present specification can be manufactured through a simple process of non-solvent swelling treatment and, if necessary, heat treatment.
  • the photoactive layer through the above treatment is highly conductive and stable.
  • the photoactive layer according to the exemplary embodiment of the present specification has a good light absorption rate and forms a stabilized molecular structure through self organization of the electron acceptor and the electron donor. Therefore, the organic solar cell including the photoactive layer according to the exemplary embodiment of the present specification may exhibit excellent characteristics such as an increase in open voltage and an increase in efficiency.
  • the photoactive layer according to the exemplary embodiment of the present specification has a high light absorption rate, a long conjugation length, a high charge mobility, a low resistance with an electrode, and an improvement in morphology. And the efficiency of the device can be improved.
  • FIG. 1 is a diagram illustrating a method of manufacturing a photoactive layer according to one embodiment of the present specification.
  • Figure 2 is a diagram showing the J-V curve of Example 1 and Comparative Examples 1 to 3.
  • FIG. 3 is a diagram showing absorption spectra of Example 1 and Comparative Examples 1 to 3.
  • FIG. 3 is a diagram showing absorption spectra of Example 1 and Comparative Examples 1 to 3.
  • Example 4 is a graph showing X-ray diffraction (X-ray diffraction) of Example 1 and Comparative Examples 1 to 3.
  • FIG. 5 is a graph showing absorption spectra of FT-IR of Comparative Examples 1 to 3.
  • FIG. 5 is a graph showing absorption spectra of FT-IR of Comparative Examples 1 to 3.
  • FIG. 6 is a graph showing Auger electron spectroscopy of Example 1 and Comparative Examples 1 to 3.
  • FIG. 6 is a graph showing Auger electron spectroscopy of Example 1 and Comparative Examples 1 to 3.
  • Example 7 is a view observed with an atomic force microscope (AFM) of Example 1 and Comparative Examples 1 to 3.
  • AFM atomic force microscope
  • first electrode A second electrode facing the first electrode; And an organic material layer provided between the first electrode and the second electrode, the organic material layer including a photoactive layer, wherein the photoactive layer includes an electron acceptor and an electron donor, and the electron acceptor and the electron donor are nonsolvents. It provides an organic solar cell that is swollen with.
  • the non-solvent means that the electron donor or the electron accepting substance is dissolved or not reacted.
  • the non-solvent causes a swelling phenomenon when applied to the photoactive layer, so that the non-solvent penetrates into the photoactive layer.
  • the nonsolvent penetration distance into the photoactive layer is 5% or more and less than 50% of the thickness of the photoactive layer. In another embodiment, the nonsolvent penetration distance into the photoactive layer is 5-30% of the thickness of the photoactive layer.
  • the non-solvent may select a kind, a processing method and an amount of the non-solvent at the time of coating on the photoactive layer.
  • the penetration distance of the non-solvent into the photoactive layer is at least 5% and less than 50% of the thickness of the photoactive layer.
  • the nonsolvent penetration distance into the photoactive layer is 50% or more of the thickness of the photoactive layer, separation may occur from the substrate on which the photoactive layer is applied.
  • the interface area between the photoactive layer and the electrode may increase, and the contact characteristics may be improved, thereby improving the performance of the device.
  • the non-solvent swelling method includes a method of applying a non-solvent on top of the photoactive layer and performing spin coating or drop coating.
  • the interface between the photoactive layer, the photoactive layer, and the electrode can be simultaneously controlled, which is advantageous for improving the morphology of the photoactive layer.
  • the manufacturing process is relatively simple.
  • the applied non-solvent penetrates into the space of the photoactive layer, widens the space between the polymer chains, and increases the mobility of the polymer chains.
  • the mobility of the polymer chain is increased, the self-organization of the molecular structure is called to form an ordered molecular structure.
  • the conjugation length is increased, the mobility of charge is increased, and the optical properties are increased, thereby providing a high light absorption rate, contributing to the efficiency increase.
  • the non-solvent is applied for at least 10 minutes of the non-solvent swelling method. In another embodiment, the non-solvent is applied for 10 to 40 minutes.
  • the nonsolvent penetration distance into the photoactive layer can be increased.
  • Application within 40 minutes can prevent the non-solvent penetration into the photoactive layer from exceeding 50% of the thickness of the photoactive layer, thereby preventing the peeling phenomenon from progressing.
  • the electron accepting material and the electron donor provide an organic solar cell that is heat-treated before, simultaneously or after being swollen with a non-solvent.
  • the electron acceptor and electron donor may be heat treated prior to swelling with a nonsolvent.
  • the electron acceptor and the electron donor may be heat treated after being swollen with a non-solvent.
  • the electron accepting material and the electron donor may be heat treated at the same time as the non-solvent is swollen.
  • the heat that is heated during swelling by the nonsolvent increases the nonsolvent penetration distance into the photoactive layer, thereby shortening the nonsolvent treatment time, and subsequently removing heat treatment or nonsolvent by spin coating or blowing. This simplifies the process and there is a time and / or cost advantage.
  • the non-solvent is selected from the group consisting of water, alkanes, halohydrocarbons, ethers, ketones, esters, nitrogen compounds, sulfur compounds, acids, alcohols, phenols and polyols.
  • the alkane-based nonsolvent is n-butane, n-pentane, n-hexane, n-octane, isooctane, n-dodecane, dichloromethane, cyclohexane and methylcyclohexane in the group 1 or 2 or more is selected.
  • the alkane-based nonsolvent is dichloromethane.
  • the alkane-based nonsolvent is insoluble in electron donors such as P3HT, but is selectively soluble in electron acceptors such as PCBM.
  • electron donors such as P3HT
  • electron acceptors such as PCBM.
  • the halohydrocarbon-based non-solvent is chloromethane, dichloromethane, methylene chloride, 1,1-dichloroethylene, ethylenedichloride, crawlroform, 1,1-dichloroethane, trichloroethylene, carbon 1 or 2 or more is selected from the group consisting of tetrachloride, chlorobenzene, o-dichlorobenzene and 1,1,2-trichlorotrifluoranthene.
  • the ether-based non-solvent is selected from the group consisting of tetrahydrofuran, 1,4-dioxane, diethyl ether, and dibenzyl ether.
  • the boiling point is low, the solvent is easy to remove after the non-solvent swelling method, the process is simple, there is an advantageous time and cost.
  • the ketone non-solvent is acetone, methyl ethyl ketone, cyclohexanone, diethyl ketone, acetophenone, methyl isobutyl ketone, methyl isoamyl ketone, isophorone and di- (isobutyl)
  • One or two or more are selected from the group consisting of ketones.
  • the ester non-solvent is ethylene carbonate, methyl acetate, ethyl formate, propylene-1,2-carbonate, ethyl acetate, diethyl carbonate, diethyl sulfate, n-butyl acetate, isobutyl acetate, 1 or 2 or more is selected from the group consisting of 2-ethoxyethyl acetate, isoamyl acetate and isobutyl isobutylate.
  • the nitrogen compound means a solvent in which an electron donor or an electron acceptor is not dissolved or reacted among compounds containing nitrogen.
  • the nitrogen compound non-solvent is acetonitrile, propionitrile, nitromethane, nitroethane, 2-nitropropane, nitrobenzene, ethanolamine, ethylene diem me, pyridine, morpholine 1 or 2 or more are selected from the group consisting of, aniline, N-methyl-2-pyrrolidone, cyclohexylamine, quinoline, formamide and N, N-dimethylformamide.
  • the sulfur compound means a solvent in which an electron donor or an electron accepting material does not melt or react among compounds containing sulfur.
  • the sulfur compound non-solvent is selected from the group consisting of carbon disulfide, dimethyl sulfoxide and ethanethiol.
  • the alcohol-based non-solvent includes methanol, ethanol, allyl alcohol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutanol, benzyl alcohol, cyclohexanol, diacetone alcohol, At least one is selected from the group consisting of ethylene glycol monoethyl ether, diethylene glycol monoethyl ether, diethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monobutyl ether and 1-decanol.
  • a dipole is formed between the photoactive layer and the electrode, which lowers the barrier for hole extraction, thereby increasing the voltage density.
  • the non-solvent treatment and the formation of the buffer layer can be performed simultaneously, which has advantages in terms of time and cost of the process.
  • the acid non-solvent is selected from the group consisting of formic acid, acetic acid, benzene acid, oleic acid, stearic acid.
  • ionization proceeds to the electron donor to lower the interfacial charge collection barrier to increase the current density or to increase the wettability when the water-soluble buffer material is applied later.
  • the phenolic nonsolvent is selected from the group consisting of phenol, resorcinol, m-cresol and methyl salicylate.
  • the polyol-based non-solvent is selected from the group consisting of ethylene glycol, glycerol, propylene glycol, diethylene glycol, triethylene glycol and dipropylene glycol.
  • the nonsolvent is a nitrogen compound nonsolvent.
  • the nonsolvent is acetonitrile.
  • the nonsolvent is water.
  • the nonsolvent is an alkane-based nonsolvent.
  • the nonsolvent is a halohydrocarbon-based nonsolvent.
  • the nonsolvent is an ether based nonsolvent.
  • the non-solvent is a ketone non-solvent.
  • the nonsolvent is an ester nonsolvent.
  • the nonsolvent is a sulfur compound nonsolvent.
  • the nonsolvent is an acid nonsolvent.
  • the nonsolvent is an alcoholic nonsolvent.
  • the nonsolvent is a phenolic nonsolvent.
  • the nonsolvent is a polyol-based nonsolvent.
  • the nonsolvent is selected from the group consisting of alkanes, ethers, alcohols and acids.
  • the temperature of the heat treatment is not less than the glass transition temperature (Tg) of the electron donor material or less than the pyrolysis temperature.
  • the heat treatment temperature is less than the glass transition temperature of the electron donor, self-organization of the electron donor may not occur well, and when the heat treatment temperature is above the pyrolysis temperature of the electron donor, the electron donor is destroyed. As a result, photocurrent generation characteristics may be degraded.
  • the heat treatment synergizes with the effect of the non-solvent swelling method to further align the molecular structure, thereby increasing the conjugation length and the optical properties.
  • the manufacturing process is relatively simple, there is an advantage in the process time and economics.
  • the heat treatment time is 0 minutes to 5 hours. In another embodiment, the heat treatment time is 10 minutes to 3 hours. In another embodiment, the heat treatment time is 30 minutes to 45 minutes. The time can be adjusted according to the degree of self organization.
  • the electron acceptor is a fullerene derivative or a nonfullerene derivative.
  • the fullerene derivative is a C60 fullerene derivative or a C70 fuller derivative.
  • the C60 fullerene derivative or C70 fullerene derivative is each independently hydrogen; heavy hydrogen; Halogen group; Nitrile group; Nitro group; Imide group; Amide group; Hydroxyl group; Substituted or unsubstituted alkyl group; A substituted or unsubstituted cycloalkyl group; Substituted or unsubstituted alkoxy group; Substituted or unsubstituted aryloxy group; Substituted or unsubstituted alkylthioxy group; Substituted or unsubstituted arylthioxy group; Substituted or unsubstituted alkyl sulfoxy group; Substituted or unsubstituted aryl sulfoxy group; Substituted or unsubstituted alkenyl group; Substituted or unsubstituted silyl group; Substituted or unsubstituted boron
  • the fullerene derivative is selected from the group consisting of C76 fullerene derivatives, C78 fullerene derivatives, C84 fullerene derivatives and C90 fullerene derivatives.
  • the C76 fullerene derivative, C78 fullerene derivative, C84 fullerene derivative and C90 fullerene derivative are each independently hydrogen; heavy hydrogen; Halogen group; Nitrile group; Nitro group; Imide group; Amide group; Hydroxyl group; Substituted or unsubstituted alkyl group; A substituted or unsubstituted cycloalkyl group; Substituted or unsubstituted alkoxy group; Substituted or unsubstituted aryloxy group; Substituted or unsubstituted alkylthioxy group; Substituted or unsubstituted arylthioxy group; Substituted or unsubstituted alkyl sulfoxy group; Substituted or unsubstituted aryl sulfoxy group; Substituted or unsubstituted alkenyl group; Substituted or unsubstituted silyl group
  • the fullerene derivative has an ability to separate electron-hole pairs (exciton, electron-hole pair) and charge mobility compared to the non-fullerene derivative, which is advantageous for efficiency characteristics.
  • the nonfullerene derivative has an LUMO energy level of -2.0 to -6.0 eV. In another exemplary embodiment, the nonfullerene derivative has a LUMO energy level of -2.5 to -5.0 eV. In another exemplary embodiment, the nonfullerene derivative has an LUMO energy level of -3.5 to -4.5 eV.
  • the nonfullerene derivative is a single molecule or a polymer that is not spherical.
  • the electron donor includes at least one electron donor; Or a polymer of at least one kind of electron acceptor and at least one kind of electron donor.
  • the electron donor includes at least one kind of electron donor.
  • the electron donor includes at least one kind of electron acceptor and at least one kind of electron donor polymer.
  • the electron donor includes one or two or more from the group consisting of the following formulas.
  • a is an integer of 0 to 4,
  • b is an integer of 0 to 6
  • c is an integer from 0 to 8
  • d and e are each an integer of 0 to 3
  • R 2 and R 3 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; Halogen group; Nitrile group; Nitro group; Imide group; Amide group; Hydroxyl group; Substituted or unsubstituted alkyl group; A substituted or unsubstituted cycloalkyl group; Substituted or unsubstituted alkoxy group; Substituted or unsubstituted aryloxy group; Substituted or unsubstituted alkylthioxy group; Substituted or unsubstituted arylthioxy group; Substituted or unsubstituted alkyl sulfoxy group; Substituted or unsubstituted aryl sulfoxy group; Substituted or unsubstituted alkenyl group; Substituted or unsubstituted silyl group; Substituted or unsubstituted boron group; Substi
  • X 1 to X 3 are the same as or different from each other, and are each independently selected from the group consisting of CRR ', NR, O, SiRR', PR, S, GeRR ', Se and Te, Y 1 and Y 2 are each other The same or different, each independently selected from the group consisting of CR, N, SiR, P, and GeR,
  • R and R ' are the same as or different from each other, and each independently hydrogen; heavy hydrogen; Halogen group; Nitrile group; Nitro group; Imide group; Amide group; Hydroxyl group; Substituted or unsubstituted alkyl group; A substituted or unsubstituted cycloalkyl group; Substituted or unsubstituted alkoxy group; Substituted or unsubstituted aryloxy group; Substituted or unsubstituted alkylthioxy group; Substituted or unsubstituted arylthioxy group; Substituted or unsubstituted alkyl sulfoxy group; Substituted or unsubstituted aryl sulfoxy group; Substituted or unsubstituted alkenyl group; Substituted or unsubstituted silyl group; Substituted or unsubstituted boron group; Substi
  • the electron acceptor includes one or two or more from the group consisting of the following formulas.
  • R 2 to R 5 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; Halogen group; Nitrile group; Nitro group; Imide group; Amide group; Hydroxyl group; Substituted or unsubstituted alkyl group; A substituted or unsubstituted cycloalkyl group; Substituted or unsubstituted alkoxy group; Substituted or unsubstituted aryloxy group; Substituted or unsubstituted alkylthioxy group; Substituted or unsubstituted arylthioxy group; Substituted or unsubstituted alkyl sulfoxy group; Substituted or unsubstituted aryl sulfoxy group; Substituted or unsubstituted alkenyl group; Substituted or unsubstituted silyl group; Substituted or unsubstituted boron group; Substi
  • X 1 and X 2 are the same as or different from each other, and each independently, is selected from the group consisting of CRR ', NR, O, SiRR', PR, S, GeRR ', Se and Te, Y 1 to Y 4 are each The same or different, each independently selected from the group consisting of CR, N, SiR, P, and GeR,
  • R and R ' are the same as or different from each other, and each independently hydrogen; heavy hydrogen; Halogen group; Nitrile group; Nitro group; Imide group; Amide group; Hydroxyl group; Substituted or unsubstituted alkyl group; A substituted or unsubstituted cycloalkyl group; Substituted or unsubstituted alkoxy group; Substituted or unsubstituted aryloxy group; Substituted or unsubstituted alkylthioxy group; Substituted or unsubstituted arylthioxy group; Substituted or unsubstituted alkyl sulfoxy group; Substituted or unsubstituted aryl sulfoxy group; Substituted or unsubstituted alkenyl group; Substituted or unsubstituted silyl group; Substituted or unsubstituted boron group; Substi
  • the electron accepting material is a fullerene derivative. In another embodiment, the electron acceptor is a C 60 fullerene derivative.
  • the electron accepting material is [6,6] -phenyl C-butyric acid methyl ester (PCBM).
  • X 1 is S.
  • the electron donor is poly (3-hexylthiophene) (P3HT).
  • the electron acceptor is [6,6] -phenyl C-butyric acid methyl ester (PCBM) and the electron donor is poly (3-hexylthiophene) (P3HT).
  • the nonsolvent is acetonitrile
  • the electron acceptor is [6,6] -phenyl C-butyric acid methyl ester (PCBM)
  • the electron donor is poly (3-hexylthiophene). (P3HT).
  • the nonsolvent is acetonitrile
  • the electron acceptor is [6,6] -phenyl C-butyric acid methyl ester (PCBM)
  • the electron donor is poly (3-hexylthiophene).
  • the heat treatment temperature is above the glass transition temperature and below the pyrolysis temperature of the donor material.
  • the photoactive layer includes an electron acceptor and an electron donor.
  • the electron accepting material and the electron donating material of the photoactive layer may form a bulk hetero junction (BHJ).
  • the electron acceptor and the electron donor are mixed in a ratio (w / w) of 1:10 to 10: 1. In another embodiment, they are mixed in a weight ratio of 1: 7 to 2: 1. In another embodiment, the electron acceptor and the electron donor are mixed in a weight ratio of 1: 4 to 5: 3. In another embodiment, the electron acceptor and the electron donor are mixed in a weight ratio of 1: 0.4 to 1: 4.
  • the electron accepting material When the electron accepting material is blended in less than 0.4 weight ratio, the content of crystallized electron accepting material is insufficient to cause the movement of generated electrons. When the electron accepting material exceeds 10 weight ratio, the amount of the electron donor that absorbs light is relatively high. There is a problem that the reduction is not efficient absorption of light.
  • the efficiency of the organic solar cell provides an organic solar cell of 110 to 200% increase compared to the case containing an electron acceptor and an electron donor before swelling into a non-solvent.
  • the electron acceptor and electron donor are heat treated before, simultaneously or after being swollen with a nonsolvent.
  • the efficiency of the organic solar cell swells with a non-solvent and provides an organic solar cell that is 110 to 150% higher than the case containing the electron accepting material and the electron donor before heat treatment.
  • FIG. 1 is a diagram illustrating a method of manufacturing a photoactive layer according to one embodiment of the present specification.
  • Example 2 is a view showing a J-V curve of Example 1 and Comparative Examples 1 to 3. Referring to FIG. 2, the efficiency of the organic solar cell is increased when the non-solvent swelling method and the heat treatment are performed together with the non-solvent swelling method or the heat treatment alone. Able to know.
  • FIG. 3 is a diagram showing absorption spectra of Example 1 and Comparative Examples 1 to 3.
  • FIG. 3 As shown in FIG. 3, when the non-solvent swelling method and the heat treatment are performed together with the non-solvent swelling method or the heat treatment alone, high light absorption is provided. This is the effect of an increase in the conjugation length.
  • Figure 4 is a graph showing the X-ray diffraction (X-ray Diffraction) of Example 1 and Comparative Examples 1 to 3. As shown in FIG. 4, when the heat treatment is performed together with the non-solvent swelling method, it can be seen that the morphology and crystallinity of the photoactive layer are improved.
  • FIG. 5 is a graph showing absorption spectra of FT-IR of Comparative Examples 1 to 3.
  • FIG. 5 it can be seen that the conjugation length becomes longer when a non-solvent swelling method or heat treatment is performed.
  • FIG. 6 is a graph showing Auger electron spectroscopy of Example 1 and Comparative Examples 1 to 3.
  • FIG. 6 when the heat treatment is performed together with the non-solvent swelling method, the penetration distance of the electrode into the photoactive layer can be seen to increase. In this case, the interface area between the photoactive layer and the electrode becomes wider, and the efficiency of the organic solar cell increases.
  • Example 7 is a view observed with an atomic force microscope (AFM) of Example 1 and Comparative Examples 1 to 3. As shown in FIG. 7, when the non-solvent swelling method and the heat treatment are performed together, the root mean squre (RMS) value of the surface of the photoactive layer is increased. When the effective value of the surface of the photoactive layer is increased, the contact area between the photoactive layer and the electrode is increased and the electron collection efficiency is increased.
  • AFM atomic force microscope
  • the alkyl group may be linear or branched chain, carbon number is not particularly limited, but is preferably 1 to 20. Specific examples include, but are not limited to, methyl, ethyl, propyl, isopropyl, butyl, t-butyl, pentyl, hexyl and heptyl groups.
  • the alkenyl group may be linear or branched chain, the carbon number is not particularly limited, but is preferably 2 to 40. Specific examples include, but are not limited to, alkenyl groups in which aryl groups such as stylbenyl and styrenyl groups are substituted.
  • the alkoxy group may be linear, branched or cyclic. Although carbon number of an alkoxy group is not specifically limited, It is preferable that it is C1-C25. Specifically, it may be a methoxy group, ethoxy group, n-propyloxy group, iso-propyloxy group, n-butyloxy group, cyclopentyloxy group and the like, but is not limited thereto.
  • the cycloalkyl group is not particularly limited, but preferably has 3 to 60 carbon atoms, and particularly preferably a cyclopentyl group and a cyclohexyl group.
  • the halogen group may be fluorine, chlorine, bromine or iodine.
  • the aryl group may be monocyclic, and the carbon number is not particularly limited, but is preferably 6 to 60 carbon atoms.
  • Specific examples of the aryl group include monocyclic aromatic and naphthyl groups such as phenyl group, biphenyl group, triphenyl group, terphenyl group, stilbene group, anthracenyl group, phenanthrenyl group, pyrenyl group, perrylenyl group, tetrasenyl group, chrysenyl Polycyclic aromatics, such as a group, a fluorenyl group, an acenaphthasenyl group, a triphenylene group, and a fluoranthene group, etc. are mentioned, but it is not limited to these.
  • the heterocyclic group is a heterocyclic group containing O, N or S as a hetero atom, and the carbon number is not particularly limited, but is preferably 2 to 60 carbon atoms.
  • the heterocyclic group include thiophene group, furan group, pyrrole group, imidazole group, thiazole group, oxazole group, oxadiazole group, triazole group, pyridyl group, bipyridyl group, triazine group, acridil group, pyridazine group , Quinolinyl group, isoquinoline group, indole group, carbazole group, benzoxazole group, benzimidazole group, benzthiazole group, benzcarbazole group, benzthiophene group, dibenzothiophene group, benzfuranyl group, phenanthrroline group (phenanthroline) and dibenzofuranyl group, but are not limited thereto.
  • carbon number of an imide group is not specifically limited, It is preferable that it is C1-C25. Specifically, it may be a compound having a structure as follows, but is not limited thereto.
  • the amide group may be substituted with one or two of the nitrogen of the amide group is hydrogen, a linear, branched or cyclic alkyl group having 1 to 25 carbon atoms or an aryl group having 6 to 25 carbon atoms. Specifically, it may be a compound of the following structural formula, but is not limited thereto.
  • the oxygen of the ester group may be substituted with a linear, branched or cyclic alkyl group having 1 to 25 carbon atoms or an aryl group having 6 to 25 carbon atoms. Specifically, it may be a compound of the following structural formula, but is not limited thereto.
  • heteroaryl group may be selected from the examples of the hetero ring group described above.
  • the fluorenyl group is a structure in which two ring organic compounds are connected through one atom, for example Etc.
  • the fluorenyl group includes a structure of an open fluorenyl group, wherein the open fluorenyl group is a structure in which one ring compound is disconnected in a structure in which two ring compounds are connected through one atom, For example Etc.
  • the amine group is not particularly limited, but is preferably 1 to 30.
  • Specific examples of the amine group include methylamine group, dimethylamine group, ethylamine group, diethylamine group, phenylamine group, naphthylamine group, biphenylamine group, anthracenylamine group, and 9-methyl-anthracenylamine group.
  • examples of the aryl amine group include a substituted or unsubstituted monocyclic diarylamine group, a substituted or unsubstituted polycyclic diarylamine group or a substituted or unsubstituted monocyclic and polycyclic diaryl. It means an amine group.
  • the aryl group in the aryloxy group, arylthioxy group, aryl sulfoxy group and aralkylamine group is the same as the aryl group described above.
  • the alkyl group in the alkylthioxy group, the alkyl sulfoxy group, the alkylamine group and the aralkylamine group is the same as the example of the alkyl group described above.
  • heteroaryl group in the heteroarylamine group may be selected from the examples of the heterocyclic group described above.
  • an arylene group, an alkenylene group, a fluorenylene group, a carbazolylene group, and a heteroylene group is a divalent group of an aryl group, an alkenyl group, a fluorenyl group, and a carbazole group, respectively.
  • the description of the aryl group, alkenyl group, fluorenyl group, carbazole group described above can be applied except that they are each divalent group.
  • substituted or unsubstituted herein is deuterium; Halogen group; An alkyl group; Alkenyl groups; An alkoxy group; Cycloalkyl group; Silyl groups; Aryl alkenyl group; Aryl group; Aryloxy group; Alkyl thioxy group; Alkyl sulfoxy groups; Aryl sulfoxy group; Boron group; Alkylamine group; Aralkyl amine groups; Arylamine group; Heteroaryl group; Carbazole groups; Arylamine group; Aryl group; Fluorenyl group; Nitrile group; Nitro group; It means that it is substituted with one or more substituents selected from the group consisting of a hydroxy group and a heterocyclic group containing one or more of N, O, S atoms or do not have any substituents.
  • the thickness of the photoactive layer is 50 to 300 nm. In another exemplary embodiment, the thickness of the photoactive layer is 100 to 250 nm. In another exemplary embodiment, the thickness of the photoactive layer is 150 nm to 230 nm.
  • the fill factor value may be increased due to the short charge movement distance, but there is a problem in that the light absorption rate is lowered.
  • the photoactive layer exceeds 300 nm, the current density increases due to the thickness of the sufficient photo active layer. There is a problem of having a low fill factor value due to the far travel distance of the generated carrier.
  • the resistance between the interfaces such as the electrode and the resistance in the bulk do not become too large to increase the value of the fill factor, the current characteristics are excellent, and due to the thickness of the sufficient optical activity, There is an advantage that separation and travel length of carriers are sufficient.
  • the intrinsic value of the electron acceptor and electron donor refers to light including an electron acceptor and an electron sharing material that have not been subjected to any treatment, for example, without a heat treatment and / or a non-solvent swelling method.
  • the ratio of antisymmetric and symmetric values of the FT-IR, i.e., I c c / I cc , means an increase in the conjugation length.
  • the ratio of the antisymmetric value and the symmetric value of the absorption spectrum of the FT-IR increases by 110 to 150%. In another embodiment, the ratio of antisymmetric and symmetric values of the absorption spectrum of the FT-IR increases by 120 to 140%.
  • the ratio of the antisymmetric value and the symmetric value of the absorption spectrum of the FT-IR is within the above range, the morphology of the organic solar cell is improved and the crystallinity is increased.
  • the efficiency of the organic solar cell is increased.
  • the electron accepting material and the electron donating material of the photoactive layer are swollen with a non-solvent.
  • the electron acceptor and electron donor are heat treated before, simultaneously or after being swollen with a nonsolvent.
  • the description of the electron accepting material, the electron donor, and the photoactive layer of the rising organic solar cell are the same as described above.
  • the present invention provides an organic solar cell which is swelled to 110% and has a 110-200% increase in efficiency when the efficiency of the organic solar cell includes an electron accepting material and an electron donor before swelling with a non-solvent.
  • the electron acceptor and electron donor are heat treated before, simultaneously or after being swollen with a nonsolvent.
  • the efficiency of the organic solar cell is increased by 110 to 200% compared with the case containing the electron accepting material and the electron donor before swelling into a non-solvent, the electron accepting material, electron donor, photoactive layer, non-solvent of the organic solar cell And the description of the heat treatment is the same as described above.
  • the electron acceptor and the electron donor provide a photoactive layer that is swelled with a non-solvent.
  • the electron acceptor and electron donor are heat treated before, simultaneously or after being swollen with a nonsolvent.
  • the electron acceptor and electron donor in the photoactive layer swell with a nonsolvent.
  • the electron accepting material and the electron donating material of the photoactive layer are heat-treated before, simultaneously or after being swelled with a non-solvent.
  • the description of the electron accepting material, the electron donor material, the non-solvent and the heat treatment of the photoactive layer is the same as described above.
  • the maximum absorption wavelength of the photoactive layer is 500 to 600 nm.
  • the organic solar cell includes a first electrode, a photoactive layer, and a second electrode.
  • the organic solar cell may further include a substrate, a hole transport layer, and / or an electron transport layer.
  • a buffer layer may be further introduced between the photoactive layer and the first electrode.
  • an electron transport layer, a hole blocking layer or an optical space layer is further introduced between the photoactive layer and the second electrode.
  • the first electrode may be an anode electrode or a cathode electrode.
  • the second electrode may be a cathode electrode and may be an anode electrode.
  • the organic solar cell may be arranged in the order of the anode electrode, the photoactive layer and the cathode electrode, and may be arranged in the order of the cathode electrode, the photoactive layer and the anode electrode, but is not limited thereto.
  • the organic solar cell may be arranged in order of an anode electrode, a hole transport layer, a photoactive layer, an electron transport layer, and a cathode electrode, and in order of a cathode electrode, an electron transport layer, a photoactive layer, a hole transport layer, and an anode electrode. It may be arranged, but is not limited thereto.
  • the organic solar cell may be arranged in order of an anode electrode, a buffer layer, a photoactive layer, and a cathode electrode.
  • the buffer layer serves to reduce the energy bandgap difference between interfaces, thereby increasing the efficiency of the organic solar cell.
  • the buffer layer is selected from the group consisting of PEDOT: PSS, molybdenum oxide (MoO 3 ), tungsten oxide (WO 3 ), and zinc oxide (ZnO).
  • the buffer layer has a thickness of 1 to 60 nm. In another exemplary embodiment, the buffer layer has a thickness of 10 to 50 nm. In another exemplary embodiment, the buffer layer has a thickness of 30 to 45 nm.
  • the buffer layer within the above range has the advantage of improving the light transmittance, lower the series resistance of the solar cell, and improve the interfacial properties of the other layer to produce a highly efficient solar cell.
  • the substrate may be a glass substrate or a transparent plastic substrate having excellent transparency, surface smoothness, ease of handling, and waterproofness, but is not limited thereto, and the substrate may be any substrate commonly used in organic solar cells. Specifically, there are glass or polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polypropylene (PP), polyimide (PI), and triacetyl cellulose (TAC). It is not limited to this.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PP polypropylene
  • PI polyimide
  • TAC triacetyl cellulose
  • the first electrode may be a transparent and excellent conductive material, but is not limited thereto.
  • Metals such as vanadium, chromium, copper, zinc and gold or alloys thereof;
  • Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO); ZnO: Al or SNO 2 : combination of a metal and an oxide such as Sb;
  • Conductive polymers such as poly (3-methylthiophene), poly [3,4- (ethylene-1,2-dioxy) thiophene] (PEDOT), polypyrrole and polyaniline, and the like, but are not limited thereto.
  • the second electrode may be a metal having a small work function, but is not limited thereto.
  • metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead or alloys thereof; LiF / Al, LiO 2 / Al, LiF / Fe, Al: Li, Al: BaF 2 , Al: BaF 2 It may be a material of a multi-layer structure such as, but is not limited thereto.
  • the hole transport layer and / or the electron transport layer material may be a material that increases the probability that the generated charge is transferred to the electrode by efficiently transferring electrons and holes to the photoactive layer, but is not particularly limited.
  • the hole transport layer material was PEDOT: PSS (Poly (3,4-ethylenediocythiophene) doped with poly (styrenesulfonic acid)), N, N'-bis (3-methylphenyl) -N, N'-diphenyl- [1,1 '-Biphenyl] -4,4'-diamine (TPD).
  • PSS Poly (3,4-ethylenediocythiophene) doped with poly (styrenesulfonic acid)
  • the electron transport layer material is aluminum trihydroxyquinoline (Alq 3 ), 1,3,4-oxadiazole derivative PBD (2- (4-bipheyl) -5-phenyl-1,3,4-oxadiazole), Quinoxaline derivatives TPQ (1,3,4-tris [(3-phenyl-6-trifluoromethyl) qunoxaline-2-yl] benzene) and triazole derivatives.
  • the electron transporting material a material capable of injecting electrons well from the cathode and transferring the electrons to the photoactive layer is suitable.
  • Specific examples thereof include Al complexes of 8-hydroxyquinoline; Complexes including Alq 3 ; Organic radical compounds; Hydroxyflavone-metal complexes and the like, but are not limited thereto.
  • the hole injection material is a material capable of well injecting holes from the anode at a low voltage, and the highest occupied molecular orbital (HOMO) of the hole injection material is preferably between the work function of the anode material and the HOMO of the surrounding organic material layer.
  • the hole injection material include metal porphyrin, oligothiophene, arylamine-based organic material, hexanitrile hexaazatriphenylene-based organic material, quinacridone-based organic material, and perylene-based Organic materials, anthraquinone, and polyaniline and polythiophene-based conductive polymers, but are not limited thereto.
  • the organic solar cell of the present specification may be manufactured by materials and methods known in the art, except that the photoactive layer is swelled with a non-solvent, or a swelling treatment and a heat treatment are performed with the non-solvent.
  • It provides a method of manufacturing an organic solar cell comprising the step of forming a second electrode on the organic material layer.
  • the organic solar cell of the present specification can be produced, for example, by sequentially stacking a first electrode, an organic material layer including a photoactive layer, and a second electrode on a substrate. At this time, it may be coated by a wet method such as gravure printing, offset printing, screen printing, inkjet, spin coating, spray coating, but is not limited to these methods.
  • the photoactive layer includes an electron acceptor and an electron donor.
  • the photoactive layer is formed from a mixed solution of poly (3-hexylthiophene) (P3HT) and [6,6] -phenyl C-butyric acid methyl ester (PCBM).
  • P3HT poly (3-hexylthiophene)
  • PCBM [6,6] -phenyl C-butyric acid methyl ester
  • the method may further include forming an organic layer after the heat treatment and before the forming of the second electrode.
  • the organic material layer includes a hole transport layer, a hole injection layer, an electron transport layer, an electron injection layer, a buffer layer, but is not limited thereto.
  • the method may further include forming an organic material layer after forming the first electrode and before forming the photoactive layer.
  • the method may further include forming a buffer layer after forming the first electrode and before forming the photoactive layer.
  • the surface treatment of the photoactive layer with a non-solvent is spin coating or drop coating.
  • the organic solar cell had a structure of ITO / PEDOT: PSS / photoactive layer (P3HT: PCBM) / Al.
  • ITO-coated glass substrates were ultrasonically cleaned with distilled water, acetone and 2-propanol, ozonated the ITO surface for 10 minutes, and spin-coated PEDOT: PSS (Clavios P) to a thickness of 40 nm at Heat treated for minutes.
  • PEDOT PSS (Clavios P)
  • a mixture of P3HT: PCBM in a ratio of 1: 0.6 was formed and spin-coated to a thickness of 220 nm to form a photoactive layer.
  • Example 1 Unlike Example 1, the same procedure as in Example 1 was conducted except that the nonsolvent swelling method and the heat treatment were not applied.
  • Example 1 Unlike Example 1, except that heat treatment was not applied, the same process as in Example 1 was performed.
  • Example 1 Unlike Example 1, the same procedure as in Example 1 was conducted except that the nonsolvent swelling method was not applied.
  • 2 is a graph showing an organic solar cell current-voltage curve.
  • Example 1 to which both the non-solvent swelling method and the heat treatment are applied does not apply both the non-solvent swelling method and the heat treatment, or the efficiency is improved compared to Comparative Examples 1 to 4 to which only one of the two methods is applied. It can be seen.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 명세서는 전자 수용물질 및 전자 공여물질을 포함하고, 상기 전자 수용물질 및 전자 공여물질을 비용매로 팽윤시키는 단계를 포함하는 광 활성층, 이를 포함하는 유기 태양 전지 및 이의 제조 방법을 제공한다.

Description

광 활성층, 이를 포함한 유기 태양 전지 및 이의 제조 방법
본 명세서는 광 활성층, 이를 이용한 유기 태양 전지 및 이의 제조 방법에 관한 것이다.
1992년 UCSB의 Heeger가 유기 고분자를 이용한 태양 전지 가능성을 최초로 보여준 것을 효시로 현재까지 이에 대하여 많이 연구되고 있다. 이는 빛을 흡수하는 유기고분자와 전자친화성이 아주 높은 C60 플러렌 유도체 또는 C70 플러렌 유도체를 혼합한 이종접합 박막 소자로, 투명전극인 ITO (indium tin oxide)를 양극으로, 낮은 일함수를 갖는 Al 등의 금속전극을 음극물질을 사용한다.
유기고분자로 구성된 광 활성층에서 빛을 흡수하여 전자-정공 쌍(electron-hole pair 혹은 exciton)이 형성된다. 이 전자-정공 쌍은 공중합체와 C60 플러렌 유도체 또는 C70 플러렌 유도체의 계면으로 이동하여 전자와 정공으로 분리된 후 전자는 금속전극으로, 정공은 투명전극으로 이동함으로써 전자를 발생하는 기술이다.
현재 유기 고분자를 이용한 유기 고분자 박막 태양 전지의 효율은 7 ~ 8 %에 달하고 있다(Nature Photonics, 2009, 3, 649-653).
그러나, 현재 실리콘을 이용한 태양 전지의 최대효율 (~39%)에 비하여 유기 고분자 태양 전지의 효율은 아직 낮은 수준이다. 더 높은 효율을 갖는 유기 태양 전지에 대한 개발이 요구된다.
본 명세서는 향상된 효율을 갖는 유기 태양 전지 및 이의 제조 방법과, 상기 유기 태양 전지에 이용되는 광 활성층을 제공하고자 한다.
본 명세서는 제1 전극;
상기 제1 전극과 대향하는 제2 전극; 및
상기 제1 전극과 제2 전극 사이에 구비되고, 광 활성층을 포함하는 유기물층을 포함하고,
상기 광 활성층은 전자 수용물질 및 전자 공여물질을 포함하고,
상기 전자 수용물질 및 전자 공여물질은 비용매로 팽윤된 것인 유기 태양전지를 제공한다.
또한, 본 명세서는 제1 전극;
상기 제1 전극과 대향하는 제2 전극; 및
상기 제1 전극과 제2 전극 사이에 구비되고, 광 활성층을 포함하는 유기물층을 포함하고,
상기 광 활성층은 전자 수용물질 및 전자 공여물질을 포함하고,
FT-IR의 흡수 스펙트럼의 반대칭(antisymmetric)값과 대칭(symmetric)값의 비율(Ic=c/Ic-c)이 상기 전자 수용물질 및 전자 공여물질의 고유의 값에 비하여 110 내지 150% 상승한 것인 유기 태양 전지를 제공한다.
또한, 본 명세서는 제1 전극;
상기 제1 전극과 대향하는 제2 전극; 및
상기 제1 전극과 제2 전극 사이에 구비되고, 광 활성층을 포함하는 유기물층을 포함하고,
상기 광 활성층은 전자 수용물질 및 전자 공여물질을 포함하며,
상기 전자 수용물질 및 전자 공여물질은 비용매로 팽윤되고,
상기 유기 태양 전지의 효율이 비용매로 팽윤되기 전의 전자 수용물질 및 전자 공여물질을 포함하는 경우에 비하여 110 내지 200% 상승한 것인 유기 태양 전지를 제공한다.
또한, 본 명세서는 전자 수용물질 및 전자 공여물질을 포함하는 광 활성층에 있어서, 상기 전자 수용물질 및 전자 공여물질은 비용매로 팽윤된 것인 광 활성층을 제공한다.
또한, 본 명세서는 전자 수용물질 및 전자 공여물질을 포함하는 광 활성층에 있어서, FT-IR의 흡수 스펙트럼의 반대칭(antisymmetric) 값과 대칭(symmetric)값의 비율(Ic=c/Ic-c)이 상기 전자 수용물질 및 전자 공여물질의 고유의 값에 비하여 110 내지 150% 상승한 것 인 광 활성층을 제공한다.
또한, 본 명세서는 기판을 준비하는 단계;
상기 기판의 일 영역에 제1 전극을 형성하는 단계;
상기 제1 전극 상부에 광 활성층을 포함하는 유기물층을 형성하는 단계;
상기 광 활성층을 비용매로 광 활성층을 팽윤시키는 단계; 및
상기 유기물층에 제2 전극을 형성하는 단계를 포함하는 유기 태양 전지의 제조방법을 제공한다.
본 명세서의 일 실시상태에 따른 광 활성층은 비용매 팽윤 처리 및 필요한 경우 열처리의 간단한 공정을 통하여 제조가 가능하다. 또한, 상기의 처리를 통한 광 활성층은 전도성이 높고, 안정하다.
본 명세서의 일 실시상태에 따른 광 활성층은 광 흡수율이 좋고, 전자 수용물질 및 전자 공여물질의 자가 조직화(self organization)을 통하여, 안정화된 분자구조를 형성한다. 따라서, 본 명세서의 일 실시상태에 따른 광 활성층을 포함한 유기 태양 전지는 개방 전압 상승 및 효율 상승 등에서 우수한 특성을 나타낼 수 있다.
특히, 본 명세서의 일 실시상태에 따른 광 활성층은 광 흡수율이 높고, 컨쥬게이션 길이가 길어지게 되어 높은 전하 이동도를 가지고, 전극과의 저항이 낮아지고, 모폴로지의 향상으로 인하여, 소자의 수명 특성 및 소자의 효율을 향상시킬 수 있다.
도 1은 본 명세서의 일 실시상태에 따른 광 활성층의 제조 방법을 예시한 도이다.
도2는 실시예 1 및 비교예 1 내지 3의 J-V 곡선을 나타낸 도이다.
도 3는 실시예 1 및 비교예 1 내지 3의 흡수 스펙트럼을 나타낸 도이다.
도 4은 실시예 1 및 비교예 1 내지 3의 X선 회절(X-ray Diffraction)을 나타낸 그래프이다.
도 5는 비교예 1 내지 3의 FT-IR의 흡수 스펙트럼을 나타낸 그래프이다.
도 6는 실시예 1 및 비교예 1 내지 3의 Auger 전자 분광법(Auger electron spectroscopy)을 나타낸 그래프이다.
도 7은 실시예 1 및 비교예 1 내지 3의 원자력간 현미경 (Atomic Force Microscope, AFM)으로 관찰한 도이다.
이하에서 본 명세서에 대하여, 상세히 설명한다.
본 명세서는 제1 전극; 상기 제1 전극과 대향하는 제2 전극; 및 상기 제1 전극과 제2 전극 사이에 구비되고, 광 활성층을 포함하는 유기물층을 포함하고, 상기 광 활성층은 전자 수용물질 및 전자 공여물질을 포함하고, 상기 전자 수용물질 및 전자 공여물질은 비용매로 팽윤된 것인 유기 태양 전지를 제공한다.
본 명세서에 있어서, 상기 비용매란, 전자 공여물질이나 전자 수용물질이 용해되거나, 반응하지 않는 것을 의미한다.
또한, 본 명세서의 일 실시상태에 있어서, 상기 비용매는 광 활성층에 도포하였을 때 팽윤 현상을 일으켜, 비용매가 광 활성층 내부로 침투한다.
본 명세서의 일 실시상태에 있어서, 상기 광 활성층 내부로의 비용매 침투거리는 광 활성층 두께의 5 % 이상 50% 미만이다. 또 하나의 실시상태에 있어서, 상기 광 활성층 내부로의 비용매 침투거리는 광 활성층 두께의 5 내지 30%이다.
상기 비용매는 광 활성층 상에 도포시에, 비용매의 종류, 처리 방법 및 양을 선택할 수 있다.
상기 비용매는 광 활성층 상에 1분 내지 60분 동안 도포시, 광 활성층 내부로의 비용매의 침투거리가 광 활성층 두께의 5% 이상 50% 미만이다.
광 활성층 내부로의 비용매 침투거리가 광 활성층 두께의 50% 이상인 경우, 광 활성층이 도포된 기판으로부터 분리가 일어날 수 있다.
또한, 광 활성층 내부로의 비용매 침투거리가 광 활성층 두께의 5 내지 30%인 경우, 광 활성층과 전극과의 계면 면적이 증가하고, 접촉 특성이 개선되어 소자의 성능이 향상될 수 있다.
본 명세서에 있어서, 상기 비용매 팽윤 방법(non-solvent swelling method)는 광 활성층 상부에 비용매를 도포하고, 스핀코팅 또는 드롭코팅을 하는 방법을 포함한다.
광 활성층에 비용매 팽윤 방법(non-solvent swelling method)를 적용하면, 광 활성층과 광 활성층과 전극과의 계면을 동시에 조절할 수 있어, 광 활성층의 모폴로지 향상에 유리하다. 또한, 제조 공정이 비교적 간단한 스핀 코팅 등으로 공정상 시간 및 경제적으로 유리하다.
상기 도포된 비용매는 광 활성층의 공간에 침투하여, 고분자 사슬 사이의 공간을 넓히게 되고, 고분자 사슬의 이동성이 증가한다. 또한, 고분자 사슬의 이동성이 증가하게 되면 분자 구조의 자가 조직화 (self organization)을 통화여 정렬된 분자구조를 형성한다. 이 경우, 컨쥬게이션 길이가 상승되어, 전하의 이동도가 증가하고, 광학적 특성이 상승하게 되어, 높은 광 흡수율을 제공하여, 효율 상승에 기여한다.
하나의 실시상태에 있어서, 상기 비용매 팽윤 방법(non-non-solvent swelling method) 10분 이상 비용매를 도포한다. 또 하나의 실시상태에 있어서, 10분 내지 40분 동안 비용매를 도포한다.
비용매를 10분 이상 도포하는 경우, 광 활성층 내부로의 비용매 침투거리가 증가될 수 있다. 40분 이내로 도포하는 것이 광 활성층 내부로의 비용매 침투거리가 광 활성층 두께의 50%를 초과하지 않도록 하여, 박리 현상이 진행되는 것을 방지할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 전자 수용물질 및 전자 공여물질은 비용매로 팽윤 되기 전, 동시 또는 이후에 열처리 된 것인 유기 태양 전지를 제공한다.
하나의 실시상태에 있어서, 상기 전자 수용물질 및 전자 공여물질이 비용매로 팽윤되기 이전에 열처리 될 수 있다.
하나의 실시상태에 있어서, 상기 전자 수용물질 및 전자 공여물질이 비용매로 팽윤되기 이후에 열처리 될 수 있다.
또 하나의 실시상태에 있어서, 상기 전자 수용물질 및 전자 공여물질이 비용매로 팽윤되는 것과 동시에 열처리 될 수 있다. 이 경우, 비용매에 의한 팽윤시 가열되는 열로 인하여, 광 활성층 내부로의 비용매 침투 거리가 증가하여, 비용매 처리시간이 단축되고, 추후 열처리나 비용매를 스핀 코팅 혹은 블로잉(blowing)으로 제거하는 과정이 없어 공정의 단순화 되어, 시간 및/또는 비용상의 이점이 있다.
상기 비용매는 물, 알칸계, 할로하이드로카본계, 에테르계, 케톤계, 에스테르계, 질소 화합물, 황 화합물, 산, 알코올계, 페놀계 및 폴리올계로 이루어진 군에서 1 또는 2이상이 선택된다.
본 명세서의 일 실시상태에 있어서, 상기 알칸계 비용매는 n-부탄, n-펜탄, n-헥산, n-옥탄, 이소옥탄, n-도데칸, 디클로로메탄, 시클로헥산 및 메틸시클로 헥산으로 이루어진 군에서 1 또는 2이상이 선택된다.
본 명세서의 일 실시상태에 있어서, 상기 알칸계 비용매는 디클로로메탄이다.
상기 알칸계 비용매는 전자 공여물질, 예컨대 P3HT에는 녹지 않으나, 전자 수용물질, 예컨대 PCBM에는 선택적으로 용해성이 있다. 이 경우, 비용매를 단독 또는 타 용매와 일정양 혼합해서 사용하는 경우, 팽윤을 시키면서 동시에 표면에서 선택적으로 전자 수용물질을 녹여 계면 접합 면적을 증가시키는 효과가 있다.
하나의 실시상태에 있어서, 상기 할로하이드로카본계 비용매는 클로로 메탄, 디클로로메탄, 메틸렌클로라이드, 1,1-디클로로에틸렌, 에틸렌디클로라이드, 크롤로포름, 1,1-디클로로에탄, 트리클로로에틸렌, 카본 테트라클로라이드, 클로로벤젠, o-디클로로벤젠 및 1,1,2-트리클로로트리플루오란텐으로 이루어진 군에서 1 또는 2 이상이 선택된다.
또 하나의 실시상태에 있어서, 상기 에테르계 비용매는 테트라하이드로퓨란, 1,4-디옥산, 디에틸에테르 및 디벤질에테르로 이루어진 군에서 1 또는 2 이상이 선택된다.
상기 에테르계 비용매를 사용하는 경우, 끓는 점이 낮아, 비용매 팽윤 방법을 한 이후에 용매 제거가 용이하여, 공정이 단순하고, 시간 및 비용상 유리한 효과가 있다.
또 하나의 실시상태에 있어서, 상기 케톤계 비용매는 아세톤, 메틸에틸케톤, 시클로헥사논, 디에틸케톤, 아세토페논, 메틸이소부틸케톤, 메틸이소아밀케톤, 이소포론 및 디-(이소부틸)케톤으로 이루어진 군에서 1 또는 2이상이 선택된다.
하나의 실시상태에 있어서, 상기 에스테르계 비용매는 에틸렌 카보네이트, 메틸 아세테이트, 에틸포메이트, 프로필렌-1,2-카보네이트, 에틸 아세테이트, 디에틸카보네이트, 디에틸설페이트, n-부틸아세테이트, 이소부틸 아세테이트, 2-에톡시에틸 아세테이트, 이소아밀아세테이트 및 이소부틸이소부틸에이트로 이루어진 군에서 1 또는 2 이상이 선택된다.
본 명세서에 있어서, 상기 질소 화합물이란, 질소를 포함하는 화합물 중, 전자 공여물질이나 전자 수용물질이 녹거나 반응하지 않는 용매를 의미한다.
또 하나의 실시상태에 있어서, 상기 질소 화합물 비용매는 아세토니트릴, 프로피오니트릴, 니트로메탄, 니트로에탄, 2-니트로프로판, 니트로벤젠, 에타놀아민, 에틸렌 디엠 미(ethylene diem me), 피리딘, 모폴린, 아날린, N-메틸-2-피롤리돈, 시클로헥실아민, 퀴놀린, 포름아미드 및 N,N-디메틸포름아미드로 이루어진 군에서 1 또는 2 이상이 선택된다.
본 명세서에 있어서, 상기 황 화합물이란, 황을 포함하는 화합물 중, 전자 공여물질이나 전자 수용물질이 녹거나 반응하지 않는 용매를 의미한다
또 하나의 실시상태에 있어서, 상기 황화합물 비용매는 카본 디설파이드, 디메틸설폭사이드 및 에탄티올로 이루어진 군에서 1 또는 2 이상이 선택된다.
또 하나의 실시상태에 있어서, 상기 알코올계 비용매는 메탄올, 에탄올, 알릴 알코올, 1-프로판올, 2-프로판올, 1- 부탄올, 2-부탄올, 이소부탄올, 벤질알콜, 시클로헥산올, 디아세톤알코올, 에틸렌 글리콜 모노에틸 에테르, 디에틸렌 글리콜 모노에틸 에테르, 디에틸렌 글리콜 모노에틸 에테르, 에틸렌 글리콜 모노부틸 에테르, 디에틸렌 글리콜 모노부틸 에테르 및 1-데칸올로 이루어진 군에서 1 또는 2 이상이 선택된다.
상기 알코올계 비용매를 사용하는 경우, 광 활성층과 전극 사이에 다이폴이 형성되어 정공 추출(hole extraction)의 장벽이 낮아져 전압 밀도가 높아지는 이점이 있다. 또한, 수용성 버퍼 물질 등을 녹여, 비용매 팽윤 방법을 이용하는 경우, 비용매 처리 및 버퍼층 형성을 동시에 할 수 있어, 공정의 시간 및 비용상 이점이 있다.
하나의 실시상태에 있어서, 상기 산 비용매는 포름산, 아세트산, 벤젠 산, 올레산, 스테아린산으로 이루어진 군에서 1 또는 2 이상이 선택된다.
상기 산 비용매를 사용하는 경우, 전자 공여물질에 이온화가 진행되어 계면 전하 수집 장벽을 낮추어 전류 밀도가 증가하거나 추후 수용성 버퍼 물질을 도포할 경우 젖음성이 증가하여 코팅에 유리한 이점이 있다.
하나의 실시상태에 있어서, 상기 페놀계 비용매는 페놀, 레솔시놀, m-크레졸 및 메틸살리실레이트로 이루어진 군에서 1 또는 2 이상이 선택된다.
하나의 실시상태에 있어서, 상기 폴리올계 비용매는 에틸렌 글리콜, 글리세롤, 프로필렌 글리콜, 디에틸렌 글리콜, 트리에틸렌글리콜 및 디프로필렌글리콜로 이루어진 군에서 1 또는 2 이상이 선택된다.
본 명세서의 일 실시상태에 있어서, 상기 비용매는 질소 화합물 비용매이다.
본 명세서의 일 실시상태에 있어서, 상기 비용매는 아세토니트릴이다.
본 명세서의 일 실시상태에 있어서, 상기 비용매는 물이다.
또 하나의 실시상태에 있어서, 상기 비용매는 알칸계 비용매이다.
또 하나의 실시상태에 있어서, 상기 비용매는 할로하이드로카본계 비용매이다.
하나의 실시상태에 있어서, 상기 비용매는 에테르계 비용매이다.
또 하나의 실시상태에 있어서, 상기 비용매는 케톤계 비용매이다.
또 하나의 실시상태에 있어서, 상기 비용매는 에스테르계 비용매이다.
또 하나의 실시상태에 있어서, 상기 비용매는 황 화합물비용매이다.
또 하나의 실시상태에 있어서, 상기 비용매는 산 비용매이다.
또 하나의 실시상태에 있어서, 상기 비용매는 알코올계 비용매이다.
또 하나의 실시상태에 있어서, 상기 비용매는 페놀계 비용매이다.
또 하나의 실시상태에 있어서, 상기 비용매는 폴리올계 비용매이다.
하나의 실시상태에 있어서, 상기 비용매는 알칸계, 에테르계, 알코올계 및 산으로 이루어진 군에서 1 또는 2 이상이 선택된다.
본 명세서의 일 실시상태에 있어서, 상기 열처리의 온도는 전자 공여물질의 유리 전이온도 (Tg)이상 열분해 온도 이하이다.
상기 열처리 온도가 전자 공여물질의 유리전이온도 이하인 경우, 전자 공여물질의 자가 조직화(self organization) 현상이 잘 일어나지 않을 수 있고, 상기 열처리 온도가 전자 공여물질의 열분해 온도 이상인 경우, 전자 공여물질이 파괴되어 광전류 생성 특성이 저하될 수 있다.
상기의 열처리는 비용매 팽윤 방법(non-solvent swelling method)으로 인한 효과에 시너지 효과를 주어 분자 구조를 더욱 정렬하게 되어 컨쥬게이션 길이 및 광학적 특성을 상승시킨다. 또한, 제조 공정이 비교적 간단하여 공정상 시간 및 경제적으로 유리한 이점이 있다.
본 명세서의 일 실시상태에 있어서, 상기 열처리 시간은 0분 내지 5시간이다. 또 하나의 실시상태에 있어서, 상기 열처리 시간은 10분 내지 3시간이다. 또 하나의 실시상태에 있어서, 상기 열처리 시간은 30분 내지 45분이다. 상기 시간은 자가 조직화(self organization) 정도에 따라서 조절할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 전자 수용물질은 플러렌 유도체 또는 비플러렌 유도체이다.
하나의 실시상태에 있어서, 상기 플러렌 유도체는 C60 플러렌 유도체 또는 C70 플러레 유도체이다.
하나의 실시상태에 있어서, 상기 C60 플러렌 유도체 또는 C70 플러렌 유도체는 각각 독립적으로 수소; 중수소; 할로겐기; 니트릴기; 니트로기; 이미드기; 아미드기; 히드록시기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 아릴옥시기; 치환 또는 비치환된 알킬티옥시기; 치환 또는 비치환된 아릴티옥시기; 치환 또는 비치환된 알킬술폭시기; 치환 또는 비치환된 아릴술폭시기; 치환 또는 비치환된 알케닐기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 붕소기; 치환 또는 비치환된 알킬아민기; 치환 또는 비치환된 아랄킬아민기; 치환 또는 비치환된 아릴아민기; 치환 또는 비치환된 헤테로아릴아민기; 치환 또는 비치환된 아릴기; 치환 또는 비치환된 플루오레닐기; 치환 또는 비치환된 카바졸기; 및 N, O, S 원자 중 1개 이상을 포함하는 치환 또는 비치환된 헤테로고리기로 이루어진 군으로부터 선택되거나, 인접한 2개의 치환기는 축합고리를 형성할 수 있는 치환기로 추가로 치환될 수 있다.
또 하나의 실시상태에 있어서, 상기 플러렌 유도체는 C76 플러렌 유도체, C78 플러렌 유도체, C84 플러렌 유도체 및 C90 플러렌 유도체로 이루어진 군에서 선택된다.
하나의 실시상태에 있어서, 상기 C76 플러렌 유도체, C78 플러렌 유도체, C84 플러렌 유도체 및 C90 플러렌 유도체는 각각 독립적으로 수소; 중수소; 할로겐기; 니트릴기; 니트로기; 이미드기; 아미드기; 히드록시기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 아릴옥시기; 치환 또는 비치환된 알킬티옥시기; 치환 또는 비치환된 아릴티옥시기; 치환 또는 비치환된 알킬술폭시기; 치환 또는 비치환된 아릴술폭시기; 치환 또는 비치환된 알케닐기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 붕소기; 치환 또는 비치환된 알킬아민기; 치환 또는 비치환된 아랄킬아민기; 치환 또는 비치환된 아릴아민기; 치환 또는 비치환된 헤테로아릴아민기; 치환 또는 비치환된 아릴기; 치환 또는 비치환된 플루오레닐기; 치환 또는 비치환된 카바졸기; 및 N, O, S 원자 중 1개 이상을 포함하는 치환 또는 비치환된 헤테로고리기로 이루어진 군으로부터 선택되거나, 인접한 2개의 치환기는 축합고리를 형성할 수 있는 치환기로 추가로 치환될 수 있다.
상기 플러렌 유도체는 비 플러렌유도체에 비하여, 전자-정공 쌍(exciton, electron- hole pair)을 분리하는 능력과 전하 이동도가 우수해 효율 특성에 유리하다.
또 하나의 실시상태에 있어서, 상기 비플러렌 유도체는 LUMO 에너지 준위가 -2.0 내지 -6.0 eV이다. 또 하나의 실시상태에 있어서, 상기 비플러렌 유도체는 LUMO 에너지 준위가 -2.5 내지 -5.0 eV이다. 또 하나의 실시상태에 있어서, 상기 비플러렌 유도체는 LUMO 에너지 준위는 -3.5 내지 -4.5 eV이다.
LUMO 에너지 준위가 상기 범위 내에서 전자의 주입이 쉽게 일어날 수 있어, 유기 태양 전지의 효율이 상승되는 이점이 있다.
특히, 상기 비플러렌 유도체의 LUMO 에너지 준위가 -3.5 내지 -4.5 eV인 경우, 전자 공여물질의 HOMO 에너지 준위와의 차이를 최대한으로 하면서 전하 분리가 가능하여, 높은 개방전압 및 전류 밀도를 형성할 수 있는 이점이 있다.
또한, 본 명세서의 일 실시상태에 있어서, 상기 비플러렌 유도체는 구형이 아닌 단분자 또는 고분자이다.
본 명세서의 일 실시상태에 있어서, 상기 전자 공여물질은 적어도 한 종의 전자 공여체; 또는 적어도 한 종의 전자수용체와 적어도 한 종의 전자 공여체의 중합체를 포함한다.
본 명세서의 일 실시상태에 있어서, 상기 전자 공여물질은 적어도 한 종의 전자 공여체를 포함한다.
또 하나의 실시상태에 있어서, 상기 전자 공여물질은 적어도 한 종의 전자 수용체와 적어도 한 종의 전자 공여체의 중합체를 포함한다.
본 명세서의 실시상태에 있어서, 상기 전자 공여체는 하기 화학식으로 이루어지는 군에서 1 또는 2 이상을 포함한다.
Figure PCTKR2012007932-appb-I000001
상기 화학식에 있어서,
a는 0 내지 4의 정수이고,
b는 0 내지 6의 정수이며,
c는 0 내지 8의 정수이고,
d 및 e는 각각 0 내지 3의 정수이며,
R2 및 R3는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 니트릴기; 니트로기; 이미드기; 아미드기; 히드록시기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 아릴옥시기; 치환 또는 비치환된 알킬티옥시기; 치환 또는 비치환된 아릴티옥시기; 치환 또는 비치환된 알킬술폭시기; 치환 또는 비치환된 아릴술폭시기; 치환 또는 비치환된 알케닐기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 붕소기; 치환 또는 비치환된 알킬아민기; 치환 또는 비치환된 아랄킬아민기; 치환 또는 비치환된 아릴아민기; 치환 또는 비치환된 헤테로아릴아민기; 치환 또는 비치환된 아릴기; 치환 또는 비치환된 플루오레닐기; 치환 또는 비치환된 카바졸기; 및 N, O, S 원자 중 1개 이상을 포함하는 치환 또는 비치환된 헤테로고리기로 이루어진 군으로부터 선택되거나, 인접한 2개의 치환기는 축합고리를 형성할 수 있고,
X1 내지 X3는 서로 동일하거나 상이하고, 각각 독립적으로, CRR', NR, O, SiRR', PR, S, GeRR', Se 및 Te로 이루어진 군에서 선택되며, Y1 및 Y2는 서로 동일하거나 상이하고, 각각 독립적으로 CR, N, SiR, P 및 GeR로 이루어진 군에서 선택되며,
상기 R 및 R'는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 니트릴기; 니트로기; 이미드기; 아미드기; 히드록시기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 아릴옥시기; 치환 또는 비치환된 알킬티옥시기; 치환 또는 비치환된 아릴티옥시기; 치환 또는 비치환된 알킬술폭시기; 치환 또는 비치환된 아릴술폭시기; 치환 또는 비치환된 알케닐기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 붕소기; 치환 또는 비치환된 알킬아민기; 치환 또는 비치환된 아랄킬아민기; 치환 또는 비치환된 아릴아민기; 치환 또는 비치환된 헤테로아릴아민기; 치환 또는 비치환된 아릴기; 치환 또는 비치환된 플루오레닐기; 치환 또는 비치환된 카바졸기; 및 N, O, S 원자 중 1개 이상을 포함하는 치환 또는 비치환된 헤테로고리기로 이루어진 군으로부터 선택되거나, 인접한 2개의 치환기는 축합고리를 형성할 수 있다.
또 하나의 실시상태에 있어서, 상기 전자 수용체는 하기 화학식으로 이루어지는 군에서 1 또는 2 이상을 포함한다.
Figure PCTKR2012007932-appb-I000002
상기 화학식에 있어서,
R2 내지 R5는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 니트릴기; 니트로기; 이미드기; 아미드기; 히드록시기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 아릴옥시기; 치환 또는 비치환된 알킬티옥시기; 치환 또는 비치환된 아릴티옥시기; 치환 또는 비치환된 알킬술폭시기; 치환 또는 비치환된 아릴술폭시기; 치환 또는 비치환된 알케닐기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 붕소기; 치환 또는 비치환된 알킬아민기; 치환 또는 비치환된 아랄킬아민기; 치환 또는 비치환된 아릴아민기; 치환 또는 비치환된 헤테로아릴아민기; 치환 또는 비치환된 아릴기; 치환 또는 비치환된 플루오레닐기; 치환 또는 비치환된 카바졸기; 및 N, O, S 원자 중 1개 이상을 포함하는 치환 또는 비치환된 헤테로고리기로 이루어진 군으로부터 선택되거나, 인접한 2개의 치환기는 축합고리를 형성할 수 있고,
X1 및 X2는 서로 동일하거나 상이하고, 각각 독립적으로, CRR', NR, O, SiRR', PR, S, GeRR', Se 및 Te로 이루어진 군에서 선택되며, Y1 내지 Y4는 서로 동일하거나 상이하고, 각각 독립적으로 CR, N, SiR, P 및 GeR로 이루어진 군에서 선택되며,
R 및 R'는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 니트릴기; 니트로기; 이미드기; 아미드기; 히드록시기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 아릴옥시기; 치환 또는 비치환된 알킬티옥시기; 치환 또는 비치환된 아릴티옥시기; 치환 또는 비치환된 알킬술폭시기; 치환 또는 비치환된 아릴술폭시기; 치환 또는 비치환된 알케닐기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 붕소기; 치환 또는 비치환된 알킬아민기; 치환 또는 비치환된 아랄킬아민기; 치환 또는 비치환된 아릴아민기; 치환 또는 비치환된 헤테로아릴아민기; 치환 또는 비치환된 아릴기; 치환 또는 비치환된 플루오레닐기; 치환 또는 비치환된 카바졸기; 및 N, O, S 원자 중 1개 이상을 포함하는 치환 또는 비치환된 헤테로고리기로 이루어진 군으로부터 선택되거나, 인접한 2개의 치환기는 축합고리를 형성할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 전자 수용물질은 플러렌 유도체이다. 또 하나의 실시상태에 있어서, 상기 전자 수용물질은 C60의 플러렌 유도체이다.
본 명세서의 일 실시상태에 있어서, 상기 전자 수용물질은 [6,6]-페닐 C-부티릭산 메틸 에스테르(PCBM)이다.
본 명세서의 일 실시상태에 있어서, 상기 전자 공여물질은
Figure PCTKR2012007932-appb-I000003
이다. 이 경우, X1은 S이다.
또 하나의 실시상태에 있어서, 상기 전자 공여물질은 폴리(3-헥실티오펜)(P3HT)이다.
하나의 실시상태에 있어서, 상기 전자 수용물질은 [6,6]-페닐 C-부티릭산 메틸 에스테르(PCBM)이고, 상기 전자 공여물질은 폴리(3-헥실티오펜)(P3HT)이다.
또 하나의 실시상태에 있어서, 상기 비용매는 아세토니트릴이고, 상기 전자 수용물질은 [6,6]-페닐 C-부티릭산 메틸 에스테르(PCBM)이고, 상기 전자 공여물질은 폴리(3-헥실티오펜)(P3HT)이다.
또 하나의 실시상태에 있어서, 상기 비용매는 아세토니트릴이고, 상기 전자 수용물질은 [6,6]-페닐 C-부티릭산 메틸 에스테르(PCBM)이고, 상기 전자 공여물질은 폴리(3-헥실티오펜)(P3HT)이며, 상기 열처리 온도는 상기 공여 물질의 유리 전이 온도 이상, 열분해 온도 이하이다.
본 명세서에 있어서, 상기 광 활성층은 전자 수용물질 및 전자 공여물질을 포함한다.
또한, 상기 광 활성층의 전자 수용물질 및 전자 공여물질이 벌크헤테로 정션(BHJ)을 형성할 수 있다. 본 명세서의 일 실시상태에 있어서, 상기 전자 수용물질 및 상기 전자 공여물질은 1:10 내지 10:1의 비율(w/w)로 혼합된다. 또 하나의 실시상태에 있어서, 1:7 내지 2:1의 중량비로 혼합된다. 또 하나의 실시상태에 있어서, 상기 전자 수용물질 및 상기 전자 공여물질은 1:4 내지 5:3의 중량비로 혼합된다. 또 하나의 실시상태에 있어서, 상기 전자 수용물질 및 상기 전자 공여물질은 1:0.4 내지 1:4의 중량비로 혼합된다.
상기 전자 수용물질이 0.4 중량비 미만으로 배합되면, 결정화된 전자 수용물질의 함량이 부족하여 생성된 전자의 이동에 장애가 발생하고, 10 중량비를 초과하면, 광을 흡수하는 전자 공여물질의 양이 상대적으로 줄어들어 광의 효율적인 흡수가 이루어지지 않는 문제가 있다.
또 하나의 실시상태에 있어서, 상기 유기 태양 전지는 FT-IR의 흡수 스펙트럼의 반대칭(antisymmetric) 값과 대칭(symmetric)값의 비율(Ic=c/Ic-c)이 상기 전자 수용물질 및 전자 공여물질의 고유의 값에 비하여 110 내지 150% 상승하는 유기 태양 전지를 제공한다.
또 하나의 실시상태에 있어서, 상기 유기 태양 전지의 효율은 비용매로 팽윤되기 전의 전자 수용물질 및 전자 공여물질을 포함하는 경우에 비하여 110 내지 200% 상승하는 유기 태양 전지를 제공한다.
또 하나의 실시상태에 있어서, 상기 전자 수용물질 및 전자 공여물질은 비용매로 팽윤되기 전, 동시 또는 이후에 열처리 된다. 이 경우, 상기 유기 태양 전지의 효율은 비용매로 팽윤되고, 열처리 되기 전의 전자 수용물질 및 전자 공여물질을 포함하는 경우에 비하여 110 내지 150% 상승하는 유기 태양 전지를 제공한다.
도 1은 본 명세서의 일 실시상태에 따른 광 활성층의 제조 방법을 예시한 도이다.
도 2는 실시예 1 및 비교예 1 내지 3의 J-V 곡선을 나타낸 도이다. 도 2를 보면, 비용매 팽윤 방법(non-solvent swelling method)이나 열처리만 실시한 경우보다, 비용매 팽윤 방법(non-solvent swelling method)과 열처리를 같이 하는 경우, 유기 태양 전지의 효율이 상승함을 알 수 있다.
도 3는 실시예 1 및 비교예 1 내지 3의 흡수 스펙트럼을 나타낸 도이다. 도 3에서 보는 바와 같이, 비용매 팽윤 방법(non-solvent swelling method)이나 열처리만 실시한 경우보다, 비용매 팽윤 방법(non-solvent swelling method)과 열처리를 같이 하는 경우, 높은 광 흡수율을 제공한다. 이는 컨쥬게이션 길이의 상승에 따른 효과이다.
도 4는 실시예 1 및 비교예 1 내지 3의 X선 회절(X-ray Diffraction)을 나타낸 그래프이다. 도 4에서 보는 바와 같이, 비용매 팽윤 방법(non-solvent swelling method)과 열처리를 같이 하는 경우, 광 활성층의 모폴로지와 결정도(crystallnity)가 향상되는 것을 알 수 있다.
도 5는 비교예 1 내지 3의 FT-IR의 흡수 스펙트럼을 나타낸 그래프이다. 도 5에서는 비용매 팽윤 방법(non-solvent swelling method)나 열처리를 하는 경우, 컨쥬게이션 길이가 길어짐을 확인할 수 있다.
도 6는 실시예 1 및 비교예 1 내지 3의 Auger 전자 분광법(Auger electron spectroscopy)을 나타낸 그래프이다. 도 6에서 보는 바와 같이, 비용매 팽윤 방법(non-solvent swelling method)과 열처리를 같이 하는 경우, 전극의 광 활성층 내로의 침투거리가 증가하는 것을 볼 수 있다. 이 경우, 광 활성층과 전극과의 계면 면적이 넓어지게 되고, 유기 태양 전지의 효율이 상승하게 된다.
도 7은 실시예 1 및 비교예 1 내지 3의 원자력간 현미경 (Atomic Force Microscope, AFM)으로 관찰한 도이다. 도 7에서 보는 바와 같이, 비용매 팽윤 방법(non-solvent swelling method)과 열처리를 같이 하는 경우, 광 활성층 표면의 실효값(Root mean squre, RMS) 값이 증가하게 된다. 광 활성층 표면의 실효값이 증가하게 되면, 광 활성층과 전극과의 접촉 면적이 증가하게 되고, 전자 수집효율이 증가하게 되는 이점이 있다.
상기 치환기들의 예시들은 아래에서 설명하나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 20인 것이 바람직하다. 구체적인 예로는 메틸기, 에틸기, 프로필기, 이소프로필기, 부틸기, t-부틸기, 펜틸기, 헥실기 및 헵틸기 등이 있으나, 이들에 한정되지 않는다.
본 명세서에 있어서, 상기 알케닐기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나, 2 내지 40인 것이 바람직하다. 구체적인 예로는 스틸베닐기(stylbenyl), 스티레닐기(styrenyl)기 등의 아릴기가 치환된 알케닐기가 바람직하나 이들에 한정되지 않는다.
본 명세서에 있어서, 상기 알콕시기는 직쇄, 분지쇄 또는 고리쇄일 수 있다. 알콕시기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 25인 것이 바람직하다. 구체적으로, 메톡시기, 에톡시기, n-프로필옥시기, iso-프로필옥시기, n-부틸옥시기, 시클로펜틸옥시기 등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 시클로알킬기는 특별히 한정되지 않으나, 탄소수 3 내지 60인 것이 바람직하며, 특히 시클로펜틸기, 시클로헥실기가 바람직하다.
본 명세서에 있어서, 할로겐기는 불소, 염소, 브롬 또는 요오드가 될 수 있다.
본 명세서에 있어서, 아릴기는 단환식일 수 있고, 탄소수는 특별히 한정되지 않으나, 탄소수 6 내지 60인 것이 바람직하다. 아릴기의 구체적인 예로는 페닐기, 비페닐기, 트라이페닐기, 터페닐기, 스틸벤기 등의 단환식 방향족 및 나프틸기, 안트라세닐기, 페난트레닐기, 파이레닐기, 페릴레닐기, 테트라세닐기, 크라이세닐기, 플루오레닐기, 아세나프타센닐기, 트리페닐렌기, 플루오란텐(fluoranthene)기 등의 다환식 방향족등이 있으나, 이들에만 한정되는 것은 아니다.
본 명세서에 있어서, 헤테로 고리기는 이종원자로 O, N 또는 S를 포함하는 헤테로 고리기로서, 탄소수는 특별히 한정되지 않으나, 탄소수 2 내지 60인 것이 바람직하다. 헤테로 고리기의 예로는 티오펜기, 퓨란기, 피롤기, 이미다졸기, 티아졸기, 옥사졸기, 옥사디아졸기, 트리아졸기, 피리딜기, 비피리딜기, 트리아진기, 아크리딜기, 피리다진기, 퀴놀리닐기, 이소퀴놀린기, 인돌기, 카바졸기, 벤즈옥사졸기, 벤즈이미다졸기, 벤즈티아졸기, 벤즈카바졸기, 벤즈티오펜기, 디벤조티오펜기, 벤즈퓨라닐기, 페난쓰롤린기(phenanthroline) 및 디벤조퓨라닐기 등이 있으나, 이들에만 한정되는 것은 아니다.
본 명세서에 있어서, 이미드기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 25인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2012007932-appb-I000004
본 명세서에 있어서, 아미드기는 아미드기의 질소가 수소, 탄소수 1 내지 25의 직쇄, 분지쇄 또는 고리쇄 알킬기 또는 탄소수 6 내지 25의 아릴기로 1 또는 2 치환될 수 있다. 구체적으로, 하기 구조식의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2012007932-appb-I000005
본 명세서에 있어서, 에스테르기는 에스테르기의 산소가 탄소수 1 내지 25의 직쇄, 분지쇄 또는 고리쇄 알킬기 또는 탄소수 6 내지 25의 아릴기로 치환될 수 있다. 구체적으로, 하기 구조식의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2012007932-appb-I000006
본 명세서에 있어서 헤테로아릴기는 전술한 헤테로 고리기의 예시 중에서 선택될 수 있다.
본 명세서에 있어서, 플루오레닐기는 2개의 고리 유기화합물이 1개의 원자를 통하여 연결된 구조로서, 예로는
Figure PCTKR2012007932-appb-I000007
등이 있다.
본 명세서에 있어서, 플루오레닐기는 열린 플루오레닐기의 구조를 포함하며, 여기서 열린 플루오레닐기는 2개의 고리 화합물이 1개의 원자를 통하여 연결된 구조에서 한쪽 고리 화합물이 연결이 끊어진 상태의 구조로서, 예로는
Figure PCTKR2012007932-appb-I000008
등이 있다.
본 명세서에 있어서, 아민기는 탄소수는 특별히 한정되지 않으나, 1 내지 30인 것이 바람직하다. 아민기의 구체적인 예로는 메틸아민기, 디메틸아민기, 에틸아민기, 디에틸아민기, 페닐아민기, 나프틸아민기, 비페닐아민기, 안트라세닐아민기, 9-메틸-안트라세닐아민기, 디페닐아민기, 페닐나프틸아민기, 디톨릴아민기, 페닐톨릴아민기, 트리페닐아민기 등이 있으나, 이들에만 한정되는 것은 아니다.
본 명세서에 있어서, 아릴 아민기의 예로는 치환 또는 비치환된 단환식의 디아릴아민기, 치환 또는 비치환된 다환식의 디아릴아민기 또는 치환 또는 비치환된 단환식 및 다환식의 디아릴아민기를 의미한다.
본 명세서에 있어서, 아릴옥시기, 아릴티옥시기, 아릴술폭시기 및 아랄킬아민기중의 아릴기는 전술한 아릴기의 예시와 같다.
본 명세서에 있어서, 알킬티옥시기, 알킬술폭시기, 알킬아민기 및 아랄킬아민기 중의 알킬기는 전술한 알킬기의 예시와 같다.
본 명세서에 있어서, 헤테로아릴아민기 중의 헤테로 아릴기는 전술한 헤테로고리기의 예시 중에서 선택될 수 있다.
본 명세서에 있어서, 아릴렌기, 알케닐렌기, 플루오레닐렌기, 카바졸릴렌기 및 헤테로아일렌기는 각각 아릴기, 알케닐기, 플루오레닐기, 카바졸기의 2가기이다. 이들은 각각 2가기인 것을 제외하고는, 전술한 아릴기, 알케닐기, 플루오레닐기, 카바졸기의 설명이 적용될 수 있다.
또한, 본 명세서에서 "치환 또는 비치환된" 이라는 용어는 중수소; 할로겐기; 알킬기; 알케닐기; 알콕시기; 시클로알킬기; 실릴기; 아릴알케닐기; 아릴기; 아릴옥시기; 알킬티옥시기; 알킬술폭시기; 아릴술폭시기; 붕소기; 알킬아민기; 아랄킬아민기; 아릴아민기; 헤테로아릴기; 카바졸기; 아릴아민기; 아릴기; 플루오레닐기; 니트릴기; 니트로기; 히드록시기 및 N, O, S 원자 중 1개 이상을 포함하는 헤테로 고리기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환되었거나 또는 어떠한 치환기도 갖지 않는 것을 의미한다.
본 명세서의 일 실시상태에 있어서, 상기 광 활성층의 두께는 50 내지 300nm이다. 또 하나의 실시상태에 있어서, 상기 광 활성층의 두께는 100 내지 250nm이다. 또 하나의 실시상태에 있어서, 상기 광 활성층의 두께는 150nm 내지 230nm 이다.
광 활성층 두께가 50nm미만인 경우, 전하의 이동거리가 짧아 필 팩터 값이 증가될 수 있으나, 광 흡수율이 낮아지는 문제가 있고, 300nm을 초과하는 경우, 충분한 광 활성층의 두께로 인하여 전류 밀도는 증가하나 생성된 캐리어의 먼 이동 거리로 인해 낮은 필 팩터 값을 갖게 되는 문제가 있다.
따라서, 상기의 범위 내에서는 전극 등의 계면간의 저항과 벌크에서의 저항이 너무 커지지 않아 필 팩터의 값을 증가시키고, 전류 특성이 우수하고, 충분한 광 활성의 두께로 인하여 생성된 엑시톤의 계면에서의 분리와 캐리어들의 이동길이가 충분한 이점이 있다.
또한, 본 명세서는 제1 전극; 상기 제1 전극과 대향하는 제2 전극; 및 상기 제1 전극과 제2 전극 사이에 구비되고, 광 활성층을 포함하는 유기물층을 포함하고, 상기 광 활성층은 전자 수용물질 및 전자 공여물질을 포함하고, FT-IR의 흡수 스펙트럼의 반대칭(antisymmetric) 값과 대칭(symmetric)값의 비율(Ic=c/Ic-c)이 상기 전자 수용물질 및 전자 공여물질의 고유의 값에 비하여 110 내지 150% 상승한 것인 유기 태양 전지를 제공한다.
상기 전자 수용물질 및 전자 공여물질의 고유의 값이란, 어떠한 처리도 되지 않은 예컨대, 열처리 및/또는 비용매 팽윤 방법(non-solvent swelling method)을 하지 않은 전자 수용물질 및 전자 공유 물질을 포함하는 광 활성층의 FT-IR의 흡수 스펙트럼의 반대칭(antisymmetric) 값과 대칭(symmetric)값의 비율(Ic=c/Ic-c)을 의미한다.
FT-IR의 반대칭(antisymmetric) 값과 대칭(symmetric)값의 비율 즉, Ic=c/Ic-c은 컨쥬게이션 길이의 증가를 의미한다.
본 명세서의 일 실시상태에 있어서, FT-IR의 흡수 스펙트럼의 반대칭(antisymmetric) 값과 대칭(symmetric)값의 비율이 110 내지 150% 상승한다. 또 하나의 실시상태에 있어서, FT-IR의 흡수 스펙트럼의 반대칭(antisymmetric) 값과 대칭(symmetric)값의 비율이 120 내지 140% 상승한다.
본 명세서의 일 실시상태에 있어서, 상기 FT-IR의 흡수 스펙트럼의 반대칭(antisymmetric) 값과 대칭(symmetric)값의 비율이 상기의 범위 내이면, 유기 태양 전지의 모폴로지의 향상과 결정성이 증가하여, 유기 태양 전지의 효율이 증가하게 되는 이점이 있다.
명세서의 일 실시상태에 있어서, 상기 광 활성층의 전자 수용물질 및 전자 공여물질은 비용매로 팽윤된다.
상기 전자 수용물질 및 전자 공여물질은 비용매로 팽윤되기 전, 동시 또는 이후에 열처리된다.
상기 FT-IR의 흡수 스펙트럼의 반대칭(antisymmetric) 값과 대칭(symmetric)값의 비율(Ic=c/Ic-c)이 상기 전자 수용물질 및 전자 공여물질의 고유의 값에 비하여 110 내지 150% 상승하는 유기 태양 전지의 전자 수용물질, 전자 공여물질, 광 활성층에 관한 설명은 전술한 바와 동일하다.
제1 전극; 상기 제1 전극과 대향하는 제2 전극; 및 상기 제1 전극과 제2 전극 사이에 구비되고, 광 활성층을 포함하는 유기물층을 포함하고, 상기 광 활성층은 전자 수용물질 및 전자 공여물질을 포함하며, 상기 전자 수용물질 및 전자 공여물질은 비용매로 팽윤되고, 상기 유기 태양 전지의 효율이 비용매로 팽윤되기 전의 전자 수용물질 및 전자 공여물질을 포함하는 경우에 비하여 110 내지 200%상승한 것인 유기 태양 전지를 제공한다.
상기 전자 수용물질 및 전자 공여물질은 비용매로 팽윤되기 전, 동시 또는 이후에 열처리 된다.
상기 유기 태양 전지의 효율이 비용매로 팽윤되기 전의 전자 수용물질 및 전자 공여물질을 포함하는 경우에 비하여 110 내지 200%상승한 것인 유기 태양 전지의 전자 수용물질, 전자 공여물질, 광 활성층, 비용매 및 열처리에 관한 설명은 전술한 바와 동일하다.
본 명세서의 일 실시상태에 있어서, 전자 수용물질 및 전자 공여물질을 포함하는 광 활성층에 있어서, 상기 전자 수용물질 및 전자 공여물질은 비용매로 팽윤된 것인 광 활성층을 제공한다.
상기 전자 수용물질 및 전자 공여물질은 비용매로 팽윤되기 전, 동시 또는 이후에 열처리 된다.
상기 광 활성층의 전자 수용물질 및 전자 공여물질, 비용매 및 열처리에 관한 설명은 전술한 바와 동일하다.
또한, 본 명세서는 전자 수용물질 및 전자 공여물질을 포함하는 광 활성층에 있어서, FT-IR의 흡수 스펙트럼의 반대칭(antisymmetric) 값과 대칭(symmetric)값의 비율(Ic=c/Ic-c)이 상기 전자 수용물질 및 전자 공여물질의 고유의 값에 비하여 110 내지 150% 상승한 것 인 광 활성층을 제공한다.
상기 광 활성층의 전자 수용물질 및 전자 공여물질은 비용매로 팽윤된다.
또한, 상기 광 활성층의 전자 수용물질 및 전자 공여물질은 비용매로 팽윤 되기 전, 동시 또는 이후에 열처리 된다.
또한, 상기 광 활성층의 전자 수용물질 및 전자 공여물질, 비용매 및 열처리에 관한 설명은 전술한 바와 동일하다.
본 명세서의 일 실시상태에 있어서, 상기 광 활성층의 최대 흡수 파장은 500 내지 600nm이다.
또한, 본 명세서의 일 실시상태에 있어서, 상기 유기 태양 전지는 제1 전극, 광 활성층 및 제2 전극을 포함한다.
또 하나의 실시상태에 있어서, 상기 유기 태양 전지는 기판, 정공수송층 및/또는 전자수송층이 더 포함될 수 있다.
또한, 본 명세서의 일 실시상태에 있어서, 상기 광 활성층과 제1 전극 사이에는 버퍼층이 더 도입될 수 있다.
또 하나의 실시상태에 있어서, 광 활성층과 제2 전극 사이에는 전자전달층, 정공저지층 또는 옵티컬 스페이스(optical space)층이 더 도입된다.
본 명세서의 일 실시상태에 있어서, 제1 전극은 애노드 전극일 수도 있고, 캐소드 전극일 수 있다. 또한, 제 2 전극은 캐소드 전극일 수 있고, 애노드 전극일 수 있다.
본 명세서의 일 실시상태에 있어서, 유기 태양 전지는 애노드 전극, 광 활성층 및 캐소드 전극 순으로 배열될 수도 있고, 캐소드 전극, 광 활성층 및 애노드 전극 순으로 배열될 수도 있으나, 이에 한정되지 않는다.
또 하나의 실시상태에 있어서, 상기 유기 태양 전지는 애노드 전극, 정공수송층, 광 활성층, 전자수송층 및 캐소드 전극 순으로 배열될 수도 있고, 캐소드 전극, 전자수송층, 광 활성층, 정공수송층 및 애노드 전극 순으로 배열될 수도 있으나, 이에 한정되지 않는다.
또 하나의 실시상태에 있어서, 상기 유기 태양 전지는 애노드 전극, 버퍼층, 광 활성층, 캐소드 전극 순으로 배열될 수도 있다.
본 명세서에 있어서, 상기 버퍼층은 계면 사이의 에너지 밴드갭 차이를 줄여, 유기 태양 전지의 효율을 상승시키는 역할을 한다.
상기 버퍼층은 PEDOT:PSS, 산화 몰리브덴(MoO3), 산화 텅스텐(WO3) 및 산화 아연 (ZnO)으로 이루어진 군에서 선택된다.
하나의 실시상태에 있어서, 상기 버퍼층의 두께는 1 내지 60nm 이다. 또 하나의 실시상태에 있어서, 상기 버퍼층의 두께는 10 내지 50nm 이다. 또 하나의 실시상태에 있어서, 상기 버퍼층의 두께는 30 내지 45nm이다.
상기의 범위내에서의 버퍼층은 광투과도를 향상시키고, 태양 전지의 직렬 저항을 낮추고, 다른 층의 계면 성질을 향상시켜 효율 높은 태양 전지를 제조 할 수 있는 이점이 있다.
상기 기판은 투명성, 표면평활성, 취급용이성 및 방수성이 우수한 유리기판 또는 투명 플라스틱 기판이 될 수 있으나, 이에 한정되지 않으며, 유기 태양 전지에 통상적으로 사용되는 기판이면 제한되지 않는다. 구체적으로 유리 또는 PET(polyethylene terephthalate), PEN(polyethylene naphthalate), PP(polypropylene), PI(polyimide), TAC(triacetyl cellulose) 등이 있으나. 이에 한정되는 것은 아니다.
상기 제1 전극은 투명하고 전도성이 우수한 물질이 될 수 있으나, 이에 한정되지 않는다. 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물(ITO), 인듐아연 산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SNO2 : Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDOT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 제2 전극은 일함수가 작은 금속이 될 수 있으나, 이에 한정되지 않는다. 구체적으로 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al, LiO2/Al, LiF/Fe, Al:Li, Al:BaF2, Al:BaF2:Ba와 같은 다층 구조의 물질이 될 수 있으나, 이에 한정되는 것은 아니다.
상기 정공수송층 및/또는 전자수송층 물질은 전자와 정공을 광 활성층으로 효율적으로 전달시킴으로써, 생성되는 전하가 전극으로 이동되는 확률을 높이는 물질이 될 수 있으나, 특별히 제한되지는 않는다.
상기 정공수송층 물질은 PEDOT:PSS(Poly(3,4-ethylenediocythiophene) doped with poly(styrenesulfonic acid)), N, N'-비스(3-메틸페닐)-N,N'-디페닐-[1,1'-비페닐]-4,4'-디아민(TPD)가 될 수 있다. 상기 전자수송층 물질은 알루미늄트리하이드록시퀴놀리(Alq3), 1,3,4-옥사다이아졸 유도체인 PBD(2-(4-bipheyl)-5-phenyl-1,3,4-oxadiazole), 퀴녹살린 유도체인 TPQ(1,3,4-tris[(3-phenyl-6-trifluoromethyl)qunoxaline-2-yl]benzene) 및 트리아졸 유도체 등이 될 수 있다.
상기 전자 수송 물질로는 음극으로부터 전자를 잘 주입 받아 광 활성층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 8-히드록시퀴놀린의 Al착물; Alq3를 포함한 착물; 유기 라디칼 화합물; 히드록시플라본-금속 착물 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 정공 주입 물질로는 낮은 전압에서 양극으로부터 정공을 잘 주입 받을 수 있는 물질로서, 정공 주입 물질의 HOMO(highest occupied molecular orbital)가 양극 물질의 일함수와 주변 유기물층의 HOMO 사이인 것이 바람직하다. 정공 주입 물질의 구체적인 예로는 금속 포피린(porphyrin), 올리고티오펜, 아릴아민 계열의 유기물, 헥사니트릴헥사아자트리페닐렌 계열의 유기물, 퀴나크리돈(quinacridone)계열의 유기물, 페릴렌(perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이들에만 한정 되는 것은 아니다.
본 명세서의 유기 태양 전지는 광 활성층을 비용매로 팽윤 처리하거나, 비용매로 팽윤처리와 열처리를 함께 하는 것을 제외하고는 당 기술분야에 알려져 있는 재료와 방법으로 제조될 수 있다.
본 명세서는 기판을 준비하는 단계;
상기 기판의 일 영역에 제1 전극을 형성하는 단계;
상기 제1 전극 상부에 광 활성층을 포함하는 유기물층을 형성하는 단계;
상기 광 활성층을 비용매로 표면처리를 하는 단계; 및
상기 유기물층에 제2 전극을 형성하는 단계를 포함하는 유기 태양 전지의 제조방법을 제공한다.
상기 광 활성층을 비용매로 표면 처리를 하는 단계 전, 동시 또는 이후에 열처리를 하는 단계를 더 포함한다.
본 명세서의 유기 태양 전지는 예컨대 기판 상에 제1 전극, 광 활성층을 포함하는 유기물층 및 제2 전극을 순차적으로 적층시킴으로써 제조할 수 있다. 이 때 그라비아 인쇄, 오프셋 인쇄, 스크린 프린팅, 잉크젯, 스핀 코팅, 스프레이 코팅 등의 습식법으로 코팅될 수 있으나, 이들 방법에만 한정되는 것은 아니다.
하나의 실시상태에 있어서, 상기 광 활성층은 전자 수용물질 및 전자 공여물질을 포함한다.
상기 전자 수용물질, 전자 공여물질, 비용매, 광 활성층, 비용매 팽윤 방법(non-solvent swelling method) 및 열처리에 관한 설명은 전술한 바와 동일하다.
또 하나의 실시상태에 있어서, 상기 광 활성층은 폴리(3-헥실티오펜)(P3HT)과 [6,6]-페닐 C-부티릭산 메틸 에스테르(PCBM)의 혼합 용액으로부터 형성된다.
또 하나의 실시상태에 있어서, 상기 열처리를 하는 단계 후, 상기 제2 전극을 형성하는 단계 전에 유기물층을 형성하는 단계를 더 포함한다.
상기 유기물층은 정공수송층, 정공 주입층, 전자 수송층, 전자 주입층, 버퍼층 등이 있으며, 이에 한정되지 않는다.
또 하나의 실시상태에 있어서, 상기 제1 전극을 형성하는 단계 후, 상기 광 활성층을 형성하는 단계 전에 유기물층을 형성하는 단계를 더 포함한다.
또 하나의 실시상태에 있어서, 상기 제1 전극을 형성하는 단계 후, 상기 광 활성층을 형성하는 단계 전에 버퍼층을 형성하는 단계를 더 포함한다.
또 하나의 실시상태에 있어서, 상기 광 활성층을 비용매로 표면처리를 하는 단계는 스핀 코팅 또는 드롭 코팅이다.
상기 비용매 팽윤 방법과 열처리를 한 광 활성층을 포함한 유기 태양 전지의 제조는 이하의 실시예에서 구체적으로 설명한다. 그러나, 하기 실시예는 본 명세서를 예시하기 위한 것이며, 본 명세서의 범위가 이들에 의하여 한정되는 것은 아니다.
유기 태양 전지의 제조 및 특성 측정
실시예 1. 비용매 팽윤 방법 및 열처리를 한 유기 태양 전지의 제조
유기 태양 전지는 ITO/PEDOT:PSS/광 활성층(P3HT:PCBM)/Al의 구조로 하였다. ITO가 코팅된 유리 기판은 증류수, 아세톤, 2-프로판올을 이용하여 초음파 세척하고, ITO 표면을 10분 동안 오존 처리한 후 40nm의 두께로 PEDOT:PSS(Clavios P)를 스핀코팅하여 200℃에서 5분 동안 열처리하였다. 광 활성층의 코팅을 위해서는 P3HT:PCBM을 1:0.6 비율로 혼합물을 형성하고, 220nm 두께로 스핀코팅 하여 광 활성층을 형성하였다. 80μl의 아세토니트릴(acetonitrile)을 10분 간격으로 광 활성층에 도포하고, 5000rpm으로 스핀코팅을 하여 비용매 팽윤 방법으로 처리하였다. 3x10-6torr 진공 하에서 열 증발기(thermal evaporator)를 이용하여 150nm 두께로 Al을 증착하였다. 또한, 150℃에서 30분간 열처리하였다.
비교예 1.
상기 실시예 1과는 달리 비용매 팽윤 방법 및 열처리를 적용하지 않은 것을 제외하고는 실시예 1과 동일하게 실시하였다.
비교예 2.
상기 실시예 1과는 달리 열처리를 적용하지 않은 것을 제외하고는 실시예 1과 동일하게 실시하였다.
비교예 3.
상기 실시예 1과는 달리 비용매 팽윤 방법을 적용하지 않은 것을 제외하고는 실시예 1과 동일하게 실시하였다.
상기 실시예1 및 비교예 1 내지 3과 같이 제조된 유기 태양 전지의 광전변환특성을 100mW/cm2(AM 1.5) 조건에서 측정하고, 하기 표 1에 그 결과를 나타내었다.
[표 1] 유기 태양 전지의 특성 1
Figure PCTKR2012007932-appb-I000009
도 2는 유기 태양 전지 전류-전압 곡선을 나타낸 그래프이다.
상기 표 1의 결과와 같이, 비용매 팽윤 방법 및 열처리를 모두 적용한 실시예 1은 비용매 팽윤 방법 및 열처리를 모두 적용하지 않거나, 두 가지 방법 중 어느 하나만 적용한 비교예 1 내지 4에 비하여 효율이 향상됨을 알 수 있다.
상기 표 1의 결과와 같이, 비용매 팽윤 방법 및 열처리는 단락 전류 밀도와 필 팩터에 영향을 주면서, 에너지 변환 효율에 영향을 주는 것을 알 수 있다.

Claims (52)

  1. 제1 전극;
    상기 제1 전극과 대향하는 제2 전극; 및
    상기 제1 전극과 제2 전극 사이에 구비되고, 광 활성층을 포함하는 유기물층을 포함하고,
    상기 광 활성층은 전자 수용물질 및 전자 공여물질을 포함하고,
    상기 전자 수용물질 및 전자 공여물질은 비용매로 팽윤된 것인 유기 태양 전지.
  2. 청구항 1에 있어서,
    상기 전자 수용물질 및 전자 공여물질은 비용매로 팽윤되기 전, 동시 또는 이후에 열처리 된 것인 유기 태양 전지.
  3. 청구항 1에 있어서,
    상기 비용매는 광 활성층 상에 1분 내지 60분 동안 도포시, 광 활성층 내부로의 비용매의 침투거리가 광 활성층 두께의 5% 이상 50% 미만인 것인 유기 태양 전지.
  4. 청구항 1에 있어서,
    상기 비용매는 물, 알칸계, 할로하이드로카본계, 에테르계, 케톤계, 에스테르계, 질소 화합물, 황 화합물, 산, 알코올계, 페놀계 및 폴리올계로 이루어진 군에서 1 또는 2 이상이 선택되는 것인 유기 태양 전지.
  5. 청구항 4에 있어서,
    상기 알칸계 비용매는 n-부탄, n-펜탄, n-헥산, n-옥탄, 이소옥탄, n-도데칸, 디클로로메탄, 시클로헥산 및 메틸시클로 헥산으로 이루어진 군에서 1 또는 1이상이 선택되는 것인 유기 태양 전지.
  6. 청구항 4에 있어서,
    상기 할로하이드로카본계 비용매는 클로로 메탄, 디클로로메탄, 메틸렌클로라이드, 1,1-디클로로에틸렌, 에틸렌디클로라이드, 크롤로포름, 1,1-디클로로에탄, 트리클로로에틸렌, 카본 테트라클로라이드, 클로로벤젠, o-디클로로벤젠 및 1,1,2-트리클로로트리플루오란텐으로 이루어진 군에서 1 또는 2 이상이 선택되는 것인 유기 태양 전지.
  7. 청구항 4에 있어서,
    상기 에테르계 비용매는 테트라하이드로퓨란, 1,4-디옥산, 디에틸에테르 및 디벤질에테르으로 이루어진 군에서 1 또는 2 이상이 선택되는 것인 유기 태양 전지.
  8. 청구항 4에 있어서,
    상기 케톤계 비용매는 아세톤, 메틸에틸케톤, 시클로헥사논, 디에틸케톤, 아세토페논, 메틸이소부틸케톤, 메틸이소아밀케톤, 이소포론 및 디-(이소부틸)케톤으로 이루어진 군에서 1 또는 2 이상이 선택되는 것인 유기 태양 전지.
  9. 청구항 4에 있어서,
    상기 에스테르계 비용매는 에틸렌 카보네이트, 메틸 아세테이트, 에틸포메이트, 프로필렌-1,2-카보네이트, 에틸 아세테이트, 디에틸카보네이트, 디에틸설페이트, n-부틸아세테이트, 이소부틸 아세테이트, 2-에톡시에틸 아세테이트, 이소아밀아세테이트 및 이소부틸이소부틸에이트로 이루어진 군에서 1 또는 2 이상이 선택되는 것인 유기 태양 전지.
  10. 청구항 4에 있어서,
    상기 질소 화합물 비용매는 아세토니트릴, 프로피오니트릴, 니트로메탄, 니트로에탄, 2-니트로프로판, 니트로벤젠, 에타놀아민, 에틸렌 디엠 미(ethylene diem me), 피리딘, 모폴린, 아날린, N-메틸-2-피롤리돈, 시클로헥실아민, 퀴놀린, 포름아미드 및 N,N-디메틸포름아미드로 이루어진 군에서 1 또는 2 이상이 선택되는 것인 유기 태양 전지.
  11. 청구항 4에 있어서,
    상기 황 화합물 비용매는 카본 디설파이드, 디메틸설폭사이드 및 에탄티올로 이루어진 군에서 1 또는 2 이상이 선택되는 것인 유기 태양 전지.
  12. 청구항 4에 있어서,
    상기 알코올계 비용매는 메탄올, 에탄올, 알릴 알코올, 1-프로판올, 2-프로판올, 1- 부탄올, 2-부탄올, 이소부탄올, 벤질알콜, 시클로헥산올, 디아세톤알코올, 에틸렌 글리콜 모노에틸 에테르, 디에틸렌 글리콜 모노에틸 에테르, 디에틸렌 글리콜 모노에틸 에테르, 에틸렌 글리콜 모노부틸 에테르, 디에틸렌 글리콜 모노부틸 에테르 및 1-데칸올로 이루어진 군에서 1 또는 2 이상이 선택되는 것인 유기 태양 전지.
  13. 청구항 4에 있어서,
    상기 산 비용매는 포름산, 아세트산, 벤젠 산, 올레산, 스테아린산으로 이루어진 군에서 1 또는 2 이상이 선택되는 것인 유기 태양 전지.
  14. 청구항 4에 있어서,
    상기 페놀계 비용매는 페놀, 레솔시놀, m-크레졸 및 메틸살리실레이트로 이루어진 군에서 1 또는 2 이상이 선택되는 것인 유기 태양 전지.
  15. 청구항 4에 있어서,
    상기 폴리올계 비용매는 에틸렌 글리콜, 글리세롤, 프로필렌 글리콜, 디에틸렌 글리콜, 트리에틸렌글리콜 및 디프로필렌글리콜로 이루어진 군에서 1 또는 2 이상이 선택되는 것인 유기 태양 전지.
  16. 청구항 1에 있어서,
    상기 전자 수용물질은 플러렌 유도체 또는 비플러렌 유도체인 것인 유기 태양 전지.
  17. 청구항 16에 있어서,
    상기 플러렌 유도체는 C60 플러렌 유도체 또는 C70 플러렌 유도체인 유기 태양 전지.
  18. 청구항 16에 있어서,
    상기 플러렌 유도체는 C76 플러렌 유도체, C78 플러렌 유도체, C84 플러렌 유도체 및 C90 플러렌 유도체로 이루어진 군에서 선택되는 것인 유기 태양 전지.
  19. 청구항 16에 있어서,
    상기 비플러렌 유도체는 LUMO 에너지 준위가 -2.0 내지 -6.0 eV 인 것인 유기 태양 전지.
  20. 청구항 1에 있어서,
    상기 전자 공여물질은 적어도 한 종의 전자 공여체; 또는 적어도 한 종의 전자 수용체와 적어도 한 종의 전자 공여체의 중합체를 포함하는 유기 태양 전지.
  21. 청구항 20에 있어서,
    상기 전자 공여체는 하기 화학식으로 이루어지는 군에서 1 또는 2 이상을 포함하는 유기 태양 전지:
    Figure PCTKR2012007932-appb-I000010
    상기 화학식에 있어서,
    a는 0 내지 4의 정수이고,
    b는 0 내지 6의 정수이며,
    c는 0 내지 8의 정수이고,
    d 및 e는 각각 0 내지 3의 정수이며,
    R2 및 R3는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 니트릴기; 니트로기; 이미드기; 아미드기; 히드록시기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 아릴옥시기; 치환 또는 비치환된 알킬티옥시기; 치환 또는 비치환된 아릴티옥시기; 치환 또는 비치환된 알킬술폭시기; 치환 또는 비치환된 아릴술폭시기; 치환 또는 비치환된 알케닐기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 붕소기; 치환 또는 비치환된 알킬아민기; 치환 또는 비치환된 아랄킬아민기; 치환 또는 비치환된 아릴아민기; 치환 또는 비치환된 헤테로아릴아민기; 치환 또는 비치환된 아릴기; 치환 또는 비치환된 플루오레닐기; 치환 또는 비치환된 카바졸기; 및 N, O, S 원자 중 1개 이상을 포함하는 치환 또는 비치환된 헤테로고리기로 이루어진 군으로부터 선택되거나, 인접한 2개의 치환기는 축합고리를 형성할 수 있고,
    X1 내지 X3는 서로 동일하거나 상이하고, 각각 독립적으로, CRR', NR, O, SiRR', PR, S, GeRR', Se 및 Te로 이루어진 군에서 선택되며, Y1 및 Y2는 서로 동일하거나 상이하고, 각각 독립적으로 CR, N, SiR, P 및 GeR로 이루어진 군에서 선택되며,
    상기 R 및 R'는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 니트릴기; 니트로기; 이미드기; 아미드기; 히드록시기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 아릴옥시기; 치환 또는 비치환된 알킬티옥시기; 치환 또는 비치환된 아릴티옥시기; 치환 또는 비치환된 알킬술폭시기; 치환 또는 비치환된 아릴술폭시기; 치환 또는 비치환된 알케닐기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 붕소기; 치환 또는 비치환된 알킬아민기; 치환 또는 비치환된 아랄킬아민기; 치환 또는 비치환된 아릴아민기; 치환 또는 비치환된 헤테로아릴아민기; 치환 또는 비치환된 아릴기; 치환 또는 비치환된 플루오레닐기; 치환 또는 비치환된 카바졸기; 및 N, O, S 원자 중 1개 이상을 포함하는 치환 또는 비치환된 헤테로고리기로 이루어진 군으로부터 선택되거나, 인접한 2개의 치환기는 축합고리를 형성할 수 있다.
  22. 청구항 20에 있어서,
    상기 전자 수용체는 하기 화학식으로 이루어진 군에서 1 또는 2 이상을 포함하는 유기 태양 전지:
    Figure PCTKR2012007932-appb-I000011
    상기 화학식에 있어서,
    R2 내지 R5는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 니트릴기; 니트로기; 이미드기; 아미드기; 히드록시기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 아릴옥시기; 치환 또는 비치환된 알킬티옥시기; 치환 또는 비치환된 아릴티옥시기; 치환 또는 비치환된 알킬술폭시기; 치환 또는 비치환된 아릴술폭시기; 치환 또는 비치환된 알케닐기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 붕소기; 치환 또는 비치환된 알킬아민기; 치환 또는 비치환된 아랄킬아민기; 치환 또는 비치환된 아릴아민기; 치환 또는 비치환된 헤테로아릴아민기; 치환 또는 비치환된 아릴기; 치환 또는 비치환된 플루오레닐기; 치환 또는 비치환된 카바졸기; 및 N, O, S 원자 중 1개 이상을 포함하는 치환 또는 비치환된 헤테로고리기로 이루어진 군으로부터 선택되거나, 인접한 2개의 치환기는 축합고리를 형성할 수 있고,
    X1 및 X2는 서로 동일하거나 상이하고, 각각 독립적으로, CRR', NR, O, SiRR', PR, S, GeRR', Se 및 Te로 이루어진 군에서 선택되며, Y1 내지 Y4는 서로 동일하거나 상이하고, 각각 독립적으로 CR, N, SiR, P 및 GeR로 이루어진 군에서 선택되며,
    R 및 R'는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 니트릴기; 니트로기; 이미드기; 아미드기; 히드록시기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 아릴옥시기; 치환 또는 비치환된 알킬티옥시기; 치환 또는 비치환된 아릴티옥시기; 치환 또는 비치환된 알킬술폭시기; 치환 또는 비치환된 아릴술폭시기; 치환 또는 비치환된 알케닐기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 붕소기; 치환 또는 비치환된 알킬아민기; 치환 또는 비치환된 아랄킬아민기; 치환 또는 비치환된 아릴아민기; 치환 또는 비치환된 헤테로아릴아민기; 치환 또는 비치환된 아릴기; 치환 또는 비치환된 플루오레닐기; 치환 또는 비치환된 카바졸기; 및 N, O, S 원자 중 1개 이상을 포함하는 치환 또는 비치환된 헤테로고리기로 이루어진 군으로부터 선택되거나, 인접한 2개의 치환기는 축합고리를 형성할 수 있다.
  23. 청구항 1에 있어서,
    상기 비용매는 질소 화합물 비용매인 것인 유기 태양 전지.
  24. 청구항 1에 있어서,
    상기 비용매는 아세토니트릴인 것인 유기 태양 전지.
  25. 청구항 1에 있어서,
    상기 비용매는 알칸계, 에테르계, 알코올계 및 산으로 이루어진 군에서 1 또는 2이상이 선택되는 것인 유기 태양 전지.
  26. 청구항 2에 있어서,
    상기 열처리의 온도는 상기 공여 물질의 유리 전이 온도(Tg) 이상 열분해 온도 이하인 것인 유기 태양 전지.
  27. 청구항 1에 있어서,
    상기 전자 수용물질은 [6,6]-페닐 C-부티릭산 메틸 에스테르(PCBM)이고, 상기 전자 공여물질은 폴리(3-헥실티오펜)(P3HT)인 것인 유기 태양 전지.
  28. 청구항 1에 있어서,
    상기 비용매는 아세토니트릴이고,
    상기 전자 수용물질은 [6,6]-페닐 C-부티릭산 메틸 에스테르(PCBM)이고, 상기 전자 공여물질은 폴리(3-헥실티오펜)(P3HT)인 것인 유기 태양 전지.
  29. 청구항 1에 있어서,
    상기 비용매는 아세토니트릴이고,
    상기 전자 수용물질은 [6,6]-페닐 C-부티릭산 메틸 에스테르(PCBM)이고, 상기 전자 공여물질은 폴리(3-헥실티오펜)(P3HT)이며,
    상기 열처리 온도는 상기 공여 물질의 유리 전이 온도(Tg) 이상 열분해 온도 이하인 것인 유기 태양 전지.
  30. 청구항 1 내지 29 중 어느 한 항에 있어서,
    상기 유기 태양 전지는 FT-IR의 흡수 스펙트럼의 반대칭(antisymmetric) 값과 대칭(symmetric)값의 비율(Ic=c/Ic-c)이 상기 전자 수용물질 및 전자 공여물질의 고유의 값에 비하여 110 내지 150% 상승한 것인 유기 태양 전지.
  31. 청구항 1 내지 29 중 어느 한 항에 있어서,
    상기 유기 태양 전지의 효율은 비용매로 팽윤되기 전의 전자 수용물질 및 전자 공여물질을 포함하는 경우에 비하여 110 내지 200%상승한 것인 유기 태양 전지.
  32. 청구항 1 내지 29 중 어느 한 항에 있어서,
    상기 전자 수용물질과 전자 공여물질의 비는 1:10 내지 10:1인 것인 유기 태양 전지.
  33. 청구항 1 내지 29 중 어느 한 항에 있어서,
    상기 광 활성층의 두께는 50 내지 300nm 인 유기 태양 전지.
  34. 청구항 1 내지 29 중 어느 한 항에 있어서,
    상기 유기물층은 버퍼층을 포함하는 유기 태양 전지.
  35. 청구항 34에 있어서,
    상기 버퍼층의 두께는 1nm 내지 60nm인 유기 태양 전지.
  36. 제1 전극;
    상기 제1 전극과 대향하는 제2 전극; 및
    상기 제1 전극과 제2 전극 사이에 구비되고, 광 활성층을 포함하는 유기물층을 포함하고,
    상기 광 활성층은 전자 수용물질 및 전자 공여물질을 포함하고,
    FT-IR의 흡수 스펙트럼의 반대칭(antisymmetric) 값과 대칭(symmetric)값의 비율(Ic=c/Ic-c)이 상기 전자 수용물질 및 전자 공여물질의 고유의 값에 비하여 110 내지 150% 상승한 것인 유기 태양 전지.
  37. 청구항 36에 있어서,
    상기 전자 수용물질 및 전자 공여물질은 비용매로 팽윤되는 것인 유기 태양 전지.
  38. 청구항 37에 있어서,
    상기 전자 수용물질 및 전자 공여물질은 비용매로 팽윤되기 전, 동시 또는 이후에 열처리 된 것인 유기 태양 전지.
  39. 제1 전극;
    상기 제1 전극과 대향하는 제2 전극; 및
    상기 제1 전극과 제2 전극 사이에 구비되고, 광 활성층을 포함하는 유기물층을 포함하고,
    상기 광 활성층은 전자 수용물질 및 전자 공여물질을 포함하며,
    상기 전자 수용물질 및 전자 공여물질은 비용매로 팽윤되고,
    상기 유기 태양 전지의 효율이 비용매로 팽윤되기 전의 전자 수용물질 및 전자 공여물질을 포함하는 경우에 비하여 110 내지 200%상승한 것인 유기 태양 전지.
  40. 청구항 39에 있어서,
    상기 전자 수용물질 및 전자 공여물질은 비용매로 팽윤되기 전, 동시 또는 이후에 열처리 된 것인 유기 태양 전지.
  41. 전자 수용물질 및 전자 공여물질을 포함하는 광 활성층에 있어서,
    상기 전자 수용물질 및 전자 공여물질은 비용매로 팽윤된 것인 광 활성층.
  42. 청구항 41에 있어서,
    상기 비용매는 물, 알칸계, 할로하이드로카본계, 에테르계, 케톤계, 에스테르계, 질소 화합물, 황 화합물, 산, 알코올계, 페놀계 및 폴리올계로 이루어진 군에서 1 또는 2 이상이 선택되는 것인 광 활성층.
  43. 청구항 41 또는 42에 있어서,
    상기 광 활성층은 FT-IR의 흡수 스펙트럼의 반대칭(antisymmetric) 값과 대칭(symmetric)값의 비율(Ic=c/Ic-c)이 상기 전자 수용물질 및 전자 공여물질의 고유의 값에 비하여 110 내지 150% 상승한 것 인 광 활성층.
  44. 전자 수용물질 및 전자 공여물질을 포함하는 광 활성층에 있어서,
    FT-IR의 흡수 스펙트럼의 반대칭(antisymmetric) 값과 대칭(symmetric)값의 비율(Ic=c/Ic-c)이 상기 전자 수용물질 및 전자 공여물질의 고유의 값에 비하여 110 내지 150% 상승한 것 인 광 활성층.
  45. 청구항 44에 있어서,
    상기 전자 수용물질 및 전자 공여물질은 비용매로 팽윤된 것인 광 활성층.
  46. 청구항 41, 42, 44 및 45 중 어느 한 항에 있어서,
    상기 전자 수용물질 및 전자 공여물질은 비용매로 팽윤되기 전, 동시 또는 이후에 열처리 된 것인 광 활성층.
  47. 기판을 준비하는 단계;
    상기 기판의 일 영역에 제1 전극을 형성하는 단계;
    상기 제1 전극 상부에 광 활성층을 포함하는 유기물층을 형성하는 단계;
    상기 광 활성층을 비용매로 표면처리를 하는 단계; 및상기 유기물층에 제2 전극을 형성하는 단계를 포함하는 청구항 1 내지 29 및 36 내지 42 중 어느 하나의 항에 따른 유기 태양 전지의 제조방법.
  48. 청구항 47에 있어서,
    상기 비용매로 표면 처리를 하는 단계 전, 동시 또는 이후에 열처리를 하는 단계를 더 포함하는 유기 태양 전지의 제조 방법.
  49. 청구항 47에 있어서,
    상기 제1 전극을 형성하는 단계 후,
    상기 광 활성층을 형성하는 단계 전에 유기물층을 형성하는 단계를 더 포함하는 유기 태양 전지의 제조 방법.
  50. 청구항 47에 있어서,
    상기 제1 전극을 형성하는 단계 후,
    상기 광 활성층을 형성하는 단계 전에 버퍼층을 형성하는 단계를 더 포함하는 유기 태양 전지의 제조 방법.
  51. 청구항 48에 있어서,
    상기 열처리 하는 단계의 온도는 상기 공여 물질의 유리 전이 온도(Tg) 이상 열분해 온도 이하인 것인 유기 태양 전지의 제조 방법.
  52. 청구항 47에 있어서,
    상기 광 활성층의 두께는 50 내지 300nm 인 유기 태양 전지의 제조 방법.
PCT/KR2012/007932 2012-09-28 2012-09-28 광 활성층, 이를 포함한 유기 태양 전지 및 이의 제조 방법 WO2014051182A1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/KR2012/007932 WO2014051182A1 (ko) 2012-09-28 2012-09-28 광 활성층, 이를 포함한 유기 태양 전지 및 이의 제조 방법
CN201380050453.9A CN104718635B (zh) 2012-09-28 2013-09-27 光活化层、包含光活化层的有机太阳能电池及其制造方法
IN704KON2015 IN2015KN00704A (ko) 2012-09-28 2013-09-27
PCT/KR2013/008716 WO2014051397A1 (ko) 2012-09-28 2013-09-27 광 활성층, 이를 포함한 유기 태양 전지 및 이의 제조 방법
US14/039,638 US9299937B2 (en) 2012-09-28 2013-09-27 Active layer, organic photovoltaic cell comprising the same and manufacturing method thereof
EP13838078.7A EP2905819B1 (en) 2012-09-28 2013-09-27 A method for manufacturing an organic solar cell comprising an optically active layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2012/007932 WO2014051182A1 (ko) 2012-09-28 2012-09-28 광 활성층, 이를 포함한 유기 태양 전지 및 이의 제조 방법

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/039,638 Continuation-In-Part US9299937B2 (en) 2012-09-28 2013-09-27 Active layer, organic photovoltaic cell comprising the same and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2014051182A1 true WO2014051182A1 (ko) 2014-04-03

Family

ID=50388554

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/KR2012/007932 WO2014051182A1 (ko) 2012-09-28 2012-09-28 광 활성층, 이를 포함한 유기 태양 전지 및 이의 제조 방법
PCT/KR2013/008716 WO2014051397A1 (ko) 2012-09-28 2013-09-27 광 활성층, 이를 포함한 유기 태양 전지 및 이의 제조 방법

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/008716 WO2014051397A1 (ko) 2012-09-28 2013-09-27 광 활성층, 이를 포함한 유기 태양 전지 및 이의 제조 방법

Country Status (5)

Country Link
US (1) US9299937B2 (ko)
EP (1) EP2905819B1 (ko)
CN (1) CN104718635B (ko)
IN (1) IN2015KN00704A (ko)
WO (2) WO2014051182A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110178239A (zh) * 2017-06-23 2019-08-27 株式会社Lg化学 有机太阳能电池

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105140399B (zh) * 2015-07-08 2017-06-30 浙江大学 一种基于非富勒烯受体的有机太阳电池
KR102066322B1 (ko) * 2015-12-07 2020-01-14 주식회사 엘지화학 유기태양전지 및 이의 제조방법
US9890240B2 (en) 2016-05-25 2018-02-13 International Business Machines Corporation Ladder polybenzodifurans
US10312444B2 (en) 2016-10-06 2019-06-04 International Business Machines Corporation Organic semiconductors with dithienofuran core monomers
CN106549105B (zh) * 2016-10-24 2019-01-15 北京富乐喜科技有限公司 一种共轭富勒烯/石墨烯薄膜太阳能电池及其制备方法
CN106435636B (zh) * 2016-10-26 2018-07-03 中盈长江国际新能源投资有限公司 光补电电解水制氢微电极光纤、光缆及制氢装置
CN108598265B (zh) * 2018-05-02 2019-12-13 北京科技大学 一种有机太阳能电池活性层的制备方法
CN108807696B (zh) * 2018-06-12 2022-03-04 南京邮电大学 一种改善有机太阳能电池界面修饰的方法
US20210028361A1 (en) * 2019-07-23 2021-01-28 The Regents Of The University Of Michigan Acceptor Bottom Layer for Organic Photovoltaics

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006279018A (ja) * 2005-01-14 2006-10-12 Seiko Epson Corp 光電変換素子の製造方法、光電変換素子および電子機器
KR20090131461A (ko) * 2008-06-18 2009-12-29 한국과학기술원 유기기반 태양전지 및 그의 제조방법
KR101128943B1 (ko) * 2007-04-13 2012-03-27 주식회사 엘지화학 디옥시피롤기를 포함하는 헤테로고리 화합물 및 이를이용한 유기 전자 소자
KR101126751B1 (ko) * 2009-12-31 2012-03-29 서울대학교산학협력단 전기 방사를 이용한 공액 고분자 나노 섬유와 이를 이용한 1차원 섬유 구조를 갖는 유기 태양전지의 제조 방법

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100277639B1 (ko) 1998-11-12 2001-01-15 김순택 유기 전자발광소자
US8174000B2 (en) 2009-02-11 2012-05-08 Universal Display Corporation Liquid compositions for inkjet printing of organic layers or other uses
JP5360197B2 (ja) 2009-03-26 2013-12-04 コニカミノルタ株式会社 有機光電変換素子、それを用いた太陽電池及び光センサアレイ
JP2011168747A (ja) 2010-02-22 2011-09-01 Kyoto Univ 共役系高分子、該共役系高分子を用いた有機薄膜太陽電池
KR101097090B1 (ko) 2010-02-26 2011-12-23 재단법인대구경북과학기술원 트리페닐렌 화합물을 포함하는 유기태양전지
JP5349385B2 (ja) 2010-03-24 2013-11-20 株式会社豊田中央研究所 有機電子素子及び有機電子素子の製造方法
KR101705705B1 (ko) 2010-05-04 2017-02-13 삼성전자 주식회사 유기 태양 전지
KR20110133717A (ko) * 2010-06-07 2011-12-14 삼성전자주식회사 유기 태양 전지 및 그 제조 방법
US8895693B2 (en) 2010-06-25 2014-11-25 Samsung Electronics Co., Ltd. Electron-donating polymers and organic solar cells including the same
KR20120000409A (ko) * 2010-06-25 2012-01-02 삼성전자주식회사 유기 태양 전지 및 그 제조 방법
KR20120000495A (ko) 2010-06-25 2012-01-02 삼성전자주식회사 전자 공여체 고분자 및 이를 포함하는 유기 태양 전지
KR101187630B1 (ko) 2010-11-04 2012-10-05 한국과학기술원 나노구조체 함유 광전자 소자, 유기태양전지 및 그 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006279018A (ja) * 2005-01-14 2006-10-12 Seiko Epson Corp 光電変換素子の製造方法、光電変換素子および電子機器
KR101128943B1 (ko) * 2007-04-13 2012-03-27 주식회사 엘지화학 디옥시피롤기를 포함하는 헤테로고리 화합물 및 이를이용한 유기 전자 소자
KR20090131461A (ko) * 2008-06-18 2009-12-29 한국과학기술원 유기기반 태양전지 및 그의 제조방법
KR101126751B1 (ko) * 2009-12-31 2012-03-29 서울대학교산학협력단 전기 방사를 이용한 공액 고분자 나노 섬유와 이를 이용한 1차원 섬유 구조를 갖는 유기 태양전지의 제조 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PARK, JONG HWAN ET AL.: "Effect of Annealing Solvent Solubility on the Performance of Poly(3-hexylthiophene)/Methanofullerene Solar Cells.", J. PHYS. CHEM. C, vol. 113, no. 40, September 2009 (2009-09-01), pages 17579 - 17584, XP055073542, DOI: doi:10.1021/jp9029562 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110178239A (zh) * 2017-06-23 2019-08-27 株式会社Lg化学 有机太阳能电池
CN110178239B (zh) * 2017-06-23 2023-06-20 株式会社Lg化学 有机太阳能电池

Also Published As

Publication number Publication date
CN104718635B (zh) 2018-06-12
EP2905819A4 (en) 2016-06-01
CN104718635A (zh) 2015-06-17
WO2014051397A1 (ko) 2014-04-03
US9299937B2 (en) 2016-03-29
IN2015KN00704A (ko) 2015-07-17
EP2905819A1 (en) 2015-08-12
US20140116511A1 (en) 2014-05-01
EP2905819B1 (en) 2019-11-27

Similar Documents

Publication Publication Date Title
WO2014051182A1 (ko) 광 활성층, 이를 포함한 유기 태양 전지 및 이의 제조 방법
WO2015163614A1 (ko) 헤테로환 화합물 및 이를 포함하는 유기 태양 전지
WO2016133368A9 (ko) 헤테로환 화합물 및 이를 포함하는 유기 태양 전지
WO2018216880A1 (ko) 헤테로환 화합물 및 이를 포함하는 유기 전자 소자
WO2016099218A2 (ko) 중합체 및 이를 포함하는 유기 태양 전지
WO2013051875A2 (ko) 유기 발광 소자 및 이의 제조방법
WO2015008939A1 (ko) 공중합체 및 이를 포함하는 유기 태양 전지
WO2013129835A1 (ko) 유기 발광 소자
WO2013129836A1 (ko) 유기 발광 소자
WO2015142067A1 (ko) 중합체 및 이를 포함하는 유기 태양 전지
WO2016171465A2 (ko) 헤테로환 화합물 및 이를 포함하는 유기 태양 전지
WO2015122722A1 (ko) 공중합체 및 이를 포함하는 유기 태양 전지
WO2014123369A1 (ko) 신규한 화합물 및 이를 이용한 유기 전자 소자
WO2014133373A1 (ko) 고-일함수 및 고-전도도 하이브리드 전극을 채용한 전자 소자
JP6083569B2 (ja) 光活性層、これを含む有機太陽電池およびその製造方法
WO2015167284A1 (ko) 유기 태양 전지 및 이의 제조방법
WO2014123391A1 (ko) 헤테로환 화합물 및 이를 이용한 유기 발광 소자
WO2015190762A2 (ko) 축합고리 유도체 및 이를 포함하는 유기 태양 전지
WO2015016626A1 (ko) 공중합체 및 이를 포함하는 유기 태양 전지
WO2014092408A1 (ko) 공중합체 및 이를 이용한 유기 태양 전지
WO2015037966A1 (ko) 공중합체 및 이를 포함하는 유기 태양 전지
WO2019004605A1 (ko) 유기 태양 전지
WO2010128745A1 (ko) 유기 광전 소자용 화합물 및 이를 포함하는 유기 광전 소자
WO2019221386A1 (ko) 헤테로환 화합물 및 이를 포함하는 유기 전자 소자
WO2018225999A1 (ko) 화합물 및 이를 포함하는 유기 태양 전지

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015534371

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12885908

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 12885908

Country of ref document: EP

Kind code of ref document: A1