WO2014123391A1 - 헤테로환 화합물 및 이를 이용한 유기 발광 소자 - Google Patents

헤테로환 화합물 및 이를 이용한 유기 발광 소자 Download PDF

Info

Publication number
WO2014123391A1
WO2014123391A1 PCT/KR2014/001073 KR2014001073W WO2014123391A1 WO 2014123391 A1 WO2014123391 A1 WO 2014123391A1 KR 2014001073 W KR2014001073 W KR 2014001073W WO 2014123391 A1 WO2014123391 A1 WO 2014123391A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
unsubstituted
compound
layer
Prior art date
Application number
PCT/KR2014/001073
Other languages
English (en)
French (fr)
Inventor
박태윤
천민승
김동헌
안지연
김형석
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US14/373,541 priority Critical patent/US9221820B2/en
Priority to JP2015553666A priority patent/JP6058818B2/ja
Priority to CN201480008054.0A priority patent/CN104981471B/zh
Priority to EP14749275.5A priority patent/EP2960240B1/en
Publication of WO2014123391A1 publication Critical patent/WO2014123391A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/12Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains three hetero rings
    • C07D471/20Spiro-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • C07F9/53Organo-phosphine oxides; Organo-phosphine thioxides
    • C07F9/5325Aromatic phosphine oxides or thioxides (P-C aromatic linkage)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/10Spiro-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0033Iridium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6561Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing systems of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring or ring system, with or without other non-condensed hetero rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium

Definitions

  • the present specification relates to a heterocyclic compound and an organic light emitting device using the same.
  • the organic light emitting phenomenon is an example of converting an electric current into visible light by an internal process of a specific organic molecule.
  • the principle of the organic light emitting phenomenon is as follows.
  • An organic light emitting device using this principle may generally be composed of an organic material layer including a cathode and an anode, and an organic material layer disposed therebetween, such as a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport layer.
  • the materials used in the organic light emitting device are pure organic materials or complex compounds in which organic materials and metals are complexed, and depending on the purpose, hole injection materials, hole transport materials, light emitting materials, electron transport materials, electron injection materials, etc. It can be divided into.
  • the hole injection material or the hole transport material an organic material having a p-type property, that is, an organic material which is easily oxidized and has an electrochemically stable state during oxidation, is mainly used.
  • organic materials having n-type properties that is, organic materials that are easily reduced and have an electrochemically stable state at the time of reduction are mainly used.
  • the light emitting layer material a material having a p-type property and an n-type property at the same time, that is, a material having a stable form in both oxidation and reduction states may be used, and a material having high luminous efficiency that converts it to light when an exciton is formed This is preferred.
  • An object of the present specification is to provide a heterocyclic compound and an organic light emitting device using the same.
  • a is an integer of 0 to 7
  • b is an integer from 0 to 4,
  • c is an integer from 0 to 8
  • d is an integer from 0 to 5
  • a 1 to A 8 are the same as or different from each other, and each independently CR or N, provided that N in A 1 to A 8 is two or more,
  • R and R 1 to R 4 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; Halogen group; Nitrile group; Nitro group; Hydroxyl group; Carbonyl group; Ester group; Imide group; Amide group; Substituted or unsubstituted alkyl group; A substituted or unsubstituted cycloalkyl group; Substituted or unsubstituted alkoxy group; Substituted or unsubstituted aryloxy group; Substituted or unsubstituted alkylthioxy group; Substituted or unsubstituted arylthioxy group; Substituted or unsubstituted alkyl sulfoxy group; Substituted or unsubstituted aryl sulfoxy group; Substituted or unsubstituted alkenyl group; Substituted or unsubstituted silyl group; Substituted or unsub
  • an organic light emitting device including a first electrode, a second electrode, and one or more organic material layers disposed between the first electrode and the second electrode, wherein at least one of the organic material layer is represented by Formula 1 or Provided is an organic light emitting device comprising a heterocyclic compound represented by Formula 2 or a compound in which a thermosetting or photocurable functional group is introduced into the heterocyclic compound.
  • the heterocyclic compound according to one embodiment of the present specification has an appropriate energy level, and is excellent in electrochemical stability and thermal stability. Therefore, the organic light emitting device including the compound provides high efficiency and / or high driving stability.
  • FIG. 1 shows an example of an organic light emitting element composed of a substrate 1, an anode 2, a light emitting layer 3, and a cathode 4. As shown in FIG.
  • FIG. 2 shows an example of an organic light emitting element consisting of a substrate 1, an anode 2, a hole injection layer 5, a hole transport layer 6, a light emitting layer 7, an electron transport layer 8 and a cathode 4 It is.
  • FIG. 3 is a diagram showing an MS spectrum of Structural Formula A-1 prepared in Preparation Example 1.
  • FIG. 4 is a diagram showing an MS spectrum of Chemical Formula 1-3 prepared in Preparation Example 1.
  • FIG. 4 is a diagram showing an MS spectrum of Chemical Formula 1-3 prepared in Preparation Example 1.
  • the organic light emitting device including the heterocyclic compound according to the exemplary embodiment of the present specification may have the effect of lowering the driving voltage and / or increasing the efficiency.
  • examples of the halogen group include fluorine, chlorine, bromine or iodine.
  • the oxygen of the ester group may be substituted with a linear, branched or cyclic alkyl group having 1 to 25 carbon atoms or an aryl group having 6 to 25 carbon atoms. Specifically, it may be a compound of the following structural formula, but is not limited thereto.
  • carbon number of an imide group is not specifically limited, It is preferable that it is C1-C25. Specifically, it may be a compound having a structure as follows, but is not limited thereto.
  • the amide group may be substituted with one or two of the nitrogen of the amide group is hydrogen, a linear, branched or cyclic alkyl group having 1 to 25 carbon atoms or an aryl group having 6 to 25 carbon atoms. Specifically, it may be a compound of the following structural formula, but is not limited thereto.
  • the alkyl group may be linear or branched chain, carbon number is not particularly limited, but is preferably 1 to 50.
  • Specific examples include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-methyl-butyl, 1-ethyl-butyl, pentyl, n-pentyl , Isopentyl, neopentyl, tert-pentyl, hexyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, heptyl, n -Heptyl, 1-methylhexyl, cyclopentylmethyl, cyclohexylmethyl, octyl, n-o
  • the cycloalkyl group is not particularly limited, but preferably has 3 to 60 carbon atoms, may be monocyclic, or polycyclic. Specifically cyclopropyl, cyclobutyl, cyclopentyl, 3-methylcyclopentyl, 2,3-dimethylcyclopentyl, cyclohexyl, 3-methylcyclohexyl, 4-methylcyclohexyl, 2,3-dimethylcyclohexyl, 3, 4,5-trimethylcyclohexyl, 4-tert-butylcyclohexyl, cycloheptyl, cyclooctyl, and the like, but is not limited thereto.
  • the alkoxy group may be linear, branched or cyclic. Although carbon number of an alkoxy group is not specifically limited, It is preferable that it is C1-C20. Specifically, methoxy, ethoxy, n-propoxy, isopropoxy, i-propyloxy, n-butoxy, isobutoxy, tert-butoxy, sec-butoxy, n-pentyloxy, neopentyloxy, Isopentyloxy, n-hexyloxy, 3,3-dimethylbutyloxy, 2-ethylbutyloxy, n-octyloxy, n-nonyloxy, n-decyloxy, benzyloxy, p-methylbenzyloxy and the like It may be, but is not limited thereto.
  • the aryl group may be monocyclic in an organic radical derived from an aromatic hydrocarbon by one hydrogen removal, and may be polycyclic.
  • carbon number of an aryl group is not specifically limited, It is preferable that it is C6-C60.
  • aryl group examples include monocyclic aromatic and naphthyl groups such as phenyl group, biphenyl group, triphenyl group, terphenyl group, stilbene group, anthracenyl group, phenanthrenyl group, pyrenyl group, perrylenyl group, tetrasenyl group, chrysenyl
  • Monocyclic aromatic and naphthyl groups such as phenyl group, biphenyl group, triphenyl group, terphenyl group, stilbene group, anthracenyl group, phenanthrenyl group, pyrenyl group, perrylenyl group, tetrasenyl group, chrysenyl
  • Polycyclic aromatics such as a group, a fluorenyl group, an acenaphthacenyl group, a triphenylene group, and a fluoranthene group, etc. are mentioned, but it is not limited to these.
  • the fluorenyl group is a structure in which two ring organic compounds are connected through one atom, for example , Etc.
  • the fluorenyl group includes a structure of an open fluorenyl group, wherein the open fluorenyl group is a structure in which one ring compound is disconnected in a structure in which two ring compounds are connected through one atom, For example , Etc.
  • the heterocyclic group is a heterocyclic group containing O, N or S as a hetero atom, and the carbon number is not particularly limited, but is preferably 2 to 60 carbon atoms.
  • the heterocyclic group include thiophene group, furan group, pyrrole group, imidazole group, thiazole group, oxazole group, oxadiazole group, triazole group, pyridyl group, bipyridyl group, pyrimidyl group, triazine group, triazole group, Acridyl group, pyridazine group, pyrazinyl group, quinolinyl group, quinazoline group, quinoxalinyl group, phthalazinyl group, pyrido pyrimidinyl group, pyrido pyrazinyl group, pyrazino pyrazinyl group, isoquinoline group , Indole group, carbazole group, benzoxazo
  • the aryl group in the aryloxy group, arylthioxy group, aryl sulfoxy group and aralkylamine group is the same as the aryl group described above.
  • the aryloxy group phenoxy, p-tolyloxy, m-tolyloxy, 3,5-dimethyl-phenoxy, 2,4,6-trimethylphenoxy, p-tert-butylphenoxy, 3-biphenyl Oxy, 4-biphenyloxy, 1-naphthyloxy, 2-naphthyloxy, 4-methyl-1-naphthyloxy, 5-methyl-2-naphthyloxy, 1-anthryloxy, 2-anthryl Oxy, 9-anthryloxy, 1-phenanthryloxy, 3-phenanthryloxy, 9-phenanthryloxy, and the like.
  • arylthioxy group examples include a phenylthioxy group, 2-methylphenylthioxy group, and 4-tert-butylphenyl.
  • Thioxy groups and the like, and aryl sulfoxy groups include, but are not limited to, benzene sulfoxy groups and p-toluene sulfoxy groups.
  • the alkyl group in the alkyl thioxy group and the alkyl sulfoxy group is the same as the example of the alkyl group mentioned above.
  • the alkyl thioxy group includes a methyl thioxy group, an ethyl thioxy group, a tert-butyl thioxy group, a hexyl thioxy group, an octyl thioxy group
  • the alkyl sulfoxy group includes mesyl, ethyl sulfoxy, propyl sulfoxy and butyl sulfoxy groups Etc., but is not limited thereto.
  • heteroaryl group in the heteroarylamine group may be selected from the examples of the heterocyclic group described above.
  • aralkyl group in the aralkyl amine group are benzyl group, p-methylbenzyl group, m-methylbenzyl group, p-ethylbenzyl group, m-ethylbenzyl group, 3,5-dimethylbenzyl group , ⁇ -methylbenzyl group, ⁇ , ⁇ -dimethylbenzyl group, ⁇ , ⁇ -methylphenylbenzyl group, 1-naphthylbenzyl group, 2-naphthylbenzyl group, p-fluorobenzyl group, 3,5-difluorobenzyl Group, ⁇ , ⁇ -ditrifluoromethylbenzyl group, p-methoxybenzyl group, m-methoxybenzyl group, ⁇ -phenoxybenzyl group, ⁇ -benzyl groupoxybenzyl group, naphthylmethyl group, naphthylethyl group , Na
  • the alkenyl group may be linear or branched chain, the carbon number is not particularly limited, but is preferably 2 to 40.
  • Specific examples include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 3-methyl-1- Butenyl, 1,3-butadienyl, allyl, 1-phenylvinyl-1-yl, 2-phenylvinyl-1-yl, 2,2-diphenylvinyl-1-yl, 2-phenyl-2- ( Naphthyl-1-yl) vinyl-1-yl, 2,2-bis (diphenyl-1-yl) vinyl-1-yl, stilbenyl group, styrenyl group and the like, but are not limited thereto.
  • the silyl group includes trimethylsilyl group, triethylsilyl group, t-butyldimethylsilyl group, vinyldimethylsilyl group, propyldimethylsilyl group, triphenylsilyl group, diphenylsilyl group, phenylsilyl group
  • the present invention is not limited thereto.
  • carbon number of an amine group is not specifically limited, It is preferable that it is 1-30.
  • Specific examples of the amine group include methylamine group, dimethylamine group, ethylamine group, diethylamine group, phenylamine group, naphthylamine group, biphenylamine group, anthracenylamine group, and 9-methyl-anthracenylamine group. , Diphenylamine group, phenylnaphthylamine group, ditolylamine group, phenyltolylamine group, triphenylamine group and the like, but are not limited thereto.
  • examples of the aryl amine group include a substituted or unsubstituted monoarylamine group, a substituted or unsubstituted diarylamine group, or a substituted or unsubstituted triarylamine group.
  • the aryl group in the arylamine group may be a monocyclic aryl group, may be a polycyclic aryl group.
  • the arylamine group including two or more aryl groups may simultaneously include a monocyclic aryl group, a polycyclic aryl group, or a monocyclic aryl group and a polycyclic aryl group.
  • aryl amine group examples include phenylamine, naphthylamine, biphenylamine, anthracenylamine, 3-methyl-phenylamine, 4-methyl-naphthylamine, 2-methyl-biphenylamine, 9-methyl-anthra Cenylamine, diphenyl amine group, phenyl naphthyl amine group, ditolyl amine group, phenyl tolyl amine group, carbazole and triphenyl amine group and the like, but are not limited thereto.
  • examples of the arylphosphine group include a substituted or unsubstituted monoarylphosphine group, a substituted or unsubstituted diarylphosphine group, or a substituted or unsubstituted triarylphosphine group.
  • the aryl group in the arylphosphine group may be a monocyclic aryl group, may be a polycyclic aryl group.
  • the arylphosphine group containing two or more aryl groups may simultaneously include a monocyclic aryl group, a polycyclic aryl group, or a monocyclic aryl group and a polycyclic aryl group.
  • substituted or unsubstituted herein is deuterium; Halogen group; An alkyl group; Alkenyl groups; An alkoxy group; Cycloalkyl group; Silyl groups; Aryl alkenyl group; Aryl group; Aryloxy group; Alkyl thioxy group; Alkyl sulfoxy groups; Aryl sulfoxy group; Boron group; Alkylamine group; Aralkyl amine groups; Arylamine group; Heteroaryl group; Carbazole groups; Arylamine group; Aryl group; Fluorenyl group; Nitrile group; Nitro group; It means that it is substituted with one or more substituents selected from the group consisting of a hydroxy group and a heterocyclic group containing one or more of N, O, S atoms or do not have any substituents, the substituents may be further substituted or unsubstituted have.
  • substituted means that a hydrogen atom bonded to a carbon atom of the compound is replaced with another substituent, and the position to be substituted is not limited to a position where the hydrogen atom is substituted, that is, a position where a substituent can be substituted, if two or more substituted , Two or more substituents may be the same or different from each other.
  • At least two of A 1 to A 8 are N.
  • At least one of A 1 to A 4 is N.
  • At least two of A 1 to A 4 are N.
  • At least one of A 5 to A 8 is N.
  • At least two of A 5 to A 8 are N.
  • a 5 is N.
  • a 6 is N.
  • a 7 is N.
  • a 8 is N.
  • a 5 and A 7 are N.
  • a 6 and A 8 are N.
  • a 5 is CR.
  • a 6 is CR.
  • a 7 is CR.
  • a 8 is CR.
  • a 5 and A 7 are N
  • a 6 and A 8 are CR
  • a 6 and A 8 are N
  • a 5 and A 7 are CR
  • a 5 and A 7 are N, and A 6 is CR.
  • a 5 and A 7 are N, A 6 is CR, and A 8 is CR.
  • a 6 and A 8 are N, and A 7 is CR.
  • a 6 and A 8 are N, A 7 is CR, and A 5 is CH.
  • a 6 and A 8 are N, A 7 is CR, and A 5 is CR.
  • R is hydrogen; Substituted or unsubstituted aryl group; Or a substituted or unsubstituted heterocyclic group containing one or more of substituted or unsubstituted N, O, S atoms.
  • R is hydrogen; 1 or 2 or more substituents selected from the group consisting of a substituted or unsubstituted phosphine oxide group, a substituted or unsubstituted aryl group, and a substituted or unsubstituted heterocyclic group including one or more of N, O, and S atoms Substituted or unsubstituted aryl group; Or a substituted or unsubstituted phosphine oxide group, a substituted or unsubstituted aryl group, and one or two or more selected from the group consisting of a substituted or unsubstituted heterocyclic group including one or more of N, O, and S atoms It is a heterocyclic group containing one or more of N, O, S atoms unsubstituted or substituted with a substituent.
  • R is hydrogen; A phenyl group unsubstituted or substituted with a substituent selected from the group consisting of a phenyl group, a phosphine oxide group substituted with a phenyl group, a triazine group and a pyrimidine group; A naphthyl group unsubstituted or substituted with a substituent selected from the group consisting of a phenyl group, a phosphine oxide group substituted with a phenyl group, a triazine group and a pyrimidine group; A biphenyl group unsubstituted or substituted with a substituent selected from the group consisting of a phenyl group, a phosphine oxide group substituted with a phenyl group, a triazine group and a pyrimidine group; Or a pyridine group unsubstituted or substituted with a substituent selected from the group consisting of
  • R is hydrogen; A phenyl group unsubstituted or substituted with a substituent selected from the group consisting of a phenyl group, a phosphine oxide group substituted with a phenyl group, a triazine group and a pyrimidine group; Naphthyl group; A biphenyl group unsubstituted or substituted with a phosphine oxide group substituted with a phenyl group; Or a pyridine group.
  • R is hydrogen
  • R is a substituted or unsubstituted aryl group.
  • R is a substituted or unsubstituted phenyl group.
  • R is a phenyl group.
  • R is a phenyl group substituted with a substituted or unsubstituted aryl group.
  • R is a phenyl group unsubstituted or substituted with a phenyl group.
  • R is a phenyl group substituted with a substituted or unsubstituted phosphine oxide group.
  • R is a phenyl group substituted with a phosphine oxide group substituted with an aryl group.
  • R is a phenyl group substituted with a phosphine oxide group substituted with a phenyl group.
  • R is a phenyl group substituted with a substituted or unsubstituted heteroring group including one or more of N, O, and S atoms.
  • R is a phenyl group substituted with a substituted or unsubstituted heteroring group including N.
  • R is a phenyl group substituted with a substituted or unsubstituted triazine group.
  • R is a phenyl group substituted with a triazine group substituted with a phenyl group.
  • R is a phenyl group substituted with a substituted or unsubstituted pyrimidine group.
  • R is a phenyl group substituted with a pyrimidine group unsubstituted or substituted with a phenyl group.
  • the pyrimidine group or And may be substituted or unsubstituted with additional substituents.
  • R is a substituted or unsubstituted naphthyl group.
  • R is a naphthyl group.
  • R is a substituted or unsubstituted biphenyl group.
  • R is a biphenyl group.
  • R is a biphenyl group substituted with a substituted or unsubstituted phosphine oxide group.
  • R is a biphenyl group substituted with a phosphine oxide group substituted with an aryl group.
  • R is a biphenyl group substituted with a phosphine oxide group substituted with a phenyl group.
  • R is a substituted or unsubstituted heteroring group including one or more of N, O, and S atoms.
  • R is a substituted or unsubstituted heteroring group including one or more N atoms.
  • R is a substituted or unsubstituted pyridine group.
  • the pyridine group or to be.
  • R 1 is hydrogen
  • R 2 is hydrogen
  • R 3 is hydrogen
  • R 4 is hydrogen
  • the heterocyclic compound represented by Chemical Formula 1 is represented by any one of the following Chemical Formulas 1-1 to 1-36.
  • the heterocyclic compound represented by Chemical Formula 2 is represented by any one of the following Chemical Formulas 2-1 to 2-32.
  • the heterocyclic compound of Formula 1 or Formula 2 may be prepared based on the preparation examples described below.
  • 9- (2-bromophenyl) -carbazole (9- (2-bromophenyl) -carbazole) is reacted with an indeno pyrimidin-5-one substituted with R, and the ring is closed.
  • the heterocyclic compound represented by Chemical Formula 1 as well as Chemical Formulas 1-1 to 1-36 may be prepared.
  • 2-bromo-diphenylaniline is reacted with an indeno pyrimidi-5-one substituted with R, and a ring closure reaction is performed to provide chemical reactions of Chemical Formulas 2-1 to 2-32 as well.
  • a heterocyclic compound represented by Formula 2 may be prepared.
  • the compound of Formula 1 or Formula 2 is a core having two tricyclic rings condensed around carbon, or a heterocyclic group condensed with a tricyclic ring and a 5-ring ring in a spiro structure Include a structure.
  • the compound of Formula 1 includes a core structure in which a substituted or unsubstituted indenopyrimidine group and a substituted or unsubstituted acridine group are bonded in a spiro structure.
  • the compound of Formula 1 or Formula 2 has properties suitable for use as an organic material layer used in an organic light emitting device by introducing various substituents into the core structure represented by Formula 1 or Formula 2.
  • the core of the compound of Formula 1 or Formula 2 is a heterocyclic group in which two tricyclic rings are condensed, or a tricyclic ring and a 5-ring ring are condensed based on a carbon having a spiro bond. Limit conjugation between them.
  • the conjugation length of the compound and the energy band gap are closely related. Specifically, the longer the conjugation length of the compound, the smaller the energy bandgap. As described above, since the core of the compound of Formula 1 or Formula 2 contains limited conjugation, it has a property of large energy band gap.
  • a compound having various energy band gaps may be synthesized by introducing various substituents at positions of R, R 1 to R 4 of a core structure having a large energy band gap as described above.
  • Compound of Formula 1 or Formula 2 according to an exemplary embodiment of the present specification is easy to control the energy band gap by introducing a substituent because the energy band gap is large.
  • the HOMO and LUMO energy levels of the compound may be adjusted by introducing various substituents at the positions of R, R 1 to R 4 of the core structure of the above structure.
  • the organic light emitting device including the compound of Formula 1 or Formula 2 according to an exemplary embodiment of the present specification may provide an organic light emitting device having high efficiency and long life.
  • the compound which has the intrinsic property of the introduced substituent can be synthesize
  • a substituent mainly used in the hole injection layer material, the hole receiving material, the light emitting layer material, and the electron transporting layer material used in manufacturing the organic light emitting device into the core structure, it is possible to synthesize a material satisfying the requirements of each organic material layer. Can be.
  • the heterocyclic compound of Formula 1 or Formula 2 according to an exemplary embodiment of the present specification has an appropriate hole or electron mobility. Therefore, when the heterocyclic compound is applied to the organic light emitting device, it is possible to maximize the exciton formation by balancing the density of holes and electrons in the light emitting layer.
  • the heterocyclic compound of Formula 1 or Formula 2 according to an exemplary embodiment of the present specification is excellent in interfacial properties with the adjacent layer, there is an advantage of high stability of the device.
  • the heterocyclic compound of Formula 1 or Formula 2 according to an exemplary embodiment of the present specification has a high glass transition temperature (T g ) and is excellent in thermal stability. This increase in thermal stability is an important factor in providing drive stability to the device.
  • T g glass transition temperature
  • the present specification also provides an organic light emitting device using the compound of Formula 1 or Formula 2.
  • An organic light emitting device comprising a first electrode, a second electrode and an organic material layer including at least one layer including a light emitting layer disposed between the first electrode and the second electrode, wherein at least one of the organic material layers is the heterocyclic compound or It provides an organic light emitting device comprising a compound in which a thermosetting or photo-curable functional group is introduced into the heterocyclic compound.
  • the organic material layer includes a hole transport layer, a hole injection layer, or a layer for simultaneously transporting holes and holes, and simultaneously performing the hole transport layer, the hole injection layer, or the hole transport and the hole injection.
  • the layer comprises a heterocyclic compound or a compound in which a heat curable or photocurable functional group is introduced into the heterocyclic compound.
  • the light emitting layer includes the heterocyclic compound or a compound in which a heat curable or photocurable functional group is introduced into the heterocyclic compound.
  • the organic layer includes the heterocyclic compound or a compound in which a heat curable or photocurable functional group is introduced into the heterocyclic compound as a host.
  • the organic layer includes the heterocyclic compound or a compound in which a heat curable or photocurable functional group is introduced into the heterocyclic compound as a host, and includes another organic compound, a metal, or a metal compound as a dopant. do.
  • the organic material layer includes a light emitting layer, and includes a compound in which a heat curable or photocurable functional group is introduced into the heterocyclic compound or the heterocyclic compound as a host of the light emitting layer.
  • a heterocyclic compound or a compound having a thermosetting or photocurable functional group introduced into the heterocyclic compound is included as a host of the light emitting layer, and an organic compound, a metal or a metal compound is included as a dopant.
  • the organic material layer includes an electron transport layer
  • the electron transport layer includes a compound in which a heat curable or photocurable functional group is introduced into the heterocyclic compound or the heterocyclic compound.
  • the organic material layer includes an electron injection layer
  • the electron injection layer includes a compound in which a thermosetting or photocurable functional group is introduced into the heterocyclic compound or the heterocyclic compound.
  • the organic material layer includes a layer for simultaneously injecting and transporting electrons, and the layer for simultaneously injecting and transporting electrons is heat curable or light to the heterocyclic compound or the heterocyclic compound. And compounds into which curable functional groups have been introduced.
  • the heterocyclic compound is included in the light emitting layer and / or the electron transport layer.
  • a compound having a thermosetting or photocurable functional group introduced into the compound of Formula 1 or Formula 2 may be used instead of the compound of Formula 1 or Formula 2.
  • Such a compound may be formed of an organic material layer by a method of maintaining the basic physical properties of the compound of Formula 1 or Formula 2 described above and forming a thin film by a solution coating method and then curing the device.
  • thermosetting or photocurable functional group is a vinyl group or an acrylic group.
  • the organic material layer is a hole injection layer, a hole transport layer. It further comprises one or two or more layers selected from the group consisting of an electron transport layer, an electron injection layer, an electron blocking layer and a hole blocking layer.
  • the organic material layer of the organic light emitting device of the present specification may be formed of a single layer structure, but may be formed of a multilayer structure in which two or more organic material layers are stacked.
  • the organic light emitting device of the present specification may have a structure including a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer and the like as an organic material layer.
  • the structure of the organic light emitting device is not limited thereto and may include a smaller number of organic layers.
  • the organic light emitting diode may be an organic light emitting diode having a structure in which an anode, one or more organic material layers, and a cathode are sequentially stacked on a substrate.
  • the organic light emitting diode may be an organic light emitting diode having an inverted type in which a cathode, one or more organic material layers, and an anode are sequentially stacked on a substrate.
  • the first electrode is a cathode
  • the second electrode is an anode
  • the first electrode is an anode
  • the second electrode is a cathode
  • FIGS. 1 and 2 The structure of the organic light emitting device of the present specification is illustrated in FIGS. 1 and 2, but is not limited thereto.
  • FIG. 1 illustrates a structure of an organic light emitting device in which a substrate 1, an anode 2, a light emitting layer 3, and a cathode 4 are sequentially stacked.
  • the compound may be included in the light emitting layer (3).
  • FIG. 2 illustrates an organic light emitting device in which a substrate 1, an anode 2, a hole injection layer 5, a hole transport layer 6, a light emitting layer 7, an electron transport layer 8 and a cathode 4 are sequentially stacked.
  • the structure is illustrated.
  • the compound may be included in at least one of the hole injection layer 5, the hole transport layer 6, the light emitting layer 7, and the electron transport layer 8.
  • the organic light emitting device of the present specification is in the art, except that at least one layer of the organic material layer includes a compound of the present specification, that is, a compound having a heat curable or photocurable functional group introduced into the heterocyclic compound or the heterocyclic compound. It can be prepared from known materials and methods.
  • the organic light emitting device of the present specification may be manufactured by sequentially stacking a first electrode, an organic material layer, and a second electrode on a substrate.
  • a physical vapor deposition (PVD) method such as sputtering or e-beam evaporation
  • a metal or conductive metal oxide or an alloy thereof is deposited on the substrate to form an anode.
  • an organic material layer including a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport layer thereon, and then depositing a material that can be used as a cathode thereon.
  • an organic light emitting device may be manufactured by sequentially depositing a cathode material, an organic material layer, and an anode material on a substrate.
  • the heterocyclic compound may be formed as an organic layer by a solution coating method as well as a vacuum deposition method in the manufacture of the organic light emitting device.
  • the solution coating method means spin coating, dip coating, doctor blading, inkjet printing, screen printing, spray method, roll coating, etc., but is not limited thereto.
  • the substrate may be selected in consideration of optical and physical properties as needed.
  • the substrate is preferably transparent.
  • the substrate may be a hard material, but may be made of a flexible material such as plastic.
  • the substrate may include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polypropylene (PP), polyimide (PI), polycarbonate (PC), polystyrene (PS), polyoxymethylene (POM), and AS resin.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PP polypropylene
  • PI polyimide
  • PC polycarbonate
  • PS polystyrene
  • POM polyoxymethylene
  • AS resin acrylonitrile styrene copolymer
  • ABS resin acrylonitrile butadiene styrene copolymer
  • TAC Triacetyl cellulose
  • PAR polyarylate
  • the cathode material is a material having a small work function to facilitate electron injection into the organic material layer.
  • the negative electrode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, and lead or alloys thereof; Multilayer structure materials such as LiF / Al or LiO 2 / Al, and the like, but are not limited thereto.
  • the anode material a material having a large work function is usually preferred to facilitate hole injection into the organic material layer.
  • the positive electrode material that can be used herein include metals such as vanadium, chromium, copper, zinc, gold or alloys thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO); ZnO: Al or SNO 2 : combination of a metal and an oxide such as Sb; Conductive polymers such as poly (3-methylthiophene), poly [3,4- (ethylene-1,2-dioxy) thiophene] (PEDOT), polypyrrole and polyaniline, and the like, but are not limited thereto.
  • the hole transport layer is a layer that receives holes from the hole injection layer and transports holes to the light emitting layer.
  • the hole transport material is a material capable of transporting holes from the anode or the hole injection layer to the light emitting layer.
  • the material is suitable. Specific examples thereof include an arylamine-based organic material, a conductive polymer, and a block copolymer having a conjugated portion and a non-conjugated portion together, but are not limited thereto.
  • the hole injection layer is a layer for injecting holes from the electrode, and has a capability of transporting holes to the hole injection material, and has a hole injection effect at the anode, an excellent hole injection effect to the light emitting layer or the light emitting material, and is produced in the light emitting layer
  • the compound which prevents the excitons from moving to the electron injection layer or the electron injection material, and is excellent in thin film formation ability is preferable.
  • the hole injection material preferably has a higher occupied molecular orbital (HOMO) between the work function of the anode material and the HOMO of the surrounding organic material layer.
  • the hole injection material examples include metal porphyrin, oligothiophene, arylamine-based organics, phthalocyanine derivatives, hexanitrile hexaazatriphenylene-based organics, quinacridone-based organics, Perylene-based organic material, anthraquinone and polyaniline and polythiophene-based conductive polymers, but are not limited thereto.
  • the light emitting material is a material capable of emitting light in the visible region by transporting and combining holes and electrons from the hole transport layer and the electron transport layer, respectively, and a material having good quantum efficiency with respect to fluorescence or phosphorescence is preferable.
  • Specific examples thereof include 8-hydroxyquinoline aluminum complex (Alq 3 ); Carbazole series compounds; Dimerized styryl compounds; BAlq; 10-hydroxybenzoquinoline-metal compound; Benzoxazole, benzthiazole and benzimidazole series compounds; Poly (p-phenylenevinylene) (PPV) -based polymers; Spiro compounds; Polyfluorene, rubrene and the like, but are not limited thereto.
  • the light emitting layer may include a host material and a dopant material.
  • the host material is a condensed aromatic ring derivative or a heterocyclic containing compound.
  • the condensed aromatic ring derivatives include anthracene derivatives, pyrene derivatives, naphthalene derivatives, pentacene derivatives, phenanthrene compounds, and fluoranthene compounds
  • heterocyclic-containing compounds include carbazole derivatives, dibenzofuran derivatives, and ladders. Type furan compounds, pyrimidine derivatives, and the like, but is not limited thereto.
  • Dopant materials include aromatic amine derivatives, styrylamine compounds, boron complexes, fluoranthene compounds, metal complexes, and the like.
  • the aromatic amine derivatives include condensed aromatic ring derivatives having a substituted or unsubstituted arylamino group, and include pyrene, anthracene, chrysene, and periplanthene having an arylamino group, and a styrylamine compound may be substituted or unsubstituted.
  • At least one arylvinyl group is substituted with the substituted arylamine, and one or two or more substituents selected from the group consisting of an aryl group, a silyl group, an alkyl group, a cycloalkyl group and an arylamino group are substituted or unsubstituted.
  • substituents selected from the group consisting of an aryl group, a silyl group, an alkyl group, a cycloalkyl group and an arylamino group are substituted or unsubstituted.
  • the metal complex includes, but is not limited to, an iridium complex, a platinum complex, and the like.
  • the electron injection layer is a layer that injects electrons from an electrode, has an ability to transport electrons, has an electron injection effect from a cathode, an electron injection effect with respect to a light emitting layer or a light emitting material, and hole injection of excitons generated in the light emitting layer
  • the compound which prevents the movement to a layer and is excellent in thin film formation ability is preferable.
  • fluorenone anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, preorenylidene methane, anthrone and the derivatives thereof, metal Complex compounds, nitrogen-containing five-membered ring derivatives, and the like, but are not limited thereto.
  • Examples of the metal complex compound include 8-hydroxyquinolinato lithium, bis (8-hydroxyquinolinato) zinc, bis (8-hydroxyquinolinato) copper, bis (8-hydroxyquinolinato) manganese, Tris (8-hydroxyquinolinato) aluminum, tris (2-methyl-8-hydroxyquinolinato) aluminum, tris (8-hydroxyquinolinato) gallium, bis (10-hydroxybenzo [h] Quinolinato) beryllium, bis (10-hydroxybenzo [h] quinolinato) zinc, bis (2-methyl-8-quinolinato) chlorogallium, bis (2-methyl-8-quinolinato) ( o-cresolato) gallium, bis (2-methyl-8-quinolinato) (1-naphtolato) aluminum, bis (2-methyl-8-quinolinato) (2-naphtolato) gallium, It is not limited to this.
  • the electron transport layer is a layer that receives electrons from the electron injection layer and transports electrons to the light emitting layer.
  • the electron transporting material a material capable of injecting electrons well from the cathode and transferring them to the light emitting layer is suitable. Do. Specific examples thereof include Al complexes of 8-hydroxyquinoline; Complexes including Alq 3 ; Organic radical compounds; Hydroxyflavone-metal complexes and the like, but are not limited thereto.
  • the hole blocking layer is a layer for blocking the arrival of the cathode of the hole, and may be generally formed under the same conditions as the hole injection layer. Specifically, there are oxadiazole derivatives, triazole derivatives, phenanthroline derivatives, BCP, aluminum complexes, and the like, but are not limited thereto.
  • the organic light emitting device may be a top emission type, a bottom emission type, or a double-sided emission type according to a material used.
  • FIG. 3 is a diagram showing an MS spectrum of Structural Formula A-1.
  • FIG. 4 is a diagram showing an MS spectrum of a compound of Formula 1-3.
  • Structural Formula E (14.9 g, 38.8 mmol) was added at ⁇ 78 ° C., then warmed to room temperature, and the reaction was quenched with an aqueous ammonium chloride solution (aq.NH 4 Cl). The organic layer was separated, concentrated and purified by chromatography to obtain the Structural Formula E-1 (11.7 g, yield 48%).
  • Structural formula H (15 g, 46.3 mmol) was dissolved in anhydrous tetrahydrofuran (THF) (200 ml) and cooled to -78 ° C. 2.5 M n-butyllithium (n-Bu-Li) (18.5 ml, 46.3 mmol) was added for 30 minutes and then stirred at -78 ° C for 2 hours. 2,4-diphenyl-indeno [1,2-d] pyrimidin-5-one (12.9 g, 38.6 mmol) The reaction mixture was added at -78 ° C, the temperature was raised to room temperature, and the reaction was quenched with an aqueous ammonium chloride solution (aq. NH 4 Cl). The organic layer was separated, concentrated and purified by chromatography to obtain the structural formula H-1 (14.1g, 63% yield).
  • a glass substrate coated with a thickness of 500 kPa of ITO (indium tin oxide) was placed in distilled water in which a detergent was dissolved and ultrasonically washed.
  • Fischer Co. product was used as a detergent
  • distilled water filtered secondly as a filter of Millipore Co. product was used as distilled water.
  • ultrasonic washing was performed twice with distilled water for 10 minutes.
  • ultrasonic washing with a solvent of isopropyl alcohol, acetone, methanol, dried and transported to a plasma cleaner.
  • the substrate was cleaned for 5 minutes using an oxygen plasma, and then the substrate was transferred to a vacuum evaporator.
  • hexanitrile hexaazatriphenylene (HAT) of the following formula was thermally vacuum deposited to a thickness of 500 kPa on the prepared ITO transparent electrode to form a hole injection layer.
  • the compound of Formula 1-3 and the dopant compound GD as described below were vacuum-deposited at a weight ratio of 10: 1 on the hole transport layer to form a light emitting layer.
  • the compound of Formula ET-A and the Formula LiQ were vacuum-deposited in a weight ratio of 1: 1 on the emission layer to form an electron injection and transport layer at a thickness of 300 kPa.
  • lithium fluoride (LiF) and aluminum were deposited to a thickness of 1,000 ⁇ in order to form a cathode.
  • the deposition rate of the organic material was maintained at 0.4 ⁇ 0.7 ⁇ / sec
  • the lithium fluoride of the cathode was maintained at a deposition rate of 0.3 ⁇ / sec
  • aluminum is 2 ⁇ / sec
  • the vacuum degree during deposition is 2 ⁇ 10
  • An organic light-emitting device was manufactured by maintaining ⁇ 7 to 5 ⁇ 10 ⁇ 8 torr.
  • An organic light emitting diode was manufactured according to the same method as Example 1 except for using the compound of Chemical Formula 1-4 instead of the compound of Chemical Formula 1-3 of Example 1.
  • An organic light emitting diode was manufactured according to the same method as Example 1 except for using the compound of Formula 1-1, instead of the compound of Formula 1-3 of Example 1.
  • An organic light emitting diode was manufactured according to the same method as Example 1 except for using the compound of Formula 1-2, instead of the compound of Formula 1-3 of Example 1.
  • An organic light emitting diode was manufactured according to the same method as Example 1 except for using the compound of Formula 1-13 instead of the compound of Formula 1-3 of Example 1.
  • An organic light emitting diode was manufactured according to the same method as Example 1 except for using the compound of Formula 1-11 instead of the compound of Formula 1-3 of Example 1.
  • An organic light emitting diode was manufactured according to the same method as Example 1 except for using the compound of Chemical Formula 1-19 instead of the compound of Chemical Formula 1-3 of Example 1.
  • An organic light emitting diode was manufactured according to the same method as Example 1 except for using the compound of Chemical Formula 2-3, instead of the compound of Chemical Formula 1-3 of Example 1.
  • An organic light emitting diode was manufactured according to the same method as Example 1 except for using the compound of Formula GH-A instead of the compound of Formula 1-9 of Example 1.
  • Example 1 Compound Voltage (V) Efficiency (cd / A) Example 1 Formula 1-3 4.65 67.5 Example 2 Formula 1-4 4.80 69.2 Example 3 Formula 1-1 4.93 58.6 Example 4 Formula 1-2 4.95 57.7 Example 5 Formula 1-13 4.21 40.6 Example 6 Formula 1-11 4.60 67.7 Example 7 Formula 1-19 4.10 58.3 Example 8 Formula 2-3 4.10 65.2 Comparative Example 1 GH-A 6.12 15.26
  • the novel compound according to the present invention can be used as a material of the light emitting layer of the organic electronic device, including the organic light emitting device, the organic electronic device including the organic light emitting device using the same in efficiency, driving voltage, stability It can be seen that the excellent properties. In particular, it is possible to improve the power consumption by lowering the driving voltage and increasing the efficiency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

본 명세서는 헤테로환 화합물 및 제1 전극, 제2 전극 및 상기 제1 전극과 상기 제2 전극 사이에 배치된 발광층을 비롯한 1층 이상으로 이루어진 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상이 상기 헤테로환 화합물 또는 상기 헤테로환 화합물에 열 경화성 또는 광경화성 작용기가 도입된 화합물을 포함하는 것인 유기 발광 소자를 제공한다.

Description

헤테로환 화합물 및 이를 이용한 유기 발광 소자
본 명세서는 헤테로환 화합물 및 이를 이용한 유기 발광 소자에 관한 것이다.
본 명세서는 2013년 2월 7일에 한국 특허청에 제출된 한국 특허 출원 제 10-2013-0013868 호의 출원일의 이익을 주장하며, 그 내용은 전부 본 명세서에 포함된다.
유기 발광 현상은 특정 유기 분자의 내부 프로세스에 의하여 전류가 가시광으로 전환되는 예의 하나이다. 유기 발광 현상의 원리는 다음과 같다.
양극과 음극 사이에 유기물층을 위치시켰을 때 두 전극 사이에 전압을 걸어주게 되면 음극과 양극으로부터 각각 전자와 정공이 유기물층으로 주입된다. 유기물층으로 주입된 전자와 정공은 재결합하여 엑시톤(exciton)을 형성하고, 이 엑시톤이 다시 바닥 상태로 떨어지면서 빛이 나게 된다. 이러한 원리를 이용하는 유기 발광 소자는 일반적으로 음극과 양극 및 그 사이에 위치한 유기물층, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층을 포함하는 유기물층으로 구성될 수 있다.
유기 발광 소자에서 사용되는 물질로는 순수 유기 물질 또는 유기 물질과 금속이 착물을 이루는 착화합물이 대부분을 차지하고 있으며, 용도에 따라 정공주입 물질, 정공수송 물질, 발광 물질, 전자수송 물질, 전자주입 물질 등으로 구분될 수 있다. 여기서, 정공주입 물질이나 정공수송 물질로는 p-타입의 성질을 가지는 유기물질, 즉 쉽게 산화가 되고 산화시에 전기화학적으로 안정한 상태를 가지는 유기물이 주로 사용되고 있다. 한편, 전자주입 물질이나 전자수송 물질로는 n-타입 성질을 가지는 유기 물질, 즉 쉽게 환원이 되고 환원시에 전기화학적으로 안정한 상태를 가지는 유기물이 주로 사용되고 있다. 발광층 물질로는 p-타입 성질과 n-타입 성질을 동시에 가진 물질, 즉 산화와 환원 상태에서 모두 안정한 형태를 갖는 물질이 사용될 수 있으며, 엑시톤이 형성되었을 때 이를 빛으로 전환하는 발광 효율이 높은 물질이 바람직하다.
따라서, 당 기술분야에서는 새로운 유기물의 개발이 요구되고 있다.
본 명세서의 목적은 헤테로환 화합물 및 이를 이용한 유기 발광 소자를 제공하는 데 있다.
본 명세서는 하기 화학식 1 또는 2로 표시되는 화합물을 제공한다.
[화학식 1]
Figure PCTKR2014001073-appb-I000001
[화학식 2]
Figure PCTKR2014001073-appb-I000002
화학식 1 및 2에 있어서,
a는 0 내지 7의 정수이며,
b는 0 내지 4의 정수이고,
c는 0 내지 8의 정수이며,
d는 0 내지 5의 정수이고,
A1 내지 A8은 서로 동일하거나 상이하고, 각각 독립적으로 CR 또는 N 이며, 단, A1 내지 A8 중 N은 2개 이상이고,
R 및 R1 내지 R4는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 니트릴기; 니트로기; 히드록시기; 카르보닐기; 에스테르기; 이미드기; 아마이드기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 아릴옥시기; 치환 또는 비치환된 알킬티옥시기; 치환 또는 비치환된 아릴티옥시기; 치환 또는 비치환된 알킬술폭시기; 치환 또는 비치환된 아릴술폭시기; 치환 또는 비치환된 알케닐기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 붕소기; 치환 또는 비치환된 알킬아민기; 치환 또는 비치환된 아랄킬아민기; 치환 또는 비치환된 아릴아민기; 치환 또는 비치환된 헤테로아릴아민기; 치환 또는 비치환된 아릴포스핀기; 치환 또는 비치환된 포스핀옥사이드기; 치환 또는 비치환된 아릴기; 또는 N, O, S 원자 중 1개 이상을 포함하는 치환 또는 비치환된 헤테로고리기이다.
또한, 본 명세서는 제1 전극, 제2 전극, 및 상기 제1 전극과 상기 제2 전극 사이에 배치된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1 층 이상은 상기 화학식 1 또는 화학식 2로 표시되는 헤테로환 화합물 또는 상기 헤테로환 화합물에 열 경화성 또는 광 경화성 작용기가 도입된 화합물을 포함하는 것인 유기 발광 소자를 제공한다.
본 명세서의 일 실시상태에 따른 헤테로환 화합물은 적절한 에너지 준위를 갖고, 전기 화학적 안정성 및 열적 안정성이 우수하다. 따라서, 상기 화합물을 포함하는 유기 발광 소자는 높은 효율 및/또는 높은 구동 안정성을 제공한다.
도 1은 기판(1), 양극(2), 발광층(3), 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.
도 2는 기판 (1), 양극(2), 정공주입층(5), 정공수송층(6), 발광층(7), 전자수송층(8) 및 음극(4)로 이루어진 유기 발광 소자의 예를 도시한 것이다.
도 3은 제조예 1에서 제조한 구조식 A-1의 MS 스펙트럼을 나타낸 도이다.
도 4는 제조예 1에서 제조한 화학식 1-3의 MS 스펙트럼을 나타낸 도이다.
이하 발명을 구체적으로 설명한다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 1로 표시되는 화합물을 제공한다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 2로 표시되는 화합물을 제공한다.
본 명세서의 일 실시상태에 따른 상기의 헤테로환 화합물을 포함하는 유기 발광 소자는 구동 전압 하강 및/또는 효율 상승의 효과가 있을 수 있다.
상기 치환기들의 예시들은 아래에서 설명하나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 할로겐기의 예로는 불소, 염소, 브롬 또는 요오드가 있다.
본 명세서에 있어서, 에스테르기는 에스테르기의 산소가 탄소수 1 내지 25의 직쇄, 분지쇄 또는 고리쇄 알킬기 또는 탄소수 6 내지 25의 아릴기로 치환될 수 있다. 구체적으로, 하기 구조식의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2014001073-appb-I000003
본 명세서에 있어서, 이미드기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 25인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2014001073-appb-I000004
본 명세서에 있어서, 아마이드기는 아마이드기의 질소가 수소, 탄소수 1 내지 25의 직쇄, 분지쇄 또는 고리쇄 알킬기 또는 탄소수 6 내지 25의 아릴기로 1 또는 2 치환될 수 있다. 구체적으로, 하기 구조식의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2014001073-appb-I000005
본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 50인 것이 바람직하다. 구체적인 예로는 메틸, 에틸, 프로필, n-프로필, 이소프로필, 부틸, n-부틸, 이소부틸, tert-부틸, sec-부틸, 1-메틸-부틸, 1-에틸-부틸, 펜틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸, 헥실, n-헥실, 1-메틸펜틸, 2-메틸펜틸, 4-메틸-2-펜틸, 3,3-디메틸부틸, 2-에틸부틸, 헵틸, n-헵틸, 1-메틸헥실, 시클로펜틸메틸, 시클로헥틸메틸, 옥틸, n-옥틸, tert-옥틸, 1-메틸헵틸, 2-에틸헥실, 2-프로필펜틸, n-노닐, 2,2-디메틸헵틸, 1-에틸-프로필, 1,1-디메틸-프로필, 이소헥실, 2-메틸펜틸, 4-메틸헥실, 5-메틸헥실 등이 있으나, 이들에 한정되지 않는다.
본 명세서에 있어서, 시클로알킬기는 특별히 한정되지 않으나, 탄소수 3 내지 60인 것이 바람직하며, 단환식일 수 있고, 다환식일 수 있다. 구체적으로 시클로프로필, 시클로부틸, 시클로펜틸, 3-메틸시클로펜틸, 2,3-디메틸시클로펜틸, 시클로헥실, 3-메틸시클로헥실, 4-메틸시클로헥실, 2,3-디메틸시클로헥실, 3,4,5-트리메틸시클로헥실, 4-tert-부틸시클로헥실, 시클로헵틸, 시클로옥틸 등이 있으나, 이에 한정되지 않는다.
본 명세서에 있어서, 상기 알콕시기는 직쇄, 분지쇄 또는 고리쇄일 수 있다. 알콕시기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 20인 것이 바람직하다. 구체적으로, 메톡시, 에톡시, n-프로폭시, 이소프로폭시, i-프로필옥시, n-부톡시, 이소부톡시, tert-부톡시, sec-부톡시, n-펜틸옥시, 네오펜틸옥시, 이소펜틸옥시, n-헥실옥시, 3,3-디메틸부틸옥시, 2-에틸부틸옥시, n-옥틸옥시, n-노닐옥시, n-데실옥시, 벤질옥시, p-메틸벤질옥시 등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 아릴기는 하나의 수소 제거에 의해서 방향족 탄화수소로부터 유도된 유기 라디컬로 단환식일 수 있고, 다환식일 수 있다. 아릴기의 탄소수는 특별히 한정되지 않으나, 탄소수 6 내지 60인 것이 바람직하다. 아릴기의 구체적인 예로는 페닐기, 비페닐기, 트라이페닐기, 터페닐기, 스틸벤기 등의 단환식 방향족 및 나프틸기, 안트라세닐기, 페난트레닐기, 파이레닐기, 페릴레닐기, 테트라세닐기, 크라이세닐기, 플루오레닐기, 아세나프타센닐기, 트리페닐렌기, 플루오란텐(fluoranthene)기 등의 다환식 방향족 등이 있으나, 이들에만 한정되는 것은 아니다.
본 명세서에 있어서, 플루오레닐기는 2개의 고리 유기화합물이 1개의 원자를 통하여 연결된 구조로서, 예로는
Figure PCTKR2014001073-appb-I000006
,
Figure PCTKR2014001073-appb-I000007
등이 있다.
본 명세서에 있어서, 플루오레닐기는 열린 플루오레닐기의 구조를 포함하며, 여기서 열린 플루오레닐기는 2개의 고리 화합물이 1개의 원자를 통하여 연결된 구조에서 한쪽 고리 화합물이 연결이 끊어진 상태의 구조로서, 예로는
Figure PCTKR2014001073-appb-I000008
,
Figure PCTKR2014001073-appb-I000009
등이 있다.
본 명세서에 있어서, 헤테로 고리기는 이종원자로 O, N 또는 S를 포함하는 헤테로 고리기로서, 탄소수는 특별히 한정되지 않으나, 탄소수 2 내지 60인 것이 바람직하다. 헤테로 고리기의 예로는 티오펜기, 퓨란기, 피롤기, 이미다졸기, 티아졸기, 옥사졸기, 옥사디아졸기, 트리아졸기, 피리딜기, 비피리딜기, 피리미딜기, 트리아진기, 트리아졸기, 아크리딜기, 피리다진기, 피라지닐기, 퀴놀리닐기, 퀴나졸린기, 퀴녹살리닐기, 프탈라지닐기, 피리도 피리미디닐기, 피리도 피라지닐기, 피라지노 피라지닐기, 이소퀴놀린기, 인돌기, 카바졸기, 벤조옥사졸기, 벤조이미다졸기, 벤조티아졸기, 벤조카바졸기, 벤조티오펜기, 디벤조티오펜기, 벤조퓨라닐기, 페난쓰롤린기(phenanthroline), 티아졸릴기, 이소옥사졸릴기, 옥사디아졸릴기, 티아디아졸릴기, 벤조티아졸릴기, 페노티아지닐기 및 디벤조퓨라닐기 등이 있으나, 이들에만 한정되는 것은 아니다.
본 명세서에 있어서, 아릴옥시기, 아릴티옥시기, 아릴술폭시기 및 아랄킬아민기 중의 아릴기는 전술한 아릴기의 예시와 같다. 구체적으로 아릴옥시기로는 페녹시, p-토릴옥시, m-토릴옥시, 3,5-디메틸-페녹시, 2,4,6-트리메틸페녹시, p-tert-부틸페녹시, 3-비페닐옥시, 4-비페닐옥시, 1-나프틸옥시, 2-나프틸옥시, 4-메틸-1-나프틸옥시, 5-메틸-2-나프틸옥시, 1-안트릴옥시, 2-안트릴옥시, 9-안트릴옥시, 1-페난트릴옥시, 3-페난트릴옥시, 9-페난트릴옥시 등이 있고, 아릴티옥시기로는 페닐티옥시기, 2-메틸페닐티옥시기, 4-tert-부틸페닐티옥시기 등이 있으며, 아릴술폭시기로는 벤젠술폭시기, p-톨루엔술폭시기 등이 있으나, 이에 한정되지 않는다.
본 명세서에 있어서, 알킬티옥시기, 알킬술폭시기 중의 알킬기는 전술한 알킬기의 예시와 같다. 구체적으로 알킬티옥시기로는 메틸티옥시기, 에틸티옥시기, tert-부틸티옥시기, 헥실티옥시기, 옥틸티옥시기 등이 있고, 알킬술폭시기로는 메실, 에틸술폭시기, 프로필술폭시기, 부틸술폭시기 등이 있으나, 이에 한정되지 않는다.
본 명세서에 있어서, 헤테로아릴아민기 중의 헤테로아릴기는 전술한 헤테로고리기의 예시 중에서 선택될 수 있다.
본 명세서에 있어서, 아랄킬아민기 중의 아랄킬기의 구체적인 예로는 벤질기기, p-메틸벤질기, m-메틸벤질기, p-에틸벤질기, m-에틸벤질기, 3,5-디메틸벤질기, α-메틸벤질기, α,α-디메틸벤질기, α,α-메틸페닐벤질기, 1-나프틸벤질기, 2-나프틸벤질기, p-플루오르벤질기, 3,5-디플루오르벤질기, α,α-디트리플루오로메틸벤질기, p-메톡시벤질기, m-메톡시벤질기, α-페녹시벤질기, α-벤질기옥시벤질기, 나프틸메틸기, 나프틸에틸기, 나프틸이소프로필기, 피롤릴메틸기, 피롤렐에틸기, 아미노벤질기, 니트로벤질기, 시아노벤질기, 1-히드록시-2-페닐이소프로필기, 1-클로로-2-페닐이소프로필기 등이 있으나, 이에 한정되지 않는다.
본 명세서에 있어서, 상기 알케닐기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나, 2 내지 40인 것이 바람직하다. 구체적인 예로는 비닐, 1-프로페닐, 이소프로페닐, 1-부테닐, 2-부테닐, 3-부테닐, 1-펜테닐, 2-펜테닐, 3-펜테닐, 3-메틸-1-부테닐, 1,3-부타디에닐, 알릴, 1-페닐비닐-1-일, 2-페닐비닐-1-일, 2,2-디페닐비닐-1-일, 2-페닐-2-(나프틸-1-일)비닐-1-일, 2,2-비스(디페닐-1-일)비닐-1-일, 스틸베닐기, 스티레닐기 등이 있으나 이들에 한정되지 않는다.
본 명세서에 있어서, 실릴기는 구체적으로 트리메틸실릴기, 트리에틸실릴기, t-부틸디메틸실릴기, 비닐디메틸실릴기, 프로필디메틸실릴기, 트리페닐실릴기, 디페닐실릴기, 페닐실릴기 등이 있으나 이에 한정되지 않는다.
본 명세서에 있어서, 아민기의 탄소수는 특별히 한정되지 않으나, 1 내지 30인 것이 바람직하다. 아민기의 구체적인 예로는 메틸아민기, 디메틸아민기, 에틸아민기, 디에틸아민기, 페닐아민기, 나프틸아민기, 비페닐아민기, 안트라세닐아민기, 9-메틸-안트라세닐아민기, 디페닐아민기, 페닐나프틸아민기, 디톨릴아민기, 페닐톨릴아민기, 트리페닐아민기 등이 있으나, 이들에만 한정되는 것은 아니다.
본 명세서에 있어서, 아릴 아민기의 예로는 치환 또는 비치환된 모노아릴아민기, 치환 또는 비치환된 디아릴아민기, 또는 치환 또는 비치환된 트리아릴아민기가 있다. 상기 아릴아민기 중의 아릴기는 단환식 아릴기일 수 있고, 다환식 아릴기일 수 있다. 상기 아릴기가 2 이상을 포함하는 아릴아민기는 단환식 아릴기, 다환식 아릴기, 또는 단환식아릴기와 다환식 아릴기를 동시에 포함할 수 있다.
아릴 아민기의 구체적인 예로는 페닐아민, 나프틸아민, 비페닐아민, 안트라세닐아민, 3-메틸-페닐아민, 4-메틸-나프틸아민, 2-메틸-비페닐아민, 9-메틸-안트라세닐아민, 디페닐 아민기, 페닐 나프틸 아민기, 디톨릴 아민기, 페닐 톨릴 아민기, 카바졸 및 트리페닐 아민기 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 아릴포스핀기의 예로는 치환 또는 비치환된 모노아릴포스핀기, 치환 또는 비치환된 디아릴포스핀기, 또는 치환 또는 비치환된 트리아릴포스핀기가 있다. 상기 아릴포스핀기 중의 아릴기는 단환식 아릴기일 수 있고, 다환식 아릴기일 수 있다. 상기 아릴기가 2 이상을 포함하는 아릴포스핀기는 단환식 아릴기, 다환식 아릴기, 또는 단환식 아릴기와 다환식 아릴기를 동시에 포함할 수 있다.
또한, 본 명세서에서 "치환 또는 비치환된" 이라는 용어는 중수소; 할로겐기; 알킬기; 알케닐기; 알콕시기; 시클로알킬기; 실릴기; 아릴알케닐기; 아릴기; 아릴옥시기; 알킬티옥시기; 알킬술폭시기; 아릴술폭시기; 붕소기; 알킬아민기; 아랄킬아민기; 아릴아민기; 헤테로아릴기; 카바졸기; 아릴아민기; 아릴기; 플루오레닐기; 니트릴기; 니트로기; 히드록시기 및 N, O, S 원자 중 1개 이상을 포함하는 헤테로 고리기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환되었거나 또는 어떠한 치환기도 갖지 않는 것을 의미하며, 상기 치환기들은 추가로 치환 또는 비치환될 수 있다.
상기 "치환"이라는 용어는 화합물의 탄소 원자에 결합된 수소 원자가 다른 치환기로 바뀌는 것을 의미하며, 치환되는 위치는 수소 원자가 치환되는 위치 즉, 치환기가 치환 가능한 위치라면 한정하지 않으며, 2 이상 치환되는 경우, 2 이상의 치환기는 서로 동일하거나 상이할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 A1 내지 A8 중 적어도 두 개는 N 이다.
본 명세서의 일 실시상태에 있어서, 상기 A1 내지 A4 중 적어도 하나는 N이다.
본 명세서의 일 실시상태에 있어서, 상기 A1 내지 A4 중 적어도 두 개는 N이다.
본 명세서의 일 실시상태에 있어서, 상기 A5 내지 A8 중 적어도 하나는 N이다.
본 명세서의 일 실시상태에 있어서, 상기 A5 내지 A8 중 적어도 두 개는 N이다.
본 명세서의 일 실시상태에 있어서, 상기 A5는 N 이다.
본 명세서의 일 실시상태에 있어서, 상기 A6은 N 이다.
본 명세서의 일 실시상태에 있어서, 상기 A7은 N 이다.
본 명세서의 일 실시상태에 있어서, 상기 A8은 N이다.
본 명세서의 일 실시상태에 있어서, 상기 A5 및 A7은 N 이다.
본 명세서의 일 실시상태에 있어서, 상기 A6 및 A8은 N이다.
본 명세서의 일 실시상태에 있어서, 상기 A5는 CR이다.
본 명세서의 일 실시상태에 있어서, 상기 A6는 CR이다.
본 명세서의 일 실시상태에 있어서, 상기 A7은 CR이다.
본 명세서의 일 실시상태에 있어서, 상기 A8은 CR이다.
본 명세서의 일 실시상태에 있어서, A5 및 A7 은 N이고, A6 및 A8 은 CR이거나, A6 및 A8은 N이고, A5 및 A7은 CR이다.
본 명세서의 일 실시상태에 있어서, 상기 A5 및 A7은 N 이고, 상기 A6는 CR이다.
본 명세서의 일 실시상태에 있어서, 상기 A5 및 A7은 N 이고, 상기 A6는 CR이며, 상기 A8은 CR이다.
본 명세서의 일 실시상태에 있어서, 상기 A6 및 A8은 N이고, 상기 A7은 CR이다.
본 명세서의 일 실시상태에 있어서, 상기 A6 및 A8은 N이고, 상기 A7은 CR이고, 상기 A5는 CH이다.
본 명세서의 일 실시상태에 있어서, 상기 A6 및 A8은 N이고, 상기 A7은 CR이고, 상기 A5는 CR이다.
본 명세서의 일 실시상태에 있어서, 상기 R은 수소; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 N, O, S 원자 중 1개 이상을 포함하는 치환 또는 비치환된 헤테로고리기이다.
또 하나의 실시상태에 있어서, 상기 R은 수소; 치환 또는 비치환된 포스핀옥사이드기, 치환 또는 비치환된 아릴기, 및 N, O, S 원자 중 1개 이상을 포함하는 치환 또는 비치환된 헤테로고리기로 이루어진 군에서 선택되는 1 또는 2 이상의 치환기로 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 포스핀옥사이드기, 치환 또는 비치환된 아릴기, 및 N, O, S 원자 중 1개 이상을 포함하는 치환 또는 비치환된 헤테로고리기로 이루어진 군에서 선택되는 1 또는 2 이상의 치환기로 치환 또는 비치환된 N, O, S 원자 중 1개 이상을 포함하는 헤테로고리기이다.
본 명세서의 일 실시상태에 있어서, 상기 R은 수소; 페닐기, 페닐기로 치환된 포스핀옥사이드기, 트리아진기 및 피리미딘기로 이루어진 군에서 선택되는 치환기로 치환 또는 비치환된 페닐기; 페닐기, 페닐기로 치환된 포스핀옥사이드기, 트리아진기 및 피리미딘기로 이루어진 군에서 선택되는 치환기로 치환 또는 비치환된 나프틸기; 페닐기, 페닐기로 치환된 포스핀옥사이드기, 트리아진기 및 피리미딘기로 이루어진 군에서 선택되는 치환기로 치환 또는 비치환된 비페닐기; 또는 페닐기, 페닐기로 치환된 포스핀옥사이드기, 트리아진기 및 피리미딘기로 이루어진 군에서 선택되는 치환기로 치환 또는 비치환된 피리딘기이다.
본 명세서의 일 실시상태에 있어서, 상기 R은 수소; 페닐기, 페닐기로 치환된 포스핀옥사이드기, 트리아진기 및 피리미딘기로 이루어진 군에서 선택되는 치환기로 치환 또는 비치환된 페닐기; 나프틸기; 페닐기로 치환된 포스핀 옥사이드기로 치환 또는 비치환된 비페닐기; 또는 피리딘기이다.
본 명세서의 일 실시상태에 있어서, 상기 R은 수소이다.
본 명세서의 일 실시상태에 있어서, 상기 R는 치환 또는 비치환된 아릴기이다.
본 명세서의 일 실시상태에 있어서, 상기 R는 치환 또는 비치환된 페닐기이다.
본 명세서의 일 실시상태에 있어서, 상기 R는 페닐기이다.
본 명세서의 일 실시상태에 있어서, 상기 R은 치환 또는 비치환된 아릴기로 치환된 페닐기이다.
본 명세서의 일 실시상태에 있어서, 상기 R은 페닐기로 치환 또는 비치환된 페닐기이다.
본 명세서의 일 실시상태에 있어서, 상기 R은 치환 또는 비치환된 포스핀옥사이드기로 치환된 페닐기이다.
또 하나의 실시상태에 있어서, 상기 R은 아릴기로 치환된 포스핀옥사이드기로 치환된 페닐기이다.
본 명세서의 일 실시상태에 있어서, 상기 R은 페닐기로 치환된 포스핀옥사이드기로 치환된 페닐기이다.
본 명세서의 일 실시상태에 있어서, 상기 R은 N, O, S 원자 중 1개 이상을 포함하는 치환 또는 비치환된 헤테로고리기로 치환된 페닐기이다.
또 하나의 실시상태에 있어서, 상기 R은 N을 포함하는 치환 또는 비치환된 헤테로고리기로 치환된 페닐기이다.
하나의 실시상태에 있어서, 상기 R은 치환 또는 비치환된 트리아진기로 치환된 페닐기이다.
또 하나의 실시상태에 있어서, 상기 R은 페닐기로 치환된 트리아진기로 치환된 페닐기이다.
본 명세서의 일 실시상태에 있어서, 상기 R은 치환 또는 비치환된 피리미딘기로 치환된 페닐기이다.
또 하나의 실시상태에 있어서, 상기 R은 페닐기로 치환 또는 비치환된 피리미딘기로 치환된 페닐기이다.
본 명세서의 일 실시상태에 있어서, 상기 피리미딘기는
Figure PCTKR2014001073-appb-I000010
또는
Figure PCTKR2014001073-appb-I000011
이며, 추가의 치환기로 치환 또는 비치환될 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 R은 치환 또는 비치환된 나프틸기이다.
또 하나의 실시상태에 있어서, 상기 R은 나프틸기이다.
또 하나의 실시상태에 있어서, 상기 R은 치환 또는 비치환된 비페닐기이다.
또 하나의 실시상태에 있어서, 상기 R은 비페닐기이다.
본 명세서의 일 실시상태에 있어서, 상기 R은 치환 또는 비치환된 포스핀옥사이드기로 치환된 비페닐기이다.
또 하나의 실시상태에 있어서, 상기 R은 아릴기로 치환된 포스핀옥사이드기로 치환된 비페닐기이다.
본 명세서의 일 실시상태에 있어서, 상기 R은 페닐기로 치환된 포스핀옥사이드기로 치환된 비페닐기이다.
본 명세서의 일 실시상태에 있어서, 상기 R은 N, O, S 원자 중 1개 이상을 포함하는 치환 또는 비치환된 헤테로고리기이다.
또 하나의 실시상태에 있어서, 상기 R은 N 원자를 1개 이상 포함하는 치환 또는 비치환된 헤테로고리기이다.
또 하나의 실시상태에 있어서, 상기 R은 치환 또는 비치환된 피리딘기이다.
본 명세서의 일 실시상태에 있어서, 상기 피리딘기는
Figure PCTKR2014001073-appb-I000012
,
Figure PCTKR2014001073-appb-I000013
또는
Figure PCTKR2014001073-appb-I000014
이다.
본 명세서의 일 실시상태에 있어서, R1은 수소이다.
또 하나의 실시상태에 있어서, R2는 수소이다.
하나의 일 실시상태에 있어서, R3는 수소이다.
또 하나의 실시상태에 있어서, R4는 수소이다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 1로 표시되는 헤테로환 화합물은 하기 화학식 1-1 내지 1-36 중 어느 하나로 표시된다.
Figure PCTKR2014001073-appb-I000015
Figure PCTKR2014001073-appb-I000016
Figure PCTKR2014001073-appb-I000017
Figure PCTKR2014001073-appb-I000018
Figure PCTKR2014001073-appb-I000019
Figure PCTKR2014001073-appb-I000020
Figure PCTKR2014001073-appb-I000021
Figure PCTKR2014001073-appb-I000022
Figure PCTKR2014001073-appb-I000023
본 명세서의 일 실시상태에 있어서, 상기 화학식 2로 표시되는 헤테로환 화합물은 하기 화학식 2-1 내지 2-32 중 어느 하나로 표시된다.
Figure PCTKR2014001073-appb-I000024
Figure PCTKR2014001073-appb-I000025
Figure PCTKR2014001073-appb-I000026
Figure PCTKR2014001073-appb-I000027
Figure PCTKR2014001073-appb-I000028
Figure PCTKR2014001073-appb-I000029
Figure PCTKR2014001073-appb-I000030
Figure PCTKR2014001073-appb-I000031
상기 화학식 1 또는 화학식 2의 헤테로환 화합물은 후술하는 제조예를 기초로 제조될 수 있다.
본 명세서의 일 실시상태에 있어서, R로 치환된 인데노 피리미디-5-온에 9-(2-브로모페닐)-카바졸 (9-(2-bromophenyl)-carbazole) 을 반응시키고, 폐환반응을 진행하여, 화학식 1-1 내지 1-36뿐만 아니라 화학식 1로 표시되는 헤테로환 화합물을 제조할 수 있다.
본 명세서의 일 실시상태에 있어서, R로 치환된 인데노 피리미디-5-온에 2-브로모-다이페닐아닐린을 반응시키고, 폐환반응을 진행하여, 화학식 2-1 내지 2-32 뿐만 아니라 화학식 2로 표시되는 헤테로환 화합물을 제조할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 1 또는 화학식 2의 화합물은 탄소를 중심으로 2개의 3환 고리가 축합되거나, 3환 고리와 5환 고리가 축합된 헤테로고리기가 스피로 구조로 결합된 코어 구조를 포함한다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 1의 화합물은 치환 또는 비치환된 인데노피리미딘기와 치환 또는 비치환된 아크리딘기가 스피로 구조로 결합된 코어 구조를 포함한다.
상기 화학식 1 또는 화학식 2의 화합물은 상기 화학식 1 또는 화학식 2에 표시된 상기 코어 구조에 다양한 치환체를 도입함으로써 유기 발광 소자에서 사용되는 유기물층으로 사용되기에 적합한 특성을 갖는다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 1 또는 화학식 2의 화합물의 코어는 스피로 결합을 하는 탄소를 중심으로 2개의 3환 고리가 축합되거나, 3환 고리와 5환 고리가 축합된 헤테로고리기 사이의 컨쥬게이션을 제한한다.
화합물의 컨쥬게이션 길이와 에너지 밴드 갭은 밀접한 관계가 있다. 구체적으로, 화합물의 컨쥬게이션 길이가 길수록 에너지 밴드갭이 작아진다. 전술한 바와 같이, 상기 화학식 1 또는 화학식 2의 화합물의 코어는 제한된 컨쥬게이션을 포함하고 있으므로, 이는 에너지 밴드 갭이 큰 성질을 갖는다.
본 명세서에서는 상기와 같이 에너지 밴드 갭이 큰 코어 구조의 R, R1 내지 R4의 위치에 다양한 치환기를 도입함으로써 다양한 에너지 밴드 갭을 갖는 화합물을 합성할 수 있다. 본 명세서의 일 실시상태에 따른 상기 화학식 1 또는 화학식 2의 화합물은 에너지 밴드갭이 커서 치환기를 도입하여 에너지 밴드 갭의 조절이 용이하다.
또한, 본 명세서에서는 상기와 같은 구조의 코어 구조의 R, R1 내지 R4의 위치에 다양한 치환기를 도입함으로써 화합물의 HOMO 및 LUMO 에너지 준위도 조절할 수 있다.
따라서, 본 명세서의 일 실시상태에 따른 상기 화학식 1 또는 화학식 2 의 화합물을 포함하는 유기 발광 소자는 고효율 장수명의 유기 발광 소자를 제공할 수 있다.
또한, 상기와 같은 구조의 코어 구조에 다양한 치환기를 도입함으로써 도입된 치환기의 고유 특성을 갖는 화합물을 합성할 수 있다. 예컨대, 유기 발광 소자 제조시 사용되는 정공 주입층 물질, 정공 수용용 물질, 발광층 물질 및 전자 수송층 물질에 주로 사용되는 치환기를 상기 코어 구조에 도입함으로써 각 유기물층에서 요구하는 조건들을 충족시키는 물질을 합성할 수 있다.
본 명세서의 일 실시상태에 따른 상기 화학식 1 또는 화학식 2의 헤테로환 화합물은 적절한 정공 또는 전자 이동도를 갖는다. 따라서, 상기 헤테로환 화합물을 유기 발광 소자에 적용하는 경우, 발광층에서 정공과 전자의 밀도가 균형을 이루도록 하여 엑시톤 형성을 극대화할 수 있다.
본 명세서의 일 실시상태에 따른 상기 화학식 1 또는 화학식 2의 헤테로환 화합물은 인접한 층과의 계면 특성이 우수하여, 소자의 안정성이 높은 이점이 있다.
본 명세서의 일 실시상태에 따른 상기 화학식 1 또는 화학식 2의 헤테로환 화합물은 유리 전이 온도 (Tg)가 높아 열적 안정성이 우수하다. 이러한 열적 안정성의 증가는 소자에 구동 안정성을 제공하는 중요한 요인이 된다.
본 명세서는 또한 상기 화학식 1 또는 화학식 2의 화합물을 이용하는 유기 발광 소자를 제공한다.
제1 전극, 제2 전극 및 상기 제1 전극과 상기 제2 전극 사이에 배치된 발광층을 비롯한 1층 이상으로 이루어진 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 상기 헤테로환 화합물 또는 상기 헤테로환 화합물에 열 경화성 또는 광 경화성 작용기가 도입된 화합물을 포함하는 것인 유기 발광 소자를 제공한다.
본 명세서의 일 실시상태에 있어서, 상기 유기물층은 정공수송층, 정공주입층, 또는 정공수송과 정공주입을 동시에 하는 층을 포함하고, 상기 정공수송층, 정공주입층, 또는 정공수송과 정공주입을 동시에 하는 층은 상기 헤테로환 화합물 또는 상기 헤테로환 화합물에 열 경화성 또는 광 경화성 작용기가 도입된 화합물을 포함한다.
본 명세서의 일 실시상태에 있어서, 상기 발광층은 상기 헤테로환 화합물 또는 상기 헤테로환 화합물에 열 경화성 또는 광 경화성 작용기가 도입된 화합물을 포함한다.
본 명세서의 일 실시상태에 있어서, 상기 유기물층은 상기 헤테로환 화합물 또는 상기 헤테로환 화합물에 열 경화성 또는 광 경화성 작용기가 도입된 화합물을 호스트로서 포함한다.
본 명세서의 일 실시상태에 있어서, 상기 유기물층은 상기 헤테로환 화합물 또는 상기 헤테로환 화합물에 열 경화성 또는 광 경화성 작용기가 도입된 화합물을 호스트로서 포함하고, 다른 유기 화합물, 금속 또는 금속 화합물을 도판트로 포함한다.
본 명세서의 일 실시상태에 있어서, 상기 유기물층은 발광층을 포함하고, 상기 발광층의 호스트로 상기 헤테로환 화합물 또는 상기 헤테로환 화합물에 열 경화성 또는 광 경화성 작용기가 도입된 화합물을 포함한다.
또 하나의 실시상태에 있어서, 상기 헤테로환 화합물 또는 상기 헤테로환 화합물에 열 경화성 또는 광 경화성 작용기가 도입된 화합물을 발광층의 호스트로서 포함되고, 유기 화합물, 금속 또는 금속화합물을 도판트로 포함한다.
본 명세서의 일 실시상태에 있어서, 상기 유기물층은 전자수송층을 포함하고, 상기 전자수송층은 상기 헤테로환 화합물 또는 상기 헤테로환 화합물에 열 경화성 또는 광 경화성 작용기가 도입된 화합물을 포함한다.
본 명세서의 일 실시상태에 있어서, 상기 유기물층은 전자주입층을 포함하고, 상기 전자주입층은 상기 헤테로환 화합물 또는 상기 헤테로환 화합물에 열 경화성 또는 광 경화성 작용기가 도입된 화합물을 포함한다.
본 명세서의 일 실시상태에 있어서, 상기 유기물층은 전자주입 및 전자수송을 동시에 하는 층을 포함하고, 상기 전자주입 및 전자 수송을 동시에 하는 층은 상기 헤테로환 화합물 또는 상기 헤테로환 화합물에 열 경화성 또는 광 경화성 작용기가 도입된 화합물을 포함한다.
본 명세서의 일 실시상태에 있어서, 상기 헤테로환 화합물은 발광층 및/또는 전자수송층에 포함된다.
본 명세서의 유기 발광 소자에서는 상기 화학식 1 또는 화학식 2의 화합물 대신에 상기 화학식 1 또는 화학식 2의 화합물에 열경화성 또는 광경화성 작용기를 도입한 화합물을 사용할 수도 있다. 이와 같은 화합물은 전술한 화학식 1 또는 화학식 2의 화합물의 기본 물성을 유지하는 동시에, 소자의 제작시 용액 도포법에 의하여 박막으로 형성한 후 경화시키는 방법에 의하여 유기물층으로 형성될 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 열 경화성 또는 광 경화성 작용기는 비닐기 또는 아크릴기이다.
본 명세서의 일 실시상태에 있어서, 상기 유기물층은 정공주입층, 정공수송층. 전자수송층, 전자주입층, 전자저지층 및 정공저지층으로 이루어진 군에서 선택되는 1층 또는 2층 이상을 더 포함한다.
본 명세서의 유기 발광 소자의 유기물층은 단층 구조로 이루어질 수도 있으나, 2층 이상의 유기물층이 적층된 다층 구조로 이루어질 수 있다. 예컨대, 본 명세서의 유기 발광 소자는 유기물층으로서 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등을 포함하는 구조를 가질 수 있다. 그러나 유기 발광 소자의 구조는 이에 한정되지 않고 더 적은 수의 유기층을 포함할 수 있다.
또 하나의 실시상태에 있어서, 유기 발광 소자는 기판 상에 양극, 1층 이상의 유기물층 및 음극이 순차적으로 적층된 구조(normal type)의 유기 발광 소자일 수 있다.
또 하나의 실시상태에 있어서, 유기 발광 소자는 기판 상에 음극, 1층 이상의 유기물층 및 양극이 순차적으로 적층된 역방향 구조(inverted type)의 유기 발광 소자일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 제1 전극은 음극이고, 상기 제2 전극은 양극이다. 또 하나의 실시상태에 있어서, 상기 제1 전극은 양극이고, 상기 제2 전극은 음극이다.
본 명세서의 유기 발광 소자의 구조를 도 1 및 도 2에 예시하였으나, 이들 구조로만 한정되는 것은 아니다.
도 1은 기판(1), 양극(2), 발광층(3), 음극(4)이 순차적으로 적층된 유기 발광 소자의 구조가 예시되어 있다. 이와 같은 구조에 있어서, 상기 화합물은 상기 발광층(3)에 포함될 수 있다.
도 2는 기판 (1), 양극(2), 정공주입층(5), 정공수송층(6), 발광층(7), 전자수송층(8) 및 음극(4)이 순차적으로 적층된 유기 발광 소자의 구조가 예시되어 있다. 이와 같은 구조에 있어서 상기 화합물은 상기 정공주입층(5), 정공 수송층(6), 발광층(7) 및 전자 수송층(8) 중 1층 이상에 포함될 수 있다.
본 명세서의 유기 발광 소자는 유기물층 중 1층 이상이 본 명세서의 화합물, 즉 상기 헤테로환 화합물 또는 상기 헤테로환 화합물에 열 경화성 또는 광 경화성 작용기가 도입된 화합물을 포함하는 것을 제외하고는 당 기술분야에 알려져 있는 재료와 방법으로 제조될 수 있다.
예컨대, 본 명세서의 유기 발광 소자는 기판 상에 제1 전극, 유기물층 및 제2 전극을 순차적으로 적층시킴으로써 제조할 수 있다. 이 때 스퍼터링법(sputtering)이나 전자빔 증발법(e-beam evaporation)과 같은 PVD(physical Vapor Deposition)방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 정공 주입층, 정공 수송층, 발광층 및 전자 수송층을 포함하는 유기물층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시킴으로써 제조될 수 있다. 이와 같은 방법 외에도, 기판 상에 음극 물질부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 만들 수 있다.
또한, 상기 헤테로환 화합물은 유기 발광 소자의 제조시 진공 증착법 뿐만 아니라 용액 도포법에 의하여 유기물층으로 형성될 수 있다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯프린팅, 스크린 프린팅, 스프레이법, 롤 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다.
상기 기판은 필요에 따라 광학적 성질 및 물리적 성질을 고려하여 선택될 수 있다. 예컨대, 상기 기판은 투명한 것이 바람직하다. 상기 기판은 단단한 재료가 사용될 수도 있으나, 플라스틱과 같은 유연한 재료로 이루어질 수도 있다.
상기 기판의 재료로는 유리 및 석영판 이외에 PET(polyethylene terephthalate), PEN(polyethylene naphthalate), PP (polypropylene), PI(polyimide), PC(polycarbonate), PS(polystyrene), POM(polyoxymethylene), AS 수지(acrylonitrile styrene copolymer), ABS 수지(acrylonitrile butadiene styrene copolymer), TAC(Triacetyl cellulose) 및 PAR(polyarylate) 등을 들 수 있으나, 이들에만 한정되는 것은 아니다.
상기 음극 물질로는 통상 유기물층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 양극 물질로는 통상 유기물층으로 정공 주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 본 명세서에서 사용될 수 있는 양극 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물(ITO), 인듐아연 산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SNO2 : Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDOT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 정공수송층은 정공주입층으로부터 정공을 수취하여 발광층까지 정공을 수송하는 층으로, 정공 수송 물질로는 양극이나 정공 주입층으로부터 정공을 수송받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 정공주입층은 전극으로부터 정공을 주입하는 층으로, 정공 주입 물질로는 정공을 수송하는 능력을 가져 양극에서의 정공 주입효과, 발광층 또는 발광재료에 대하여 우수한 정공 주입 효과를 갖고, 발광층에서 생성된 여기자의 전자주입층 또는 전자주입재료에의 이동을 방지하며, 또한, 박막 형성 능력이 우수한 화합물이 바람직하다. 정공 주입 물질은 HOMO(highest occupied molecular orbital)가 양극 물질의 일함수와 주변 유기물층의 HOMO 사이인 것이 바람직하다. 정공 주입 물질의 구체적인 예로는 금속 포피린(porphyrin), 올리고티오펜, 아릴아민 계열의 유기물, 프탈로사이아닌 유도체, 헥사니트릴헥사아자트리페닐렌 계열의 유기물, 퀴나크리돈(quinacridone)계열의 유기물, 페릴렌(perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이들에만 한정 되는 것은 아니다.
상기 발광 물질로는 정공 수송층과 전자 수송층으로부터 정공과 전자를 각각 수송받아 결합시킴으로써 가시광선 영역의 빛을 낼 수 있는 물질로서, 형광이나 인광에 대한 양자 효율이 좋은 물질이 바람직하다. 구체적인 예로는 8-히드록시-퀴놀린 알루미늄 착물(Alq3); 카르바졸 계열 화합물; 이량체화 스티릴(dimerized styryl) 화합물; BAlq; 10-히드록시벤조 퀴놀린-금속 화합물; 벤족사졸, 벤즈티아졸 및 벤즈이미다졸 계열의 화합물; 폴리(p-페닐렌비닐렌)(PPV) 계열의 고분자; 스피로(spiro) 화합물; 폴리플루오렌, 루브렌 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 발광층은 호스트 재료 및 도펀트 재료를 포함할 수 있다. 호스트 재료는 축합 방향족환 유도체 또는 헤테로환 함유 화합물 등이 있다. 구체적으로 축합 방향족환 유도체로는 안트라센 유도체, 피렌 유도체, 나프탈렌 유도체, 펜타센 유도체, 페난트렌 화합물, 플루오란텐 화합물 등이 있고, 헤테로환 함유 ㅎ화합물로는 카바졸 유도체, 디벤조퓨란 유도체, 래더형 퓨란 화합물, 피리미딘 유도체 등이 있으나, 이에 한정되지 않는다.
도펀트 재료로는 방향족 아민 유도체, 스트릴아민 화합물, 붕소 착체, 플루오란텐 화합물, 금속 착체 등이 있다. 구체적으로 방향족 아민 유도체로는 치환 또는 비치환된 아릴아미노기를 갖는 축합 방향족환 유도체로서, 아릴아미노기를 갖는 피렌, 안트라센, 크리센, 페리플란텐 등이 있으며, 스티릴아민 화합물로는 치환 또는 비치환된 아릴아민에 적어도 1개의 아릴비닐기가 치환되어 있는 화합물로, 아릴기, 실릴기, 알킬기, 시클로알킬기 및 아릴아미노기로 이루어진 군에서 1 또는 2 이상 선택되는 치환기가 치환 또는 비치환된다. 구체적으로 스티릴아민, 스티릴디아민, 스티릴트리아민, 스티릴테트라아민 등이 있으나, 이에 한정되지 않는다. 또한, 금속 착체로는 이리듐 착체, 백금 착체 등이 있으나, 이에 한정되지 않는다.
상기 전자주입층은 전극으로부터 전자를 주입하는 층으로, 전자를 수송하는 능력을 갖고, 음극으로부터의 전자주입 효과, 발광층 또는 발광 재료에 대하여 우수한 전자주입 효과를 가지며, 발광층에서 생성된 여기자의 정공 주입층에의 이동을 방지하고, 또한, 박막형성능력이 우수한 화합물이 바람직하다. 구체적으로는 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 이미다졸, 페릴렌테트라카복실산, 프레오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물 및 함질소 5원환 유도체 등이 있으나, 이에 한정되지 않는다.
상기 금속 착체 화합물로서는 8-하이드록시퀴놀리나토 리튬, 비스(8-하이드록시퀴놀리나토)아연, 비스(8-하이드록시퀴놀리나토)구리, 비스(8-하이드록시퀴놀리나토)망간, 트리스(8-하이드록시퀴놀리나토)알루미늄, 트리스(2-메틸-8-하이드록시퀴놀리나토)알루미늄, 트리스(8-하이드록시퀴놀리나토)갈륨, 비스(10-하이드록시벤조[h]퀴놀리나토)베릴륨, 비스(10-하이드록시벤조[h]퀴놀리나토)아연, 비스(2-메틸-8-퀴놀리나토)클로로갈륨, 비스(2-메틸-8-퀴놀리나토)(o-크레졸라토)갈륨, 비스(2-메틸-8-퀴놀리나토)(1-나프톨라토)알루미늄, 비스(2-메틸-8-퀴놀리나토)(2-나프톨라토)갈륨 등이 있으나, 이에 한정되지 않는다.
상기 전자수송층은 전자주입층으로부터 전자를 수취하여 발광층까지 전자를 수송하는 층으로 전자 수송 물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 8-히드록시퀴놀린의 Al착물; Alq3를 포함한 착물; 유기 라디칼 화합물; 히드록시플라본-금속 착물 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 정공저지층은 정공의 음극 도달을 저지하는 층으로, 일반적으로 정공주입층과 동일한 조건으로 형성될 수 있다. 구체적으로 옥사디아졸 유도체나 트리아졸 유도체, 페난트롤린 유도체, BCP, 알루미늄 착물 (aluminum complex) 등이 있으나, 이에 한정되지 않는다.
본 명세서에 일 실시상태에 있어서, 상기 유기 발광 소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.
상기 화학식 1 또는 화학식 2로 대표되는 유기 화합물의 합성방법과 이를 이용한 유기발광소자의 제조는 이하의 실시예 및 비교예에 의하여 더욱 구체적으로 설명된다. 그러나, 이들 실시예는 본 명세서를 예시하기 위한 것이지 본 명세서의 범위가 이들만으로 한정되는 것은 아니다.
<제조예 1>
Figure PCTKR2014001073-appb-I000032
1) 구조식 A-1의 제조
9-(2-브로모페닐)-카바졸 (9-(2-bromophenyl)-carbazole) (20.9g, 62.1mmol)를 무수 테트라하이드로퓨란(THF)(200ml)에 녹인 후 -78℃냉각하였다. 2.5M의 n-부틸리튬(n-Bu-Li)(24.8ml, 62.1mmol)을 30분 동안 첨가한 후, 2시간 동안 -78 ℃에서 교반하였다. 2,4-디페닐-인데노[1,2-d]피리미딘-5-온(2,4-diphenyl-indeno[1,2-d]pyrimidine-5-one)(18.9g, 56.4mmol)를 -78 ℃에서 첨가한 후 상온으로 승온하고 염화 암모늄 수용액(aq.NH4Cl)로 반응을 퀀칭 (quenching)하였다. 유기층을 분리한 후 농축하고 크로마토그래피로 정제하여 구조식 A-1(15g, 26mmol)를 얻었다.
도 3은 구조식 A-1의 MS 스펙트럼을 나타낸 도이다.
2) 화학식 1-3의 제조
상기 반응에서 얻은 구조식 A-1(15g, 26mmol)를 아세트산(200ml)에 녹인 후, 진한 황산(H2SO4) 1g을 첨가하였다. 24시간 환류한 후 상온으로 냉각하였다. 물(H2O)(500ml)를 첨가하여 고체를 생성하였다. 여과 후 고체를 크로마토그래피로 정제하여 화학식 1-3(6.5g, 수율 45%)를 얻었다.
MS:[M+H]+=560
도 4는 화학식 1-3의 화합물의 MS 스펙트럼을 나타낸 도이다.
<제조예 2>
Figure PCTKR2014001073-appb-I000033
1) 구조식 B-1의 제조
9-(2-브로모페닐)-카바졸 (9-(2-bromophenyl)-carbazole) (20.9g, 62.1mmol)를 무수 테트라하이드로퓨란(THF)(200ml)에 녹인 후 -78℃냉각하였다. 2.5M의 n-부틸리튬(n-Bu-Li)(24.8ml, 62.1mmol)을 30분 동안 첨가한 후, 2시간 동안 -78℃에서 교반하였다. 구조식 B (18.9g, 56.4mmol)를 -78℃에서 첨가한 후 상온으로 승온하고 염화 암모늄 수용액(aq.NH4Cl)로 반응을 퀀칭 (quenching)하였다. 유기층을 분리한 후 농축하고 크로마토그래피로 정제하여 구조식 B-1(17.3g, 수율52%)를 얻었다.
2) 화학식 1-4의 제조
상기 반응에서 얻은 구조식 B-1(17.3g, 29.9mmol)를 아세트산(200ml)에 녹인 후, 진한 황산(H2SO4) 1g을 첨가하였다. 24시간 환류한 후 상온으로 냉각하였다. 물(H2O)(500ml)를 첨가하여 고체를 생성하였다. 여과 후 고체를 크로마토그래피로 정제하여 화학식 1-4(5.5g, 수율 33%)를 얻었다.
MS:[M+H]+=560
<제조예 3>
Figure PCTKR2014001073-appb-I000034
1) 구조식 C-1의 제조
9-(2-브로모페닐)-카바졸 (9-(2-bromophenyl)-carbazole) (10g, 31.0mmol)를 무수 테트라하이드로퓨란(THF)(200ml)에 녹인 후 -78℃냉각하였다. 2.5M의 n-부틸리튬(n-Bu-Li)(12.4ml, 31.0mmol)을 30분 동안 첨가한 후, 2시간 동안 -78℃에서 교반하였다. 구조식 C (7.3g, 28.2mmol)를 -78℃에서 첨가한 후 상온으로 승온하고 염화 암모늄 수용액(aq.NH4Cl)로 반응을 퀀칭 (quenching)하였다. 유기층을 분리한 후 농축하고 크로마토그래피로 정제하여 구조식 C-1(5.8g, 수율41%)를 얻었다.
2) 화학식 1-1의 제조
상기 반응에서 얻은 구조식 C-1(5.8g, 11.6mmol)를 아세트산(100ml)에 녹인 후, 진한 황산(H2SO4) 1g을 첨가하였다. 24시간 환류한 후 상온으로 냉각하였다. 물(H2O)(500ml)를 첨가하여 고체를 생성하였다. 여과 후 고체를 크로마토그래피로 정제하여 화학식 1-1(2.9g, 수율 52%)를 얻었다.
MS:[M+H]+=483
<제조예 4>
Figure PCTKR2014001073-appb-I000035
1) 구조식 D-1의 제조
9-(2-브로모페닐)-카바졸 (9-(2-bromophenyl)-carbazole) (10g, 31.0mmol)를 무수 테트라하이드로퓨란(THF)(200ml)에 녹인 후 -78℃냉각하였다. 2.5M의 n-부틸리튬(n-Bu-Li)(12.4ml, 31.0mmol)을 30분 동안 첨가한 후, 2시간 동안 -78℃에서 교반하였다. 구조식 D (7.3g, 28.2mmol)를 -78℃에서 첨가한 후 상온으로 승온하고 염화 암모늄 수용액(aq.NH4Cl)로 반응을 퀀칭 (quenching)하였다. 유기층을 분리한 후 농축하고 크로마토그래피로 정제하여 구조식 D-1(6.1g, 수율43%)를 얻었다.
2) 화학식 1-2의 제조
상기 반응에서 얻은 구조식 D-1(5.8g, 12.2mmol)를 아세트산(100ml)에 녹인 후, 진한 황산(H2SO4) 1g을 첨가하였다. 24시간 환류한 후 상온으로 냉각하였다. 물(H2O)(500ml)를 첨가하여 고체를 생성하였다. 여과 후 고체를 크로마토그래피로 정제하여 화학식 1-2(2.5g, 수율 45%)를 얻었다.
MS:[M+H]+=483
<제조예 5>
Figure PCTKR2014001073-appb-I000036
1) 구조식 E-1의 제조
9-(2-브로모페닐)-카바졸 (9-(2-bromophenyl)-carbazole) (15g, 46.5mmol)를 무수 테트라하이드로퓨란(THF)(200ml)에 녹인 후 -78℃냉각하였다. 2.5M의 n-부틸리튬(n-Bu-Li)(18.6ml, 46.5mmol)을 30분 동안 첨가한 후, 2시간 동안 -78℃에서 교반하였다. 구조식 E(14.9g, 38.8mmol)를 -78℃에서 첨가한 후 상온으로 승온하고 염화 암모늄 수용액(aq.NH4Cl)로 반응을 퀀칭 (quenching)하였다. 유기층을 분리한 후 농축하고 크로마토그래피로 정제하여 구조식 E-1(11.7g, 수율48%)를 얻었다.
2) 화학식 1-13의 제조
상기 반응에서 얻은 구조식 E-1(11.7g, 18.6mmol)를 아세트산(100ml)에 녹인 후, 진한 황산(H2SO4) 1g을 첨가하였다. 24시간 환류한 후 상온으로 냉각하였다. 물(H2O)(500ml)를 첨가하여 고체를 생성하였다. 여과 후 고체를 크로마토그래피로 정제하여 화학식 1-13 (4.1g, 수율 36%)를 얻었다.
MS:[M+H]+=609
<제조예 6>
Figure PCTKR2014001073-appb-I000037
1) 구조식 F-1의 제조
9-(2-브로모페닐)-카바졸(9-(2-bromophenyl)-carbazole) (10g, 31.0mmol)를 무수 테트라하이드로퓨란(THF)(200ml)에 녹인 후 -78℃냉각하였다. 2.5M의 n-부틸리튬(n-Bu-Li)(12.4ml, 31.0mmol)을 30분 동안 첨가한 후, 2시간 동안 -78℃에서 교반하였다. 구조식 F(12.5g, 25.8mmol)를 -78℃에서 첨가한 후 상온으로 승온하고 염화 암모늄 수용액(aq.NH4Cl)로 반응을 퀀칭 (quenching)하였다. 유기층을 분리한 후 농축하고 크로마토그래피로 정제하여 구조식 F-1(11.1g, 수율59%)를 얻었다.
2) 화학식 1-11의 제조
상기 반응에서 얻은 구조식 F-1(11.1g, 15.2mmol)를 아세트산(100ml)에 녹인 후, 진한 황산(H2SO4) 1g을 첨가하였다. 24시간 환류한 후 상온으로 냉각하였다. 물(H2O)(500ml)를 첨가하여 고체를 생성하였다. 여과 후 고체를 크로마토그래피로 정제하여 화학식 1-11(5.7g, 수율 53%)를 얻었다.
MS:[M+H]+=711
<제조예 7>
Figure PCTKR2014001073-appb-I000038
1) 구조식 G-1의 제조
9-(2-브로모페닐)-카바졸(9-(2-bromophenyl)-carbazole) (10g, 31.0mmol)를 무수 테트라하이드로퓨란(THF)(200ml)에 녹인 후 -78℃냉각하였다. 2.5M의 n-부틸리튬(n-Bu-Li)(12.4ml, 31.0mmol)을 30분 동안 첨가한 후, 2시간 동안 -78℃에서 교반하였다. 구조식 G(13.8g, 25.8mmol)를 -78℃에서 첨가한 후 상온으로 승온하고 염화 암모늄 수용액(aq.NH4Cl)로 반응을 퀀칭 (quenching)하였다. 유기층을 분리한 후 농축하고 크로마토그래피로 정제하여 구조식 G-1(5.2g, 수율26%)를 얻었다.
2) 화학식 1-19의 제조
상기 반응에서 얻은 구조식 G-1(5.2g, 6.7mmol)를 아세트산(50ml)에 녹인 후, 진한 황산(H2SO4) 0.1g을 첨가하였다. 24시간 환류한 후 상온으로 냉각하였다. 물(H2O)(200ml)를 첨가하여 고체를 생성하였다. 여과 후 고체를 에틸아세테이드와 헥산을 이용하여 재결하여 화학식 1-19(2.8g, 수율 56%)를 얻었다.
MS:[M+H]+=759
<제조예 8>
Figure PCTKR2014001073-appb-I000039
1) 구조식 H-1의 제조
구조식 H(15g, 46.3mmol)를 무수 테트라하이드로퓨란(THF)(200ml)에 녹인 후 -78℃냉각하였다. 2.5M의 n-부틸리튬(n-Bu-Li)(18.5ml, 46.3mmol)을 30분 동안 첨가한 후, 2시간 동안 -78 ℃에서 교반하였다. 2,4-디페닐-인데노[1,2-d]피리미딘-5-온(2,4-diphenyl-indeno[1,2-d]pyrimidine-5-one)(12.9g, 38.6 mmol)를 -78℃에서 첨가한 후 상온으로 승온하고 염화 암모늄 수용액(aq.NH4Cl)로 반응을 퀀칭 (quenching)하였다. 유기층을 분리한 후 농축하고 크로마토그래피로 정제하여 구조식 H-1(14.1g, 수율63%)를 얻었다.
2) 화학식 2-3의 제조
상기 반응에서 얻은 구조식 H-1(14.1g, 24.3mmol)를 아세트산(150ml)에 녹인 후, 진한 황산(H2SO4) 1g을 첨가하였다. 24시간 환류한 후 상온으로 냉각하였다. 물(H2O)(500ml)를 첨가하여 고체를 생성하였다. 여과 후 고체를 크로마토그래피로 정제하여 화학식 2-3 (6.4g, 수율 47%)를 얻었다.
MS:[M+H]+=561
<실시예 1> 발광층
ITO(indium tin oxide)가 500 Å의 두께로 박막 코팅된 유리 기판을 세제를 녹인 증류수에 넣고 초음파로 세척하였다. 이 때, 세제로는 피셔사(Fischer Co.) 제품을 사용하였으며, 증류수로는 밀리포어사(Millipore Co.) 제품의 필터(Filter)로 2차로 걸러진 증류수를 사용하였다. ITO를 30분간 세척한 후 증류수로 2회 반복하여 초음파 세척을 10분간 진행하였다. 증류수 세척이 끝난 후, 이소프로필알콜, 아세톤, 메탄올의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 수송시켰다. 또한, 산소 플라즈마를 이용하여 상기 기판을 5분간 세정한 후 진공 증착기로 기판을 수송시켰다.
이렇게 준비된 ITO 투명 전극 위에 하기 화학식의 헥사니트릴 헥사아자트리페닐렌(hexanitrile hexaazatriphenylene; HAT)를 500 Å의 두께로 열 진공 증착하여 정공 주입층을 형성하였다.
Figure PCTKR2014001073-appb-I000040
상기 정공 주입층 위에 상기 화학식의 4,4'-비스[N-(1-나프틸)-N-페닐아미노]비페닐(NPB) (250Å), 헥사니트릴 헥사아자트리페닐렌(HAT) (50Å) 및 4,4'-비스[N-(1-나프틸)-N-페닐아미노] 비페닐(NPB) (400Å)을 순차적으로 진공 증착하여 정공 수송층을 형성하였다.
이어서, 상기 정공수송층 위에 막 두께 300Å으로 상기 제조한 화학식 1-3의 화합물과 아래와 같은 도펀트 화합물 GD를 10:1의 중량비로 진공증착하여 발광층을 형성하였다.
Figure PCTKR2014001073-appb-I000041
상기 발광층 위에 전자수송층물질로써 상기 화학식 ET-A의 화합물과 상기 화학식 LiQ(Lithium Quinalate)를 1:1의 중량비로 진공증착하여 300Å의 두께로 전자 주입 및 수송층을 형성하였다.
상기 전자 주입 및 수송층 위에 순차적으로 15Å 두께로 리튬 플루라이드(LiF)와 1,000Å 두께로 알루미늄을 증착하여 음극을 형성하였다.
상기의 과정에서 유기물의 증착속도는 0.4 ~ 0.7 Å/sec를 유지하였고, 음극의 리튬플루오라이드는 0.3 Å/sec, 알루미늄은 2 Å/sec의 증착 속도를 유지하였으며, 증착시 진공도는 2 × 10-7 ~ 5 × 10-8 torr를 유지하여, 유기 발광소자를 제작하였다.
<실시예 2> 발광층
상기 실시예 1의 화학식 1-3의 화합물 대신, 상기 제조한 화학식 1-4의 화합물을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 유기 발광소자를 제작하였다.
<실시예 3> 발광층
상기 실시예 1의 화학식 1-3의 화합물 대신, 상기 제조한 화학식 1-1의 화합물을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 유기 발광소자를 제작하였다.
<실시예 4> 발광층
상기 실시예 1의 화학식 1-3의 화합물 대신, 상기 제조한 화학식 1-2의 화합물을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 유기 발광소자를 제작하였다.
<실시예 5> 발광층
상기 실시예 1의 화학식 1-3의 화합물 대신, 상기 제조한 화학식 1-13의 화합물을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 유기 발광소자를 제작하였다.
<실시예 6> 발광층
상기 실시예 1의 화학식 1-3의 화합물 대신, 상기 제조한 화학식 1-11의 화합물을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 유기 발광소자를 제작하였다.
<실시예 7> 발광층
상기 실시예 1의 화학식 1-3의 화합물 대신, 상기 제조한 화학식 1-19의 화합물을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 유기 발광소자를 제작하였다.
<실시예 8> 발광층
상기 실시예 1의 화학식 1-3의 화합물 대신, 상기 제조한 화학식 2-3의 화합물을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 유기 발광소자를 제작하였다.
<비교예 1>
상기 실시예 1의 화학식 1-9의 화합물 대신, 하기 화학식 GH-A의 화합물을 사용한 것을 제외하고는 실시예 1와 동일한 방법으로 유기 발광소자를 제작하였다.
Figure PCTKR2014001073-appb-I000042
상기 실시예 및 비교예 1에 의해 제작된 유기 발광 소자에 전류(10 mA/cm2)를 인가하였을 때, 하기 표 1의 결과를 얻었다.
표 1
화합물 전압(V) 효율(cd/A)
실시예 1 화학식 1-3 4.65 67.5
실시예 2 화학식 1-4 4.80 69.2
실시예 3 화학식 1-1 4.93 58.6
실시예 4 화학식 1-2 4.95 57.7
실시예 5 화학식 1-13 4.21 40.6
실시예 6 화학식 1-11 4.60 67.7
실시예 7 화학식 1-19 4.10 58.3
실시예 8 화학식 2-3 4.10 65.2
비교예 1 GH-A 6.12 15.26
상기 표 1의 결과로부터, 본 발명에 따른 신규한 화합물은 유기 발광소자를 비롯한 유기 전자소자의 발광층의 재료로서 사용될 수 있고, 이를 이용한 유기 발광소자를 비롯한 유기 전자소자는 효율, 구동전압, 안정성 등에서 우수한 특성을 나타냄을 알 수 있다. 특히, 구동전압을 하강시키고, 효율 상승을 유도하여 소비전력을 개선시킬 수 있다.

Claims (15)

  1. 하기 화학식 1 또는 2로 표시되는 헤테로환 화합물:
    [화학식 1]
    Figure PCTKR2014001073-appb-I000043
    [화학식 2]
    Figure PCTKR2014001073-appb-I000044
    화학식 1 및 2에 있어서,
    a는 0 내지 7의 정수이며,
    b는 0 내지 4의 정수이고,
    c는 0 내지 8의 정수이며,
    d는 0 내지 5의 정수이고,
    A1 내지 A8은 서로 동일하거나 상이하고, 각각 독립적으로 CR 또는 N 이며, 단, A1 내지 A8 중 N은 2개 이상이고,
    R 및 R1 내지 R4는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 니트릴기; 니트로기; 히드록시기; 카르보닐기; 에스테르기; 이미드기; 아마이드기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 아릴옥시기; 치환 또는 비치환된 알킬티옥시기; 치환 또는 비치환된 아릴티옥시기; 치환 또는 비치환된 알킬술폭시기; 치환 또는 비치환된 아릴술폭시기; 치환 또는 비치환된 알케닐기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 붕소기; 치환 또는 비치환된 알킬아민기; 치환 또는 비치환된 아랄킬아민기; 치환 또는 비치환된 아릴아민기; 치환 또는 비치환된 헤테로아릴아민기; 치환 또는 비치환된 아릴포스핀기; 치환 또는 비치환된 포스핀옥사이드기; 치환 또는 비치환된 아릴기; 또는 N, O, S 원자 중 1개 이상을 포함하는 치환 또는 비치환된 헤테로고리기이다.
  2. 청구항 1에 있어서,
    상기 A5 내지 A8 중 N이 2개 이상인 것인 헤테로환 화합물.
  3. 청구항 1에 있어서,
    A5 및 A7 은 N이고, A6 및 A8 은 CR이거나,
    A6 및 A8은 N이고, A5 및 A7은 CR인 것인 헤테로환 화합물.
  4. 청구항 1에 있어서,
    R은 수소; 치환 또는 비치환된 아릴기; 또는 N, O, S 원자 중 1개 이상을 포함하는 치환 또는 비치환된 헤테로고리기인 것인 헤테로환 화합물.
  5. 청구항 1에 있어서,
    R은 수소; 치환 또는 비치환된 포스핀옥사이드기, 치환 또는 비치환된 아릴기, 및 N, O, S 원자 중 1개 이상을 포함하는 치환 또는 비치환된 헤테로고리기로 이루어진 군에서 선택되는 1 또는 2 이상의 치환기로 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 포스핀옥사이드기, 치환 또는 비치환된 아릴기, 및 N, O, S 원자 중 1개 이상을 포함하는 치환 또는 비치환된 헤테로고리기로 이루어진 군에서 선택되는 1 또는 2 이상의 치환기로 치환 또는 비치환된 N, O, S 원자 중 1개 이상을 포함하는 헤테로고리기인 것인 헤테로환 화합물.
  6. 청구항 1에 있어서,
    상기 화학식 1로 표시되는 헤테로환 화합물은 하기 화학식 1-1 내지 1-36 중 어느 하나로 표시되는 것인 헤테로환 화합물.
    Figure PCTKR2014001073-appb-I000045
    Figure PCTKR2014001073-appb-I000046
    Figure PCTKR2014001073-appb-I000047
    Figure PCTKR2014001073-appb-I000048
    Figure PCTKR2014001073-appb-I000049
    Figure PCTKR2014001073-appb-I000050
    Figure PCTKR2014001073-appb-I000051
    Figure PCTKR2014001073-appb-I000052
    Figure PCTKR2014001073-appb-I000053
  7. 청구항 1에 있어서,
    상기 화학식 2로 표시되는 헤테로환 화합물은 하기 화학식 2-1 내지 2-32 중 어느 하나로 표시되는 것인 헤테로환 화합물.
    Figure PCTKR2014001073-appb-I000054
    Figure PCTKR2014001073-appb-I000055
    Figure PCTKR2014001073-appb-I000056
    Figure PCTKR2014001073-appb-I000057
    Figure PCTKR2014001073-appb-I000058
    Figure PCTKR2014001073-appb-I000059
    Figure PCTKR2014001073-appb-I000060
    Figure PCTKR2014001073-appb-I000061
  8. 제1 전극, 제2 전극 및 상기 제1 전극과 상기 제2 전극 사이에 배치된 발광층을 비롯한 1층 이상으로 이루어진 유기물층을 포함하는 유기 발광 소자에 로서, 상기 유기물층 중 1층 이상이 청구항 1 내지 7 중 어느 한 항에 따른 헤테로환 화합물 또는 상기 헤테로환 화합물에 열 경화성 또는 광 경화성 작용기가 도입된 화합물을 포함하는 것인 유기 발광 소자.
  9. 청구항 8에 있어서,
    상기 유기물층은 정공수송층, 정공주입층, 또는 정공수송과 정공주입을 동시에 하는 층을 포함하고, 상기 정공수송층, 정공주입층, 또는 정공수송과 정공주입을 동시에 하는 층은 상기 헤테로환 화합물 또는 상기 헤테로환 화합물에 열 경화성 또는 광 경화성 작용기가 도입된 화합물을 포함하는 것인 유기 발광 소자.
  10. 청구항 8에 있어서,
    상기 유기물층은 전자주입층을 포함하고, 상기 전자주입층은 상기 헤테로환 화합물 또는 상기 헤테로환 화합물에 열 경화성 또는 광 경화성 작용기가 도입된 화합물을 포함하는 것인 유기 발광 소자.
  11. 청구항 8에 있어서,
    상기 유기물층은 전자수송층을 포함하고, 상기 전자수송층은 상기 헤테로환 화합물 또는 상기 헤테로환 화합물에 열 경화성 또는 광 경화성 작용기가 도입된 화합물을 포함하는 것인 유기 발광 소자.
  12. 청구항 8에 있어서,
    상기 발광층은 상기 헤테로환 화합물 또는 상기 헤테로환 화합물에 열 경화성 또는 광 경화성 작용기가 도입된 화합물을 포함하는 것인 유기 발광 소자.
  13. 청구항 8에 있어서,
    상기 유기물층은 상기 헤테로환 화합물 또는 상기 헤테로환 화합물에 열 경화성 또는 광 경화성 작용기가 도입된 화합물을 호스트로서 포함하고, 다른 유기 화합물, 금속 또는 금속 화합물을 도판트로 포함하는 것인 유기 발광 소자.
  14. 청구항 8에 있어서,
    상기 열 경화성 또는 광 경화성 작용기는 비닐기 또는 아크릴기인 것인 유기 발광 소자.
  15. 청구항 8에 있어서,
    상기 유기물층은 정공주입층, 정공수송층. 전자수송층, 전자주입층, 전자저지층 및 정공저지층으로 이루어진 군에서 선택되는 1층 또는 2층 이상을 더 포함하는 것인 유기 발광 소자.
PCT/KR2014/001073 2013-02-07 2014-02-07 헤테로환 화합물 및 이를 이용한 유기 발광 소자 WO2014123391A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/373,541 US9221820B2 (en) 2013-02-07 2014-02-07 Heterocyclic compound and organic light emitting device using the same
JP2015553666A JP6058818B2 (ja) 2013-02-07 2014-02-07 ヘテロ環化合物およびこれを用いた有機発光素子
CN201480008054.0A CN104981471B (zh) 2013-02-07 2014-02-07 杂环化合物及使用其的有机发光元件
EP14749275.5A EP2960240B1 (en) 2013-02-07 2014-02-07 Heterocyclic compound and organic light-emitting element using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0013868 2013-02-07
KR20130013868 2013-02-07

Publications (1)

Publication Number Publication Date
WO2014123391A1 true WO2014123391A1 (ko) 2014-08-14

Family

ID=51299935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/001073 WO2014123391A1 (ko) 2013-02-07 2014-02-07 헤테로환 화합물 및 이를 이용한 유기 발광 소자

Country Status (7)

Country Link
US (1) US9221820B2 (ko)
EP (1) EP2960240B1 (ko)
JP (1) JP6058818B2 (ko)
KR (1) KR101607740B1 (ko)
CN (1) CN104981471B (ko)
TW (1) TWI481610B (ko)
WO (1) WO2014123391A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017209488A1 (ko) * 2016-06-02 2017-12-07 주식회사 두산 유기 화합물 및 이를 포함하는 유기 전계 발광 소자

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014084612A1 (ko) 2012-11-30 2014-06-05 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기 전자 소자
KR102421581B1 (ko) * 2015-09-08 2022-07-18 삼성디스플레이 주식회사 화합물 및 이를 포함하는 유기 발광 소자
CN107406391B (zh) 2015-09-30 2021-02-19 株式会社Lg化学 螺环化合物和包含其的有机发光元件
KR102665323B1 (ko) 2016-05-09 2024-05-14 삼성디스플레이 주식회사 축합환 화합물 및 이를 포함한 유기 발광 소자
KR102038031B1 (ko) * 2017-09-15 2019-10-30 엘티소재주식회사 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
KR20190101739A (ko) * 2018-02-23 2019-09-02 주식회사 엘지화학 유기 발광 소자
CN111718333B (zh) * 2020-07-06 2023-02-24 苏州久显新材料有限公司 1,3-二氮杂芴化合物和电子器件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090035637A (ko) * 2006-08-04 2009-04-09 캐논 가부시끼가이샤 축합복소환화합물 및 유기발광소자
KR20100130197A (ko) * 2009-05-29 2010-12-10 메르크 파텐트 게엠베하 유기 전계발광 소자용 물질
WO2011076314A1 (en) * 2009-12-22 2011-06-30 Merck Patent Gmbh Electroluminescent formulations
KR20110117063A (ko) * 2009-01-23 2011-10-26 도레이 카부시키가이샤 발광소자 재료 및 발광소자

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4539507A (en) 1983-03-25 1985-09-03 Eastman Kodak Company Organic electroluminescent devices having improved power conversion efficiencies
TWI328604B (en) * 2004-09-24 2010-08-11 Lg Chemical Ltd New compound and organic light emitting device using the same(4)
JP4786659B2 (ja) * 2004-09-24 2011-10-05 エルジー・ケム・リミテッド 新しい有機発光素子材料およびこれを用いた有機発光素子(9)
TWI385235B (zh) * 2008-07-22 2013-02-11 Ind Tech Res Inst 有機化合物及包含其之有機電激發光裝置
US9666806B2 (en) 2009-09-16 2017-05-30 Merck Patent Gmbh Formulations for the production of electronic devices
DE102009053644B4 (de) 2009-11-17 2019-07-04 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
DE102009041414A1 (de) 2009-09-16 2011-03-17 Merck Patent Gmbh Metallkomplexe
DE102009053645A1 (de) 2009-11-17 2011-05-19 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtung
KR101231931B1 (ko) * 2009-11-13 2013-02-08 주식회사 엘지화학 신규한 축합고리 화합물 및 이를 이용한 유기전자소자
KR20130087499A (ko) 2010-06-15 2013-08-06 메르크 파텐트 게엠베하 금속 착물
KR20120015883A (ko) * 2010-08-13 2012-02-22 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기 전자 소자
CN102002003A (zh) * 2010-10-14 2011-04-06 华东师范大学 一类二氮杂芴酮和芴及螺二芴衍生物和制备方法及其应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090035637A (ko) * 2006-08-04 2009-04-09 캐논 가부시끼가이샤 축합복소환화합물 및 유기발광소자
KR20110117063A (ko) * 2009-01-23 2011-10-26 도레이 카부시키가이샤 발광소자 재료 및 발광소자
KR20100130197A (ko) * 2009-05-29 2010-12-10 메르크 파텐트 게엠베하 유기 전계발광 소자용 물질
WO2011076314A1 (en) * 2009-12-22 2011-06-30 Merck Patent Gmbh Electroluminescent formulations

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2960240A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017209488A1 (ko) * 2016-06-02 2017-12-07 주식회사 두산 유기 화합물 및 이를 포함하는 유기 전계 발광 소자

Also Published As

Publication number Publication date
US9221820B2 (en) 2015-12-29
EP2960240B1 (en) 2017-05-03
KR20140100911A (ko) 2014-08-18
EP2960240A4 (en) 2016-09-14
TW201446765A (zh) 2014-12-16
KR101607740B1 (ko) 2016-03-30
JP2016511748A (ja) 2016-04-21
CN104981471A (zh) 2015-10-14
EP2960240A1 (en) 2015-12-30
TWI481610B (zh) 2015-04-21
JP6058818B2 (ja) 2017-01-11
CN104981471B (zh) 2017-03-08
US20150259347A1 (en) 2015-09-17

Similar Documents

Publication Publication Date Title
WO2014123392A1 (ko) 헤테로환 화합물 및 이를 이용한 유기 발광 소자
WO2014010823A1 (ko) 헤테로환 화합물 및 이를 포함하는 유기 전자 소자
WO2014081168A1 (ko) 플루오란텐 화합물 및 이를 포함하는 유기 전자 소자
WO2013002509A2 (ko) 새로운 화합물 및 이를 이용한 유기 발광 소자
WO2015046987A1 (ko) 헤테로환 화합물 및 이를 이용한 유기 발광 소자
WO2015152650A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2019190235A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2015016498A1 (ko) 헤테로 고리 화합물 및 이를 포함하는 유기 발광 소자
WO2014123391A1 (ko) 헤테로환 화합물 및 이를 이용한 유기 발광 소자
WO2017131380A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2017061779A1 (ko) 아민 화합물 및 이를 포함하는 유기 발광 소자
WO2011139129A2 (ko) 방향족 아민을 포함하는 트리페닐렌계 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2019160315A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2017171375A1 (ko) 화합물 및 이를 포함하는 유기 전자 소자
WO2020040514A1 (ko) 유기 발광 소자
WO2018030786A1 (ko) 화합물 및 이를 포함하는 유기발광소자
WO2015152651A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2019143223A1 (ko) 다환 화합물 및 이를 포함하는 유기 발광 소자
WO2020149596A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2019177393A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2015178740A2 (ko) 헤테로환 화합물 및 이를 포함하는 유기발광소자
WO2021091173A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2021066351A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2021080254A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2022031028A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14373541

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14749275

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015553666

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014749275

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014749275

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE